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ABSTRACT 8 

Understanding how interindividual variation within populations drives the evolution of biodiversity patterns 9 

is a major challenge in ecology and evolutionary biology. By reshuffling species distribution in space and time, 10 

historical biogeographic processes have dramatically affected the structure of biodiversity. While the genetic 11 

legacy left by these historical processes within populations has been widely investigated, their effects on 12 

phenotypic diversity remain relatively unexplored. Here, we investigate whether dispersal-driven processes of 13 

historical biogeographic relevance, such as late Pleistocene range dynamics, have contributed to shape the 14 

geographic patterns of phenotypic trait variation. We focus on dispersal-related personality, morphological 15 

and performance traits in the Tyrrhenian tree frog, Hyla sarda, which underwent a northward range expansion 16 

from the Sardinia Island to the Corsica Island during the Last Glacial Maximum, when a temporary land-bridge 17 

connected these islands. We collected tree frogs from four geographic areas along the past expansion route, 18 

controlling for altitude, local habitat, demographic factors, and bioclimatic differences between geographic 19 

areas. Then, we scored variation in two personality traits, two performance traits, along with morphological 20 

traits likely involved in the dispersal process. Tree frogs from the northern area in Corsica were more prudent 21 

in a novel environment, they had significantly larger body sizes, longer limbs, wider heads, and displayed 22 

stronger take-off and adhesion performances compared to individuals from the source area in Sardinia. The 23 

results of our study suggest a non-random spatial sorting of the intraspecific variation in multiple phenotypic 24 

traits along the range expansion route. They also suggest that population differentiation in phenotypic traits 25 

associations might be a legacy of past biogeographic dynamics, identifying a potential driver of the current 26 

phenotypic architecture of animal populations. 27 
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LAY SUMMARY 28 

Climatic oscillations of the Pleistocene have had dramatic impacts on species range dynamics and the structure 29 

of genetic diversity within them. However, did they also contribute to mould interindividual phenotypic 30 

variation? To help answer this question, in this study we examined spatial patterns of variation in personality, 31 

performance, and morphological traits along the Late Pleistocene range expansion route of the Tyrrhenian tree 32 

frog, Hyla sarda. We focused on these traits as they have been recently implicated in contemporary dispersal-33 

driven processes, such as biological invasions. Our results show that individuals from newly established 34 

populations are shyer, take longer to make decisions, have a stronger tendency to jump when exploring new 35 

environments, are larger, have longer limbs and wider heads, and perform better in jumping and adhesion. 36 

Once other sources of variation are controlled, these spatial patterns of phenotypic variation appear as the 37 

result of non-random sorting processes occurring during the species' historical range expansion. Future studies 38 

should explore the genomic architecture of this phenotypic trait variation, to characterize further the intimate 39 

link between historical processes and the rising of intraspecific variation. 40 

SHORT TUNNING TITLE: Phenotypic variation along a range expansion route 41 

KEYWORDS: Pleistocene range expansion, dispersal, personality, locomotory performance, morphology, 42 

phenotypic variation, Hyla sarda  43 
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INTRODUCTION 44 

The geography of interindividual variation within species has long fascinated ecologists and evolutionary 45 

biologists (Holt 2003; Des Roches et al., 2018; Raffard et al., 2019). With the advent and increasing availability 46 

of genetic and genomic resources, the study of this variation and the processes contributing to its shaping have 47 

boosted in the last decades (Hewitt 2000, 2004; Schmitt, 2007; Weiss & Ferrand, 2007; Fonseca et al., 2023). 48 

By analysing patterns of variation within organisms spanning the entire tree-of-life and all the continents, 49 

hundreds of phylogeographic and population genetic studies have identified the Pleistocene glacial–50 

interglacial cycles as a major factor in this respect (Hewitt 2000, 2004; Schmitt, 2007; Weiss & Ferrand, 2007; 51 

Fonseca et al., 2023). These climatic cycles triggered periodic contractions and expansions of species’ ranges 52 

and size of populations, leaving multiple imprints on their current genetic structure (Hewitt, 2004; Schmitt, 53 

2007; Weiss & Ferrand, 2007; Fonseca et al., 2023). While the link between these historical biogeographic 54 

processes and current spatial patterns of intraspecific genetic diversity has been widely investigated, the 55 

contribution of these past processes to the evolution of phenotypic variation within species is understudied 56 

(Simmons & Thomas, 2004; Cote et al., 2007; Phillips et al., 2010; Shine et al., 2011). Understanding the 57 

drivers of phenotypic diversity is essential to unravel the ecological and evolutionary processes that shape 58 

biodiversity and drive its evolution across space and time. 59 

Recent studies have shown that inter-individual differences in dispersal ability can directly affect the 60 

success of colonisation into new areas and the establishment of new populations (Bowler & Benton, 2005; 61 

Cote et al., 2007; Clobert et al., 2009; Canestrelli et al., 2016a). The study of contemporary biogeographic 62 

processes (e.g. range variations in response to the ongoing climate change, and biological invasions) suggest 63 

that dispersers are a non-random sample of individuals characterised by specific phenotypic profiles (Fraser et 64 

al., 2001; Phillips et al., 2008; Cote et al., 2010; Canestrelli et al., 2016a; Louppe et al., 2017). Evolutionary 65 

and ecological processes experienced by any expanding population might drive the directional evolution of 66 

phenotypic traits at the range-edge of an expansion, particularly of those traits that directly influence dispersal 67 

(Pintor et al., 2008; Atwell et al., 2012; Brodin et al., 2013; Myles-Gonzalez et al., 2015; Gruber et al., 2017). 68 

Some personality traits are known to influence individual dispersal propensity (Cote et al., 2010; Canestrelli 69 

et al., 2016a). Both theoretical and experimental studies found that individuals from the range-edge of an 70 

expansion are bolder and more exploratory than those from the core population (Atwell et al., 2012; Myles-71 
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Gonzalez et al., 2015; Canestrelli et al., 2016a; Gruber et al., 2017). These traits are predicted to influence all 72 

dispersal stages (i.e., departure, transience, and settlement; Dingemanse et al., 2003; Cote and Clobert, 73 

2007; Cote et al., 2010; Canestrelli et al., 2016a), resulting in a rapid evolution of divergent personalities along 74 

an expansion route. Locomotory performance is also a key factor for expansion dynamics. During a range 75 

expansion, individuals may be spatially sorted based on their locomotor abilities (Phillips, et al., 2010; Shine 76 

et al., 2011). Evidence suggests that this sorting often drives rapid evolution in locomotory traits (Travis & 77 

Dytham, 2002; Phillips et al., 2010; Shine et al., 2011), leading to morphological characteristics that enhance 78 

dispersal rates compared to individuals in long-invaded areas (Phillips et al., 2006; Phillips et al., 2008; 79 

Llewellyn et al., 2010; Louppe et al., 2017). For example, in the cane toad (Rhinella marina), a fast dispersal 80 

rate with straighter paths and longer legs has been documented at the edge of the invaded Australian range 81 

(Phillips et al., 2008; Alford et al., 2009; Llewellyn et al., 2010). When seen from a historical perspective, 82 

these studies of contemporary biogeographic processes indicate that the existing knowledge gap regarding the 83 

phenotypic legacy of past biogeographic events within species likely represents the ‘great missing’ piece in 84 

our understanding of the structure of biodiversity and its evolution over time. 85 

In this study we aim to fill in this gap, by exploring how dispersal-driven processes may have shaped 86 

the contemporary geographic patterns of intraspecific variation in personality, performance, and 87 

morphological traits along the past expansion route of the Tyrrhenian tree frog Hyla sarda (Bisconti et al., 88 

2011a, Spadavecchia et al., 2021). Previous phylogeographic and population genetic investigations on this 89 

amphibian species have addressed its Late Pleistocene range dynamics and historical demography (Bisconti et 90 

al., 2011a; Spadavecchia et al., 2021). During the last Glacial Maximum, when the sea levels were about 120m 91 

lower than at present, a temporary land-bridge connected the islands of Sardinia and Corsica (Van Andel & 92 

Shackleton, 1982; Shackleton et al., 1984), and this event allowed a northward range expansion of the 93 

Tyrrhenian tree frog, from Sardinia to Corsica (Bisconti et al., 2011a; Spadavecchia et al., 2021). After the last 94 

Glacial Maximum, when the sea levels rose, the newly established populations in Corsica were separated from 95 

their source populations in Sardinia, thus impeding the subsequent flow of individuals from the rear into the 96 

newly colonised areas. Recent studies investigating spatial patterns of variation along the historical expansion 97 

route in this species, showed a clear differentiation in rates of physiological ageing, different telomere 98 
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dynamics, and differences in anti-predator strategies (Liparoto et al., 2020; Canestrelli et al., 2021; 99 

Spadavecchia et al., 2023), among ancestral and derived populations.  100 

This study tested the hypothesis that historical biogeographic events of dispersal contribute to shape 101 

patterns of phenotypic diversity. We expect that Sardinia and Corsica treefrogs would differ in dispersal-related 102 

phenotypic traits, such as personality, morphology, and locomotor performance. We also tested the hypothesis 103 

that this legacy of past events could be detected in the geographic pattern of variation of these dispersal-related 104 

phenotypic traits. Specifically, if dispersers are a non-random sample of individuals, we predict that, compared 105 

to Sardinia tree frogs, Corsica tree frogs should be bolder, and have longer limbs and better jumping 106 

performance because these traits would enhance dispersal capability 107 

METHODS 108 

Sampling and housing 109 

Sample collection of tree frogs was carried out along a latitudinal transect from the ancestral area of the glacial 110 

refuge in central-eastern Sardinia to the northern part of the island of Corsica (Figure 1 and Table 1). A total 111 

of 93 tree frogs were collected in spring 2018 from four areas (Figure 1; Table 1). Individuals were captured 112 

with hand nets during the first hours of the night, after acoustic and visual localization and then transported to 113 

the housing facilities at Department of Ecological and Biological Sciences, Tuscia University. Housing 114 

conditions are described in detail in Bisconti et al., 2023. 115 

The sampling design was purposefully planned to reduce possible confounding effects linked to local 116 

habitat, kinship or inbreeding between individuals: a) two areas per island were sampled, and two breeding 117 

sites for each area, collecting individuals from different ponds within each site (see Table 1 and Figure 1); b) 118 

all the sampling areas were located  on the coasts on the eastern side of species distribution, to avoid both 119 

current and past bioclimatic differences among sampling sites, as shown by previous species distribution model 120 

(Bisconti et al., 2011a); c) tree frogs were collected from ponds exclusively located in coastal areas to avoid 121 

any effect linked to environmental conditions correlated to the altitude or the distance from the coast; d) finally, 122 

to avoid any effect due to demographic bottlenecks usually associated with colonisation processes through 123 

jump dispersal (Frankham, 1998) rather than through spatial diffusion processes, other islands inhabited by H. 124 

sarda were intentionally excluded from this study (i.e. Elba and Capraia islands; see Bisconti et al., 2011a,b; 125 

Bisconti et al., 2023). 126 
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Ethical note 127 

All the procedures were performed under the approval of the Institute for Environmental Protection and 128 

Research ‘ISPRA’ (protocol #5944), Ministry of Environment ‘MATTM’ (protocol #8275), Regione Sardegna 129 

(#12144) and Prefecture of Corsica (#2A20180206002 and #2B20180206001). 130 

Permission to temporarily house amphibians was granted by the Local Health and Veterinary Centre, 131 

with license code 050VT427. All handling procedures were approved by the Ethical Committee of the Tuscia 132 

University for the use of live animals. During captivity the animals were monitored daily. No adverse effects 133 

on the overall health of tree frogs were observed during the procedures. The animals were released in the 134 

original sampling locations at the end of the experimentation. 135 

Behavioural tests  136 

To address geographic variation in individual behaviour of H. sarda, the study was focused on two personality 137 

traits that are commonly associated with dispersal propensity: exploration attitude in a novel environment and 138 

boldness (Canestrelli et al., 2016a). Exploratory activity is considered crucial in promoting dispersal, as 139 

individuals with a greater propensity toward exploration are expected to crowd at the expanding range edge 140 

(Dingemanse et al., 2003; Cote et al., 2010). Exploration activity was investigated by measuring the latency to 141 

exploring a novel environment, and the time spent in exploration. Propensity to disperse was also assessed, by 142 

investigating boldness, that is, an individual's propensity to take risks (Réale et al., 2007; Canestrelli et al., 143 

2016a). Bolder individuals are expected to be more willing to accept the intrinsic risks of dispersal (Stamps, 144 

1985; Bonte et al., 2012), and thus likely to disperse earlier than shyer conspecific. To assess these personality 145 

traits, two distinct behavioural tests were performed, as described below, and each test was repeated after 10 146 

days to measure temporal consistency. All the tests were performed in the housing room, to avoid any changes 147 

in humidity and temperature that could affect the analysed behavioural features (Duellman & Trueb, 1994). 148 

Exploration in a novel environment 149 

Considering the arboreal lifestyle of H. sarda, exploration tests were carried out in a cylindric arena allowing 150 

both vertical and horizontal movements. The arena was enriched with plants (Epipremnum aureum) and an 151 

oakwood that allows individuals to hide, eliminating the possibility that the measured behaviours reflected 152 

abnormal fear or anxiety rather than a spontaneous exploratory behaviour (see Bisconti et al., 2023). This test 153 

has been described in detail Bisconti et al., (2023). Briefly: after a 5-minute acclimatation period, individuals 154 
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were left to explore the arena for 10 minutes, and the individual exploration behaviour was recorded using an 155 

HD video camera (Nova Germany model DVR AHD-7908). The following variables were extract using Boris 156 

5.1.3 (Friard & Gamba, 2016): 1) latency to explore (s); 2) duration of activity (expressed as percentage of 157 

duration of test); 3) duration of time spent on the arena ground floor; 4) jumping activity, expressed as 158 

percentage of time in activity (moving) spent jumping. 159 

Boldness 160 

This test was performed to assess the individual behaviour across the boldness-shyness behavioural axis. The 161 

latency to exit from a shelter was considered as a proxy of the individual propensity to take risk. A HD video 162 

camera (Nova Germany model DVR AHD-7908) was used to record a rectangular arena where all animals 163 

were caged into a cylindrical dark shelter for a 6-minute acclimatation period and then left free to exit (Bisconti 164 

et al., 2023). The software Boris 5.1.3 was used to measure the time it took for an individual to exit from the 165 

shelter.  166 

Locomotory performance tests 167 

To investigate the geographic variation in locomotory performances of H. sarda, we assessed two traits that 168 

are expected to play a crucial role in an arboreal tree frog dispersal: jumping force, and adhesion force. The 169 

jumping force was measured at take-off (Marsh & John-Alder 1994; Nauwelaerts & Aerts 2006 and references 170 

therein). The adhesion force was also considered a proxy of dispersal abilities because it plays a main role 171 

during the landing phase (Duellman & Trueb, 1994; Bisconti et al., 2023; Emerson & Diehl 1980; Federle et 172 

al. 2006; Smith et al. 2006; Bijma et al., 2016). The jumping force was quantified by means of jumping tests, 173 

while the adhesion force was quantified by a stickiness tests, as described below. Before each test, all the 174 

individuals were hydrated for 1 minute, and then weighted using a scale Acculab model (ATILON ATL-224-175 

I).  176 

Jumping test 177 

Jumping tests were carried out in a rectangular arena, videotaped with a video camera (Panasonic DMC-178 

FZ300) placed laterally to the setup. Each tree frog was fitted with an accelerometer data logger (xy-4 units, 179 

Technosmart, Rome, 9.15 x 15 x 4 mm, 1 gr weight including battery) set to record triaxial acceleration (0 - 4 180 

g) at 100 Hz, and the tree frog was induced to jump by stimulating its caudal region (Mitchell & Bergmann, 181 

2016). Five jumps were collected for each individuals (see Bisconti et al., 2023 for a detailed description of 182 
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this test). The dynamic body acceleration for each dimension was extracted from the downloaded data (x, y, 183 

z; Wilson et al., 2006; Shepard et al., 2008). The logger's x axis recorded sway, the y axis recorded surge, and 184 

the z axis recorded heave (Halsey et al., 2008). Framework 4 software were used (version 2.5) to add these 185 

values and get the Vector sum of Dynamic Body Acceleration [VeDBA = (Ax2+ Ay2+ Az2)]. Five VeDBA 186 

values for each individual were quantified, one for each jump, and the highest value of VeDBA was retained 187 

as the individual maximum jumping force at take-off [VeDBA x mass] and considered for downstream 188 

analyses.  189 

Stickiness test 190 

A smooth plastic rotating wheel with a moderate and constant angular speed (3 revolutions per minute) was 191 

used to test the maximum adhesiveness force. Five falls for each individual were recorded using Nova 192 

Germany model DVR AHD-7908. The software Tracker (version 4.11.0) was used to extract the angle of fall 193 

(radian) for each of the five falls, and the largest value was selected for the subsequent analyses. The maximum 194 

adhesion force was calculated as [cos (α)× mass × g] using Barnes et al. (2006)'s standard protocol (see Bisconti 195 

et al., 2023, for further details). 196 

Morphological traits 197 

Anurans with an arboreal lifestyle are characterised by morphological adaptations to better perform during 198 

jumps and landings (Kamada et al., 2017; Bijma et al., 2016). Those morphological traits that typically play a 199 

direct role in these two phases of locomotion were investigated, that is, body size and limb lengths (Phillips et 200 

al., 2006). However, data on another morphological trait that is intrinsically linked to jumping performance in 201 

tree frogs were also collected: the head width. Indeed, there is evidence that the head width plays a crucial role 202 

improving the ability of tree frogs in performing jumps, especially by maintaining the posture during the 203 

jumping phase, and during the landing phase by hitting the substrate first (Reilly et al., 2016; Kamada et al., 204 

2017).  205 

Measures of the following morphological traits were collected: (1) snout–vent length (SVL; mm); (2) 206 

head width (mm); (3) forelimb length (mm); (4) hindlimb length (mm). To obtain standardised measures, the 207 

tree frogs were anaesthetised by a two-minute submersion in a solution of MS-222 (0.05% m/v), placed in the 208 

prone position on 1x1 cm grid paper, parallel to the plane of a camera lens, and photographed using a Panasonic 209 

LUMIX (DMC-FZ300) digital camera. All photographs were taken with the same camera settings and under 210 
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the same lighting conditions. After the photographs, each individual was placed in a humid box until it fully 211 

recovered, and then reintroduced into its own fauna box. The measures were then extracted by the photographs 212 

and analysed by using ImageJ 1.52 (National Institutes of Health, USA).  213 

Data analysis 214 

All statistical analyses were performed using R software version 4.3.1 (R Core Team 2023). To evaluate the 215 

repeatability of the behavioural traits, we run Generalized Linear Mixed effect (GLMM) based repeatability 216 

models using the “rpt” function of the rptR package (Schielzeth & Nakagawa, 2011; Stoffel et al., 2017), 217 

setting as Poisson distribution datatype; duration of activity and duration of time spent on the arena floor level 218 

were treated as proportion datatype. We entered each behavioural trait as a dependent variable and individual 219 

as a random factor. We considered the behavioural variables as personality traits when their repeatability value 220 

R is > 0.2, and the lower bound of the CI was > 0.0 (Brodin et al., 2013; Kelleher et al., 2017; Kelleher et al., 221 

2018 and references therein). Preliminary models showed that entering sampling location within each island 222 

as a random factor did not improve the fit of the model (i.e. the AIC value was not reduced beyond 2); thus, it 223 

was not subsequently considered. Also, running the models with or without females did not change at all both 224 

the model fit and the results, and thus we retained females for all the subsequent analyses. 225 

We tested the hypothesis of a phenotypic change across the past expansion route of Hyla sarda from 226 

Sardinia to Corsica. First, we assessed the differences in personality, performance, and morphological traits 227 

between the two islands by running Generalized Linear Models (GLMs; “lm” function in the basic package 228 

stats) entering each variable singly as dependent variables, and island as fixed factor. We also run the analyses 229 

including sampling location within each island as a random factor in generalized linear mixed-effect models 230 

(GLMMs; “lmer” function in the lme4 package); AIC values comparison was applied to select the best-fit 231 

modelling approach. For repeatable personality traits, we used the mean between the two repetitions; the 232 

variables were square-root (frequency of jumping events) or log10 (all the others) transformed to meet the 233 

assumption of residuals normality. To exclude the effect of the body size on the morphological traits, for each 234 

measured trait we extracted the residuals of the regression with the SVL. Normality and homoscedasticity of 235 

model residuals were evaluated to ascertain the goodness of model fit. For the selected best-fit models, we 236 

contrasted the estimated marginal means and standard errors from the models as computed using the emmeans 237 

r package.  238 
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Then, we tested the association of phenotypic variation with the distance from the estimated area of 239 

origin of the range expansion from Sardinia to Corsica as estimated in Spadavecchia et al. (2021). We set a 240 

distinct linear regression model between each behavioural, performance and morphological variable and the 241 

distance from the area of origin, measured in km using the Google Earth (Google Inc.) “ruler” function. 242 

RESULTS 243 

The repeatability coefficients of the behavioural traits with the respective CI and p-value of are reported in 244 

Table 2. Three out of the five investigated traits resulted significantly repeatable: boldness (R = 0.40), the 245 

frequency of jumping events during the arena exploration (R = 0.35), and the latency to explore a novel 246 

environment (R = 0.31). Conversely, activity and duration of time spent on the arena floor were not 247 

significantly repeatable and thus they were excluded from subsequent analyses.  248 

We found substantial differences between Sardinia and Corsica populations for all the analysed traits. 249 

The AIC model comparison (Supplementary Table 1) showed that entering sampling location within each 250 

island as a random factor did not improve the fit of the model (i.e. the AIC value was not reduced) for all the 251 

traits but two (performance traits), supporting the general independence of the pattern found from local 252 

sampling site conditions. 253 

We found significant differences in personality traits between Sardinia and Corsica individuals (Table 254 

3), with Corsica individuals showing a shyer profile and higher jumping frequencies. The latency to exit from 255 

the shelter and the latency to explore were longer for Corsica individuals than those showed by Sardinia 256 

individuals (p = 0.032 and p < 0.001, respectively). The jumping frequency during exploration was 257 

significantly higher in Corsica than in Sardinia (p = 0.001). The estimated marginal means and standard errors 258 

for personality differences between Sardinia-Corsica are shown in Figure 2A-2C. 259 

Sardinia and Corsica populations differed also in jumping force at the take-off and in stickiness, with 260 

tree frogs from Corsica showing higher performance values than individuals from Sardinia (Table 3 and Figure 261 

2). Entering sampling location within each island as a random factor improved the model fit for both the 262 

performance traits (lowest AIC; see Supplementary Table 1). However, whereas between-island differences in 263 

stickiness were significant both in GLM and GLMM (p <0.001), jumping force at the take-off resulted 264 

significant in GLM (p = 0.001) but not significant when entering sampling location as a random factor (p = 265 
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0.094). The estimated marginal means and standard errors for performance differences between Sardinia-266 

Corsica are shown in Figure 2D-2E. 267 

All morphological traits showed significant differences between Sardinia and Corsica populations 268 

(Table 3 and Figure 2F-2I). Corsica tree frogs were larger in body size (p <0.001), with longer forelimbs (p = 269 

0.044) and hindlimbs (p = 0.026), and had wider head size (p = 0.011). 270 

Finally, we found significant associations between phenotypic variation and the distance from the 271 

estimated area of origin of the range expansion from Sardinia to Corsica (see Spadavecchia et al., 2021) for all 272 

the analysed traits, except for hind limb length and head width (Figure 3).  273 

DISCUSSION 274 

We found substantial and significant differences between H. sarda individuals from the two islands. Corsica 275 

tree frogs showed a shyer behavioural profile, a longer decision-making time, a significant attitude to jump 276 

during exploration, and a more efficient dispersal-related performance and different morphological traits pared 277 

to Sardinian tree frogs.  278 

The spatial patterns of phenotypic variation observed could be explained by several scenarios. 279 

Variation in bioclimatic conditions between the two islands could contribute to shape the differences found. 280 

Climatic conditions do, indeed, affect habitat features, that in turn, could differentially influence dispersal and 281 

the ability to avoid predators, especially for an arboreal species (Martin et al. 2005). However, previous studies 282 

showed comparable bioclimatic conditions between the coastal areas considered in this study (Bisconti et al., 283 

2011; see section 2.1), which makes a contribution of climatic variation highly improbable in explaining the 284 

observed patterns of phenotypic differentiation (Bisconti et al., 2011a). An alternative explanation for these 285 

patterns might stem from differences in the ecological community between the two islands. In particular, 286 

differences in the predatory environment encountered within the two islands could contribute much to promote 287 

local adaptations and mould phenotypic variation (Kang et al. 2017; Gavriilidi et al., 2022). Corsica and 288 

Sardinia are continental islands that share their geological origin and most of the Pleistocene history (Blondel 289 

et al., 2010) and, consequently, the ecological communities of coastal environments largely overlap between 290 

these islands (Blondel et al., 2010). There are not noticeable differences between islands in the presence of 291 

organisms that are known to predate the Tyrrhenian tree frog (mostly birds and snakes; Lanza et al., 2007). 292 

Lastly, in principle, some genetic divergence between Sardinia and Corsica populations might contribute to 293 
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explaining the observed pattern of phenotypic differences (Lipshutz, et al., 2017; Stamp et al., 2020). However, 294 

previous phylogeographic and population genetic structure analyses showed the absence of any remarkable 295 

differences in the levels of genetic diversity, and the lack of a spatial genetic structure between Sardinia and 296 

Corsica populations, disproving this potential contribution to the observed pattern of phenotypic variation 297 

(Bisconti et al., 2011a,b).  298 

In the absence of clear influences from environmental or genetic factors on the geographic patterns of 299 

phenotypic variation, our results provide support to the hypothesis that the formation of these geographic 300 

patterns has been promoted by a non-random spatial sorting of individuals by dispersal propensity/ability, 301 

during the past range expansion phase along the south-north axis (Figure 2).   In the following sections, we 302 

will discuss the putative implications of our findings for the evolution of each phenotypic trait, during the 303 

range expansion phase from Sardinia to the Corsica Island. 304 

The shyer behavioural profile shown by the Corsica individuals appears counterintuitive, as dispersers 305 

at the range edge have frequently been described as bolder and more exploratory than those living in long-306 

established areas (e.g. Pintor et al., 2008; Liebl & Martin, 2012; Atwell et al., 2012; Myles-Gonzalez et al., 307 

2015; Canestrelli et al., 2016a; Gruber et al., 2017). However, recent empirical studies showed that a shy and 308 

more prudent behavioural profile is an efficient alternative strategy to navigate in a novel environment, where 309 

the density of conspecific individuals is lower than in core populations (Gavriilidi et al., 2022; Mazza & 310 

Eccard, 2023; Eccard et al., 2023). On the contrary, a shyer profile in expanding populations could enable a 311 

more careful assessment of the surrounding environment, thereby reducing risks and ultimately increasing the 312 

chances of survival (Groothuis & Carere 2005; Réale et al. 2010; Mazza & Eccard, 2023). By requiring less 313 

energy investment in exploration, this behavioural profile could favour metabolic resource allocation to other 314 

critical functions pivotal for a successful colonisation, such as foraging, growth, and reproduction (Verbeek et 315 

al., 1994; Deerenberg et al., 1998; Cockrem, 2007; Coppens et al., 2010). Besides, the higher propensity of 316 

Corsica tree frogs to jump during their overall activity duration, compared to individuals from the source 317 

island, may have facilitated a cost-benefit optimization for the dispersers. Despite the energetic costs associated 318 

with a jumping locomotory mode, such strategy could enable individuals to cover longer distances with a 319 

single jump, interspersed with pauses for energy recovery and for predatory and environmental context 320 

assessment, before exploring again. The higher propensity to jump shown by tree frogs from Corsica is 321 



13 
 

reflected in their better locomotory performance than those from Sardinia. As key traits in determining species 322 

dispersal ability, locomotory performance traits play a direct role in dispersal processes and, consequently, in 323 

the overall success of expansion (Phillips et al., 2006; Phillips et al., 2008; Llewellyn et al., 2010; Louppe et 324 

al., 2017). The performance trait analysis revealed that Corsica tree frogs exhibit greater jumping and adhesion 325 

forces than those from Sardinia. In such an arboreal species, both traits could significantly enhance dispersal 326 

ability, playing a crucial role during both the initial jumping phase and the subsequent landing phase. This 327 

higher jumping performance may contribute to covering longer distances with each jump while minimizing 328 

the risk of missing the target during landing (see material and methods; Duellman and Trueb, 1994; Kosmala 329 

et al., 2017). More performant profiles shown by Corsica individuals during dispersal are in line with findings 330 

from several other studies exploring locomotory performance traits in contemporary expanding populations 331 

(Phillips et al., 2008; Alford et al., 2009; Llewellyn et al., 2010). Recent studies on invasive species have 332 

investigated the evolution of locomotory performance traits at the range-edge of expanding populations, 333 

revealing a significant improvement in the locomotor abilities of dispersers, thus suggesting that, during an 334 

expansion, individuals may be spatially sorted based on their dispersal-related performance ability (Phillips et 335 

al., 2008, Alford et al., 2009; Llewellyn et al., 2010; Shine et al., 2011; Louppe et al., 2017). 336 

Morphological analyses showed that Corsica tree frogs have a larger body size, longer limbs, and a 337 

wider head width than those from Sardinia. All these features imply a better performance of these individuals 338 

during the dispersal and the colonisation of new environments. A larger body size would confer several 339 

advantages to individuals during an expansion. Studies on amphibians showed that larger individuals have a 340 

better locomotory performance both on land and in water (Cabrera-Guzman et al., 2013). Moreover, a larger 341 

size plays an important role in other essential functions particularly crucial for an amphibian during 342 

colonisation, such as avoiding dehydration (Kosmala et al., 2020), allowing to be more performant in capturing 343 

prey (Cabrera-Guzman et al., 2013) and also increasing the reproductive success, whereby the larger male 344 

would be more successful both in intraspecific competition and during the amplexus (Bowcock et al., 2013; 345 

Herrel et al., 2012; Clarke et al., 2019). Similarly, longer limbs improve locomotion, and, thus, the dispersal 346 

ability (Phillips et al., 2006; Clarke et al., 2019). Longer legs allow a greater propulsive force in jumping 347 

(Kamada et al., 2017; Bijma et al., 2016). For example, in the invasive Rhinella marina, individuals at the edge 348 

of the Australian invasion front had longer legs, a trait significantly enhancing invasion success (Phillips et al., 349 
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2006). In the context of jumping amphibians like tree frogs, longer forelimbs could also contribute to 350 

improving landings, while dampening the energy of jumps upon touchdown (Bijma et al., 2016). Lastly, 351 

colonising individuals with a wider head would likely adapt better to landings after jumps. The increased 352 

propulsion resulting from longer legs might lead to more forceful landings and given that the head is the first 353 

part of the body to arrive on a surface, a larger head width could confer better management of shock absorption 354 

during collisions. 355 

CONCLUSION 356 

This study provides novel evidence that historical range expansion could have played a role in explaining the 357 

geographic patterns of intraspecific phenotypic variation in natural populations. Rapid, substantial, and 358 

directional evolution in dispersal-enhancing traits had been already documented in populations currently 359 

undergoing range expansion (Phillips et al., 2006; Liebl and Martin, 2012; Gruber et al., 2017; Kosmala et al., 360 

2017). Although studies of ongoing invasion provide an excellent opportunity to investigate the causes and 361 

consequences of dispersal dynamics, they do not enable the investigation of their long-term legacies, in an 362 

evolutionary perspective (Canestrelli et al., 2016a, b). The selective advantages associated with adaptive, 363 

dispersal-enhancing, traits during an expansion phase may be transient, as suggested by several empirical 364 

evidence (Travis & Dytham, 2002; Brown et al., 2007; Phillips et al., 2008; Brown et al., 2014). Recently 365 

established populations may indeed restore variation (phenotypic and genotypic) through a slower flow of 366 

individuals from the rear or may evolve novel trait states in response to demographic density increases in newly 367 

colonised areas (Cobben et al., 2015; Canestrelli et al., 2016a; Perkins et al., 2016). To date, we are not aware 368 

of studies addressing if the predicted directional changes in dispersal-enhancing traits persist in populations 369 

long after the expansion stops, and the demographic conditions promoting spatial sorting processes vanish 370 

(Cobben et al., 2015; Canestrelli et al., 2016a; Perkins et al., 2016). In this frame, the expansion history of the 371 

Tyrrhenian tree frogs could offer the opportunity to learn about the long-term legacy of non-neutral processes 372 

at play during a range expansion. Finally, to investigate the genomic underpinnings of the phenotypic evolution 373 

promoted by historical range expansions appears the next mandatory step to reach a more complete 374 

understanding of the eco-evolutionary processes moulding spatial and temporal patterns of variation of 375 

biological diversity (see Libro et al., 2022).  376 
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FIGURES AND TABLES 646 

Table 1. Geographic coordinates and sample size of the sites sampled to study phenotypic variation within 647 

Hyla sarda populations. 648 

 649 

Island Sampled site Latitude  Longitude  N  

Corsica 

Aleria 42.1132 9.5221 14 

San Giuliano 42.2677 9.5184 10 

Etagn de Canettu 41.4456 9.2035 10 

T10 41.4603 9.2170 13 

Sardinia 

Stazzo Pulcheddu 41.1639 9.3620 8 

Porto Pollo 41.1844 9.3303 15 

Cala Ginepro 40.4481 9.7920 14 

Siniscola 40.5814 9.7691 9 

 650 

Table 2. Summary of GLMM-based repeatability (R) estimates from multiplicative model. Parametric 651 

bootstrapping (number of iterations = 1,000) was used to calculate the CI interval and the likelihood ratio test 652 

to estimate the P-value of the repeatability distribution. Significant traits are shown in bold. 653 

 654 

 655 

 656 

 657 

 658 

 659  

 660 

 661 

 662 

Variable Estimate 95 % CI P-value 

Latency to explore 0.31 0.09-0.50 0.002 

Activity 0.04 0.00-0.10 0.051 

Time on floor 0.07 0.00-0.21 0.183 

Jumping events 0.35 0.14-0.53 0.001 

Latency to exit 0.40 0.20-0.55 <0.001 
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Table 3. Linear models showing differences between Corsica and Sardinia Island populations in behavioural, 663 

performance, morphological traits. Coefficient estimates (±SE) of these models are shown with both 664 

behavioural and performance traits as dependent variable and island as fixed factor. Significant contrasts are 665 

shown in bold. 666 

 667 

Phenotypic trait Dependent variable Reference Level Coefficient SE t-Value P 

Behaviour Latency to explore C S -0.526 0.131 - 4.028 <0.001 

 Jumping events C S -1.256 0.358 -3.504 0.001 

 Latency to exit C S -0.396 0.181 -2.185 0.032 

Performance  Jumping C S -3.390 0.987 -3.433 0.001 

 Stickiness  C S -7.731 1.969 -3.926 <0.001 

Morphology SVL S C -0.238 0.062 -3.844 <0.001 

 Forelimb S C -0.062 0.030 -2.059 0.044 

 Hindlimb S C -0.100 0.044 -2.288 0.026 

 Head width S C -0.032 0.0124 -2.595 0.011 

 668 

  669 
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Figure 1. Geographical distribution of the eight sampled populations of the Tyrrhenian tree frog (Hyla sarda). 670 

The dashed line indicates the approximate coastline location during the Last Glacial Maximum (Thiede, 1978). 671 

 672 

 673 

  674 
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Figure 2. Estimated marginal means and standard errors from linear models are shown for each island for all 675 

phenotypic traits studied in the Tyrrhenian tree frog (Hyla sarda). Personality traits include A) latency to 676 

explore (in seconds), B) latency to exit (in seconds), and C) frequency of jump events (%). Performance traits 677 

include D) jumping force at take-off (in Newton) and E) adhesion force (in Newton). Morphological traits 678 

include F) snout-vent length (SVL), G) forelimb length, H) hindlimb length, and I) head width (all expressed 679 

in millimetres). Morphological measurements are indicated by red lines within each panel. 680 

 681 
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 686 
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Figure 3. Phenotypic trait variation along the inferred historical range expansion route of the Tyrrhenian tree 687 

frog (Hyla sarda). Results are based on linear regression models examining the relationship between distance 688 

from the area of origin (in km) and each behavioural, performance, and morphological trait analysed in this 689 

study. 690 
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