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Representing species interactions probabilistically (how likely are they to occur?) as opposed to determin-
istically (are they occurring?) conveys uncertainties in our knowledge of interactions and information on
their variability. The sources of uncertainty captured by interaction probabilities depend on the method used
to evaluate them: uncertainty of predictive models, subjective assessment of experts, or empirical measure-
ment of interaction spatiotemporal variability. However, guidelines for the estimation and documentation
of probabilistic interaction data are lacking. This is concerning because our understanding and analysis
of interaction probabilities depend on their sometimes elusive definition and uncertainty sources. We re-
view how probabilistic interactions are defined at different spatial scales, from local interactions to regional
networks (metawebs), with a strong emphasis on host-parasite and trophic (predatory and herbivory) interac-
tions. These definitions are based on the distinction between the realization of an interaction at a specific time
and space (local) and its biological or ecological feasibility (regional). Using host-parasite interactions in
Europe, we illustrate how these two network representations differ in their statistical properties, specifically:
how local networks and metawebs differ in their spatial and temporal scaling of probabilistic interactions, but
not in their taxonomic scaling. We present two approaches to inferring binary interactions from probabilistic
ones that account for these differences and show that systematic biases arise when directly inferring local net-
works from metawebs. Our results underscore the importance of more rigorous descriptions of probabilistic
species interaction networks that specify their type of interaction (local or regional), conditional variables
and uncertainty sources.

1

Introduction

1.1. Species interactions are variable and uncertain As we try to navigate global biodiversity change, fill-
ing in knowledge gaps about biodiversity becomes instrumental to monitoring and mitigating those changes
(Abrego et al. 2021; Gonzalez & Londoifio 2022; Hortal ef al. 2015). However, cataloging species, popula-
tions and, in particular, ecological interactions (e.g., predation, parasitism, and pollination) is a substantial
challenge (Pascual et al. 2006; Polis 1991). There are methodological and biological constraints that hinder
our ability to document species interactions, inevitably leading to uncertainty in our knowledge of inter-
actions. For example, the spatial and temporal uncoupling of species (e.g., nocturnal and diurnal species
coexisting in the same space with different daily activity timings, Jordano 1987) and the large number of rare
and cryptic interactions in a community, contribute to these knowledge gaps by making it more difficult to
observe interactions (Jordano 2016).

Several conditions must be satisfied for an interaction to be observed locally. First, both species must have
overlapping geographic ranges, i.e. they must co-occur within the region of interest (Cazelles er al. 2016;
Morales-Castilla et al. 2015). Second, they must have some probability of meeting within a defined time
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frame (Poisot et al. 2015). Probabilities of interspecific encounters are typically low, especially for rare
species with low abundances (Canard et al. 2012; Canard et al. 2014; Vazquez et al. 2007). The probabil-
ity that species meet also depends on their biology, such as their phenology (Olesen et al. 2010; Singer &
McBride 2012) and discoverability (Broom & Ruxton 2005). Finally, when species do come into contact,
an interaction occurs only if their traits, such as their phenotypes (Bolnick ef al. 2011; Gravel et al. 2013;
Stouffer et al. 2011) and behavior (Choh er al. 2012; Pulliam 1974), are locally compatible in that spe-
cific environment (Poisot ef al. 2015). Because these conditions are not consistently met locally, there will
inevitably be instances where interactions will be observed and others where they will not.

Documenting the location and timing of interactions is difficult when accounting for the spatiotemporal vari-
ability of ecological interactions (Poisot et al. 2012, 2015). Knowing the biological capacity of two species
to interact directly (via e.g., trophic interactions) is necessary but not sufficient for inferring their interaction
at a specific time and space. Environmental factors, such as temperature (Angilletta er al. 2004), drought
(Woodward et al. 2012), climate change (Araujo et al. 2011; Gilman et al. 2010; Woodward et al. 2010),
habitat characteristics (e.g., presence of refuges where prey can hide from predators, Grabowski 2004), and
land use change (Tylianakis er al. 2007), contribute to this spatiotemporal variability by impacting species
abundance and traits. Interactions may also be influenced by a third species (e.g., a more profitable prey
species, Golubski & Abrams 2011; Sanders & van Veen 2012). Even under favorable circumstances, there
remains a possibility that the interaction does not occur locally, either due to the intricate nature of the system
or simply by chance. If it does occur, it might go undetected, particularly if it happens infrequently. In this
context, it is unsurprising that our knowledge of ecological interactions remains limited (Hortal e al. 2015)
despite extensive biodiversity data collection (Schmeller ez al. 2015).

We distinguish the variability of interactions from their uncertainty. Interaction variability is defined as the
changes in the occurrence or strength of interactions along spatial, temporal, or environmental axes (Poisot
et al. 2015). It is a property of interactions that should be quantified if we aim for a comprehensive under-
standing of ecological networks. Stochasticity is the inherent randomness or unpredictability of interactions
that lead to this variability. Conversely, uncertainty is defined as a lack of knowledge about the occurrence
of interactions. When using statistical models to infer interactions, uncertainty sources include input data,
parameter, and model structure uncertainties (Simmonds ez al. 2024). Input data uncertainty arises from our
inability to empirically observe all interactions and from measurement errors in environmental and biologi-
cal variables used for inference. Parameter uncertainty represents a plausible range of values for a parameter
whose exact value is unknown. For example, we may calculate a range of plausible values for interaction
variability (e.g., there could be a 50% certainty that an interaction occurs 50% of the time). Model struc-
ture uncertainty recognizes that different statistical models may adequately predict interactions. In contrast
to variability, uncertainty can be reduced by sampling additional data (except for model uncertainty, which
will persist regardless of sampling effort). Simmonds ez al. (2024) underscores the importance of quantify-
ing and reporting these diverse sources of uncertainty, alongside ensuring their appropriate propagation to
model output (such as predicted interactions) and higher-level measures (such as network structure). While
recognizing that these definitions may not be universally accepted, clarifying the distinction between vari-
ability and uncertainty enables us to better comprehend the sources of our knowledge gaps about ecological
interactions.

1.2. Species interactions as probabilistic objects The recognition of the intrinsic variability and uncertainty
of species interactions has led ecologists to expand their representation of ecological networks to include a
probabilistic view of interactions (Dallas et al. 2017; Fu et al. 2021; Poisot et al. 2016). This allows filling
in the Eltonian shortfall (i.e., the gap between our current knowledge and a comprehensive understanding of
interactions, Hortal er al. 2015) by modeling the probability of occurrence of interactions (e.g., Gravel et al.
2019), which can be an important tool for directing efforts and taking action (Carlson ef al. 2021), especially
in places where access and resources for research are scarce. A probability is a measure of how likely a spe-
cific outcome is, based on both the uncertainty and variability of interactions. Interaction probabilities may
be uncertain when there is a distribution of plausible probability values. The probabilistic representation of
interactions has been applied to direct interactions, which are conceptually and mathematically analogous re-
gardless of their biological type (e.g., predation and pollination). This is in contrast with indirect interactions
(e.g., interspecific competition), which arise from distinct ecological processes and are often not directly
observable (Kéfi et al. 2015, 2016). By accounting for the uncertainty and variability of direct interactions,
networks of probabilistic interactions (which differ from probabilistic networks describing the uncertainty
and variability of the whole network) may provide a more realistic portrait of species interactions.

Probabilistic interactions differ from binary interactions. Networks of probabilistic interactions, within a
Bayesian perspective, express our degree of belief (or confidence) regarding the occurrence or observation of
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interactions. In a frequentist approach, they represent the expected relative frequencies of interactions over
many repeated trials or sampling events. In contrast, interactions are simply regarded as either occurring
or not in networks of deterministic binary interactions. Based on the scale at which they are estimated,
interaction probabilities may reflect our level of confidence in whether interactions will be observed, realized
locally, or biologically feasible. Our level of confidence should be more definitive (approaching either O or 1)
as we extend our sampling to a broader area and over a longer duration, thereby diminishing the uncertainty of
our knowledge of interactions (but not necessarily the estimation of their variability). In the broadest sense,
binary interactions are also a type of probabilistic interaction, in which the numerical value of an interaction
is restrained to 0 (non-occurring) or 1 (occurring). In networks of probabilistic interactions, only forbidden
interactions (i.e., interactions prohibited by biological traits or species absence, Jordano et al. 2003; Olesen et
al. 2010) have a probability value of zero, provided that intraspecific trait variability is considered (Gonzalez-
Varo & Traveset 2016). Understanding the nuances between probabilistic and binary interactions is essential
for accurately modeling and interpreting ecological networks.

The application and development of computational methods in network ecology, often based on a probabilis-
tic representation of interactions, can alleviate (and guide) the sampling efforts required to document species
interactions (Strydom et al. 2021). For example, statistical models can be used to estimate the uncertainty
of pairwise interactions (Cirtwill er al. 2019) and the probability of missing (false negatives) and spurious
(false positives) interactions (Guimera & Sales-Pardo 2009), helping us identify places where sampling is
most needed to reduce this uncertainty. Statistical models can also predict networks without prior knowledge
of pairwise interactions. They may do so using body size (Caron ez al. 2024; Gravel et al. 2013; Petchey
et al. 2008), phylogeny (Elmasri et al. 2020; Strydom et al. 2022), or a combination of niche and neutral
processes (Bartomeus et al. 2016; Pomeranz et al. 2019) for inference. Before being used to test ecological
hypotheses, predicted networks must be validated against empirical data (Brimacombe et al. 2024), which
could be sampled strategically to optimize the validation process. Topological null models, which generate
networks of probabilistic interactions by preserving chosen characteristics of the adjacency matrix of binary
interactions while intentionally omitting others (Bascompte et al. 2003; Fortuna & Bascompte 2006), are
examples of common probabilistic interaction models. Null models can produce underlying distributions of
network measures for null hypothesis significance testing. However, how the uncertainty of pairwise inter-
actions propagates to network structure (i.e., community-level properties driving the functioning, dynamics,
and resilience of ecosystems, McCann 2007; McCann 2011; Proulx ef al. 2005; Rooney & McCann 2012)
remains to be elucidated. Many measures have been developed to describe the structure (Poisot e al. 2016)
and diversity (Godsoe et al. 2022; Ohlmann ez al. 2019) of probabilistic interaction networks. These models
and measures support the use of probabilistic interactions for the study of a wide range of ecological ques-
tions, from making better predictions of species distribution (Cazelles et al. 2016) to forecasting the impact
of climate change on ecological networks (Gilman ez al. 2010).

1.3. We lack a clear understanding of probabilistic species interactions We still lack a precise definition of
probabilistic interactions, which makes the estimation and use of these data more difficult. In this manuscript,
we aim to take a step back by outlining different ways in which probabilistic interactions are defined and
used in network ecology. We distinguish two broad categories of probabilistic interaction networks that
necessitate distinct approaches: local networks describing probabilities of realized interactions, and regional
networks (metawebs) describing probabilities of potential interactions. We highlight the distinctions in the
ecological meaning of these two representations of interactions and examine their properties and relationships
(particularly with space, time, and between each other).

The lack of clear guidelines on the use of probabilistic interaction data is worrisome, as it affects both data
producers and re-users who generate and manipulate these numbers. This is concerning because sampling
strategies and decisions regarding network construction can affect our understanding of network properties
(Brimacombe et al. 2023). There is currently no reporting standard that could guide the documentation of
all types of probabilistic interactions (Salim ez al. 2022 discuss data standards for deterministic mutualistic
networks). Clear reporting standards for probabilistic interactions would support more adequate manipula-
tion and integration of interaction data from different sources and guard against possible misinterpretations
arising from ambiguous definitions of probabilistic interaction networks. Data documentation should outline
the nature (i.e., local or regional) and type (e.g., predatory or pollination) of interactions, provide informa-
tion regarding the taxonomic level, identities, and characteristics (e.g., life stages) of the individuals involved
in an interaction, present the mathematical formulation of probabilities, including clearly identified condi-
tional variables (e.g., spatial and temporal scales), and describe the methods and contexts (e.g., location,
time, environmental conditions) in which interactions were estimated. Inadequately documented probabilis-
tic interaction data should be used with caution when analyzing ecological networks. These broad principles
remain relevant and applicable across different types of direct interactions. In the following sections, we
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discuss the definitions, conditions, and estimation of probabilistic interactions as we scale up from pairwise
interactions to interactions within local and regional networks.

2

Pairwise interactions: the building blocks of ecological networks

2.1. What are probabilistic interactions? Consider a scenario where an avian predator has just established
itself in a northern habitat home to a small rodent. Suppose their interaction has not been previously observed,
either because these species have never co-occurred before or because previous sampling failed to detect an
interaction despite their co-occurrence. What is the probability that the rodent is part of the diet of the avian
predator, or put differently, what is the probability that they interact? Answering this question requires some
clarification, as there are multiple ways to interpret and calculate interaction probabilities. We could calculate
the probability that the traits of these species match, i.e. that the avian predator possesses the biological
attributes to capture and consume the rodent. We could also calculate the probability that their traits support
an interaction under the typical environmental conditions of the new habitat. For example, because avian
predators hunt by sight, predation could be possible in the absence of snow but highly improbable when snow
is present, as rodents may use it as a shelter to hide from predators. Finally, we could calculate the probability
that the avian predator will consume the rodent at that particular location, for which the spatial and temporal
boundaries need to be specified. The estimation of the probability of interaction between these two species,
whether through predictive models or informative prior probabilities, hinges on our understanding of these
probabilities and the specific ecological processes we aim to capture.

An important aspect to consider when estimating or using interaction probabilities is knowing if they describe
the probability of potential or realized interactions, as these two types of interactions have distinct meanings
and sources of uncertainty and variability. A potential (regional) interaction is defined as the biological or
ecological capacity of two taxa to interact (i.e., the probability that they interact if they were to encounter each
other, given sufficient time and appropriate environmental conditions) whereas a realized (local) interaction is
the occurrence or observation of this interaction in a well-defined space and time (i.e., the probability that they
interact locally). For two co-occurring taxa and over enough time, the probability of local interaction tends
toward the probability of regional (potential) interaction. A longer duration increases the probability that
species will eventually encounter each other and that local environmental conditions supporting an interaction
will occur, provided that species have the biological capacity to interact. Recognizing the distinction between
probabilistic regional and local interactions is crucial for accurately interpreting interaction probabilities in
ecological networks.

We use the terms metaweb (Dunne 2006) to designate regional networks of potential interactions and local
networks (Poisot et al. 2012) for those of realized interactions. Metawebs are the network analogs of the
species pool, where local networks originate from a subset of both species (nodes) and interactions (edges)
of the regional metaweb (Saravia et al. 2022). Without clear documentation, it can be challenging to know
if published probabilistic interaction networks describe local or regional interactions. When probabilistic
local interactions are used and interpreted incorrectly as regional interactions (and conversely), this may
generate misleading findings during data analysis. A better understanding of probabilistic local and regional
interaction networks would facilitate a more adequate use of interaction data (e.g., when studying network-
area relationships in local networks and metawebs) and prevent misinterpretations of the biological meaning
of probabilistic interactions.

2.2. What is the outcome of probabilistic interactions?

2.2.1 The outcome of probabilistic interactions is usually binary Local networks and metawebs, like any
type of network, are made of nodes and edges that may be represented at different levels of organization.
The basic units of ecological networks are individuals that interact with each other (e.g., by predation in
food webs, Elton 2001), forming individual-based networks (Melidn e al. 2011). The aggregation of these
individuals into more or less homogeneous groups (e.g., populations, species, families, feeding guilds) allows
us to represent nodes at broader taxonomic scales, which affects our interpretation of the properties of these
systems (Guimardes 2020; Hemprich-Bennett et al. 2021).

Ecologists have traditionally represented interactions (edges) as binary objects that were considered realized
after observing at least one individual from group i interact with at least another individual from group j. In
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an adjacency matrix B of binary interactions, the presence or absence of an interaction B; ; between two taxa
can be viewed as the result of a Bernoulli trial B; J~ Bernoulli(P(B; J) ), with P(B; J) being the probability of
interaction. This interaction probability characterizes our limited ecological knowledge and/or the intrinsic
spatiotemporal variability of the interaction. It may be estimated through predictive models (e.g., those based
on biological traits and species abundances) or expert (prior) knowledge about the interaction. In networks of
probabilistic interactions, the edge values P(B; ;) are probabilistic events whose only two possible outcomes
are the presence (B, ; = 1) or absence (B; ; = 0) of an interaction between each pair of nodes. Depending on
the type of probabilistic interaction network (local network or metaweb), the mathematical formulation and
interpretation of stochastic parameters like P(B; ;) can be linked to environmental and biological factors such
as species abundances, species traits, area, and time, for example using logistic regression with continuous
explanatory variables. This allows us to model the probability that at least two individuals interact under
these conditions.

The variability of an interaction determines the fraction of networks in which it occurs. This fraction can
be predicted by using a Binomial distribution, assuming a constant interaction probability and independence
between interactions in different networks (trials). When considering uncertainties around the estimation of
P(B; ;), aBeta distribution may be used to represent the relative likelihood of different probability values. For
example, when calculating the probability of interaction between two taxa based on their local abundances,
any uncertainty in their abundances would introduce uncertainty in the interaction probability at the local
scale. If we take into account the uncertainty of the interaction probability, a Beta-Binomial distribution
can be used to predict the number of networks in which the interaction occurs. Empirically observing an
interaction between two taxa at a given location and time provides important information that can be used to
update previous estimates of P(B, ;), informing us of the conditions that enabled them to interact locally. By
sampling binary interactions in different contexts, we can thus estimate their local variability more precisely.

2.2.2 The outcome of probabilistic interactions may also be quantitative Even though binary interaction
networks constitute a highly valuable source of ecological information (Pascual et al. 2006), they overlook
interaction strengths. Represented in a quantitative adjacency matrix W, interaction strengths better describe
the energy flows, demographic impacts or frequencies of interactions between nodes (Berlow er al. 2004;
Borrett & Scharler 2019), with W, ; being a natural N or real R number depending on the measure. For ex-
ample, they may represent local interaction rates (e.g., the flower-visiting rates of pollinators in a mutualistic
network, Herrera 1989). Relative frequencies of interactions may be used as a measure of both the strength
and probability of local interactions that are biologically feasible. When interaction strengths characterize
predation pressure on prey, they can serve as parameters in a Lotka-Volterra model (e.g., Emmerson & Raf-
faelli 2004). The extra amount of ecological information in quantitative networks typically comes at a cost of
greater sampling effort and data volume (Strydom et al. 2021), especially when using predictive models that
quantify the uncertainty and variability of quantitative interactions (Berlow et al. 2004). However, if two
taxa are repeatedly found together without interacting, there may be more uncertainty about their capacity to
interact than their interaction strength (which would assuredly be close to 0).

Like binary interaction networks, the uncertainty and variability of interaction strengths can be represented
probabilistically. Interaction strengths can follow many probability distributions depending on the measure.
For instance, they can follow a Poisson distribution W, ; ~ Poisson(4; ;fy) when predicting the number
of interactions between individuals during a time interval 7y, with 4;; being the expected rate at which
individuals of taxa i and j interact (e.g., the expected number of prey j consumed by all predators 7). The
Poisson distribution can also be O-inflated when taking into account non-interacting taxa (e.g., Boulangeat et
al. 2012 employ a 0-inflated model to analyze species abundance following the modeling of species presence
and absence), which constitute the majority of taxa pairs in most local networks (Jordano 2016). Regardless of
the measure, estimating the uncertainty of quantitative interactions enables us to consider a range of possible
values of interaction strength.

Because of the methodological difficulties typically encountered when building deterministic quantitative
networks, binary interaction networks, which are usually easier to sample (Jordano 2016) and predict (Stry-
dom er al. 2021), have been more frequently studied and used. Mathematical models such as Ecopath
(Plagényi & Butterworth 2004) partially mitigate these difficulties, but the number of biological parameters
required to make predictions hinders their application in many systems. Moreover, most published probabilis-
tic interaction networks (e.g., Strydom et al. 2022) and methods (e.g., Poisot et al. 2016) involve probabilistic
interactions whose outcome is binary. This underlines the need for better guidelines on the interpretation and
manipulation of probabilistic interactions with binary outcomes first, to ensure the appropriate use of these
networks and methods. For these reasons, the primary focus of the remainder of this manuscript is on the
interpretation of interaction probabilities that determine the presence or absence of interactions, in both local
networks and metawebs.
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3

Local networks: communities interacting in space and time

3.1. What are local probabilistic interactions? Local networks of probabilistic interactions describe how
likely taxa are to interact in a local context. Local interactions are contingent upon the environmental con-
ditions experienced by the community and the matching of taxa’s local biological traits. In local networks,
edges commonly represent our degree of belief that two taxa interact in nature, but can also represent the
probability of empirically observing this interaction (Catchen et al. 2023). Local interactions may thus arise
from both the ecological (realized interactions) and sampling (observed interactions) processes taking place
locally.

Local networks are delineated within a particular location and time. We define space as the collection of
geographic coordinates (x,y, z), with (x,y) representing longitude and latitude coordinates, and z denoting
either altitudes or depths. These point coordinates delineate the spatial boundaries of the system, which may
be portrayed as a polyhedron. Ecological interactions may vary along latitudinal and altitudinal gradients,
as evidenced by changes in hummingbird-plant interactions (Weinstein & Graham 2017a, b) and mosquito
biting rates (e.g., Kulkarni et al. 2006) at different elevations. On the other hand, time is defined as the
specific time period within which interactions were either observed or predicted. Even though space and
time are continuous variables that should yield probability densities of interactions (i.e., relative likelihoods
of interactions occurring at infinitesimal locations and instants in time), these definitions enable them to be
conceptualized as distinct patches and time segments. Treating space and time as discrete dimensions aligns
with the common sampling methods of ecological networks and provides probabilities of interactions, which
can be obtained by integrating probability densities over space and time. We can quantify both an area A,
and a duration 7, with these definitions. By studying probabilistic local interaction networks, we may thus
conduct spatiotemporal analyses of local interactions (Box 1), enhancing our understanding of interactions
occurring in distinct environmental contexts.

3.2. What are local probabilistic interactions conditioned on?

3.2.1 Local interactions may be conditioned on co-occurrence The probability that two taxa i and j in-
teract in a local network L, , . ; (spatial and temporal subscripts hereafter replaced by the shorter subscript k
for clarity) can be conditioned on many environmental and biological factors. In addition to network area (or
volume) A and duration £, they may be conditioned on taxa co-occurrence X; ; , which is usually Boolean,
describing if the geographic distributions of both taxa overlap within the study area. As illustrated in Box
1, co-occurrence may be modeled probabilistically, in which case it may conform to a Bernoulli distribu-
tion X; ; . ~ Bernoulli(P(X;;z)). The probability of co-occurrence can be calculated using the individual
(marginal) occurrence probabilities P(X; ;) and P(X; ;). Given that taxa occurrences are not independent of
each other, the probability of co-occurrence can be calculated by multiplying the probability of occurrence
of one taxon by the probability of occurrence of the other given that the first one is present:

P(X;jx) = P(Xi g Xj i) = P(Xi 1 lX; 1) P(X; 1) (D
The probability of co-occurrence P(X; ; ;) can be estimated through the application of joint species distribu-
tion models (e.g., Pollock et al. 2014), potentially taking into account biotic interactions (Staniczenko et al.
2017). Given that the probability that two non-co-occurring taxa interact locally is zero (i.e., P(L; ; 11X j x =
0) = 0), the probability of local interaction can be obtained by multiplying the probability of interaction
given co-occurrence with the probability of co-occurrence:

P(Lijx) = P(Lij i X;j0) x P(X;j1)- 2)

Knowing that two taxa co-occur improves our estimation of the probability that they interact locally by mit-
igating a potential source of uncertainty.

3.2.2 Local interactions may be conditioned on different environmental and biological factors Local
interactions may also be conditioned on local environmental factors such as temperature (Angilletta et al.
2004), precipitation (Woodward et al. 2012), habitat structure (Klecka & Boukal 2014), and presence of
other taxa in the network (Kéfi et al. 2012; Pilosof et al. 2017). We use the variable E; to describe the
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local environmental context in which interaction probabilities were estimated. For example, in a mesocosm
experiment estimating interaction probabilities between predators and prey with and without refuges, Ej
would represent the presence or absence of these refuges. Like co-occurrence, E; can also be modeled
probabilistically when the variability or uncertainty of environmental factors is considered. E; represents
all environmental variables that were taken into consideration when measuring interaction probabilities; it is
therefore a subset of all environmental factors acting on ecological interactions.

Other important factors that can impact interaction probabilities at the local scale are taxa local abundances
N; « and N; i, which affect encounter probabilities (Canard ef al. 2012), and local traits 7; ; and T} (e.g.,
movement rates, Beardsell e al. 2021; Cherif e al. 2024), which may also impact encounter probabilities
as well as the ability of individuals to interact after encountering each other (Caron et al. 2024; Poisot et al.
2015). Local interaction probabilities may also be conditioned on higher-level properties of the community
(i.e., the emerging structure of ecological networks), which we denote by f(L;). Many topological null
models (i.e., statistical models that randomize interactions by retaining certain properties of the network
while excluding others) provide interaction probabilities from selected measures of network structure, such
as connectance (Fortuna & Bascompte 2006) and the degree distribution (Bascompte et al. 2003). Biological
factors, whether at the scale of individual taxa pairs or the community, may thus impact how we estimate and
define interaction probabilities.

3.2.3 Local interactions may be conditioned on biological feasibility Local interactions must be biolog-
ically feasible before occurring at a specific time and space. A local probability of interaction P(L; ; ;) can
be expressed as the product of the probability of local interaction given that the two taxa can potentially
interact P(L; ; xIM; ; = 1), which we sometimes denote as P(L; ; ;|M; ;) for the sake of simplicity, with their
probability of regional interaction P(M; ;):

P(Lijr) = P(LijxlM;; =1)xP(M;; =1). 3)

Low values of P(L; ; x[M; ;) indicate that feasible interactions rarely occur locally, intermediate values around
50% suggest considerable spatiotemporal variability, while high values indicate that regional interactions are
nearly always realized locally. The local probability of interaction between a given pair of taxa is thus always
equal to or below their probability of regional interaction. Taking into account biological feasibility in our
estimation of local interaction probabilities leverages information from the metaweb to better predict the local
occurrence of interactions (Dansereau ef al. 2024; Strydom et al. 2021).

3.2.4 Conditional variables must be explicitly stated The probability that two taxa i andj interact in a local
network L, can thus be conditioned on their co-occurrence X; ; ; (or more explicitly on their occurrences X;
and X; ; ), local abundances N, ; and N; ., local traits T;  and T} , local environmental conditions Ej, network
area (or volume) Ay, time interval £, network properties f (L), and biological feasibility M; ;. When these
conditions are not explicit, it may be because they have been marginalized over, which would be reflected in
the overall uncertainty of the interaction. The local probability of interaction is described by the following
expression when all of these conditional variables are included:

P(Ly j 10X ks Xj s> Nijes Njges Ty e Tj s Exs Ao oo f (Lie)s M ). 4)

These conditional variables do not all need to be considered at all times. The representation of the local
context in which probabilities are estimated and the variables that should be taken into consideration depend
on the study system, the objectives of the study, and the resources available to the researchers. For example,
Gravel et al. (2019) analyzed local European host-parasite networks of willow-galling sawflies and their
natural enemies, all referenced in space and time, to infer probabilities of local interactions between co-
occurring species. This was achieved by including temperature and precipitation as conditional variables in
their models. In Box 2, we reuse these data to show the extent of variation among these local networks. We
do so by measuring their dissimilarity with the regional network (metaweb aggregating all local interactions),
both in terms of species composition and interactions. We built local probabilistic networks following eq. 3,
showing that insufficient local variation (high probability of local interaction among potentially interacting
species) results in an overestimation in both the number of interactions and connectance (i.e., the proportion
of all of the non-forbidden links that are realized). This analysis was conducted for illustrative purposes, and
other conditional variables could have been used to make these comparisons.
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When accounted for, conditional variables should be clearly described in the documentation of the data
(Brimacombe et al. 2023), preferentially in mathematical terms to avoid any confusion in their interpretation
and to limit manipulation errors during their re-use. For instance, ecologists should be explicit about their
consideration (P(L; ; ¢ |X; j x)) or not (P(L; ; ) of co-occurrence in their estimation of local interaction prob-
abilities, as this can change our interpretation of the data and understanding of potential uncertainty sources.
Reporting the scale and level of aggregation of the data enables us to more accurately study the underlying
ecological processes (Clark et al. 2011) and manipulate or propagate uncertainty to different aggregation
levels (Simmonds et al. 2024). In Tbl. 1, we present examples of studies that used different expressions
of probabilistic interactions with different conditional variables. We included in this table the probability
of empirically observing an interaction that is realized locally P(O;; IL; ;) to underscore the distinction
between local observations and actual realizations of interactions.

Table 1 Mathematical expressions of probabilistic interactions. The probability of interaction between two taxa i
and is interpreted differently in a local network L, of realized interactions, a local network O, of observed interactions,
a metaweb M of potential interactions (representing the biological feasibility of interactions), and a metaweb M* of
potential interactions (representing the ecological feasibility of interactions). Each expression emphasizes a difterent
conditional variable, the ellipsis serving as a placeholder for other variables not explicitly stated in the expression. The
outcome of each of these probabilistic events, along with common models used for estimation, is presented alongside
examples of studies that employed them (with specific variables indicated in parentheses, when applicable). The study
marked with an asterisk has been conducted on binary interaction networks. The boxes in our study that discuss these

expressions are also specified.

Expression Type

Outcome

Common models

Reference

P(L; j 11X; ks Xj g -..) local

P(L;ij ¢ IN; g Nj s ) local

P(Li,j,lei,k’I‘j,k"“) local

P(LiJ’klEk, ..) local
P(L;j rlAgs --) local
P(LiJ,k|ZO’ ) local
P(L;jxlf(Lg),...)  local
P(LiJ’kIM,-J, ) local
P(O;jklLjjks ) local
P(M;;IT;, T;) regional
P(M;’:/-\T,-, T;,E) regional

realization of the interaction
given taxa co-occurrence

realization of the interaction
given taxa abundances
realization of the interaction
given local traits

realization of the interaction
given local environmental
conditions

realization of the interaction
in a given area or volume
realization of the interaction
during a given time period

realization of the interaction
given network structure

realization of the interaction
given that it is biologically
feasible

observation of the
interaction given that it is
realized locally

biological feasibility of the
interaction given regional
traits (non-forbiddenness)
ecological feasibility of the
interaction given regional
traits and environmental
conditions

species
distribution
models

neutral models
trait matching
models
environmental-
based models
spatial models
temporal models

topological
models

spatiotemporal
models
sampling models

trait matching
models

trait matching and

environmental-
based models

Gravel et al. (2019),
Dansereau et al.
(2024), Boxes 1 and
5

Canard et al. (2014)

Caron et al. (2024),
Box 4

Gravel et al. (2019)
(temperature and
precipitation)
Galiana et al. (2018)
* Box 3

Weinstein &
Graham (2017a),
Boxes 1 and 3
Fortuna &
Bascompte (2006)
(connectance), Stock
etal. (2017)
Dansereau et al.
(2024), Boxes 2, 3,
and 5

Catchen et al.
(2023)

Strydom et al.
(2022), Box 4

this study

3.3. How are local probabilistic interactions estimated? Various statistical models can be used to estimate
local interaction probabilities, some of which are presented in Tbl. 1. These models can be based on multiple
conditional variables. Although these variables correspond to distinct ecological inquiries or mechanisms
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related to ecological interactions, they may covary with each other, such as the possible dependence of X; ;
and E, on spatial and temporal scales. When estimating interaction probabilities using e.g. a generalized
linear model with multiple explanatory variables that might not all be independent, it may become important
to address collinearity. In such cases, it may be necessary to use variable selection techniques before fitting
the model to data to mitigate this issue. Other challenges and opportunities associated with predictive models
of species interactions are reviewed in Strydom et al. (2021).

When using multiple competing models to estimate local interaction probabilities, rather than selecting a
single model that best fits the data, model averaging may enhance our estimations. Model weights repre-
sent the probability that each model is the most suitable for explaining the data, and may be measured using
Akaike weights (Burnham & Anderson 2004; Wagenmakers & Farrell 2004). For instance, given two com-
peting models mod; and mod, with respective probabilities (or weights) P(mod;) and P(mod,), the average
probability of interaction P(L; ; ;) can be calculated as follows:

P(L;j) = P(L;jxlmody) x P(mody) + P(L; j xlmody) x P(mod,). 5)

Model averaging takes into account the uncertainty of model structure in our estimation of local interaction
probabilities. Regardless of the model used for prediction, it is crucial to quantify and disclose all sources of
uncertainty to understand better the validity and limitations of our predictions (Simmonds et al. 2024).

7~

Box 1: A spatiotemporally explicit model of interactions Ecologists may resort to predictive models
to reconstruct local networks across time and space. We introduce and develop a simple generative
Bayesian model for probabilistic local interactions, which explicitly accounts for their spatiotemporal
variability. Our model is not designed for regional interactions, which do not vary spatially nor
temporally. Rather, it could prove valuable for generating new data on local interactions across time
and space, following parameter inference.

As indicated by Eq. 2, the probability that two taxa i and j interact locally can be obtained by multi-
plying their probability of interaction given co-occurrence with their probability of co-occurrence.
The probability of interaction given co-occurrence can be made temporally explicit by modeling it
as a Poisson process with rate parameter 1. This parameter represents the local expected frequency
of interaction between co-occurring taxa. The probability that two co-occurring taxa interact at least
once during a time interval #; can be given by:

P(L;jlX;jx) = 1 — e Axlo, 6)

which tends toward 1 as 7, — oo if 1, > 0. In other words, two co-occurring taxa with a nonzero
rate of interaction will inevitably interact at least once in a sufficiently long time interval.

The occurrence of an interaction between i and j may be the result of a Bernoulli trial with probability
P(L; ;). A Bayesian model can be built using the preceding equations to generate new interaction
data, following the inference of the A; and P(X; ; ;) parameters.

L; ; ~ Bernoulli(P(L; ) 0
P(Lijx) = P(X;;4) (1 — e”*&l0) ®)
P(X; ;1) ~ Beta(2,2) )

Ay ~ Exponential (2) (10

In Fig. 1, we show the variation in the probability of interaction under different parameter values. In
the right panel, we notice that the probability of interaction always converges toward the probability
of co-occurrence P(X; J’k), for all positive values of the interaction rate.
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Figure 1 Parameters of the spatiotemporally explicit model of interactions. (a) Probability of local
interaction given by the process model (Eq. 8) under different values of 1, (interaction rate) and P(X; ; ;)
(probability of co-occurrence), with #, = 1 (duration). The probability of local interaction represents the
probability that the two taxa will interact at least once within the given time interval. Parameters ¢, and A,
have complementary units (e.g., #, in months and 1, in number of interactions per month). The parameter
values used in the right panel are denoted by the white stars. (b) Scaling of the probability of interaction with
the duration parameter ¢, for different values of 2, and P(X; ; x)-

This model can be customized in different ways, such as linking both parameters to specific envi-
ronmental or biological variables. For instance, the probability of co-occurrence could be modeled
as a function of climatic variables, while the interaction rate parameter could be modeled based on
taxa abundances.

Box 2: Dissimilarity of local host-parasite networks We present a way to assess local network vari-
ability and dissimilarity regarding species composition and interactions. We do so by compar-
ing local tripartite host-parasite networks to the metaweb using data from Kopelke et al. (2017).
This collection of networks consists of interactions between willows, willow-galling sawflies,
and their natural enemies sampled across Europe. All data manipulation and methods are de-
scribed in Appendix 1. All code and data to reproduce these analyses are available on Zenodo
(https://doi.org/10.5281/zenodo.12802326).

In Fig. 2a-b, we show how the dissimilarity between the metaweb of binary interactions and aggre-
gated local networks changes with the number of sampled local networks. We compared the metaweb
and the aggregated local networks using the dissimilarity in species composition (8¢, Fig. 2a) and
the dissimilarity of interactions between common species (S g, Fig. 2b) indices (Poisot ez al. 2012).
Expectedly, local networks are highly dissimilar from the metaweb in terms of species composition,
especially when only a limited number of sites have been sampled. This is because few species from
the metaweb (species pool) occur locally. Moreover, we observe a peak in the dissimilarity of in-
teractions between common species at intermediate sampling levels. This suggests that species are
collected faster than their interactions. With a limited number of sampled local networks, few re-
gional interactions are observed locally. Adding more sites brings new species, but not always their
interactions. Quadratic relationships of network properties with sampling effort were also observed
by McLeod et al. (2021).
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Figure 2 Network accumulation curves. (a) Dissimilarity in species composition and (b) dissimilarity of
interactions between common species between aggregated local networks and the metaweb of binary host-
parasite interactions. In both panels, the colored line represents the median dissimilarity across simulations
and the grey areas cover the 50% and 95% percentile intervals. (c) Scaling of the number of interactions and
(d) scaling of connectance with the number of sampled (aggregated) binary and probabilistic local interaction
networks. For a better comparison with binary interactions, local networks of probabilistic interactions were
derived from a metaweb of probabilistic interactions with a false positive and false negative rate of zero.
A specific value of P(L; ; xIM; ;) (the local probability of interaction among potentially interacting species)
was used for all non-aggregated local networks within a particular curve. Aggregated local networks were
obtained by sequentially and randomly selecting a number of local networks and aggregating both their species
and interactions (with the value of P(L;; ;IM, ;) increasing in aggregated local networks of probabilistic
interactions).

Next, we investigate how the number of local interactions and connectance scale with the num-
ber of sampled (aggregated) local networks of probabilistic or binary interactions (Fig. 2c-d). By
comparing the scaling relationships observed in local networks of binary and probabilistic interac-
tions, we observe that high values of P(L; ; x|M; ;) lead to systematic overestimations in the number
of interactions and connectance, especially when P(L; ; xIM; ;) = 1 (i.e., when local and regional
probabilities of interactions are equivalent). This suggests that high values of P(L; ; x|M; ;) do not
adequately capture the variability of local interactions. However, these biases tend to diminish as
the number of sampled networks increases, indicating that most interactions are eventually captured
when P(L;; ¢|M, ;) is high. In contrast, low values of P(L;;;IM; ;) lead to missing interactions,
resulting in an underestimation of the number of interactions and connectance. These results under-
score the importance of using the appropriate level of variability when estimating local interaction
probabilities.

4

Metawebs: regional catalogs of interactions

4.1. What are regional probabilistic interactions? Metawebs (Dunne 2006) are networks of potential inter-
actions over broad spatial, temporal, and taxonomic scales (e.g., food webs at the continental scale). They
correspond to the temporal and spatial asymptotes of local interactions (Box 1). Potential interactions de-
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scribe the biological capacity of taxa to interact under optimal or feasible environmental conditions given
enough time, which is typically assessed at the regional scale. Metawebs of probabilistic interactions are
particularly useful in situations where there is uncertainty in the ability of taxa to interact (Strydom et al.
2023). They may also be used as informative priors of local interactions. Therefore, building a metaweb of
probabilistic interactions may be an important first step before predicting networks at finer scales.

In contrast to local networks, where interaction probabilities arise from the variability of interactions and
the lack of information on the conditions, interaction probabilities in metawebs solely result from a lack of
knowledge. This uncertainty arises due to insufficient interaction data, especially for taxa that have not yet
been observed to co-occur, and uncertainties in trait-matching models. As data accumulates, interactions in
metawebs should tend towards binarity, either taking a value of 1 (observing an interaction at least once) or
approaching 0 (repeatedly failing to observe an interaction between co-occurring taxa). Confidently observ-
ing an interaction once confirms its biological feasibility, but failing to observe it (even on multiple occasions)
does not ensure that it is non-feasible (e.g., due to false negatives, Catchen et al. 2023). While local interac-
tion probabilities are irreducible because of local variability, the uncertainty of regional interactions reduces
to 0 with the addition of information. Moreover, although neutrally forbidden interactions (i.e., forbidden
interactions between rare species, Canard et al. 2012) have low probability values in local networks, they
would have a probability of 1 in the metaweb (this is because the species’ traits could support an interaction if
they were to encounter each other at high enough abundances). Likewise, non-co-occurring taxa may have a
non-zero probability of interaction in the metaweb. Regional interaction probabilities are thus fundamentally
different from local interaction probabilities, both in terms of uncertainty sources and probability values.

The extent of sampling effort influences our evaluation of probabilities of regional interactions, as sampling
over a larger area or for a longer duration enables us to capture a greater number of interactions (Box 1,
McLeod et al. 2021). However, in contrast with local networks of probabilistic interactions, regional in-
teractions are not evaluated for any particular local context (they are rather a collection of local contexts),
which impacts how they scale with space and time (notably through the extent of the region covered and
sampling duration). In Box 3, we discuss the differences in spatial and temporal scaling of regional inter-
actions compared to local interactions. We do so using the host-parasite networks of Kopelke et al. (2017)
as an illustration of spatial scaling (Box 3). Understanding the effect of spatial and temporal scales (includ-
ing sampling effort) on local and regional interaction probabilities is important for effectively propagating
uncertainty across scales and highlighting the fundamental differences between these two types of networks.

4.2. What are regional probabilistic interactions conditioned on?

4.2.1 Regional interactions describing biological feasibility are conditioned on traits Potential inter-
actions describe what we refer to as the biological feasibility of interactions, which is based solely on the
regional traits distributions 7; and 7} of taxa i and j, respectively. We define regional traits distributions as the
range of phenotypes that a taxon can express across various environments. Local traits 7; ; and 7} 4, which
vary spatially and temporally because of phenotypic plasticity and local environmental variability (Berg &
Ellers 2010), are a subset of regional traits. A probability of potential interaction in a metaweb M describing
the biological feasibility of interactions may be expressed as:

P(M,IT,,T)), (1n

which, in contrast with local networks, is not conditioned on any spatial, temporal, co-occurrence or envi-
ronmental variables (Tbl. 1). Because phylogenetically close species often share similar traits, we should
expect that closely related species will have similar interacting partners. We can thus use phylogeny to pre-
dict species traits and infer regional interactions (Ek16f & Stouffer 2016; Stouffer er al. 2012; Strydom et al.
2022). The taxonomic level at which interactions are evaluated also influences the distribution of regional
traits. However, as explained in Box 4, there is no fundamental difference in the taxonomic scaling of re-
gional and local interactions (i.e., how interaction probabilities change with taxonomic level) because they
both depend on trait aggregation.

The biological feasibility of interactions expresses our degree of belief that there exists at least one combina-
tion of phenotypes that could support an interaction if they were to encounter each other, assuming they had
enough time to interact. Evaluating this probability is conducted without incorporating the environmental
conditions under which they encounter each other into the model. It is the complement of the probability
P(F T, T)) of forbidden interactions (i.e., the probability that their traits do not support an interaction),
which is based uniquely on biological traits:
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PM;jIT;, T;) = 1= P(F;jIT;, T)). (12)

For example, let i be a western diamondback rattlesnake (Crotalus atrox) and j, a wood lemming (Myopus
schisticolor). These two taxa never co-occur, the rattlesnake being adapted to warm regions of North Amer-
ica (Castoe et al. 2007) and the lemming, to northern habitats of Eurasia (Fedorov ef al. 2008). As we lack
direct observations of an interaction between these two species, we have to rely on expert knowledge or trait-
matching models to estimate their probability of potential interaction. To accurately estimate this probability
using trait-matching models, it is crucial to ensure that the set of traits considered reflects the overall traits
distributions of both taxa. We could for instance consider their average body mass and the average phylo-
genetic distance of lemmings to rattlesnakes’ prey. Doing so, we might find a high probability of potential
interaction based on these traits. This example illustrates how regional interactions describing biological fea-
sibility may be estimated solely based on traits, without taking into account environmental conditions (which
could be important to consider when e.g. an interaction is forbidden at all temperature values).

4.2.2 Regional interactions describing ecological feasibility are conditioned on traits and environmental
conditions The biological feasibility of interactions should not be confused with what we refer to as the
ecological feasibility of interactions. A probability of potential interaction in a metaweb M* describing the
ecological feasibility of interactions may be expressed as:

P(M;ijIT,-,Tj,E), (13)
where E is the environmental conditions under which potential interactions are evaluated (Tbl. 1). Unlike
E,, these environmental conditions do not represent conditions occurring at specific locations. Ecological
feasibility represents the probability that two taxa interact if they were to encounter each other under given
environmental conditions, assuming they had enough time to interact. Incorporating environmental condi-
tions into a trait-matching model may be important when there is high covariance between the environment
and traits. For instance, in our example involving rattlesnakes and lemmings, the probability of potential
interaction between these two species may be low in most environmental conditions. Western diamondback
rattlesnakes may be unactive under low temperatures (Kissner e al. 1997), whereas wood lemmings may
have low tolerance to high temperatures (Kausrud et al. 2008). The probability that an interaction is ecologi-
cally feasible is always lower than the probability that it is biologically feasible, even across all environmental
conditions:

fEP(ijlTi,Y},E)dE < P(M;jIT;, T;). (14)
This is because the biological feasibility of an interaction is a prerequisite for its ecological feasibility. In other
words, biological feasibility is necessary but not sufficient for an interaction to be ecologically feasible. Our
discussion of metawebs focuses on the biological feasibility of interactions since most methods developed for
inferring probabilities of regional interactions do not explicitly take into account environmental conditions
(e.g., Strydom et al. 2022).

4.3. How are regional probabilistic interactions estimated? Starting from a selected set of taxa, which are
usually distributed within a broad region of interest, metawebs can be built using different data sources, in-
cluding literature review (e.g., Maiorano er al. 2020), aggregated interaction data (e.g., Gravel et al. 2019;
Saravia er al. 2022), trait-matching models (e.g., Shaw et al. 2024; Strydom et al. 2022), and expert knowl-
edge, which is not a trivial challenge. Every pair of taxa that have confidently been observed to interact at
least once can be given a probability of 1 (i.e., P(M;;) = 1) since we know that they can interact. This
differs from local networks of probabilistic interactions, where interaction events may remain stochastic (i.e.,
P(L; ;) < 1) even after empirically observing interactions due to their spatiotemporal variability. Inter-
actions that were never observed typically have low probability values in local networks and vary from low
to high values in metawebs, contingent upon taxa traits distributions (reaching 0 for forbidden links). The
aggregation of model predictions and data from different sources thus tends to raise the number of potential
interactions in metawebs.

When using local interaction data to estimate probabilities of regional interactions, repeatedly failing to
observe an interaction between two co-occurring taxa should decrease the probability that the interaction is
biologically feasible. Using Bayes’ theorem, the probability that the interaction is biologically feasible given
that it was never observed locally, P(M; J = 110; ik = 0), may be calculated as follows:
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P(Ojx = OM;; = 1) x P(M;; = 1)
P(M[J - I‘Oi,j,k = 0) = P(Oi,j’k - O) . (15)

The reduction in the probability of regional interaction after considering that it was never observed locally
(e, PM;; = 110, = 0) < P(M;; = 1)) occurs because P(0; j; = 0lM;; = 1) must be lower than
P(0; jx = 0), i.e. there is a higher chance of observing an interaction when it is biologically feasible.

Observations of interactions may be false positives because of observation errors due to taxonomic misidenti-
fications and ecological misinterpretations, such as those involving phylogenetically close species or cryptic
species and interactions (Pringle & Hutchinson 2020). Likewise, forbidden interactions may be false nega-
tives, e.g. if they have been evaluated based on unrepresentative or incomplete traits distributions. Employing
Bayesian models proves valuable when estimating interaction probabilities in metawebs (e.g., Bartomeus et
al. 2016; Cirtwill et al. 2019). This improvement is achieved by updating prior information regarding the
feasibility of interactions (e.g., experts’ prior assessments of interaction probabilities) with empirical data
on interactions and traits. By improving our estimation of potential interaction probabilities, we may build
more reliable metawebs that adequately reflect our uncertainty on the biological feasibility of interactions.

~

Box 3: Spatial and temporal scaling of interactions Local networks and metawebs have distinct re-
lationships with space (area or volume) and time (sampling effort or duration). Local probabilities
of interaction scale both spatially and temporally, because local interactions have more opportuni-
ties to be realized in larger areas and longer durations. In a larger sampling area and duration, we
increase the likelihood of sampling favorable conditions for interactions to occur. If a local network
of probabilistic interactions L; with an area A; is compared to a larger network L with an area A,
and A; is entirely nested within A, interaction probabilities should be lower in the smaller network,
ie. P(L;j 1A < Ag) < P(L;j0lAg). However, if A; and A are disjoint, interaction probabilities
could be higher in the smaller area, contingent upon local environmental and biological conditions.
In contrast, regional probabilities of interaction do not scale with space and time. The probability of
two taxa potentially interacting should be the same in all metawebs in which they are present regard-
less of scale, provided that the data and methods used for estimation are consistent. This is because
they depend solely on the biological capacity of two taxa to interact, regardless of co-occurrence
and local environmental conditions. However, probabilities of regional interactions may change,
tending to become more definitive, with increased sampling effort.

In Fig. 3, we show how the expected number of local host-parasite interactions scales with the spa-
tial boundary of the network (represented by an expanding latitudinal window) in comparison with
regional interactions. We do so using the host-parasite networks of Kopelke er al. (2017). The
increase in the number of regional interactions is due to the inclusion of more species in a larger
area. To ensure a conservative comparison between aggregated local and regional networks, we em-
ployed equal interaction probabilities (i.e., using P(L; ; xIM; ;) = 1) in both types of network. This
means that local interaction probabilities could not increase further when aggregating them. Despite
this, we notice that the total number of regional interactions scales more rapidly than local interac-
tions. This is because numerous regional interactions involve species that never co-occur, and as a
result, these interactions are not captured in local networks. All data manipulation and methods are
described in Appendix 1.
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Figure 3 Spatial scaling of interactions. Expected number of host-parasite interactions in a network ag-
gregating all (a) local and (b) regional probabilistic interactions within a latitudinal window of a given width.
Every dashed curve corresponds to a different window centered at a given latitude (color bar), with the pink
solid line representing the median number of interactions across windows. Heatmaps of the expected number
of (c) local and (d) regional interactions found in windows of specified width and position (central latitude).
Probabilities of regional interactions were obtained with a false positive rate of 5% and a false negative rate
of 10%. Local probabilistic interactions were derived from regional probabilistic interactions by setting the
value of P(L; ; «|M; ;) (the local probability of interaction among potentially interacting species) to 1. Aggre-
gated local networks were obtained by aggregating both the species and interactions found within a particular
latitudinal window, with the values of P(L; ; xIM; ;) remaining at their maximum value of 1.

Box 4: Taxonomic scaling of interactions Given that our interpretation of the properties of ecolog-
ical networks depends on their taxonomic level (Melidn ez al. 2011), investigating the taxonomic
scaling of interactions (i.e., how interaction probabilities change with taxonomic level) is important.
There are no inherent differences between the taxonomic scaling of local and regional interactions.
The taxonomic level of interactions impacts the definition of nodes. Local and regional interaction
probabilities are not directly conditioned on taxonomic scale. However, some conditional variables
(e.g., trait distribution) may covary with taxonomic scale. In such cases, local and regional interac-
tion probabilities would change taxonomically following the scaling of these variables.

In both types of interactions, transitioning to a broader level of organization (e.g., from a species-
level network S to a genus-level network G) can be done using interaction probabilities from finer
scales. For example, in a network with n; species of genus g; and n, species of genus g,, one can
calculate the probability that at least one species from genus g; interacts with at least one species
from genus g, (i.e., the probability that the genus-level interaction occurs) as follows:

ny np

P<Ggls82) =1- l_[ 1_[(1 _P(Sgl.ivng))’ (16)

i=1j=1

where g; ; and g, ; are the species of the corresponding genus and assuming independence between
species-level interactions. In contrast, a different approach is necessary when transitioning from a
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broader to a finer level of organization. This is because the knowledge of an interaction between two
genera does not guarantee that all possible pairwise species combinations will also interact. One
possible method is to build a finer-scale network by generating probabilities of interaction through
random sampling from a beta distribution, parameterized by the broader-scale network.
Fundamentally, the taxonomic scaling of interactions involves aggregating interactions between in-
dividuals into larger groups. Interaction probabilities at broader taxonomic scales should thus con-
form to probabilities of interactions between individuals. For example, Canard et al. (2012) built
a species-based network using simulated individual-based networks. In local individual-based food
webs, the probability that two individuals interact reflects our degree of belief that one individual
will consume the other. Likewise, in local species-based food webs, the probability that two species
interact represents our degree of belief that at least one individual from the predator species will
consume at least another individual from the prey species. In that regard, taxonomic scaling is
analogous to the spatial and temporal scaling of interactions, as they all represent different ways to
aggregate individuals into broader groups (either spatially, temporally, or taxonomically).

Box 5: Sampling for binary interaction networks Local networks of binary interactions may be pre-
dicted by performing independent Bernoulli trials for each probabilistic interaction. This is partic-
ularly useful when analyzing the structure of probabilistic interaction networks in the absence of
specific analytical formulas (Poisot et al. 2016), even though it may introduce biases in our esti-
mations when connectance is low (Chagnon 2015; Poisot & Gravel 2014). There are at least two
techniques to sampling binary interaction networks across space, each predicting a binary interac-
tion network for each location k£ within a given region. The first technique involves performing a
single Bernoulli trial for each pair of taxa based on their regional probability of interaction:

M;; ~ Bernoulli(P(M,»J)).

In employing this technique, we predict a single metaweb of binary interactions for each simulation.
Every pair of taxa predicted to interact in this metaweb will be treated as interacting in all localized
networks where they co-occur, i.e. L; j = M;; when X; ; ; = 1. This will result in local pairwise
interactions without spatial variation.

The second technique is to independently sample each local network of probabilistic interactions:

L;jx ~ Bernoulli(P(L; ).

This can be achieved by first generating distinct probabilistic interaction networks for each location.
Because binary interactions are sampled independently for each location, this second technique cap-
tures network structure across space and time more effectively. When sampling binary interactions
from local interaction probabilities, it is crucial to sample at the same spatial scale for which prob-
abilities were estimated to prevent systematic biases in predictions.

In Fig. 4, we compare the average connectance of binary interaction networks resulting from these
two sampling techniques. We sampled regional and local interactions from our host-parasite net-
works of probabilistic interactions (Kopelke et al. 2017), generating a number of binary interaction
network realizations for each site in the dataset. These two sampling techniques yield different out-
comes, particularly for intermediate values of P(L; ; «IM; ;) of 0.50, which represent instances where
regional interactions do not consistently manifest locally (i.e., with the largest local variability). As
anticipated, we observe that sampling binary interactions from the metaweb tends to overestimate
connectance on average compared to sampling them from local networks (Fig. 4). We also observe
an increase in the variability of connectance when employing a single simulation (Fig. 4a-c, cross
markers), which is a more tangible representation of the process leading to the realization of local
interactions in nature. All data manipulation and methods are described in Appendix 1.
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Figure 4 Connectance of sampled binary interaction networks. (a-c) Average connectance of binary
interaction networks obtained from the two sampling techniques for 20 randomly selected host-parasite net-
works. Cross markers represent the connectance of a single sample for each network, diamond markers the
average connectance across 10 samples, hexagon markers the average connectance across 50 samples, and
the colored circles the average connectance across 100 samples (marker size proportional to the number of
samples). (d-f) Reduction in the mean squared logarithmic error between the average connectance of binary
interaction networks (all 233 host-parasite networks) obtained from these two sampling techniques as the num-
ber of samples increases. The local probability of interaction between potentially interacting species was set
to three different values: (a,d) P(L; ; xIM; ;) = 1.0, (b,e) P(L; ; xIM, ;) = 0.75, and (c,f) P(L; ; xIM; ;) = 0.50.
Probabilities of regional interactions were obtained with a false positive rate of 5% and a false negative rate
of 10%. Regional samples were obtained by randomly sampling binary interactions from the probabilistic
interaction metaweb, and then propagating this result to all local networks that include the species potentially
engaged in the interactions. Local samples were obtained by independently sampling binary interactions for
each local network of probabilistic interactions.

Both sampling techniques assume independence between interactions, which might not hold true in
reality. Covariation among interactions could exist even if we do not explicitly condition interac-
tions on others. For example, an interaction between two taxa could be more probable when another
interaction occurs. The consequences of this assumption of independence on the prediction of net-
work structure have yet to be empirically examined. Sampling whole networks (or graphs) instead
of pairwise interactions may eliminate the need for this assumption of independence (Battiston et
al. 2020).

5

Future perspectives

In this contribution, we underline the importance of network documentation for adequately interpreting and
manipulating probabilistic interaction data. The mathematical representation of probabilities and their sta-
tistical properties depend on the type of interactions (local or regional) and the conditions under which these
interactions were evaluated. We show that local networks and metawebs of probabilistic interactions differ
in their relationship to spatial and temporal scales (Box 3), with regional interactions remaining consistent
across scales. In contrast with metawebs, local interactions are measured in a specific context (e.g., in a given
area, time, and biological and environmental conditions) and depend on taxa co-occurrence. These differ-
ences bring to light the need to use probabilistic data with caution, for instance when generating network
realizations of binary interactions across space (Box 5). Clear documentation describing the type of interac-
tion and the variables used in their estimation are required to ensure adequate data manipulation. Sound data
practices and foundations for probabilistic thinking in network ecology facilitate reliable assessments of the
spatiotemporal variability and uncertainty of biotic interactions. Here we identify key research priorities for
improving our understanding of probabilistic local and regional interactions.

17 of 24



5.1. Predicting local networks from metawebs Metawebs are a valuable source of ecological information for
predicting local networks across time and space. Local networks of binary interactions can be reconstructed
by selecting a subset of taxa and interactions from the metaweb (Dunne 2006). Determining the list of
taxa to select can be achieved empirically (e.g., observed occurrence data for a site) or numerically (e.g.,
species distribution models). As species composition is arguably easier to sample and predict than pairwise
interactions, the primary challenge lies in deciding which interactions to select from the metaweb. Inferring
the structure of local networks from the metaweb before predicting local pairwise interactions could hold
promise (Strydom et al. 2021), considering that the structure of local networks is constrained by the metaweb
(Saravia et al. 2022).

While predicting local binary interactions from a metaweb is not be a simple task, inferring local networks of
probabilistic interactions from a metaweb comes with its own set of challenges. For example, Dansereau et
al. (2024) inferred spatially-explicit food webs from a metaweb of probabilistic trophic interactions between
Canadian mammals. Their predicted localized food webs are downscaled versions of the metaweb (i.e.,
localized metawebs with the same interaction probabilities as those in the regional metaweb). To infer local
networks as defined in this manuscript (i.e., describing local realizations of interactions), local interaction
probabilities must be smaller than regional interaction probabilities. Inferring local networks from a metaweb
by maintaining identical interaction probability values introduces systematic biases into the predictions, as
discussed in Box 2 (unless networks are seen as downscaled metawebs).

As suggested by McLeod er al. (2021), metawebs establish an upper limit for local interactions (similarly
for metawebs of probabilistic interactions, Strydom ez al. 2023). In other words, the probability that two
taxa interact at a specific location and time is consistently lower or equal to the probability of their regional
interaction, regardless of the conditional variables considered:

P(Lij ) < P(M;,|T;, T)). (17)

Moreover, the probability that two taxa possess the biological capacity to interact must be higher than the
probability of them interacting at any location and time because they may never co-occur or encounter locally.
Specifically, the cumulative probability of local interaction across all spatial, temporal, and environmental
conditions must be less than the probability of regional interaction, i.e.

fEk on LOP(L,-J-,klEk,AO,tO) dto dAg dE; < P(M, T}, T;). (18)

Estimating more precisely the probability P(L;; ¢|[M; ;) that two taxa interact locally if they can potentially
interact allows for improved predictions of local networks from the metaweb of probabilistic interactions.
This task is challenging due to the variability of this probability across space and time, as well as its variability
across pairwise interactions within a network. Using simple models of P(L; ; xIM; ;), as shown in Appendix
1, represents an initial step toward the overarching objective of reconstructing local networks from metawebs.

5.2. Quantifying and reducing interaction uncertainty While sampling biological communities decreases
the uncertainty of interactions by accumulating evidence for their feasibility and local realization, there is
a limit to how much we can reduce uncertainty. In metawebs, probabilities reflect our limited knowledge
of interactions, which is expected to improve with a larger volume of data. Regional interactions should
become more definitive (with probabilities approaching O or 1) as we investigate various conditions, including
different combinations of species traits.

In comparison, local interaction probabilities represent both our knowledge uncertainty and their spatiotem-
poral variability. Owing to environmental heterogeneity, there will invariably be instances in which an inter-
action occurs and others in which it does not, across different times and locations, irrespective of the extent to
which we can improve our knowledge of its biological feasibility and the local conditions that facilitate its oc-
currence. When local networks describe probabilities of observing interactions rather than their realization,
we must also consider observation uncertainty (sampling error) as an additional source of uncertainty. Quan-
tifying and partitioning this uncertainty will enable us to make more accurate predictions about ecological
interactions at various spatial and temporal scales, and to identify priority sampling locations to reduce this
uncertainty. This will prove to be of vital importance as our time to understand nature runs out, especially at
locations where the impacts of climate change and habitat loss hit harder.
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5.3. Relaxing the independence assumption Estimating local interaction probabilities independently for
each taxa pair and assembling them into a network of probabilistic interactions comes with limitations. Pre-
dicting local networks of binary interactions based on these interaction probabilities assumes independence
among interactions, a condition seldom respected in practice (Golubski & Abrams 2011). Relaxing this
assumption is the next logical step in the stochastic representation of interactions.

A more accurate representation of the uncertainty and variability of ecological networks involves creating
probabilistic networks (P(L;) and P(M)), rather than networks of probabilistic interactions (P(L; J»’k) and
P(M; ;)). Probabilistic networks describe the probability that a particular network of binary (or quantitative)
interactions (its whole adjacency matrix) is realized. For example, Young ef al. (2021) used a Bayesian
approach to estimate the probability of different plant-pollinator network structures derived from imperfect
observational data. A probability distribution of ecological networks may also be derived using the principle
of maximum entropy given structural constrained (e.g., Cimini ef al. 2019; Park & Newman 2004).

Regardless of the method used, generating probabilistic local networks could lead to more accurate pre-
dictions of local networks of binary interactions by bypassing the independence assumption. Probabilistic
networks could serve as an alternative to null hypothesis significance testing when comparing the structure of
alocal network to some random expectations or, as done in Pellissier et al. (2018) and Box 2, to the metaweb.
These random expectations are typically derived by performing a series of Bernoulli trials on probabilistic
interactions, assuming independence, to generate a distribution of networks of binary interactions to calcu-
late their structure (Poisot ef al. 2016). One could instead compare the likelihood of an observed network
to the one of the most likely network structure (according to the probabilistic network distribution), thereby
directly obtaining a measure of discrepancy of the empirical network. Generating probabilistic ecological
networks represents a tangible challenge, one that, in the coming years, promises to unlock doors to more
advanced and adequate analyses of ecological networks.
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