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Abstract 23 
Copepods are a major group of the mesozooplankton and thus a key part of marine ecosystems 24 
worldwide. Their fitness and life strategies are determined by their functional traits which allow 25 
different species to exploit various ecological niches. The range of functional traits expressed 26 
in a community define its functional diversity (FD), which can be used to investigate how 27 
communities utilize resources and shape ecosystem processes. However, the spatial patterns of 28 
copepod FD and their relation to ecosystem functioning remain poorly understood on a global 29 
scale. Here, we use estimates of copepod community composition derived from species 30 
distribution models in combination with functional traits and indicators of ecosystem 31 
functioning to investigate the distribution of multiple facets of copepod FD, their relationships 32 
with species richness and ecosystem processes. We also project how anthropogenic climate 33 
change will impact the facets of copepod FD. We find that the facets of FD respond to species 34 
richness with variable strength and directions: functional richness, divergence and dispersion 35 
increase with species richness whereas functional evenness and trait dissimilarity decrease. We 36 
find that primary production, mesozooplankton biomass and carbon export efficiency decrease 37 
with species richness, functional richness, divergence and dispersion. This suggests that 38 
ecosystem functioning may be disproportionally influenced by the traits of a few dominant 39 
species in line with the mass-ratio hypothesis. Furthermore, climate change is projected to 40 
promote trait homogenization globally, which may decrease mesozooplankton biomass and 41 
carbon export efficiency globally. The emergent covariance patterns between FD and ecosystem 42 
functions we find here strongly call for better integrating FD measurements into field studies 43 
and across scales to understand the effects of changing zooplankton biodiversity on marine 44 
ecosystem functioning. 45 
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1. Introduction 50 
Plankton comprise myriads of floating microscopic organisms that shape the functioning of 51 
marine ecosystems (de Vargas et al., 2015). In the plankton, copepods are small crustaceans 52 
(i.e., usually 0.2-20 mm) that dominate mesozooplankton communities in terms of abundance 53 
and species diversity (Steinberg & Landry, 2017; Brandão et al., 2021). They are pivotal players 54 
for the biologically driven transfer of carbon from the atmosphere to the deep ocean, a process 55 
known as the biological carbon pump (Turner, 2015; Steinberg & Landry, 2017). Copepods 56 
display a spectrum of functional traits and traits trade-offs allowing them to efficiently feed on 57 
motile and non-motile microplankton, marine snow and even gelatinous macrozooplankton 58 
(Kiørboe et al., 2011; Takahashi et al., 2013; Brun et al., 2017). Functional traits are 59 
characteristics that control the fitness of organisms and determine their ability to feed, grow 60 
and reproduce (Violle et al., 2007; Litchman et al., 2013). The range and composition of 61 
functional traits expressed in a community constitutes the functional dimension of biodiversity: 62 
functional diversity (FD; Mouillot et al., 2013). Copepod trait composition determines how 63 
mesozooplankton contribute to key functions of the biological carbon pump, such as 64 
phytoplankton grazing, secondary production, or the active export of organic carbon at depth 65 
(Henson et al., 2019; Brun et al., 2019; Pinti et al., 2023). For instance, large copepods egest 66 
large and fast sinking carbon-rich pellets that promote export efficiency of particulate organic 67 
carbon to depth (Stamieszkin et al., 2015; Brun et al., 2019). The efficiency of the biological 68 
carbon pump partly depends on the amount and the composition of sinking particles (Le Moigne 69 
et al., 2016; Nowicki et al., 2022) which are influenced by trait composition and thus copepod 70 
FD. 71 
However, the FD patterns of marine copepods have seldomly been measured in situ and over 72 
large scales (Becker et al., 2021; Tang et al., 2022; Li et al., 2022) whereas taxonomic diversity 73 
patterns are relatively well documented (Rombouts et al., 2010; Benedetti et al., 2023). The 74 
spatial distribution of mean trait values in copepod communities is not even in the global ocean, 75 
as certain trait combinations are more suitable than others given varying environmental 76 
conditions (Brun et al., 2016; van Someren-Grève et al., 2017; Prowe et al., 2018; Benedetti, 77 
Wydler & Vogt, 2023; Djeghri et al., 2023). For example, planktonic copepods display larger 78 
body sizes in cold-water environments (Campbell et al., 2021). Moreover, strategies that 79 
optimize the survival of early life stages, such as sac-spawning, tend to prevail in tropical 80 
oligotrophic gyres where cannibalism and carnivory are more prevalent (Kiørboe & Sabatini, 81 
1994; Woodd-Walker et al. 2002; Benedetti, Wydler & Vogt, 2023). Many species can display 82 
very similar trait combinations and thus perform similar functions so changes in the number of 83 
species or their identity can be uncoupled from changes in FD (Hillebrand et al., 2017; Blowes 84 
et al., 2019). Because of functional redundancy, we anticipate that copepods will exhibit FD 85 
gradients that diverge from richness gradients, similar to the patterns observed for numerous 86 
other marine clades, from reef fishes (Mouillot et al., 2014; McLean et al., 2021; Ferrari et al., 87 
2023), corals (McWilliam et al., 2018), bivalves (Edie et al., 2018) to marine mammals (Albouy 88 
et al., 2017; Pimiento et al., 2021). Such studies showed that even speciose communities can 89 
be vulnerable to functional loss if functions are only carried by few species in said community 90 
(Mouillot et al., 2014; McWilliam et al., 2018; McLean et al., 2021). 91 
Our limited understanding of zooplankton FD distribution limits our capacity to predict how 92 
changes in biodiversity affect ecosystem functions across ecosystems (Cardinale et al., 2012). 93 



This is a major aspect to address in the context of climate change since the richness and 94 
composition of zooplankton will likely be reshuffled (Beaugrand et al., 2015; Benedetti et al., 95 
2021). Global warming may elicit strong changes in community composition at high latitudes, 96 
as warm-water taxa migrate poleward and replace local cold-water taxa along the way 97 
(Benedetti et al., 2021). Yet, it is unknown how such changes will affect zooplankton FD. 98 
Therefore, we need to answer the following questions: How do changes in copepod species 99 
richness relate to changes in trait diversity? Where are higher levels of zooplankton FD 100 
expressed worldwide? Do higher levels of FD promote ecosystem functions such as secondary 101 
production or carbon export? 102 
Such ecosystem functions may be positively or negatively related to marine copepod FD and 103 
they may be scale-dependent (Chalmandrier et al., 2017; Gonzalez et al., 2020; Suarez-Castro 104 
et al., 2022). On one hand, more speciose communities could harbor a wider range of functional 105 
traits (i.e., higher functional richness) enabling copepods to optimize the use of resources to be 106 
converted to biomass (“portfolio effect”; McCann, 2000). As a result, copepod biomass may 107 
increase with species richness and functional richness. On the other hand, production could be 108 
mainly carried out by a few dominant species that outcompete less fit species in the community 109 
("mass-ratio hypothesis”; Grime, 1998). As a result, copepod biomass could scale negatively 110 
with the richness of species and traits. If ecosystem functions such as carbon export are 111 
influenced by traits distinct from those governing secondary production, then the nature and 112 
intensity of their association with copepod FD may deviate from that observed with secondary 113 
production (Yan et al., 2023). FD is multi-faceted (Villéger et al., 2008) so these relationships 114 
could vary in strength and shape depending on the facet considered (Paquette & Messié, 2010; 115 
Maureaud et al., 2019; Suarez-Castro et al., 2022). For instance, if the balance between trait 116 
combinations matters more to productivity than their absolute number, indices such a functional 117 
evenness or functional dispersion should correlate more strongly with ecosystem functions than 118 
functional richness (Brun et al., 2020; Le Bagousse-Pinguet et al., 2021). Similar to the above, 119 
if spatial gradients in trait composition are decoupled from those in trait richness, assemblages 120 
with very dissimilar trait composition (beta-FD; Villéger et al., 2011) may achieve similar levels 121 
of functional richness (McLean et al., 2021; Suarez-Castro et al., 2022). Therefore, integrating 122 
beta-FD is crucial to explore the links between FD and ecosystem functions. 123 
The relationships between copepod FD and ecosystem functions in the global ocean can be 124 
explored in two ways. Firstly, direct measurements of ecosystem functions and fine-resolution 125 
diversity can be taken simultaneously to measure causal links between variables, using 126 
covariance coefficients or structural equation modelling (Gamfeldt et al., 2015; Lehtinen et al., 127 
2017; Maureaud et al., 2019). Despite the substantial progress made in zooplankton field 128 
sampling (Lombard et al., 2019; Ratnarajah et al., 2023), such simultaneous and standardized 129 
measurements remain too sparse for global scale analyses. Choosing an indirect approach, we 130 
leverage the large number of species-level observations (Benedetti et al., 2021) and satellite-131 
based or model-based indicators of ecosystem functioning to diagnose the emergent covariance 132 
between the various facets of copepod FD and ecosystem functions (Gamfeldt et al., 2015; 133 
Eriksson et al., 2024). We rely on functional trait data and global community matrices given by 134 
an ensemble of species distribution models (SDMs; Elith & Leathwick, 2009) to estimate 135 
patterns of zooplankton FD for the contemporary and future ocean. Our approach allows to 136 
assess how decades of field observations answer the following questions: (i) How do the 137 



multiple facets of zooplankton FD relate to the global gradient of species richness on a mean 138 
annual scale (Stuart-Smith et al., 2013; Suarez-Castro et al., 2022)? (ii) What is the direction, 139 
shape and strength of the emergent relationships between zooplankton FD and indicators of 140 
ecosystem functioning? And (iii) how will zooplankton FD patterns change in the future under 141 
anthropogenic climate change (Benedetti et al., 2021)? 142 
 143 
2. Materials and methods  144 
2.1. Copepod community matrices for the contemporary and future ocean 145 
We use community matrices that describe the species composition of copepod assemblages 146 
worldwide in combination with a functional trait table (see section 2.2) to estimate multiple FD 147 
indices (see section 2.3). These community matrices were generated by Benedetti, Wydler & 148 
Vogt (2023) based on habitat projections generated by an ensemble of state-of-the art SDMs 149 
following the methodology of Benedetti et al. (2021). In short, SDMs were calibrated on a 150 
global monthly scale based on species-level presence data taken in the upper 500 m as compiled 151 
in the ZooBase dataset (Benedetti et al., 2021). For each species, presences were aggregated on 152 
a monthly 1°x1° ocean cell grid following the WGS84 spatial reference system and thinned 153 
according to a 100 km radius to remove observations that fell within the same monthly cell. For 154 
the 343 species displaying at least 50 different presences, background data were generated 155 
following the target-group approach of Phillips et al. (2009). Three types of SDMs spanning 156 
various levels of complexity were used to model the species’ distributions and account for the 157 
main source of uncertainty in SDMs-based studies (Thuiller et al., 2019): Generalized Linear 158 
Models (GLM), Generalized Additive Models (GAM) and Artificial Neural Networks (ANN). 159 
These SDMs were tuned to fit non-overfitting response curves that describe how each species’ 160 
habitat suitability (ranging between zero and one) varies as a function of the environmental 161 
predictors included in the SDMs. Six environmental predictors were used: sea surface 162 
temperature (SST; WOA 2013v2), surface photosynthetically available irradiance (PAR), log-163 
transformed surface nitrate concentrations (WOA 2013; Garcia et al., 2014), the excess of 164 
nitrate to phosphates relative to the Redfield ratio (N*; Sarmiento & Gruber, 2006), the excess 165 
of silicate to nitrate relative to the Redfield ratio (Si*) and log-transformed surface chlorophyll-166 
a concentration (SeaWiFS). These six predictors were chosen because: (i) they were not 167 
collinear at the scale of the occurrence data (Dormann et al., 2013); (ii) they ranked within the 168 
top predictors across all species, based on tests of relative importance ranks; (iii) these variables 169 
were available for describing the future state of the ocean based on an ensemble of Earth System 170 
Models (ESMs), thus allowing to perform ensemble projections and to evaluate the impact of 171 
climate change on FD. Previous work showed that this set of predictors robustly models global 172 
zooplankton diversity patterns, and that predictor choice is a minor source of projection 173 
uncertainty relative to SDM and ESM choice (Benedetti et al., 2021, 2023). All three types of 174 
SDMs were calibrated 10 times on different random subsets of 80% the species-level datasets 175 
and evaluated against the remaining 20%. Ultimately, 303 copepod species (88% of the 343 176 
initially considered) were robustly modelled and used to construct the species assemblages, one 177 
assemblage corresponding to one monthly 1°x1° ocean grid cell. Then, habitat suitability 178 
indices (HSI) were projected onto the 12 monthly climatologies of the predictors included in 179 
the 30 SDMs. Average monthly HSI was calculated for each type of SDMs and each species to 180 



build the ensemble members of contemporary copepod assemblage composition (see Benedetti, 181 
Wydler & Vogt, 2023 for a full description). 182 
To estimate the impact of anthropogenic climate change on zooplankton FD, we estimated the 183 
composition of copepod assemblages for the future ocean. Future monthly fields of the six 184 
environmental predictors were obtained from the projections of five ESMs forced by the IPCC’s 185 
RCP8.5 scenario from the MARine Ecosystem Model Intercomparison Project (MAREMIP; 186 
Sailley et al., 2013) and the Coupled Model Intercomparison Project 5 (CMIP5; Taylor et al., 187 
2012). The future monthly climatologies were obtained from the ESM’s projections over the 188 
2012-2100 period and anomalies were computed by subtracting the values of the “baseline” 189 
period (2012-2031) to the values projected for the “end-of-century” period (2081-2100). To 190 
obtain the final climatologies of the six predictors for the future state of the surface ocean, those 191 
anomalies were added to the in situ climatologies used to calibrate the SDMs. The SDMs of the 192 
303 copepod species modelled were then projected onto these future monthly climatologies for 193 
each of the ESM separately. This way, we estimate monthly species composition in the future 194 
global ocean based on mean species HSI derived from 15 ensemble members (three SDM types 195 
and five ESMs). 196 
 197 
2.2. Species functional traits and functional dissimilarity matrix 198 
Computing FD estimates requires information about the functional traits of the copepod species 199 
modelled. This dataset is fully described in Benedetti, Wydler & Vogt (2023) and includes the 200 
following five functional traits based on the data available from the literature (Table S1): (i) 201 
Body size (quantitative continuous) estimated through average maximum female body size 202 
(adult stages only) in millimeter; body size is considered a master trait as it impacts all life 203 
functions, scales with most physiological rates and influences predator–prey interactions; (ii) 204 
Trophic group (categorical) which gathers the species based on their preferred food sources to 205 
indicate their role in food-web dynamics (although we acknowledge that most marine 206 
planktonic copepods are omnivorous); (iii) Feeding mode (categorical) which describes the 207 
various strategies copepods deploy to detect and capture their prey following Kiørboe (2011); 208 
(iv) Myelination (binary) which indicates the presence or absence of a lipid-rich myelin sheath 209 
around the nerves which enables faster attack or evasive reactions and thus impact feeding and 210 
mortality rates (Lenz, 2012); and (v) Spawning mode (binary) which indicates whether the 211 
copepods release their eggs in open water after fertilization (free-spawning) or are carried by 212 
females in egg sacs or egg masses (sac-spawning). We underline that these functional trait 213 
values are representative of adult stages (i.e., not the nauplii) and correspond to mean values 214 
derived from field or lab observations of diverse copepod populations from around the world. 215 
The species' trophic groups and feeding modes were fuzzy coded to represent the fact that 216 
species can display several feeding modes and trophic groups. Therefore, the final functional 217 
trait table encompasses 10 trait dimensions and cover the 303 copepod species retained for the 218 
community matrices. 219 
FD indices require a distance matrix that indicates the pairwise functional dissimilarity of 220 
copepod species based on their combinations of traits (Mouillot et al., 2013; Benedetti et al., 221 
2016). To obtain the latter, we computed a Gower distance matrix based on the final functional 222 
trait table, as the Gower distance can accommodate continuous, binary and categorical traits. 223 



We used the gawdis R package (de Bello et al., 2021) as it enables us to specify which trait 224 
dimensions are fuzzy-coded and belong to the same trait category. 225 
 226 
2.3. Functional diversity indices  227 
FD is a multifaceted concept embedding changes in composition within and between 228 
assemblages (Mason et al., 2005; Villéger et al., 2011). Consequently, we chose to compute 229 
indices that describe the following facets of FD: (i) how much of the total functional space is 230 
filled by the composition of each assemblage (functional richness), (ii) how the HSI and/or 231 
inferred presences/absences of species are distributed within the functional spaces (functional 232 
dispersion, evenness, or divergence), and (iii) how much assemblages overlap in functional 233 
space (beta-FD). The FD indices used here are summarized in Table 1 and an extensive 234 
description of their computation is given in the Supplementary Methods 1. 235 
We computed Faith’s index (Faith) as a proxy for functional richness using the Gower distance 236 
matrix described above as the functional dendrogram (Faith, 1992). Standardized-effect-sizes 237 
of Faith (SES Faith) were calculated to study functional richness patterns that are not biased by 238 
differences in species richness (Schleuter et al., 2010). The SES Faith values and p-values 239 
indicate where functional richness is significantly higher or lower than the values dictated by 240 
species richness alone. SES Faith values < 0 indicate that functional clustering occurs due to 241 
environmental filtering in the copepod assemblage, whereas values > 0 indicate that functional 242 
overdispersion occurs (Mikryukov et al., 2023). 243 
To evaluate facet (ii), we computed four complementary FD indices (Mason et al., 2005; 244 
Villéger et al., 2008): functional evenness (FEve), functional dispersion (FDis), Rao’s quadratic 245 
entropy (Rao’s Q) and functional divergence (FDiv). Following the guidelines of Mouillot et 246 
al. (2021), we calculated those FD indices based on the first four axes of a principal coordinate 247 
analysis (PCoA) as these retained a similar level of dissimilarity as the original Gower distance 248 
matrix (Fig. S1). Functional richness is more commonly quantified through the FRic index 249 
(Villéger et al., 2008) so we made sure that Faith provided similar functional richness patterns 250 
as standardized FRic values (Fig. S2). We preferred Faith over FRic because it is less sensible 251 
to SDM choice and because FRic is only representative of changes in species composition 252 
occurring at the edges of the functional space. 253 
To evaluate facet (iii), we compute pairwise beta-FD based on Jaccard’s dissimilarity index 254 
(Baselga, 2010; Cardoso et al., 2014). Each pair of assemblages (Ai, Aj) shows a total trait 255 
dissimilarity that corresponds to the sum of the lengths of edges that are unique to each 256 
assemblage-specific dendrogram (Cardoso et al., 2014). Trait dissimilarity can be partitioned 257 
into two additive components (Baselga, 2010): replacement (Trait turnover) and richness 258 
differences (Trait nestedness). Trait dissimilarity values close to 1 indicate that two assemblages 259 
display functional dendrograms with very different number of non-overlapping branches. Since 260 
these indices are calculated for each community matrix, there are as many Trait dissimilarity 261 
values as pairs of assemblages, and they represent spatial patterns in copepod beta-FD. Here, 262 
we retained the average values of Trait dissimilarity, Trait turnover and Trait nestedness. 263 
The indices described in Table 1 were calculated for every monthly community matrix 264 
representative of the contemporary (n = 36) and future ocean (n = 180). We also computed 265 
monthly species richness based on the same community matrices to investigate how the facets 266 



of FD covary with taxonomic diversity and test if species-rich assemblages are more or less 267 
functionally diverse than species-poor assemblages (Stuart-Smith et al., 2013). 268 
 269 
2.4. Proxies of marine ecosystem functioning 270 
We gathered variables describing the spatial patterns of primary production, secondary 271 
production, and particulate organic carbon (POC) export outside of the euphotic zone to explore 272 
their covariance with zooplankton functional diversity on a global mean annual scale. To assess 273 
the covariance of FD with productivity, we used the recent observation-based product of mean 274 
annual epipelagic mesozooplankton biomass (MESOZOO, in mmol C m-3) of Clerc et al. 275 
(2024). MESOZOO was generated with a habitat modelling pipeline tailored for continuous 276 
target variables (Knecht et al., 2023) which was trained with the monthly mesozooplankton 277 
biomass fields from the MARine Ecosystem DATa (MAREDAT) (Moriarty & O’Brien, 2013) 278 
in combination with monthly environmental predictors of mesozooplankton biomass (Clerc et 279 
al., 2024). 280 
To assess the covariance of zooplankton FD with the productivity of phytoplankton, satellite-281 
based ocean colour data (GlobColour) were sourced from the Copernicus Marine Environment 282 
Monitoring Service (CMEMS; data.marine.copernicus.eu). We retrieved the level 4-merged 283 
monthly concentrations (in mg m-3) of chlorophyll-a (CHL-A) and the associated CHL-A 284 
concentrations in diatoms (DIATO), dinoflagellates (DINO), haptophytes (HAPTO), green 285 
algae (GREEN), Prochlorococcus (PROCHL) and prokaryotes (PROKAR), on a 100 km 286 
resolution (Xi et al., 2021). We used the monthly fields for the 2003-2022 period not to be 287 
biased by years where some months are missing and to match the period for which global NPP 288 
estimates are available as well. As the difference between gross primary production and 289 
respiration, NPP indicates the rate of biomass accumulation by phytoplankton that is available 290 
to zooplankton grazers. We retrieved the standard Vertically Generalized Production Model 291 
(VGPM) product from the Ocean Productivity website (oregonstate.edu; Behrenfeld & 292 
Falkowski, 1997). It provides surface NPP estimates based on MODIS observations for the 293 
2002-2022 period, in mg C m-2 d-1. 294 
To assess how zooplankton functional diversity relates to the particle size distribution of 295 
plankton cells and particles, we retrieved the slope of the power-law particles size distribution 296 
(SLOPE) measured from satellite ocean color observations (Kostadinov et al., 2009). SLOPE 297 
values increase with the contribution of small cells and particles to the planktonic size spectrum. 298 
The GlobColour data, NPP estimates, and SLOPE estimates were re-sampled on the same 1° 299 
grid cell as the functional diversity estimates and monthly climatologies were computed based 300 
on all the data available. 301 
To assess the covariance of zooplankton functional diversity with the strength and functioning 302 
of the biological carbon pump, we further retrieved the model-based estimates of mean annual 303 
sinking POC flux (POC FLUX) and mean annual POC export at the base of the euphotic zone 304 
(FPOC) of DeVries & Weber (2017) converted to mg C m-2 d-1. We used the NPP estimates 305 
given by the latter study to estimate the efficiency of POC export fluxes through the E-RATIO 306 
(FPOC/NPP) which represents the fraction of POC that is exported below the euphotic zone 307 
relative to the initial productivity level. In the analyses below, we retained the VGPM-based 308 
NPP estimates as it very similar to the product of DeVries & Weber (2017) (Fig. S3). We 309 
compared the annual FPOC estimate to the more recent one of Clements et al. (2023) to ensure 310 



that the emergent patterns investigated in this study are robust to various large-scale estimates 311 
of POC export (Fig. S4). The mean annual values of these indicator variables are shown in Fig. 312 
S5. 313 
 314 
2.5. Analyses 315 
All analyses were carried out in the R coding environment (R Core Team, 2021). First, mean 316 
annual ensemble values of species richness and FD indices were computed based on all the 317 
monthly values available and then mapped to visualize the main spatial patterns of marine 318 
copepod diversity for the contemporary period. For SES Faith, the spatial distribution and 319 
frequency of significant p-values at a	risk of alpha = 0.05 was examined to identify the regions 320 
of the global ocean where Faith differs significantly from null expectations. For beta-FD, we 321 
computed the ratio between Trait turnover and Trait dissimilarity to identify the regions where 322 
functional traits dissimilarity is driven by trait replacement (i.e., ratio > 0.5). Covariance 323 
between species richness and FD indices was evaluated through linear models and second-324 
degree polynomials. We retained the models showing the largest proportion of explained 325 
variance (adjusted R2) based on variance analysis (ANOVA). This way, we investigated how 326 
mean annual taxonomic richness influences copepod FD and unveiled which species-rich 327 
assemblages also correspond to functionally diverse ones, along more than just one facet of FD 328 
(Stuart-Smith et al., 2013; McWilliam et al., 2017). We expected latitude to modulate the 329 
relationship between species richness and FD (Stuart-Smith et al., 2013; Benedetti, Wydler & 330 
Vogt, 2023). Therefore, we integrated an interaction term between species richness and absolute 331 
latitude in the linear models to test whether latitude imposes a strong effect on the covariance 332 
between taxonomic diversity and FD. Covariance between Faith and beta-FD indices were also 333 
examined to test if: (i) functionally rich assemblages show lower trait dissimilarity because of 334 
the co-occurrence of functionally redundant taxa, and (ii) the global gradient in functional 335 
richness is driven by Trait turnover or rather by Trait nestedness. 336 
Second, we studied the covariance of the mean annual values of the ecosystem functioning 337 
proxies described in section 2.4 with our diversity estimates. The same regression-based 338 
approaches as above were used. Considering the multidimensionality of the dataset (23 339 
variables), we focused on examining the emergent covariance of species richness and FD 340 
indices with MESOZOO and the indicators related to the biological carbon pump (NPP, POC 341 
FLUX, FPOC and E-RATIO). To explore the covariance of all variables together, we centered 342 
and scaled them to variance (i.e., Z-scores computation) and entered them into a principal 343 
component analysis (PCA). The ecosystem functioning proxies were used as quantitative 344 
supplementary variables and all of them were log10-transformed because they were skewed 345 
towards low values, except for SLOPE and MESOZOO. The Z-scores were displayed on a 346 
heatmap to illustrate the covariance structure between the FD indices and the ecosystem 347 
functioning proxies. 348 
Finally, we investigated how climate change may impact copepod FD in the future. To do so, 349 
we computed the differences between the values of the monthly diversity indices calculated for 350 
the end-of-century period and the values calculated for the contemporary period, for each 351 
matching combination of assemblages (e.g., future monthly GAM-based assemblages were 352 
compared to contemporary GAM-based assemblages). These differences were standardized to 353 
the contemporary values to be expressed in relative changes. Then, mean annual ensemble 354 



values of these relative changes were computed for each grid cell based on all ensemble 355 
members (n = 180). Prediction uncertainty was investigated to show where future changes in 356 
copepod FD are more, or less sensitive to ensemble member choice. The intra-annual 357 
variability, SDM-specific variability and ESM-specific variability were quantified and mapped 358 
through the standard deviation associated to their mean values. 359 
 360 
3. Results 361 
3.1. Distribution of mean annual copepod FD within and between assemblages  362 
Copepod species richness displays a classic latitudinal diversity gradient on a mean annual scale 363 
(Figure 1), as extensively documented in previous work already (Benedetti, Wydler & Vogt, 364 
2023; Benedetti, Gruber & Vogt, 2023). Richness increases from the poles to the equator, with 365 
peaks in the tropical oligotrophic gyres and the eastern Mediterranean Sea and dips in upwelling 366 
systems (Fig. 1a). More interestingly, we unveil an emergent functional richness pattern that 367 
departs from the species richness gradient towards higher latitudes (> 60°; Fig. 1b,c). Within 368 
the tropical band (0°-30°), the Faith pattern is very similar to the species richness gradient 369 
(Spearman’s correlation coefficient = 0.94; P < 0.001), with peaks in the gyres and dips in 370 
upwelling systems. Average richness drops from 104.5 to 68.6 (-34.2%) when moving beyond 371 
the tropical band. Meanwhile, Faith shows a much weaker decrease (-2.5%) as annual mean 372 
Faith values > 2.8 remain frequent beyond the tropics, especially in the North Atlantic Ocean 373 
(Fig. 1b). SES Faith patterns show the regions where functional richness is higher or lower than 374 
null expectations for equal species richness levels (Fig. 1c). We unveil a clear latitudinal 375 
gradient in the sign and amplitude of SES Faith values supporting the view that environmental 376 
conditions are leading to functional clustering of copepod traits in the tropics by filtering out 377 
subsets of the functional space. Mean (± standard deviation) global SES Faith is equal to -1.23 378 
(± 1.66), indicating that most of the ocean shows lower functional richness than null 379 
expectations. Indeed, negative mean annual SES Faith values are more widespread (62.5% of 380 
ocean cells) than positive ones; they go down to -5.18 and are concentrated in the tropical band. 381 
Meanwhile, positive SES Faith values are capped at 1.85 and 99% of these grid cells are located 382 
> 32° latitude. Inspecting the p-value distributions revealed that most of the negative SES Faith 383 
values observed in the tropics are significant, contrary to the positive ones which cannot be 384 
reliably separated from null expectations (Fig. S6). This means that the tropics show functional 385 
richness levels that are significantly lower than what could be expected from taxonomic 386 
richness. 387 
We unveil a global gradient in mean annual FEve that is opposite to the gradient in species 388 
richness and functional richness (Fig. 1d). This means that the copepod assemblages located in 389 
the tropical gyres are characterized by scattered clouds of species in functional space whereas 390 
assemblages at higher latitudes show more regular distribution of HSI along trait dimensions. 391 
Lowest FEve values are found within the tropical gyres (0.34 ± 0.05) and are higher outside of 392 
the tropical band (0.55 ± 0.04) and in upwelling systems. Actually, the highest FEve values (> 393 
0.5) are located in those transitional areas between the tropics and the high latitudes (around 394 
40-45°). 395 
The global FDis pattern is very similar to the species richness pattern (correlation coefficient = 396 
0.89; P < 0.001; Fig. 1e). Regions showing higher FDis are characterized by copepod 397 
assemblages whose species are more spread out in functional space (i.e., co-occurrence of 398 



functionally dissimilar species). The highest mean annual FDis values (> 0.32) are also found 399 
in the tropical oligotrophic gyres and the eastern Mediterranean Sea and lower values are found 400 
beyond the tropics, especially in the North Pacific Ocean and the Atlantic sector of the Southern 401 
Ocean. The lowest values (< 0.29) are located near the coasts and in eastern boundary upwelling 402 
systems. As expected, FDis patterns are nearly identical to Rao’s Q patterns as both indices 403 
estimate the same facet of FD (Table 1; Figure S7). 404 
Mean annual FDiv also shows a latitudinal gradient (Fig. 1f) but its values only range between 405 
0.84 and 0.90 globally (0.88 ± 0.01). All FDiv values > 0.9 are located at latitudes < 30° and all 406 
values < 0.86 are located beyond 60°. However, mean FDiv does not show substantial variations 407 
within (0.89 ± 3.0*10-3) and outside the tropical band (0.87 ± 0.01). This means that species 408 
HSI values tend to be higher for extreme functional trait values in tropical assemblages but that 409 
extratropical assemblages can also show high HSI values at such extreme portions of the 410 
functional space. 411 
The indices estimating facet (iii) of copepod FD highlight where the assemblages with the most 412 
dissimilar trait composition are located and whether such dissimilarity is driven by trait turnover 413 
or differences in trait richness (Figure 2). Globally, mean annual Trait dissimilarity (Fig. 2a) 414 
ranges from 0.24 to 0.47 (0.31 ± 0.06), meaning that no assemblage shows a completely 415 
dissimilar trait composition. Trait dissimilarity follows the opposite gradient to copepod species 416 
richness: it increases from the tropics (0.27 ± 0.03) to the poles (mean values > 60° = 0.39 ± 417 
0.03). Its lowest values (< 0.25) are found in the oligotrophic gyres and its highest (> 0.40) are 418 
in the Southern Ocean, North Pacific Ocean and near coastal upwelling regions.  419 
We find that mean annual Trait dissimilarity is largely driven by Trait turnover (Fig. 2b,c,d). 420 
Globally, mean Trait turnover follows the same gradient as Trait dissimilarity (correlation 421 
coefficient = 0.97; P < 0.001). Mean Trait nestedness is restricted to values < 0.10 (Fig. 2c) 422 
everywhere except in regions of the North Pacific Ocean and in coastal upwelling regions. Trait 423 
nestedness reflects differences in trait richness so it is logically opposite to Faith patterns (Fig. 424 
1b). The ratio of Trait turnover to total Trait dissimilarity confirms the dominance of Trait 425 
turnover as a main driving process of functional dissimilarity as it if mostly > 0.5 globally (0.76 426 
± 0.04; Fig. 2d). It shows that the contribution of Trait turnover is highest (> 0.80) in the North 427 
Atlantic Ocean, the Arctic Ocean, and the Southern Ocean. 428 
We here focus on mean annual patterns, but all indices show intra-annual variability which 429 
follows the amplitude of seasonal environmental variations seasonality, especially in terms of 430 
surface temperatures (Fig. S8). The uncertainty in FD indices that is driven by the choice of the 431 
species distribution model is of the same order of magnitude as seasonal variations but tends to 432 
show a different spatial pattern (Fig. S9): model choice generates more uncertainties towards 433 
higher latitudes, especially in the Southern Ocean.  434 
 435 
 436 
3.2. Emergent relationships between species richness and FD 437 
All FD facets show significant but varying responses to an increasing number of taxonomic 438 
units (Figure 3). We find that species-rich copepod assemblages are characterized by higher 439 
functional richness and more extreme trait values of functionally distant species compared to 440 
species-poor assemblages. Mean annual Faith, FDis and FDiv show significant increases with 441 
richness of varying strength (R2 ranging between 0.57 and 0.74; Fig. 3a,d,e). Their relationship 442 



to species richness is best described by second-degree polynomials that unveil how the increase 443 
rate in Faith, FDis and FDiv starts leveling off as richness increases. Based on the first 444 
derivative of the fitted polynomials, the rate of increase in Faith, FDis and FDiv decreases by 445 
more than 50% beyond richness values > 80. 446 
Mean annual SES Faith, FEve and beta-FD indices show significant decreases of varying 447 
strength with species richness (R2 ranging between 0.26 and 0.94; Fig. 3b,c,f,g,h). We find that 448 
species-rich copepod assemblages are more clustered in functional space (i.e., lower SES Faith 449 
and lower Trait dissimilarity) and are characterized by less regular trait expression (i.e., lower 450 
FEve) than species-poor assemblages. The gradient in taxonomic richness is associated with a 451 
decrease in Trait turnover, meaning that species-poor copepod assemblages display more 452 
dissimilar functional traits that are not found in species-rich assemblages. The relationship of 453 
SES Faith and FEve to species richness is best described by a linear decrease whereas the 454 
relationships between the three beta-FD indices and species richness are best described by 455 
second-degree polynomials. Again, the latter unveils how the rate of decrease in Trait 456 
dissimilarity and Trait turnover levels off by 50% beyond richness values > 80. The polynomial 457 
fit is weakest for Trait nestedness (R2 = 0.26) and the fitted rate of decrease with richness is 458 
much weaker (from 0.10 to 0.06 only). 459 
Figures 1 to 3 show that environmental factors associated with latitude have a potentially strong 460 
influence on the relationship between FD and species richness. To assess how strongly latitude 461 
modulates such covariance patterns, we include an interaction term between absolute latitude 462 
and richness in the linear and polynomial models above. We also perform covariance analysis 463 
(ANCOVA) to test if this interaction term improves the fit significantly. The strength of all 464 
covariance patterns varies significantly with latitude, but less so for FEve and Trait turnover. 465 
Adding absolute latitude improves the models’ fit (all ANCOVA tests return p < 0.001) with 466 
varying degrees depending on how strong the initial fit was. The adjusted R2 increased by 53.5% 467 
for Faith, 45.8% for SES Faith, 37.0% for FEve, 7.0% for FDis, 26.9% for FDiv, 1.1% for Trait 468 
dissimilarity, 9.4% for Trait turnover and 93.8% for Trait nestedness. 469 
 470 
3.3. Emergent relationships between FD and indicators of ecosystem functioning 471 
Next, we examine the covariance of species richness and FD with mean annual MESOZOO 472 
and an exhaustive suite of ecosystem functioning indicators (Figure 4; Fig. S10). Our analyses 473 
show that copepod species richness and FD are promoted under conditions of low primary 474 
production, but they do not favor the production mesozooplankton biomass or POC export 475 
efficiency (Fig. 4a). However, the latter two seem to be promoted when copepod assemblages 476 
display more dissimilar functional trait composition and more even trait expressions. 477 
MESOZOO and other indicators related to mean annual productivity and carbon export covary 478 
negatively with copepod richness and FD (Fig. S10). Phytoplankton biomass (CHL-A), the 479 
biomass production of most phytoplankton functional types (DIATO, DINO, HAPTO and 480 
GREEN) and the efficiency of carbon export below the euphotic zone (E-RATIO) covary 481 
positively with the three beta-FD indices, SES Faith and FEve, but they vary negatively with 482 
copepod species richness, Faith, FDis and FDiv (Figure S10). Mean annual NPP, PROCHL and 483 
indicators related to POC fluxes at depth show less marked patterns and mainly tend to covary 484 
negatively with Faith and SES Faith. 485 



We focus on the most conspicuous patterns to test if copepod diversity has emergent positive 486 
or negative effects on zooplankton biomass production (Figure 4b to f). We find that emergent 487 
mesozooplankton production is lower in assemblages that display higher functional richness 488 
and more scattered species in functional space. Meanwhile, MESOZOO is favored in 489 
assemblages where trait expression is more balanced (i.e., higher FEve) and which show less 490 
common trait combinations (i.e., higher Trait dissimilarity and turnover). Globally, MESOZOO 491 
decreases with species richness, Faith, FDis and FDiv (Fig. 4a,b,d,e) but increases with FEve 492 
and Trait dissimilarity (and Trait turnover; Fig. 4c,f). The strongest negative relationship was 493 
found for FDis (R2 = 0.62) and the weakest for FDiv (R2 = 0.12). The strongest positive 494 
relationship was found for Trait dissimilarity (R2 = 0.48). The strength of the covariance with 495 
MESOZOO varies significantly with latitude, but less so (< 10%) for species richness, FEve 496 
and FDis. Indeed, including an interaction term between the diversity index and absolute 497 
latitude improved the fit of the linear models (all ANCOVA tests returned p < 0.001), but less 498 
strongly than in the previous case. The adjusted R2 increased by: 8.7% for species richness, 499 
34.9% for Faith, 1.5% for FEve, 6.45% for FDis, 67.5% for FDiv and 23.9% for Trait 500 
dissimilarity. Finer regional patterns shown on Figure 4 are summarized in the Supplementary 501 
Results as well as Figs. S12 and S13. 502 
 503 
3.4. Changes in copepod FD under global change 504 
We examine how copepod mean annual FD will change in the future as a function of climate 505 
change projections averaged over 180 monthly ensemble members (Figure 5). On a global 506 
scale, our ensemble of SDMs predicts average relative increases in species richness (+6.0% ± 507 
9.6; Fig. 5a), Faith (+0.7% ± 2.6; Fig. 5b), FDis (+0.3% ± 0.7; Fig. 5d), FDiv (+0.1% ± 0.4; 508 
Fig. 5e), but relative decreases in FEve (-2.4% ± 7.8; Fig. 5c). There is a marked spatial 509 
variability in the direction of changes in species richness and functional richness, as relative 510 
increases are offset by decreases in specific regions. Indeed, increases in richness are stronger 511 
at higher latitudes compared to the oligotrophic gyres (Kruskal-Wallis and post hoc pairwise 512 
Wilcoxon tests; Fig. S14). Differences in Faith follow a similar spatial trend, but they range 513 
mostly between -10% and +10%. Future SES Faith values and their associated p-values show 514 
the same distribution as for contemporary ocean conditions (Fig. S6), with negative SES Faith 515 
values prevailing in the tropical band, except in the coastal upwelling regions, and positive SES 516 
Faith values prevailing at high latitudes. 517 
Future changes in FDiv only range ± 5% and changes in FDis are even weaker (mostly < ± 518 
1.5%; Fig. 5d,e). Therefore, these two facets of copepod FD are not severely affected by future 519 
changes in oceanic environmental conditions. Meanwhile, changes in FEve are more severe (± 520 
30%; Fig. 6c) and show marked variations across regions. Copepod assemblages will tend to 521 
become more similar in terms of functional trait composition, especially in the northern 522 
hemisphere. Indeed, changes in Trait dissimilarity are < 0 nearly everywhere (Fig. 5f). ∆Trait 523 
dissimilarity ranges between -5.5% (± 3.0) in the tropics and -0.7% (± 2.0) for latitudes > 60°. 524 
Again, changes in total Trait dissimilarity are mainly driven by changes in Trait turnover 525 
(correlation coefficient = 0.70, P < 0.001; Fig. 5f,g). The contribution of Trait nestedness to 526 
Trait dissimilarity will tend to increase in many regions, especially in the high latitudes of the 527 
northern hemisphere (Fig. 5h). 528 



The spatial distribution of the uncertainty of our projections in future copepod FD is shown in 529 
Fig. S15 and are not homogeneous across FD indices. Regions showing weaker changes in 530 
future FD are those where ensemble members disagree the most on the direction of these 531 
changes (Fig. 5; Fig. S16). Usually, less than 75% of ensemble members agreed on the direction 532 
of changes in annual diversity depending on the index (Fig. S16). However, more than 50% of 533 
ensemble members always agreed on the direction of changes in FD across the globe. Previous 534 
work showed that this uncertainty is mainly driven by the choice of the SDM, followed by the 535 
choice of the ESM (Benedetti et al., 2021). 536 
 537 
4. Discussion 538 
4.1. Response of copepod FD to the global species richness gradient 539 
This is the first study to map marine copepod FD on a fully global scale and to investigate its 540 
covariance with taxonomic diversity and proxies of ecosystem functioning. First, we asked how 541 
multiple facets of copepod FD changed as a function of increasing taxonomic diversity on a 542 
mean annual scale. By doing so, we evaluated to what extent changes in richness translate into 543 
changes in FD for marine mesozooplankton. Functional richness, divergence and dispersion 544 
increase with taxonomic diversity whereas functional evenness, trait dissimilarity and turnover 545 
decrease (Figs. 1, 2 & 3). These bivariate relationships show different directions, shapes and 546 
strengths. Consequently, species richness should not be viewed as a reliable indicator of all 547 
facets of FD and is therefore not sufficient to document changes in zooplankton biodiversity in 548 
space and time (Hillebrand et al., 2017; Blowes et al., 2019). The intra-annual variability of our 549 
diversity indices is lower than 20% over large parts of the global ocean (i.e., relative standard 550 
deviation to mean annual conditions; Fig. S8), suggesting that the patterns shown here on the 551 
annual scale are representative of the mean state. This first main result implies that field surveys 552 
should integrate the various facets of FD to exhaustively monitor zooplankton biodiversity. 553 
The increase in functional richness with species richness is an emergent property that has been 554 
documented by previous field studies conducted on smaller scales for copepods (Becker et al., 555 
2021; Tang et al., 2022; Li et al., 2022). We expected to confirm this pattern because our 556 
approach covers large environmental gradients that generate richness patterns through 557 
environmental filtering (e.g., warm-water taxa are sorted from cold-water taxa; Benedetti et al., 558 
2021). As a result, speciose communities display larger species pools than non-speciose ones, 559 
allowing the emergence of more numerous trait combinations and thus higher functional 560 
richness (Mouchet et al., 2010; Chalmandrier et al., 2017; Suarez-Castro et al., 2022). This 561 
positive relationship was also observed across scales for several groups of marine ectotherms, 562 
from bivalves (Edie et al., 2018), corals (McWilliam et al., 2017) to tropical reef fishes (Stuart-563 
Smith et al., 2013; Mouillot et al., 2014; Ferrari et al., 2023). Therefore, the increase of 564 
functional richness with species richness seems to be a universal property of marine ectotherms 565 
across scales. 566 
More interestingly, previous studies also showed that the rate of increase of reef fish functional 567 
richness with taxonomic diversity varies with latitude (Stuart-Smith et al., 2013), a pattern 568 
observed here for marine copepods too (Fig. 3a,d). Indeed, we find that high latitude systems 569 
show steeper increases in functional richness and dispersion than tropical ones. In other words, 570 
adding taxonomic units has a stronger effect on functional richness in cold species-poor 571 
assemblages than in warm species-rich ones. In a context of global change, cold-water 572 



communities will be progressively exposed to the intrusion of warm-water communities (Brun 573 
et al., 2019; Benedetti et al., 2021). Therefore, our finding that the zooplankton FD is more 574 
sensitive to changes in richness in polar regions than in tropical regions further highlights how 575 
exposed polar communities are to future changes in climate and biodiversity (but see section 576 
4.3 for further discussion). 577 
Tropical regions show weaker rates of changes in copepod FD with increasing richness as a 578 
result of functional clustering (or “niche convergence”; Mikryukov et al., 2023): the species 579 
progressively added in these assemblages display trait values that are already expressed, thus 580 
not increasing the coverage of the functional space. This is supported by the strong decrease in 581 
SES Faith with richness (Fig. 1 and 3b) which shows how the most species-rich communities 582 
from the tropics display significantly lower functional richness than expected. Plus, the strong 583 
turnover in traits associated with the global species richness gradient (Figs. 2 and 3) shows that 584 
some trait combinations are selected only under certain environmental conditions. We rely on 585 
models of abiotic habitats, so our zooplankton FD patterns reflect which trait combinations are 586 
more competitive than others under varying conditions of temperature and resource availability. 587 
Therefore, such functional clustering (i.e., SES Faith < 0) emerges as a result of environmental 588 
filtering (Freschet et al., 2011; McLean et al., 2021). 589 
Analyzing the maps of community-weighted traits underlying the present FD patterns (see 590 
Benedetti, Wydler & Vogt, 2023) allows to unveil which trait combinations are selected in warm 591 
oligotrophic conditions and then progressively replaced by other combinations towards colder 592 
and more productive habitats. High latitudes are characterized by higher proportions of larger 593 
myelinated current-feeding copepods (Campbell et al., 2021; Brandão et al., 2021). As a result, 594 
high latitudes harbor more dissimilar sets of traits (Figs. 2, 3 and 4) that are not found in other 595 
regions (i.e., larger body sizes, more myelinated taxa and more current-feeding tactics that boost 596 
feeding rates; Benedetti, Wydler & Vogt, 2023). Meanwhile, the tropics show higher 597 
proportions of small amyelinated carnivorous copepods that rely on cruise-feeding or ambush-598 
feeding tactics. We hypothesize that the copepod communities of these areas are characterized 599 
by higher levels of specialization likely driven by the strong competition for resources (de Bello 600 
et al. 2013; Kraft et al. 2015). This is supported by the fact that the tropical oligotrophic areas 601 
also show increased levels of FDis and FDiv (Figs. 3d,e and 5; Fig. S10). These two FD indices 602 
identify communities characterized by “extreme” and dispersed trait values occurring at the 603 
edges of the overall functional space. Such trait values emerge under enhanced resource 604 
competition due to conditions of low food availability, where stress-tolerant species are better 605 
adapted to feed. Our results support this view as regions of strongest environmental filtering 606 
(i.e., SES Faith < 0) and functional dispersion are characterized by conditions of low nutrient 607 
availability dominated by small phytoplankton (Figs. S6 & S10). 608 
According to this hypothesis, enhanced resource availability should relax the selection of traits 609 
due to environmental filtering and enable more balanced trait expression, leading to higher 610 
functional evenness in the zooplankton. Our present FEve estimates support this expectation. 611 
Contrary to FDis and FDiv, FEve decreases with species richness and the rate of functional 612 
clustering (Fig. 3). FEve also increases with the turnover in trait composition but peaked right 613 
before the latter reaches its maximum (Figs. 1, 2 & 4). Copepod FEve peaks in upwelling 614 
systems and the transitional areas connecting the warm tropical gyres to the colder high latitudes 615 
(Fig. 4). Such regions display productive environmental conditions that allow a mixture of taxa 616 



from very dissimilar environments and functionally dissimilar communities throughout the 617 
year, which promotes balance between dissimilar traits. Further supporting our hypothesis, 618 
FEve is higher in those productive environments where multiple phytoplankton functional types 619 
co-exist throughout the year, either through asynchronous blooms or co-occurrence (Fig. 5; Fig. 620 
S10). According to our results, the increased concentration and variety of phytoplankton cells 621 
(i.e., enhanced resource availability) promotes more balanced trait expression, instead of 622 
favoring only a small subset of the zooplankton community. 623 
 624 
4.2. How may zooplankton FD influence ecosystem functioning? 625 
We then examined the emergent relationships between copepod FD and multiple proxies of 626 
ecosystem functioning. By doing so, we tested whether communities with higher taxonomic 627 
and/or FD optimize the use of resources to convert them to biomass (“portfolio effect”; 628 
McCann, 2000). This hypothesis would be supported by positive relationships between our 629 
diversity estimates and productivity-related variables (i.e., MESOZOO, CHL-A, NPP, etc.). 630 
Conversely, if biomass production is mainly carried out by a few dominants whose traits are 631 
fitter under food replete conditions ("mass-ratio hypothesis”; Grime, 1998), we would find a 632 
negative relationship between our FD estimates and productivity-related variables. The present 633 
MESOZOO estimate is largely derived from field observations of copepod biomass (Strömberg 634 
et al., 2009; Clerc et al., 2024) so focusing on copepods to explore the links between 635 
MESOZOO and FD is a reasonable assumption. 636 
We found that indicators of primary production, mesozooplankton production and POC export 637 
efficiency decrease with copepod species richness, functional richness, divergence and 638 
dispersion (Fig. 4; Fig. S10), supporting the “mass-ratio hypothesis”. The fact that Trait 639 
dissimilarity due to turnover shows the opposite trend while decreasing with species richness 640 
(Fig. 3) further supports this hypothesis: less speciose communities, characterized by lower FD, 641 
are more productive and display traits that are not found in speciose communities (Fig. 4). 642 
Communities with fewer species characterized by larger body sizes and a higher prevalence of 643 
omnivorous and herbivorous current feeders (Benedetti, Wydler & Vogt, 2023) are associated 644 
with higher mesozooplankton biomass production and more efficient POC export. These 645 
specific traits were shown to sustain more efficient grazing and carbon storage (Kiørboe 2011; 646 
Brun et al., 2019) and to promote secondary production (Beaugrand et al., 2010; Brun et al., 647 
2019). The emergent negative patterns between FD and productivity and export efficiency could 648 
be driven by a few keystone species, such as the large-bodied Calanidae, whose traits enable 649 
larger and faster growth as well as more efficient particles fluxes outside of the euphotic zone, 650 
promoting “high production-high export” regimes (Stamieszkin et al., 2015; Jónasdóttir et al., 651 
2015; Henson et al., 2019). Contrary to the diversity indices mentioned above, copepod FEve 652 
showed a positive relationship with phytoplankton biomass, MESOZOO and the E-RATIO 653 
(Fig. 4; Fig. S10). This implies that the balance in copepod functional trait composition, on top 654 
of high phytoplankton biomasses (Knecht et al., 2023; Clerc et al., 2024), could be key to 655 
promote mesozooplankton biomass (Maureaud et al., 2019; Le Bagousse-Pinguet et al., 2021). 656 
Yet, FEve is a weaker covariate of MESOZOO compared to species richness, Faith and FDis 657 
(Fig. 4c) so this facet of FD may be less important for regulating zooplankton productivity at 658 
the scale of our study. 659 



We deem the findings above sensible as they reflect the outcome expected from our current 660 
understanding of copepod species traits and ecology. Nonetheless, we cannot draw causal 661 
mechanisms between copepod FD and the performance of the biological carbon pump based 662 
on our correlative approach. The ecosystem functions studied are driven by a complex interplay 663 
of biological and physical factors whose contributions vary in space and time and that we cannot 664 
here disentangle from the effects of zooplankton FD (van der Plas, 2019; Boyd et al., 2019; 665 
Pinti et al., 2023). For instance, POC export efficiency alco covaried positively with the 666 
contribution of large and mineralized phytoplankton to phytoplankton biomass (Fig. S10). Such 667 
phytoplankton functional types are also known to favor and POC export efficiency (Tréguer et 668 
al., 2018; Henson et al., 2019; Nowicki et al., 2022). Nonetheless, our patterns can point 669 
towards the existence of interesting biodiversity–ecosystem functions relationships that were 670 
undocumented globally. 671 
We did not detect a significant covariance between copepod FD and estimates of NPP and POC 672 
fluxes (Fig. 4; Fig. S10). Copepod traits may contribute to regulating the relative amount of 673 
NPP that gets exported below the euphotic zone (i.e., E-RATIO), but absolute NPP and POC 674 
fluxes may depend more on other important physical and biological factors: the concentration 675 
and biomass of zooplankton groups with specific traits, the quantity of large mineralized 676 
phytoplankton, the concentration of heterotrophic bacteria, how species interact with one 677 
another, or strong mixing events that inject particles below the mixed layer (Henschke et al., 678 
2016; Jaspers et al., 2023; Tréguer et al., 2018; Boyd et al., 2019; Henson et al., 2019; Nowicki 679 
et al., 2022). We also acknowledge that export dynamics may be uncoupled from changes in 680 
copepod traits in time and throughout the water column (Jónasdóttir et al., 2015; Steinberg & 681 
Landry, 2017). For instance, members of the surface copepod community whose traits favor 682 
POC export can vertically migrate and excrete carbon-rich particles way below the euphotic 683 
zone, several months after their initial growth (Jónasdóttir et al., 2015; Pinti et al., 2023b). Such 684 
processes may weaken the potential imprint of surface zooplankton FD on absolute POC fluxes 685 
that we tried to recover through our approach. 686 
Our findings support the existence of mechanistic links between trait combinations and 687 
ecosystem functions, reinforcing the pressing need to integrate functional trait measurements 688 
in zooplankton field surveys (Ratnarajah et al., 2023). New imaging techniques can 689 
simultaneously measure body size, shape, feeding activity and other relevant traits in an 690 
automatized fashion and at the scale of individuals (Orenstein et al., 2022). Through this 691 
process, the measurement of FD indices could also be integrated in field surveys to better assess 692 
the relative contribution of trait dimensions to services provided by zooplankton across scales, 693 
from production to ecosystem stability and resilience to environmental perturbations (Carmona 694 
et al., 2016; de Bello et al., 2021). 695 
 696 
4.3. How will anthropogenic climate change reshuffle zooplankton FD? 697 
Global warming may force warm-water zooplankton to migrate poleward, leading to the 698 
replacement of polar communities by more tropical ones in time (Benedetti et al., 2021). The 699 
effect of these changes in richness in composition on zooplankton trait expression and thus 700 
ecosystem functioning remains poorly known. As high latitudes display particular trait 701 
combinations that are not found in lower latitudes (Figs. 2 & 3), the compositional turnover 702 
associated with such poleward shifts could lower the functional dissimilarity of copepod 703 



communities, which would imply a global functional homogenization of zooplankton, a pattern 704 
already observed for fishes (Villéger et al., 2014; Magurran et al., 2015). To test this hypothesis, 705 
we explored the response of global copepod FD to anthropogenic climate change based on 180 706 
future monthly projections according to the same ESM simulations as Benedetti et al. (2021). 707 
We find that anthropogenic climate change will have a varied set of impacts on copepod 708 
biodiversity, with very weak effects on FDis and FDiv (i.e., ∆ values < 5%) but stronger effects 709 
on species richness, Faith, FEve and Trait dissimilarity (Fig. 5; Fig. S14). Most of the global 710 
ocean shows slight (< 10%) to strong (> 20%) projected increases in copepod species richness, 711 
which is in line with our previous projections (Benedetti et al., 2021). Since functional richness 712 
scales with species richness (Fig. 3), regions that will undergo species gains also undergo gains 713 
in functions. Yet patterns of FDis, FDiv and SES Faith (Fig. S6) remain relatively unaffected 714 
under climate change, suggesting that environmental filtering will continue to act as a strong 715 
driver of trait expression in copepod communities (as discussed in section 4.1). In the future, 716 
tropical systems will continue to host more speciose communities characterized by smaller 717 
carnivorous and omnivorous active and passive feeders better adapted to food-deplete 718 
conditions. 719 
Future decreases in Trait turnover are partially set-off by increases in nestedness but not 720 
strongly enough to maintain contemporary levels of functional dissimilarity. As a result, Trait 721 
dissimilarity will decrease worldwide (Fig. 5f,g,h), meaning that high latitude communities are 722 
projected to become more functionally even, weakening the global gradient in Trait turnover 723 
(Fig. 5c,f,g). Consequently, anthropogenic climate change may drive functional 724 
homogenization among copepod communities, with an increasing prevalence of "tropical traits" 725 
over time (Villéger et al., 2014; Magurran et al., 2015). 726 
Based on the findings discussed in section 4.2, what do our future projections in copepod FD 727 
imply for marine ecosystem functioning? Provided that mesozooplankton biomass and POC 728 
export efficiency are favored by the presence of certain trait combinations (i.e., large body size, 729 
myelination and current feeding) in communities of lower functional richness and higher 730 
evenness (Figs. 3 & 4), our results suggest that anthropogenic climate change will re-organize 731 
copepod trait expression in a way that decreases mesozooplankton productivity and POC export 732 
efficiency. We did not find any significant relationships between copepod FD and the amount 733 
of organic carbon exported below the euphotic zone, precluding us from drawing conclusions 734 
regarding to this ecosystem function. Taken together, our results fall in line with the current 735 
view that ongoing and future spatial re-organization of marine biodiversity may threaten 736 
biomass production and export efficiency (Beaugrand et al., 2010; Lotze et al., 2019). Through 737 
bottom-up processes and trophic amplification, global warming will alter resource availability, 738 
causing changes in primary production that propagate up the food-web and eventually decrease 739 
the size and biomass of higher trophic levels (Kwiatkowski et al., 2020; Tittensor et al., 2021; 740 
Atkinson et al., 2024). We here show that future changes in zooplankton trait expression may 741 
contribute to lowering the productivity and the health of the oceans. 742 
 743 
4.4. Caveats 744 
Our findings should be interpreted within the context of some key limitations that are inherent 745 
to a global correlative approach. One key limitation is that the availability of trait data and 746 
observations is often limited to adult stages (Brun et al., 2017; Benedetti, Wydler & Vogt, 2023; 747 



Pata & Hunt, 2024). This bias towards adult stages implies that we underestimate the range of 748 
trait values (and thus functional richness patterns) expressed in true copepod communities 749 
where a large proportion of nauplii may occur. Those early life stages are smaller and display 750 
different morphologies and feeding strategies compared to adult stages (Kiørboe et al., 2011; 751 
Pata & Hunt, 2024). Therefore, intra-species variability in functional traits due to local 752 
adaptations or ontogeny could not be taken into account (Carmona et al., 2016). 753 
Similarly, the wide species pool necessary to explore emergent global FD patterns (~300 754 
species) limits the number of functional traits available across all copepod species (but see 755 
Benedetti, Wydler & Vogt, 2023). Missing functional traits implies that we might miss key 756 
dimensions of copepod FD and thus underestimate its spatial gradients (Maire et al., 2015; 757 
Mouillot et al., 2021). Nonetheless, many functional traits scale allometrically with body size 758 
among zooplankton and other marine ectotherms (Andersen et al., 2016; Pata & Hunt, 2024), 759 
especially those related to physiological rates (growth, respiration, ingestion or excretion; 760 
Kiørboe & Hirst, 2014; Pata & Hunt, 2024). Consequently, retaining body size as a continuous 761 
trait here may cover the inter-species variability in those traits. Copepods dominate 762 
mesozooplankton composition and concentration (Kiørboe, 2011; Brandão et al., 2021; Drago 763 
et al., 2022), so we cover significant dimensions of mesozooplankton FD. However, we did not 764 
account for the range of traits covered by other major meso- and macrozooplankton functional 765 
groups that show much larger body size, different body composition or alternative feeding 766 
strategies traits (i.e., krill, salps, jellyfishes, pteropods, foraminifera or chaetognaths). The very 767 
recent trait synthesis of Pata & Hunt (2024) will allow the community to explore zooplankton 768 
FD dynamics in a more holistic fashion.  769 
Our approach relies on occurrence-based modelling and thus does not take the abundance of 770 
species and traits into account. As a result, indices associated with relative trait distribution in 771 
functional space (i.e., FDiv, FDis, FEve) may be underestimated in communities characterized 772 
by strong differences in concentrations between species displaying very contrasted trait values. 773 
Such biases should mainly prevail in very productive regions such as the poles where a few 774 
species with extreme size values and active current-feeding modes dominate copepod biomass 775 
while other smaller species remain by contributing more marginally to biomass (Brandão et al., 776 
2021; Drago et al., 2022). High latitudes also showed higher uncertainty for species richness, 777 
functional richness and FEve due to SDM choice (Fig. S9). This means that more observational 778 
research on zooplankton FD and ecosystem functioning is necessary in these regions to improve 779 
the accuracy of our estimates. As these diversity indices are more influenced by algorithm 780 
choice than intra-annual variability at latitudes > 60° (Fig. S8), the trends shown here could 781 
become weaker or stronger with advancements in distribution modeling and the inclusion of 782 
more field observations of taxon-specific biomasses (Waldock et al., 2022; Lombard et al., 783 
2019; Ratnarajah et al., 2023). Addressing this uncertainty is crucial since high latitude plankton 784 
ecosystems are the most threatened by future warming. 785 
 786 
5. Conclusion 787 
Our study suggests that zooplankton traits and FD depend on climate and resource availability 788 
and that changes in taxonomic diversity alone are insufficient to reveal the response of 789 
zooplankton biodiversity to changing environmental conditions (Hillebrand et al., 2017; 790 



Blowes et al., 2019). Various facets of zooplankton FD relate differently to phytoplankton 791 
productivity, zooplankton biomass, and biological carbon pump efficiency. Relationships 792 
between biodiversity and ecosystem functioning vary with the facets of biodiversity, echoing 793 
patterns in other terrestrial and marine systems (Chalmandrier et al., 2017; La Bagousse-794 
Pinguet et al., 2021). This calls for initiatives to better define what ‘biodiversity’ is in the context 795 
of the marine microbiome and especially when diversity metrics are used in conservation and 796 
policy applications. Our future projections suggest climate warming will globally reshape 797 
marine biodiversity, potentially reducing productivity across trophic levels (Tittensor et al., 798 
2021; Atkinson et al., 2024). Our copepod FD estimates align with field observations from 799 
smaller scales (Becker et al., 2021; Tang et al., 2022) and may serve as benchmarks for testing 800 
biodiversity hypotheses. We advocate integrating FD into field surveys to better track plankton 801 
biodiversity responses across scales and habitats (Ratnarajah et al., 2023). Historical and future 802 
oceanographic data, combined with functional traits, can further elucidate plankton functional 803 
diversity patterns (Pata & Hunt, 2024). This will help ecosystem modelers assess the identity 804 
and number of traits and FD dimensions that are critical to model and monitor the response of 805 
marine ecosystems functioning to changes in plankton biodiversity (Kiørboe et al., 2018; Serra-806 
Pompei et al., 2020). 807 
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Table 1: Summary of the metrics (name, meaning, underlying input data, methodology and R 1148 
packages used) used in the present study to estimate the various facets of marine copepod 1149 
functional diversity (FD).  1150 



Figure captions 1151 
 1152 
Figure 1: Distribution of contemporary mean annual a) species richness, b) Faith index (Faith), 1153 
c) standardized effect sizes (SES) of Faith, d) functional evenness (FEve), e) functional 1154 
dispersion (FDis) and f) functional divergence (FDiv). Faith estimates functional richness. SES 1155 
Faith measures the difference between observed Faith and null Faith estimates obtained from a 1156 
randomly assembled community of the species same richness. Species richness and Faith were 1157 
calculated on presence-absence data whereas FEve, FDis and FDiv were weighed by habitat 1158 
suitability indices ranging between 0 and 1 to better represent the distribution of habitat 1159 
suitability in functional space. Mean annual values are derived from monthly values (n = 12) 1160 
computed for assemblages whose species composition was modelled through three species 1161 
distribution models. 1162 
 1163 
Figure 2: Distribution of contemporary mean annual pairwise a) total functional trait 1164 
dissimilarity, b) trait turnover, c) trait nestedness, and d) the ratio between trait turnover and 1165 
total trait dissimilarity. The beta diversity indices were all computed on presence-absence data 1166 
and were based on Jaccard’s dissimilarity index. Mean annual values are derived from monthly 1167 
values (n = 12) computed for assemblages whose species composition was modelled through 1168 
three species distribution models. 1169 
 1170 
Figure 3: Emergent relationships between global mean annual values of copepod species 1171 
richness and a) Faith index (Faith), b) standardized-effect-sizes (SES) of Faith, c) functional 1172 
evenness (FEve), d) functional dispersion (FDis), e) functional divergence (FDiv), f) total 1173 
functional trait dissimilarity, g) trait turnover, and (h) trait nestedness. Mean annual values are 1174 
derived from monthly values (n = 12) computed for assemblages whose species composition 1175 
was modelled through three species distribution models. Species richness, Faith and functional 1176 
beta diversity indices were based on presence-absence data whereas FEve, FDis and FDiv were 1177 
weighed by habitat suitability indices ranging between 0 and 1. Each point was colored as a 1178 
function of absolute latitude to illustrate where spatial variations have the strongest effects. The 1179 
statistics of the fitted regressions are given. 1180 
 1181 
Figure 4: Emergent relationships between global mean annual values of copepod diversity 1182 
indices and indicator variables of ecosystem functioning based on the a) Z-score profiles 1183 
(number of standard deviations below or above the annual mean) showing where variables 1184 
display higher (red) or lower (blue) values relative to the mean. We focus on the most 1185 
conspicuous patterns enabling us to test the emergent relationships between zooplankton 1186 
biomass production and b) total trait dissimilarity, c) functional evenness (FEve), d) species 1187 
richness, e) functional divergence (FDiv), f) Faith index (Faith) and g) functional dispersion 1188 
(FDis). Grid cells were colored as a function of absolute latitude to illustrate where spatial 1189 
variations have the strongest effects. The sorting of the variables is based on the similarity of 1190 
the spatial patterns of the Z-scores: variables on the Y axis are close if they show similar Z-1191 
scores patterns (according to Euclidean distances). The X axis represents the ocean grid cells 1192 
(i.e., space). The acronyms are given in section 2.4., indicators of ecosystem functioning are 1193 
given in capital letters. 1194 



Figure 5: Distribution of the relative differences (∆, in %) in mean annual copepod a) species 1195 
richness, b) Faith index (Faith), c) functional evenness (FEve), d) functional dispersion (FDis), 1196 
e) functional divergence (FDiv), f) total trait dissimilarity, g) trait turnover and h) trait 1197 
nestedness between the contemporary (2012-2031) and end-of-century (2081-2100) periods. 1198 
End-of-century estimates were based on an ensemble of monthly values obtained for three 1199 
species distribution models and five earth system models (n = 180). Species richness, Faith and 1200 
functional beta diversity indices were based on presence-absence data whereas FEve, FDis and 1201 
FDiv were weighed by habitat suitability indices ranging between 0 and 1. For a), c) and h) 1202 
values > 30% are plotted in a darker shade of red. 1203 
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Supplementary Methods: Exhaustive description of why and how were the various 1 

functional diversity (FD) indices computed in the present study.  2 

 3 

FD is a multidimensional and multifaceted concept embedding changes in composition within 4 

(alpha-diversity) and between (beta-diversity) assemblages (Mason et al., 2005; Mouillot et al., 5 

2013). Consequently, we chose to compute indices that describe the following facets of FD: (i) 6 

how much of the total functional space is filled by the composition of each assemblage 7 

(functional richness), (ii) how are the HSI and/or inferred presences/absences of species 8 

distributed within the functional spaces (functional dispersion, evenness or divergence), and 9 

(iii) how much do assemblages overlap in functional space (beta-FD; Villéger et al., 2011). We 10 

also computed monthly species richness based on the same community matrices to investigate 11 

how the facets of FD covary with taxonomic diversity and test if species-rich assemblages are 12 

more or less functionally diverse than species-poor assemblages (Stuart-Smith et al., 2013). 13 

 14 

To evaluate facet (i), we computed Faith’s index (Faith) as a proxy for functional richness using 15 

the Gower distance matrix described above as the reference functional dendrogram (Faith, 16 

1992). For each assemblage, Faith was computed as the sum of the lengths of all those branches 17 

of the functional dendrogram that are members of the corresponding minimum spanning path 18 

covered by the species constituting said assemblage. Assemblage composition was described 19 

by species’ mean HSI (i.e., continuous probabilities) but Faith requires binary presence-absence 20 

data (i.e., distributions). We thus converted the HSI to 1 and 0 based on the probability threshold 21 

that maximizes the agreement between the observed and the modelled distribution (Thuiller et 22 

al., 2023). Assemblages displaying higher species richness are automatically represented by 23 

more branches on the functional dendrogram. Differences in Faith are thus biased by differences 24 

in taxonomic richness and standardized-effect-sizes (SES) must be calculated to study 25 

functional richness patterns that are not biased by species richness (Schleuter et al., 2010). SES 26 

of Faith (SES Faith) were calculated on the same data by randomly reshuffling the tips of the 27 

functional dendrogram (i.e., the species names) 999 times. The 999 random Faith values 28 

provided a null distribution of Faith’s index against which observed Faith’s index values were 29 

compared. The ensuing global monthly SES Faith values and P-values indicate where 30 

functional richness is significantly higher or lower than the values dictated by species richness 31 

alone. SES Faith values < 0 indicate that functional clustering (or functional convergence) 32 

occurs due to environmental filtering occurs in the copepod assemblage whereas values > 0 33 



indicate that functional overdispersion occurs (Mikryukov et al., 2023). Faith and SES Faith 34 

values were computed using the picante R package (Kembel et al., 2010). 35 

 36 

To evaluate facet (ii), we computed four complementary FD indices widely used in the literature 37 

(Mason et al., 2005; Villéger et al., 2008): functional evenness (FEve), functional dispersion 38 

(FDis), Rao’s quadratic entropy (Rao’s Q) and functional divergence (FDiv). FEve describes 39 

whether species traits are distributed regularly within the functional space occupied by the 40 

assemblage, with higher FEve values indicating more regular trait distributions. Here, FEve 41 

uses the HSI-weighted distances between all species pairs to calculate the minimum spanning 42 

tree that connects all said species in the multidimensional functional space (Villéger et al., 43 

2008). Then, FEve measures the regularity of the branch lengths. Higher FEve values indicate 44 

that species occur in the assemblage with similar HSI at equal distances between nearest 45 

neighbors in the functional space, whereas lower values indicate the co-existence of scattered 46 

clouds of functional units. 47 

FDis and Rao’s Q estimate a similar facet of FD. FDis measures the mean distance of the species 48 

to the centroid of the functional space occupied by the assemblage, using the species-specific 49 

HSI as weighs for the distances (Laliberté & Legendre, 2010). Rao’s Q computes the variance 50 

of trait dissimilarity per species pairs (similar to a Simpson index) and weighs this variance by 51 

the product of the species’ HSI. Assemblages characterized by higher FDis and Rao’s Q are 52 

assemblages whose species are further away from each other and from the centroid in the 53 

functional space (i.e., more specialized species). 54 

FDiv uses the species present in the assemblage to define the vertices and gravity center of a 55 

convex hull in functional space (Villéger et al., 2008). Then, FDiv measures the HSI-weighted 56 

deviances of each species present to the species’ mean distance to that center of gravity. 57 

Assemblages displaying higher FDiv values are characterized by higher HSI values at the 58 

vertices of their convex hull (i.e., more extreme traits values). 59 

By construction, these four indices are not affected by differences in species richness (Schleuter 60 

et al., 2010; Laliberté & Legendre, 2010) so SES were not calculated. Contrary to Faith’s index, 61 

computing these four indices requires a multidimensional functional space by projecting the 62 

Gower distance matrix into a principal coordinates analysis (PCoA; Villéger et al., 2008). The 63 

hyper-dimensionality of PCoA spaces makes the computation of hypervolume-based indices 64 

challenging (Mouillot et al., 2021). Therefore, following recent community guidelines 65 

(Mouillot et al., 2021), we calculated those FD indices based on the first four axes of the PCoA 66 

as these retained a similar level of functional dissimilarity as the original Gower distance matrix 67 



(Figure S1). Functional richness is more commonly quantified through the FRic index than by 68 

Faith (Villéger et al., 2008). Therefore we made sure that Faith provided similar functional 69 

richness patterns as standardized FRic values on a mean annual scale (Figure S2). We preferred 70 

Faith over FRic because it is less sensible to SDM choice and because FRic is only 71 

representative of changes in species composition occurring at the edges of the functional space. 72 

 73 

To evaluate facet (iii), we rely on the framework proposed by Baselga (2010) and Cardoso et 74 

al. (2014) to compute pairwise beta-FD based on Jaccard’s dissimilarity index. In this 75 

framework, each copepod assemblage Ax is a subset of the functional dendrogram described in 76 

section 2.1. Each pair of assemblages (Ai, Aj) shows a total trait dissimilarity that corresponds 77 

to the sum of the lengths of edges that are unique to each assemblage-specific dendrogram 78 

(Cardoso et al., 2014). We hereby refer to this total dissimilarity values as trait dissimilarity 79 

(Trait dissimilarity). Similar as in Baselga (2010), Trait dissimilarity can be partitioned into two 80 

additive components: replacement (hereby: Trait turnover) and richness differences (hereby: 81 

Trait nestedness). For every (Ai, Aj), Trait turnover corresponds to the substitution of branches 82 

exclusive to Ai by the other branches with the same total length that are exclusive to Aj (Cardoso 83 

et al., 2014). The remaining dissimilarity fraction (Trait nestedness) is equal to the absolute 84 

difference between the branch lengths of Ai and Aj. These beta-FD indices were computed with 85 

the function phylobeta() of the phyloregion R package (Daru et al., 2020) using the same 86 

presence-absence community matrices as those used for calculating Faith values. Trait 87 

dissimilarity, Trait turnover and Trait nestedness are all bounded between 0 and 1. Trait 88 

dissimilarity values close to 1 indicate that two assemblages display functional dendrograms 89 

with very different number of branches that are non-overlapping. Since these indices are 90 

calculated for each community matrix, there are as many index values as pairs of assemblages 91 

(i.e., pairs of ocean grid cells) and they represent emergent spatial patterns in copepod beta-FD. 92 

For each assemblage, we retained the average values of Trait dissimilarity, Trait turnover and 93 

Trait nestedness. Like what is done with taxonomic diversity, exploring the covariance of these 94 

beta-FD indices together with Faith allows to test if the emergent functional richness pattern is 95 

driven by turnover in traits composition or differences in number of traits. 96 

 97 
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Supplementary Results: Finer regional description of the copepod diversity patterns and 1 

how their covary with indicator variables of ecosystem functioning (complementary to 2 

Figure 4). 3 

 4 

Figure: Hierarchical clustering of the global ocean based on the a) Z-score profiles of the copepod 
functional diversity (FD) indices and the indicator variables of marine ecosystem functioning. The Z-scores 
profiles show where variables display higher (red) or lower (blue) values relative to the mean. They were 
used to calculate a pairwise Euclidean distance matrix between ocean grid cells (1°x1°) that were then 
clustered into b) regions of similar emergent patterns of copepod FD and indicators of ecosystem 
functioning. Z-scores were computed on mean annual values. The hierarchical clustering of the Euclidean 
distance matrix was based on Ward’s linkage. The suite of acronyms is give in section 2.4. of the main text, 
indicators of ecosystem functioning are given in capital letters. 



The results in Figures 1 to 3 indicate that the covariance patterns between the facets of 5 

copepod FD and ecosystem functioning indicators are spatially structured. To identify regions 6 

that share similar covariance structure and pinpoint those where higher FD values overlap with 7 

higher performance of ecosystem functions, we cluster the ocean in a hierarchical fashion based 8 

on the Z-scores of the variables studied here. A Euclidean distance matrix was computed from 9 

the Z-scores and hierarchical clustering was performed based on Ward’s linkage because the 10 

latter is a synoptic criterion that minimizes intra-cluster variance and enables to disentangle 11 

large regional differences (Legendre & Legendre, 2012). We here focus on six regions (Figure 12 

5b) because these are: (i) robust clusters based on intra-variance to inter-variance ratios 13 

(Benedetti et al., 2021), and (ii) spatially-coherent regions that are clearly interpretable in a 14 

global oceanographic context (i.e., regions similar to Benedetti, Wydler & Vogt, 2023). The 15 

larger/smaller regions obtained when choosing higher/lower cutting levels are shown in Figure 16 

S11. 17 

The six regions are highly similar to those defined in Benedetti, Wydler & Vogt (2023). Regions 18 

2 and 1 are the largest in terms of grid cell coverage (31.4% and 18.6%, respectively), followed 19 

by region 6 (16.4%), 5 (12.2%), 3 (10.8%) and 4 (10.6%). Region 1 is exclusively tropical (0-20 

25° latitude) and gathers warm-water areas that are influenced by major oceanographic features 21 

such as equatorial counter currents and the southern or northern boundary currents of the 22 

tropical gyres. Region 2 comprises the large tropical oligotrophic gyres of the Pacific, Atlantic 23 

and Indian Oceans. Region 3 gathers the more coastal parts of upwelling systems (i.e., the 24 

eastern boundary upwellings and the northern upwelling of the Indian Ocean) and the 25 

transitional areas that separate the warm tropical gyres from the colder waters of the North 26 

Pacific, North Atlantic and Southern Oceans. Region 4 gathers the North Atlantic and North 27 

Pacific Oceans, as well as the part of the South Atlantic Ocean that experiences the retroflexion 28 

of the Malvinas Current and the Subantarctic front. Region 5 comprises the waters confined 29 

between the Antarctic Circumpolar Current to the north and the Polar Front to the south. Region 30 

6 is almost exclusively polar (> 60° latitude) and gathers the Arctic Ocean and the waters south 31 

to the Polar Front. 32 

At a high similarity level, the main dichotomy separates the regions mainly occurring < 45° 33 

latitude (1-3) from those occurring > 40° (4-6). Relative to regions 1-3, regions 4-6 show higher 34 

SES Faith, FEve, Trait dissimilarity/turnover, higher MESOZOO, higher E RATIO and higher 35 

phytoplankton biomass mainly ensured by larger functional types (CHL-A, DIATOM, DINO, 36 

HAPTO, lower PSD SLOPE; Fig. 5a). Meanwhile, regions 1-3 are mainly characterized by 37 

lower Trait dissimilarity/turnover and higher species richness, Faith, FDiv, FDis, and larger 38 



PSD SLOPE values due to a stronger contribution of very small plankton to primary production 39 

(i.e., higher PROKAR and PROCHL).  40 

More interestingly, we also find significant variations in copepod FD and ecosystem 41 

functioning indicators among the low latitude and the high latitude regions (based on Kruskal-42 

Wallis tests; Figure S12). Among regions 1-3, region 2 shows the highest levels of species and 43 

functional richness (Figure S12h,i) but the lowest levels of FEve, MESOZOO, CHL-A and 44 

POC export fluxes. Meanwhile, region 3 displays the highest levels of FEve, MESOZOO, CHL-45 

A, and POC export fluxes and the lowest species richness and functional richness (Figure 46 

S12h,i,j,k,l,n). Region 1 is an intermediate case between 2 and 3. It shows higher levels of NPP, 47 

PROKAR and PROCHL. Among regions 4-6, region 5 shows the highest levels functional 48 

richness and FDis (Figure S12a,b) but the lowest levels of total Trait dissimilarity, MESOZOO 49 

and CHL-A (Figure S12c,d,f). Meanwhile, region 4 stands out for its higher phytoplankton 50 

productivity (CHL-A and NPP), higher MESOZOO and POC export fluxes below the euphotic 51 

zone (Figure S12d,e,f,g). 52 

The direction of the linear relationships fitted between copepod diversity and MESOZOO (Fig. 53 

4) are mostly conserved on a regional level (Figure S13). However, they vary in strength 54 

between regions (pairwise ANCOVA tests, P < 0.01; but see Figure S13). The negative fit 55 

between species richness and MESOZOO is strongest for regions 2 and 4 but barely significant 56 

(R2 < 0.1) for regions 3, 4 and 6. Similarly, the decrease in MESOZOO with Faith becomes 57 

weaker with latitude: it is strongest for region 1, remains relatively similar in regions 2, 3 and 58 

4 and then becomes very weak (R2 < 0.05) in regions 5 and 6. The increase in MESOZOO with 59 

Trait dissimilarity and turnover is highest for regions 1 and 2 and becomes very weak in region 60 

6. The decrease in MESOZOO with FDis does not vary so clearly with latitude. It is strongest 61 

for regions 3 and 4 (both R2 > 0.45) and weakest for region 5 (R2 < 0.15). However, contrary 62 

to what we observed on a global scale (Fig. 4), MESOZOO actually decreases with FEve in 63 

regions 3 and 4 with varying rates and shows barely no linear relationship with FEve in regions 64 

5 and 6 (Figure S13). The positive covariance between FEve and MESOZOO is thus mainly 65 

driven by the copepod assemblages of regions 1 and 2 (R2 = 0.45 and 0.28, respectively). 66 



Figure S1: Variation of the quality of the multidimensional trait space based on the area under the 
curve (AUC) criterion, described in Mouillot et al. (2021), as a function of the number of 
dimensions of a principal coordinates analysis (PCoA) retained for computing an Euclidean 
distance matrix. AUC is unitless and ranges between 0 and 1. A value of 1 represents the best case 
scenario where the ranking of species pairs would be perfectly preserved between the reference 
Gower distance matrix and the Euclidean distances matrices of lower dimensionality. As a rule of 
thumb, dimensionality reduction is considered to be « acceptable » when AUC > 0.7. AUC > 0.8 is 
considered as « excellent ». The lower dimensional space is a poor representation of the initial trait 
space when AUC < 0.5 and AUC = 0 means as good as random. The vertical red line indicates the 
number of PCoA dimensions (n = 4) we retained for computing some of our functional diversity 
indices. 

Mouillot, D., Loiseau, N., Grenié, M., Algar, A. C., Allegra, M., Cadotte, M. W., . . . Auber, A. (2021). 
The dimensionality and structure of species trait spaces. Ecology Letters, 24(9), 1988-2009. 
doi:https://doi.org/10.1111/ele.13778 



Figure S2: Agreement between our Faith index values and the functional richness (FRic) index of Villéger et 
al. (2008) on a mean annual scale. The indices were computed based on presence-absence data and mean 
annual values are derived from monthly values (n = 12) computed for assemblages whose species 
composition was modelled through three species distribution models. Spearman’s rank correlation coefficient 
between the two functional richness indices is equal to 0.69 (P < 0.001) on a mean annual scale. 

Villéger, S., Mason, N. W. H., & Mouillot, D. (2008). New multidimensional functional diversity indices 
for a multifaceted framework in functional ecology. Ecology, 89(8), 2290-2301. doi:https://
doi.org/10.1890/07-1206.1 



Figure S3: Agreement between the mean annual values of surface net primary production (NPP) 
issued from the standard VGPM algorithm (available at: https://sites.science.oregonstate.edu/
ocean.productivity/index.php) and those from DeVries & Weber (2017), on a log10 scale. The 
Spearman’s rank correlation coefficient between the two products of mean annual NPP is equal to 
0.80 (P < 0.001). The bold line corresponds to the fitted linear regression. 

DeVries, T., & Weber, T. (2017). The export and fate of organic matter in the ocean: New 
constraints from combining satellite and oceanographic tracer observations. Global 
Biogeochemical Cycles, 31(3), 535-555. doi:10.1002/2016gb005551 



Figure S4: Agreement between the global mean annual values of particulate organic carbon (POC) 
export flux from DeVries & Weber (2017) and those from Clements et al. (2023) (on a log10 scale). 
The Spearman’s rank correlation coefficient between the two products is equal to 0.54 (P < 0.001). 
The dashed line corresponds to the 1:1 line. The bold line corresponds to the fitted linear regression. 

Clements, D. J., Yang, S., Weber, T., McDonnell, A. M. P., Kiko, R., Stemmann, L., & Bianchi, 
D. (2023). New Estimate of Organic Carbon Export From Optical Measurements Reveals 
the Role of Particle Size Distribution and Export Horizon. Global Biogeochemical 
Cycles, 37(3), e2022GB007633. doi:https://doi.org/10.1029/2022GB007633 

DeVries, T., & Weber, T. (2017). The export and fate of organic matter in the ocean: New 
constraints from combining satellite and oceanographic tracer observations. Global 
Biogeochemical Cycles, 31(3), 535-555. doi:10.1002/2016gb005551 





Figure S5: Spatial distribution of mean annual a) surface mesozooplankton biomass concentration 
(MESOZOO), b) surface chlorophyll-a concentration (CHL-A), c) surface diatom biomass 
concentration (DIATO), d) surface dinoflagellates biomass concentration (DINO), e) surface green 
algae biomass concentration (GREEN), f) surface haptophyte biomass concentration (HAPTO), g) 
surface Prochlorococcus biomass concentration (PROCHL), h) surface prokaryote biomass 
concentration (PROKAR), i) surface values of the slope of the particle size distribution (PSD 
SLOPE), j) surface net primary production (NPP), k) surface flux of sinking particulate organic 
carbon (POC flux), l) POC export flux at the basis of the euphotic zone (FPOCex), and m) the 
efficiency of POC export at the basis of the euphotic zone relative to surface NPP (E ratio = 
FPOCex/NPP). 



Figure S6: Density of the P-values of the standardized-effect-size of the Faith index (SES Faith) 
based on the observed Faith and the distribution of 999 null Faith values, in terms of a) absolute 
distribution and b) relative distribution across tropical (red) and extra-tropical (blue) copepod 
assemblages. c) same as b) but across the three different species distribution models used in our 
study (GLM = generalized linear model, GAM = generalized additive model, ANN = artificial 
neural network). d) show the global surface spatial distribution of the frequency of P < 0.05 (in %) 
based on the same data as a) and b). e) to h) are the same as a) to d) but for the end-of-century 
period (2081-2100) instead of the contemporary period. Faith and SES Faith were computed from 
the species’ monthly presence-absence maps. The red and white dashed vertical lines indicate the 
positon of the chosen significance threshold (P = 0.05).
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Figure S7: Comparison between mean annual functional dispersion (FDis) and mean annual Rao’s 
quadratic entropy (Rao’s Q, scaled to its maximal values). The indices were computed on species 
habitat suitability data and mean annual values are derived from monthly values (n = 12) computed 
for assemblages whose species composition was modelled through three species distribution 
models. Spearman’s rank correlation coefficient between the two indices is equal to 0.98 (P < 
0.001) on a mean annual scale. The bold line corresponds to the fitted linear regression.



Figure S8: Spatial distribution of the intra-annual variability in global surface estimates of a) 
copepod species richness, b) functional richness (Faith index), c) standardized-effect-sizes of the 
Faith index (SES Faith), d) functional evenness (FEve), e) functional dispersion (FDis), f) 
functional divergence (FDiv), g) total trait dissimilarity (based on Jaccard’s index), h) trait turnover, 
and i) trait nestedness. Mean annual values were derived from monthly values (n = 12) computed 
for assemblages whose species composition was modelled through three species distribution 
models. Copepod species richness, Faith, SES Faith and the three functional beta diversity indices 
(based on Jaccard’s dissimilarity index) were based on presence-absence data whereas FEve, FDis 
and FDiv were weighed by species habitat suitability indices ranging between 0 and 1 (i.e., presence 
probability).



Figure S9: Spatial distribution of the variability (i.e., uncertainty) that is driven by the choice of the 
species distribution model (SDM) for our global surface estimates of a) copepod species richness, 
b) functional richness (Faith index), c) standardized effect sizes of the Faith index (SES Faith), d) 
functional evenness (FEve), e) functional dispersion (FDis), f) functional divergence (FDiv), g) 
total trait dissimilarity (based on Jaccard’s index), h) trait turnover, and i) trait nestedness. Mean 
annual values were derived from monthly values (n = 12) computed for assemblages whose species 
composition was modelled through three types of species distribution models (GLMs, GAMs and 
ANN). Copepod species richness, Faith, SES Faith and the three functional beta diversity indices 
(based on Jaccard’s dissimilarity index) were based on presence-absence data whereas FEve, FDis 
and FDiv were weighed by species habitat suitability indices ranging between 0 and 1 (i.e., presence 
probability).



Figure S10: Principal component analysis (PCA) showing the covariance between mean annual 
values of copepod diversity indices (green) and indicators of marine ecosystem functioning (pink; 
Figure S5). a) shows principal components (PC) 1 and 2 (84.96% of total variance) and b) shows 
PC 2 and 3 (24.17% of total variance). Richness = copepod species richness, Faith = Faith richness 
(index of functional richness), SES Faith = standardized-effect-size of Faith index, FEve = 
functional evenness, FDis = functional dispersion, FDiv = functional divergence, Rao’s Q = Rao’s 
quadratic entropy, Trait dissim. = total trait dissimilarity (based on Jaccard’s index), MESOZOO = 
surface concentration of mesozooplankton biomass, CHL-A = surface chlorophyll-a concentration, 
DIATO = surface concentration of diatom biomass, DINO = surface concentration of dinoflagellate 
biomass, HAPTO = surface concentration of haptophyte biomass, GREEN = surface concentration 
of green algae biomass, PROCHL = surface concentration of Prochlorococcus biomass, PROKAR 
= surface concentration of prokaryote biomass, SLOPE = slope of the spectrum of the particles size 
distribution, NPP = net primary production, POC FLUX = surface flux of sinking particulate 
organic carbon (POC), FPOC = export flux of POC out of the euphotic zone, E RATIO = efficiency 
of POC export relative to the surface NPP (FPOC/NPP).



Figure S11: Spatial distribution of the 
regions emerging from the hierarchical 
clustering of the variables’ Z-scores when 
cutting the similarity dendrogram for k = a) 
2, b) 3, c) 4, d) 5, e) 6, f) 7 and g) 8 clusters.



Figure S12: Distribution of mean annual a) Faith index (functional richness), b) Functional 
dispersion (FDis), c) total trait dissimilarity (based on Jaccard’s index), d) mesozooplankton 
biomass surface concentration (MESOZOO), e) flux of particulate organic carbon (POC) out of the 
euphotic zone (FPOCex), f) surface chlorophyll-a concentration (CHL-A) and g) surface net 
primary production (NPP) between regions 4, 5 and 6 shown in Figure 5 (high latitude regions); 
distribution of mean annual h) surface copepod species richness, i) Faith index, j) functional 
evenness (FEve), k) MESOZOO, l) CHL-A, m) surface Prochlorococcus biomass concentration and 
n) FPOCex between regions 1, 2 and 3 shown in Figure 5 (tropical regions). Non parametric 
variance analyses (Kruskal-Wallis tests) and pairwise Wilcoxon tests were applied with 
Bonferroni’s method for P values correction to test for differences in the distributions shown here. 
They all returned significant P values (P < 0.001).
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Figure S13: Emergent relationships between mean annual surface estimates of mesozooplankton 
biomass concentration and a) copepod species richness, b) Faith index (functional richness index), 
c) functional evenness (FEve), d) functional dispersion (FDis), e) functional divergence (FDiv) and 

e)

f)



f) total trait dissimilarity (based on Jaccard’s index) between the six regions defined in Figure 5. 
The black bold lines correspond to the fitted linear regressions. Copepod species richness, Faith and 
total trait dissimilarity were based on presence-absence data whereas FEve, FDis and FDiv were 
weighed by species habitat suitability indices ranging between 0 and 1. 



Figure S14: Distribution of the relative differences (∆, in %) in copepod species richness, Faith 
index, functional evenness (FEve), functional dispersion (FDis), functional divergence (FDiv), total 
trait dissimilarity, trait turnover and trait nestedness between the contemporary (2012-2031) and 
end-of-century (2081-2100) periods, across the six regions of Figure 5. End-of-century estimates 
were based on an ensemble of monthly values obtained for three species distribution models and 
five earth system models (n = 180). Species richness, Faith and functional beta diversity indices 
were based on presence-absence data whereas FEve, FDis and FDiv were weighed by habitat 
suitability indices.
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Figure S15: Spatial distribution of uncertainty (i.e., standard deviation associated to the ensemble 
mean) of the relative difference (∆, in %) in a) copepod species richness, b) Faith index (functional 
richness index), c) functional evenness (FEve), d) functional dispersion (FDis), e) functional 
divergence (FDiv), f) total trait dissimilarity (based on Jaccard’s index), g) trait nestedness and h) 
trait turnover between the contemporary (2012-2031) and end-of-century (2081-2100) periods. End-
of-century estimates were based on an ensemble of monthly values obtained for three species 
distribution models and five earth system models (n = 180). Species richness, Faith and functional 
beta diversity indices were based on presence-absence data whereas FEve, FDis and FDiv were 
weighed by habitat suitability indices.
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Figure S16: Regions where more than 75% of the ensemble members (n = 15 on a mean annual 
scale, highlighted in blue on the maps) agree on the sign of the relative difference (∆, in %) in a) 
copepod species richness, b) Faith index (functional richness index), c) functional evenness (FEve), 
d) functional dispersion (FDis), e) functional divergence (FDiv), f) total trait dissimilarity (based on 
Jaccard’s index), g) trait nestedness and h) trait turnover between the contemporary (2012-2031) 
and end-of-century (2081-2100) periods. End-of-century estimates were based on an ensemble of 
monthly values obtained for three species distribution models and five earth system models (n = 
180).


