Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

Kelsey B. McCune¹*, Coralie Williams²,³, Ned A. Dochtermann⁴, Holger Schielzeth⁵ and Shinichi Nakagawa²,⁶*

Affiliations
1. College of Forestry, Wildlife and Environment, Auburn University, Alabama, USA.
2. Evolution & Ecology Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
3. School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
4. Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
5. Institute for Ecology and Evolution, Friedrich Schiller University Jena, Thuringia, Germany
6. Department of Biological Sciences, University of Alberta, Edmonton, Canada

*Corresponding author:
Kelsey McCune
kelseybmccune@gmail.com
College of Forestry, Wildlife and Environment Building
Office #2437
Auburn University
Auburn, AL 36849

Shinichi Nakagawa
s.nakagawa@unsw.edu.au

ORCID: KM (0000-0003-0951-0827), CW (0000-0003-1312-4953), SN (0000-0002-7765-5182)
Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

Abstract

Many biological features are expressed as “time-to-event” traits, such as time to first reproduction or response to some stimulus. The analysis of these traits frequently produces right-censored data in cases where no event has occurred within a certain timeframe. The Cox proportional hazards (CPH) model, a type of survival analysis, accounts for censored data by estimating the hazard of an event occurring at each time point. While random effect variances can be estimated in CPH models, it is currently not possible to estimate within-cluster variance. Consequently, we lack a general method for calculating ecologically and evolutionary relevant variances and metrics like repeatability from time-to-event data. We here present a solution to this issue. We first describe the characteristics of CPH models and introduce repeatability as an intra-class correlation coefficient (ICC). We demonstrate how CPH models with discrete-time intervals are comparable to binomial generalized linear mixed-effects models (GLMMs) with the complementary log-log link. Through this equivalence, we show how to estimate an ICC using the estimates of the random effects variance component(s) resulting from CPH models and the distribution-specific variance (within-cluster variance) from the binomial GLMM. We provide a case study and online materials to demonstrate how our new method for ICC for time-to-event data can be implemented and used. We conclude that the proposed method will not only generate a standard way to quantify consistent individual differences (ICC) from time-to-event data, but also broaden the use of survival analysis outside of the typical implementation for survivorship studies.

Keywords: consistent individual differences, latency, repeatability, survival analysis
Introduction

Consistent individual differences, where traits are relatively fixed within individuals either genetically or during development, can have significant ecological and evolutionary consequences (Dochtermann and Dingemanse, 2013; Reale et al., 2007; Wolf and Weissing, 2012). For example, individual differences can impact dispersal (Cote et al., 2010), range expansion (Duckworth and Badyaev, 2007), and persistence in the face of rapid environmental change (Lapiedra et al., 2017; Wright et al., 2010). The identification of consistency (i.e., repeatability) in a trait requires repeated measures within and across individuals to quantify the proportion of the total (sample) variance that is attributable to differences among individuals relative to variation in the trait within individuals (Dingemanse and Dochtermann, 2013; Nakagawa and Schielzeth, 2010). Consequently, researchers have developed approachable and rigorous methods and statistical techniques to meet the growing interest in quantifying consistent individual differences in behavior (Dingemanse and Wright, 2020; Stoffel et al., 2017).

Despite significant progress, some of the most common measures of individual differences are difficult to estimate, or inappropriately estimated with the current statistical tools. Time-to-event data, such as the latency to respond to a stimulus, approach a threat, or solve a problem, are widespread across studies of animal behavior and cognition, as well as broadly in ecology and evolution (Table 1). These data have unique features in that they are time-dependent and often include right-censored values (censoring) when an event does not occur within the experimental or observational timeframe (Machin et al., 2006). Researchers often assign ceiling values
Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

(e.g., the maximum duration of the trial) to trials where individuals never produced the event and then analyze the data using random effects models that assume a Poisson or Gaussian distribution (e.g., Johnstone and Garvey, 2023; Lukas et al., 2021; Peignier et al., 2022; Vámos and Shaw, 2024). However, it is problematic to assign such arbitrary response values to the individuals where the event was not observed. Failing to account for the right-censored nature of the data could bias results as the upper end of the range of performance is truncated. Logistically, it is not feasible to give all individuals unlimited trial durations so additional statistical tools are needed.

Table 1: Examples of the use of time-to-event data with cluster variable(s) from behavior and ecology.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Time-to-event variables tested</th>
<th>Cluster variable</th>
<th>Example studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal personality</td>
<td>Latency to approach simulated intruder or predator</td>
<td>Individual ID, Year ID</td>
<td>Peignier et al. 2022; Holzmann & Cordóba 2024</td>
</tr>
<tr>
<td></td>
<td>Latency to forage</td>
<td>Individual ID</td>
<td>Vámos & Shaw 2024</td>
</tr>
<tr>
<td></td>
<td>Latency to emerge from shelter</td>
<td>Individual ID</td>
<td>Mazué et al. 2015; Lapiedra et al. 2017</td>
</tr>
<tr>
<td>Animal cognition</td>
<td>Number of trials to reach criterion</td>
<td>Individual ID, Treatment Group ID</td>
<td>McCune et al. 2023; van den Heuvel et al. 2023</td>
</tr>
<tr>
<td></td>
<td>Latency to solve a task</td>
<td>Individual ID</td>
<td>Griffin & Diquelou 2015; Lenkel et al. 2019</td>
</tr>
<tr>
<td>Animal Ecology</td>
<td>Seed dispersal distance (animal mediated)</td>
<td>Individual ID, Site ID</td>
<td>Brehm et al. 2019; Wrobel et al. 2022</td>
</tr>
<tr>
<td></td>
<td>Distance to detection of camouflaged animal</td>
<td>Individual ID, Site ID</td>
<td>Briolat et al. 2021</td>
</tr>
<tr>
<td></td>
<td>Distance to dispersal</td>
<td>Individual ID</td>
<td>Villegas-Ríos et al. 2017</td>
</tr>
<tr>
<td></td>
<td>Latency to initiate nesting</td>
<td>Site ID, Social Group ID</td>
<td>Brandl et al. 2019; Stroeymeyt et al. 2011</td>
</tr>
<tr>
<td></td>
<td>Latency to migrate</td>
<td>Individual ID</td>
<td>Ramirez et al. 2019</td>
</tr>
<tr>
<td>Plant phenology</td>
<td>Survival</td>
<td>Treatment Group ID</td>
<td>Waser et al. 2000</td>
</tr>
<tr>
<td></td>
<td>Latency to flowering</td>
<td>Site ID</td>
<td>Villagomez et al. 2021; Mininor et al. 2023</td>
</tr>
<tr>
<td></td>
<td>Latency to initiation of pollinator activity</td>
<td>Site ID</td>
<td>Villagomez et al. 2021; Mininor et al. 2023</td>
</tr>
</tbody>
</table>

An alternative tool for the analysis of time-to-event data is survival analysis. Survival analysis, such as Cox proportional hazard regression (Cox, 1972), accounts for time-dependent and right-censored data. Though primarily used in biomedical research, use in behavior and ecology is increasing (e.g., Barak et al., 2018; Griffin and Diquelou, 2015; McCune et al., 2022; van den Heuvel et al., 2023; Table 1). However, there are
Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

Currently no widely known methods to quantify repeatability as the intra-class correlation (ICC), which uses variance components from survival analyses.

In this paper, we describe how to quantify the ICC from time-to-event data. First, we introduce the statistical features of the Cox proportional hazards (CPH) model and define the ICC for this model. Next, we describe a method for restructuring time-to-event data for use in the generalized linear mixed–effects model (GLMM) framework, which provides an accessible pathway to estimate ICC. Finally, we provide a worked example using our new method on real-world data. In the supplementary materials (available at https://kelseybmccune.github.io/Time-to-Event_Repeatability/Supplementary-materials.html), we present several additional worked examples with real data, as well as a small simulation study.

Proportional-hazards models and the intra-class correlation

Cox proportional-hazards models (or Cox regression) estimate the hazard of an event occurring in relation to predictor variables with time-to-event data (i.e., the time taken to an event or censoring; Cox 1972). The hazard is a rate (or risk) of an event occurring at time t. The hazard rate is defined in a Cox model as:

$$
\lambda_i(t) = \lambda_0(t) \exp(b_1 x_1 + b_2 x_2 + \cdots + b_m x_m),
$$

(1)

where $\lambda(t)$ is the hazard rate at time t for the ith subject (or observation), $\lambda_0(t)$ is the baseline hazard rate, and $\beta_1, \beta_2, \ldots, \beta_m$ are the regression coefficients for the predictor variables x_1, x_2, \ldots, x_m. Notably, $\lambda_0(t)$ takes the place of an intercept as $\exp(\ln(\lambda_0(t)) +$
Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

\(b_1 x_1 + \ldots \) or \(\exp(b_0 + b_1 x_1 + \ldots) \) where \(\ln(\lambda_0(t)) = b_0 \) (‘\(\ln \)’ is a natural logarithm).

Equation 1 can be rearranged to:

\[
\ln \left(\frac{\lambda_i(t)}{\lambda_0(t)} \right) = b_1 x_1 + b_2 x_2 + \cdots + b_m x_m, \tag{2}
\]

for the right-hand side to take a linear form, which is more familiar for many readers due to the similarity to linear regression, although it has neither an intercept (i.e., \(b_0 \)) nor a residual term (i.e., \(\varepsilon_i \)). To fit such a model using, for example, the R statistical language (R Core Team, 2023), one needs to provide the time-to-event data in the form of a “Surv” object (e.g., \(\text{Surv(time, event)} \) where "time" is the time taken to an event, and "event" indicates whether the event was observed or censored, coded as 0 or 1). The Cox model can be fitted using the coxph function in the survival package (Therneau, 2024).

Now let us assume that we have a single predictor variable, sex \((x_{sex}) \), for a time-to-event data set (e.g., to study sex-specific latency to solve a task), and we have a single random effect (or cluster) \(\alpha \) (e.g., individuals or populations). The Cox proportional-hazards model can be extended to include a random effect (like individual identity), which is often referred to as the ‘frailty’ term and Cox regression with a single random effect is therefore known as the frailty model:

\[
\ln \left(\frac{\lambda_{ij}(t)}{\lambda_0(t)} \right) = b_{sex} x_{sex} + \alpha_i, \tag{3}
\]

\(\alpha_i \sim N(0, \sigma_\alpha^2) \),
where $\lambda_{ij}(t)$ is the hazard rate at time t for the ith individual for the jth occasion (observation). Such a frailty model can be fitted using the coxme function in the R package coxme (Therneau, 2022) as well as with the coxph function.

Now that we have defined the Cox model, let us define the repeatably or intra-class correlation (ICC) in its simplest form when the trait of interest (the response variable) is a Gaussian variable (i.e., a model that has normally distributed residuals):

$$\text{ICC} = \frac{\sigma^2_a}{\sigma^2_a + \sigma^2_\epsilon}, \quad (4)$$

where σ^2_a is the variance of the random effect (the between-cluster variance, where a cluster could be individual identity) and σ^2_ϵ is the variance of the residuals (or within-cluster variance; Nakagawa & Schielzeth 2010). The ICC can be interpreted as the proportion of the total variance that is explained by between-cluster variance. The ICC can also be calculated for generalized linear mixed-effect models (GLMMs) with non-Gaussian error distributions and link functions other than identity links. For example, the R package, rptR can be used to calculate ICC from various GLMMs (Stoffel et al., 2017), via the lmer and glmer functions in the lme4 package (Bates et al., 2012).

Nakagawa & Schielzeth (2010) suggest that for non-Gaussian models, the within-cluster variance is determined by the distributional assumptions of a GLMM. For binomial models with the logit link, for example, σ^2_ϵ can be assumed to be $\pi^2/3$ (where σ^2_ϵ is called the distributional specific variance; Nakagawa & Schielzeth 2010); $\pi^2/3$ is the variance of the assumed underlying distribution, i.e., the logistic distribution. Published formulae are available for all common GLMMs and can generally be derived by the
Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

delta method for other GLMM families (Nakagawa et al., 2017). However, Cox models
do not make any distributional assumptions about the hazard rate; it is an inherently
non-parametric analysis (Equations 1 & 2); more precisely, these models do not make
any assumptions about residuals or within-subject variability. Indeed, although frailty
models (Equation 3) have a random effect term with a Gaussian distribution, they do not
make distributional assumptions about the residual deviations, so that the frailty model
is referred to as semi-parametric. Given this lack of distributional assumptions, we
cannot calculate the ICC for Cox models using these current tools, because the residual
variance is missing.

However, a formula for the non-parametric (or likely more accurately, semi-parametric)
version of ICC (ICC_{np}) for the frailty model is known when the random effect is assumed
to be Gamma distributed on the exponential scale. If we denote the variance from a
Gamma distribution as θ_α under Equation 3, ICC_{np} can be written as:

$$\text{ICC}_{np} = \frac{\theta_\alpha}{\theta_\alpha + 2}, \quad (5)$$

$$\exp(\alpha_i) \sim G\left(\frac{1}{\theta_\alpha}, \frac{1}{\theta_\alpha}\right),$$

where the first $1/\theta_\alpha$ and the second $1/\theta_\alpha$, are the shape and the rate parameter of the
Gamma distribution, respectively (such parameterization results in the mean,
$E(\exp(\alpha_i)) = 1$ and variance, $\text{Var}(\exp(\alpha_i)) = \theta_\alpha$).

The estimate, ICC_{np} represents Kendall’s τ, that is, the rank correlation or concordance
for within-cluster observations for the frailty model (Hougaard, 2000). Unfortunately,
there is no closed-form formula when assuming a Gaussian distribution for the random effect, as in Equation 3. Nonetheless, ICC_{np} can be obtained numerically, and we provide an R function based on the tau function from the R package, parfm (Munda et al., 2012). We note that σ^2 (Gaussian) and θ_α (Gamma) are unlikely to be the same, but the two ICC_{np} values under two different assumptions (Gaussian and Gamma) are often very similar (see the supplementary materials).

An issue with the ICC_{np} is that it is not a parametric version of ICC, and its comparison to typical parametric ICCs is not straightforward. More importantly, it is not clear whether this method can be extended to a Cox model that has more than one random effect (at least, practically speaking). However, we can solve both issues by restructuring the time-to-event data of the Cox model into a data set where we can fit a GLMM and then obtain a parametric version of ICC via GLMMs.

Cox proportional-hazards models and generalized linear mixed-effects models

In the statistical literature, it has been shown that the frailty model (Equation 3) can be fitted as a Poisson GLMM (known as the piece-wise exponential model; e.g., Hirsch et al., 2016) or a binomial GLMM (the discrete-time model: Finkelstein, 1986; Suresh et al., 2022; for an accessible overview see Austin, 2017). Here, we show how a discrete-time model, more specifically a binomial GLMM with the complementary log-log (cloglog) link can be used to fit a comparable model as Equation 3 by “exploding” the time-to-event data by defining arbitrary discrete time intervals (Figure 1 shows an example of such an exploded data set compared to the original). In the supplementary
Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

material, we used simulations to demonstrate that the number and duration of time intervals do not impact the estimates of the fixed and random effect variances. If we assume we have three (arbitrary discrete) time intervals \((t1, t2 & t3)\), this binomial GLMM (without an intercept) is defined as:

\[
\ln \left(\frac{-\ln \left(1 - \lambda_{ijk}(t) \right)}{-\ln(1 - \lambda_{0k}(t))} \right) = b_{t1}x_{t1} + b_{t2}x_{t2} + b_{t3}x_{t3} + b_{sex}x_{sex} + \alpha_t, \quad (6)
\]

where \(\lambda_{ijk}(t)\) is the hazard rate at the time \(t\) for the \(i\)th subject at the \(j\)th occasion in the \(k\)th time interval \((k = t1, t2, t3)\), \(\lambda_{0k}(t)\) is the baseline hazard rate for the \(k\)th time interval, \(x_{t1}, x_{t2}, x_{t3}\) are the indicator variables for the time intervals, and \(b_{t1}, b_{t2}, b_{t3}\) are the regression coefficients for the time intervals (the population-average hazard rates at times \(t1, t2, \text{and} \ t3\)). Note that the cloglog link is \(\ln(-\ln(1 - \lambda))\) where \(\lambda\) is the rate that the event occurs. Thus, the left-hand side of Equation 6 consists of the cloglog-transformed hazard rate \((\lambda_{ijk}(t))\) and baseline hazard rate \((\lambda_{0k}(t))\).

Rather remarkably, \(b_{sex}\) and \(\sigma_{\alpha}^2\) in Equation 6 are estimated to be the same as those in Equation 3 despite the very different data structures for the two models (i.e., time-to-event data vs. exploded data; Figure 1). Note that, in the supplemental materials, we show the equivalence of \(b_{sex}\) and \(\sigma_{\alpha}^2\) between the Cox (frailty) model, fitted with coxph and coxme, and the binomial GLMM, fitted with glmer with event \((0 \text{ or} 1)\) as the response.
Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

Figure 1: Demonstration of a simple time-to-event clustered dataset in the traditional form (left) and the “exploded” form (right). Time intervals (“Time start” to “Time stop”) replace the “Latency” variable, and an "Event" column is created that notes whether that individual achieved the event in that interval and trial.

<table>
<thead>
<tr>
<th>Original data set</th>
<th>Discrete time interval ("exploded") data set</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Trial</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
</tbody>
</table>

* ceiling value

Given the equivalence of the regression parameters, Equation 6 will not typically need to be fit. We can use variance components obtained from Cox models to estimate ICC under the assumptions of a binomial GLMM with the complementary log-log link. Under this GLMM, the distribution-specific variance σ^2_ε (as used in Equation 4) is $\pi^2/6$ on the latent scale. This means we can define ICC for Equation 3 and 6 as (Nakagawa et al. 2017):

$$\text{ICC} = \frac{\sigma^2_\varepsilon}{\sigma^2_\varepsilon + \pi^2/6}. \quad (7)$$

In Figure 2, we show the parametric version of ICC and the non-parametric version (ICC_{np}) are well correlated but not equivalent (analogous to the relationship between
Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

Pearson’s r and Kendall’s τ). We prefer the use of ICC as in Equation 7 over ICC$_{np}$ because the parametric version is more comparable to other ICC estimates derived from GLMMs that are commonly used in ecology and evolution (Nakagawa et al. 2017).

Furthermore, the advantage of this approach is that we can add more than one random effect. For example, imagine we have additional levels of clustering (such as population identity) modelled as random effects. Adding those additional random effects to Equation 3 yields:

$$\ln \left(\frac{\lambda_{ijl}(t)}{\lambda_0(t)} \right) = b_{sex} x_{sex} + a_i + \gamma_l, \quad (8)$$

$$\gamma_l \sim N(0, \sigma^2_\gamma),$$

where γ_l is the random effect for the lth level of the second cluster, which is assumed to be normally distributed with the mean of zero and the variance of σ^2_γ (although Cox models with more than one random factor cannot be fitted with the coxph function but can be fitted with the coxme function). It is important to notice that the two random effects can be ‘nested’ or ‘crossed’ and the difference affects interpretation, but not the model fitting (provided the data are coded appropriately; Schielzeth and Nakagawa, 2013).
Figure 2: Repeatability estimates from the parametric equation for ICC (in blue) compared to the nonparametric ICC (in red) obtained from Kendall’s τ. Repeatability values from the two estimates are correlated, but not identical.

An example of the nested random effects is individual (α_i) and population (γ_i) where individuals are nested within populations. In this case, the ICC for individuals can be defined as:

$$\text{ICC}_{\text{ind1}} = \frac{\sigma^2_{\alpha} + \sigma^2_{\gamma}}{\sigma^2_{\alpha} + \sigma^2_{\gamma} + \pi^2/6}.$$

(9)
The reason both variance components are included in the numerator of the ICC for individuals is that some of the individual consistency comes from individuals belonging to specific populations. Yet, one may be purely interested in the individual σ_{α}^2 without the effect of population σ_{γ}^2. If so, they need to adjust Equation 9 accordingly.

Incidentally, if you do not include the population random effects in a GLMM, Equation 7 will give you the same ICC value as Equation 9 with both individual and population random effects.

An example of the crossed random effects is individual (α_i) and year (γ_t) where individuals are not nested within years but observed across multiple years. This time, the ICC for individuals can be written as:

$$\text{ICC}_{\text{ind2}} = \frac{\sigma_{\alpha}^2}{\sigma_{\alpha}^2 + \sigma_{\gamma}^2 + \pi^2/6}. \quad (10)$$

If one wants to remove or adjust for the effect of year, then ICC for individuals simplifies to Equation 7. Indeed, all the ICC formulas presented above represent 'adjusted' repeatabilities (ICC) sensu Nakagawa and Schielzeth (2010) because the effect of a fixed effect (sex, in our example) is accounted for in the models. We can obtain 'unadjusted' repeatability (ICC) by fitting the model without the fixed effect (sex), for example by changing Equation 3:

$$\ln \left(\frac{\hat{\lambda}_{ij}(t)}{\hat{\lambda}_0(t)} \right) = \alpha_i. \quad (11)$$

Importantly, the model (e.g., Equation 11) without any fixed effects should give an ICC equal to or larger than those with fixed effects (e.g., Equation 3). In the supplementary
Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

materials (https://kelseybmccune.github.io/Time-to-Event_Repeatability/Supplementary-materials.html), we show how to fit the models and obtain the ICC estimates we described above.

Case study

We used data from a study comparing the performance of Mexican jays (Aphelocoma wollweberi) on a multi-access puzzle box in captivity (n = 10 individuals) and the wild (n = 7; McCune et al., 2019). The repeated time-to-event measure consisted of the latency to access food from each of the 4 different access options (loci). It was not the goal of the original study to evaluate the individual repeatability of solving performance, but that is what we focused on here. Around 44% of the data were censored as not all jays solved one or more of the puzzle box loci in the allotted experimental timeframe. We used the coxme function (Therneau, 2022) to model the latency to solve each locus on the puzzle box as a function of treatment (wild or captive jay; a fixed effect) with individual identity as a random effect. This analysis results in an adjusted (accounting for the fixed effect of wild/captive) variance estimate (as in Equation 3) of 3.16. Using Equation 7, we estimate the ICC for individual identity as 0.66 (CI: 0.38-0.87; p < 0.01). However, if we are not interested in the effect of the treatment as a part of among-individual variation of solving latency (i.e., Equation 11), then we get the unadjusted random effect variance and an ICC estimate of 0.74 (CI: 0.49-0.90; p < 0.01) from Equation 7. For the data and code, including functions to estimate the p-values and 95% confidence intervals of ICC, see the supplementary materials.
Conclusion

Accurate and standardized ways of estimating consistent individual differences are important for answering fundamental questions in animal behavior, evolution, and ecology (e.g., invasive species: Carere and Gherardi, 2013; ecosystem services: Zwolak, 2018). The techniques in this paper provide a standardized and potentially more accurate method for repeatability estimates from time-to-event data, one of the most commonly collected measures in animal behavior (Table 1; also see Reale et al., 2007; Takola et al., 2021). There are a few assumptions that data must meet for the use of Cox proportional hazards models. We note that researchers including fixed effects in their models should check that they do not violate the proportional hazards assumption of a constant hazard ratio across time (Machin et al., 2006). Finally, many behavioral and evolutionary ecologists may believe Cox regression and related models are only for “survival” analyses. However, there are many different uses without collecting longitudinal (e.g., time to fledge with clusters being the nest identity and latency to breed or mate with individuals as clusters). We hope that Cox and related regression analyses will be more widely used to address a much wider range of questions in the future.

Acknowledgments

This project was made possible through a Statistical Quantification of Individual Differences (SQuID) travelling research fellowship awarded to KM from the Research
Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

Council of Norway INTPART project, grant number 309356 to Jonathan Wright. We are grateful for Josep Carrasco's statistical advice and helpful discussions with Martin Stoffel. SN was supported by the Australian Research Council Discovery Grant (DP230101248) and the Canada Excellence Research Chair Program (CERC-2022-00074).

Author contributions using CRediT:

KM: Conceptualization, Investigation, Data Curation, Project administration, Funding Acquisition, Formal analysis, Visualization, Writing - original draft, Writing – review & editing; **CW:** Data curation, Investigation, Methodology, Formal analysis, Visualization, Writing – original draft, Writing – review & editing; **ND:** Conceptualization, Validation, Writing – review & editing; **HS:** Validation, Writing – review & editing; **SN:** Investigation, Methodology, Visualization, Resources, Supervision, Writing - original draft, Writing - review & editing.

References

Bates, D., Maechler, M., Bolker, B., 2012. Ime4: Linear mixed-effects models using S4 classes (2011). R package version 0.999375-42.
Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

Therneau, T., 2024. A package for survival analysis in R.

Repeatability and intra-class correlations from time-to-event data: towards a standardized approach

