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Abstract  
Many biological features are expressed as “time-to-event” traits, such as time to first 

reproduction or response to some stimulus. The analysis of these traits frequently 

produces right-censored data in cases where no event has occurred within a certain 

timeframe. The Cox proportional hazards (CPH) model, a type of survival analysis, 

accounts for censored data by estimating the hazard of an event occurring at each time 

point. While random effect variances can be estimated in CPH models, it is currently not 

possible to estimate within-cluster variance. Consequently, we lack a general method 

for calculating ecologically and evolutionary relevant variances and metrics like 

repeatability from time-to-event data. We here present a solution to this issue. We first 

describe the characteristics of CPH models and introduce repeatability as an intra-class 

correlation coefficient (ICC). We demonstrate how CPH models with discrete-time 

intervals are comparable to binomial generalized linear mixed-effects models (GLMMs) 

with the complementary log-log link. Through this equivalence, we show how to 

estimate an ICC using the estimates of the random effects variance component(s) 

resulting from CPH models and the distribution-specific variance (within-cluster 

variance) from the binomial GLMM. We provide a case study and online materials to 

demonstrate how our new method for ICC for time-to-event data can be implemented 

and used. We conclude that the proposed method will not only generate a standard way 

to quantify consistent individual differences (ICC) from time-to-event data, but also 

broaden the use of survival analysis outside of the typical implementation for 

survivorship studies. 

Keywords: consistent individual differences, latency, repeatability, survival analysis 
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Introduction 

Consistent individual differences, where traits are relatively fixed within individuals either 

genetically or during development, can have significant ecological and evolutionary 

consequences (Dochtermann and Dingemanse, 2013; Reale et al., 2007; Wolf and 

Weissing, 2012). For example, individual differences can impact dispersal (Cote et al., 

2010), range expansion (Duckworth and Badyaev, 2007), and persistence in the face of 

rapid environmental change (Lapiedra et al., 2017; Wright et al., 2010). The 

identification of consistency (i.e., repeatability) in a trait requires repeated measures 

within and across individuals to quantify the proportion of the total (sample) variance 

that is attributable to differences among individuals relative to variation in the trait within 

individuals (Dingemanse and Dochtermann, 2013; Nakagawa and Schielzeth, 2010). 

Consequently, researchers have developed approachable and rigorous methods and 

statistical techniques to meet the growing interest in quantifying consistent individual 

differences in behavior (Dingemanse and Wright, 2020; Stoffel et al., 2017). 

 

Despite significant progress, some of the most common measures of individual 

differences are difficult to estimate, or inappropriately estimated with the current 

statistical tools. Time-to-event data, such as the latency to respond to a stimulus, 

approach a threat, or solve a problem, are widespread across studies of animal 

behavior and cognition, as well as broadly in ecology and evolution (Table 1). These 

data have unique features in that they are time-dependent and often include right-

censored values (censoring) when an event does not occur within the experimental or 

observational timeframe (Machin et al., 2006). Researchers often assign ceiling values 



Repeatability and intra-class correlations from time-to-event data: towards a 
standardized approach 

 4 

(e.g., the maximum duration of the trial) to trials where individuals never produced the 

event and then analyze the data using random effects models that assume a Poisson or 

Gaussian distribution (e.g., Johnstone and Garvey, 2023; Lukas et al., 2021; Peignier et 

al., 2022; Vámos and Shaw, 2024). However, it is problematic to assign such arbitrary 

response values to the individuals where the event was not observed. Failing to account 

for the right-censored nature of the data could bias results as the upper end of the 

range of performance is truncated. Logistically, it is not feasible to give all individuals 

unlimited trial durations so additional statistical tools are needed. 

 

Table 1: Examples of the use of time-to-event data with cluster variable(s) from 

behavior and ecology. 

 

An alternative tool for the analysis of time-to-event data is survival analysis. Survival 

analysis, such as Cox proportional hazard regression (Cox, 1972), accounts for time-

dependent and right-censored data. Though primarily used in biomedical research, use 

in behavior and ecology is increasing (e.g., Barak et al., 2018; Griffin and Diquelou, 

2015; McCune et al., 2022; van den Heuvel et al., 2023; Table 1). However, there are 



Repeatability and intra-class correlations from time-to-event data: towards a 
standardized approach 

 5 

currently no widely known methods to quantify repeatability as the intra-class correlation 

(ICC), which uses variance components from survival analyses.  

 

In this paper, we describe how to quantify the ICC from time-to-event data. First, we 

introduce the statistical features of the Cox proportional hazards (CPH) model and 

define the ICC for this model. Next, we describe a method for restructuring time-to-

event data for use in the generalized linear mixed–effects model (GLMM) framework, 

which provides an accessible pathway to estimate ICC. Finally, we provide a worked 

example using our new method on real-world data. In the supplementary materials 

(available at https://kelseybmccune.github.io/Time-to-

Event_Repeatability/Supplementary-materials.html), we present several additional 

worked examples with real data, as well as a small simulation study. 

Proportional-hazards models and the intra-class 
correlation 
Cox proportional-hazards models (or Cox regression) estimate the hazard of an event 

occurring in relation to predictor variables with time-to-event data (i.e., the time taken to 

an event or censoring; Cox 1972). The hazard is a rate (or risk) of an event occurring at 

time 𝑡. The hazard rate is defined in a Cox model as: 

𝜆!(𝑡) = 𝜆"(𝑡)exp(𝑏#𝑥# + 𝑏$𝑥$ +⋯+ 𝑏%𝑥%),  (1) 

where 𝜆(𝑡) is the hazard rate at time 𝑡 for the ith subject (or observation), 𝜆"(𝑡) is the 

baseline hazard rate, and 𝛽#, 𝛽$, … , 𝛽% are the regression coefficients for the predictor 

variables 𝑥#, 𝑥$, … , 𝑥%. Notably, 𝜆"(𝑡) takes the place of an intercept as exp(ln4𝜆"(𝑡)5 +
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𝑏#𝑥# +… ) or exp(𝑏" + 𝑏#𝑥# +… ) where ln4𝜆"(𝑡)5 = 𝑏" (‘ln’ is a natural logarithm). 

Equation 1 can be rearranged to: 

ln 6
𝜆!(𝑡)
𝜆"(𝑡)

7 = 𝑏#𝑥# + 𝑏$𝑥$ +⋯+ 𝑏%𝑥%,  (2) 

for the right-hand side to take a linear form, which is more familiar for many readers due 

to the similarity to linear regression, although it has neither an intercept (i.e., 𝑏") nor a 

residual term (i.e., 𝜀!). To fit such a model using, for example, the R statistical language 

(R Core Team, 2023), one needs to provide the time-to-event data in the form of a 

“Surv” object (e.g., Surv(time, event) where "time" is the time taken to an event, and 

"event" indicates whether the event was observed or censored, coded as 0 or 1). The 

Cox model can be fitted using the coxph function in the survival package (Therneau, 

2024). 

Now let us assume that we have a single predictor variable, sex (𝑥&'(), for a time-to-

event data set (e.g., to study sex-specific latency to solve a task), and we have a single 

random effect (or cluster) 𝛼 (e.g., individuals or populations). The Cox proportional-

hazards model can be extended to include a random effect (like individual identity), 

which is often referred to as the ‘frailty’ term and Cox regression with a single random 

effect is therefore known as the frailty model: 

ln 6
𝜆!)(𝑡)
𝜆"(𝑡)

7 = 𝑏&'(𝑥&'( + 𝛼! ,  (3) 

𝛼! ∼ 𝑁(0, 𝜎*$), 
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where 𝜆!)(𝑡) is the hazard rate at time 𝑡 for the ith individual for the jth occasion 

(observation). Such a frailty model can be fitted using the coxme function in the R 

package coxme (Therneau, 2022) as well as with the coxph function. 

Now that we have defined the Cox model, let us define the repeatably or intra-class 

correlation (ICC) in its simplest form when the trait of interest (the response variable) is 

a Gaussian variable (i.e., a model that has normally distributed residuals): 

ICC =
𝜎*$

𝜎*$ + 𝜎+$
,  (4) 

where 𝜎*$ is the variance of the random effect (the between-cluster variance, where a 

cluster could be individual identity) and 𝜎,$ is the variance of the residuals (or within-

cluster variance; Nakagawa & Schielzeth 2010). The ICC can be interpreted as the 

proportion of the total variance that is explained by between-cluster variance. The ICC 

can also be calculated for generalized linear mixed-effect models (GLMMs) with non-

Gaussian error distributions and link functions other than identity links. For example, the 

R package, rptR can be used to calculate ICC from various GLMMs (Stoffel et al., 

2017), via the lmer and glmer functions in the lme4 package (Bates et al., 2012). 

Nakagawa & Schielzeth (2010) suggest that for non-Gaussian models, the within-cluster 

variance is determined by the distributional assumptions of a GLMM. For binomial 

models with the logit link, for example, 𝜎+$ can be assumed to be 𝜋$/3 (where 𝜎+$ is 

called the distributional specific variance; Nakagawa & Schielzeth 2010); 𝜋$/3 is the 

variance of the assumed underlying distribution, i.e., the logistic distribution. Published 

formulae are available for all common GLMMs and can generally be derived by the 
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delta method for other GLMM families (Nakagawa et al., 2017). However, Cox models 

do not make any distributional assumptions about the hazard rate; it is an inherently 

non-parametric analysis (Equations 1 & 2); more precisely, these models do not make 

any assumptions about residuals or within-subject variability. Indeed, although frailty 

models (Equation 3) have a random effect term with a Gaussian distribution, they do not 

make distributional assumptions about the residual deviations, so that the frailty model 

is referred to as semi-parametric. Given this lack of distributional assumptions, we 

cannot calculate the ICC for Cox models using these current tools, because the residual 

variance is missing. 

However, a formula for the non-parametric (or likely more accurately, semi-parametric) 

version of ICC (ICCnp) for the frailty model is known when the random effect is assumed 

to be Gamma distributed on the exponential scale. If we denote the variance from a 

Gamma distribution as 𝜃* under Equation 3, ICCnp can be written as: 

ICCnp =
𝜃*

𝜃* + 2
,  (5) 

exp(𝛼!) ∼ 𝐺 F
1
𝜃*
,
1
𝜃*
G, 

where the first 1/𝜃* and the second 1/𝜃*, are the shape and the rate parameter of the 

Gamma distribution, respectively (such parameterization results in the mean, 

E4exp(𝛼!)5 = 1 and variance, Var4exp(𝛼!)5 = 𝜃*). 

The estimate, ICCnp represents Kendall’s 𝜏, that is, the rank correlation or concordance 

for within-cluster observations for the frailty model (Hougaard, 2000). Unfortunately, 
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there is no closed-form formula when assuming a Gaussian distribution for the random 

effect, as in Equation 3. Nonetheless, ICCnp can be obtained numerically, and we 

provide an R function based on the tau function from the R package, parfm (Munda et 

al., 2012). We note that 𝜎*$ (Gaussian) and 𝜃* (Gamma) are unlikely to be the same, but 

the two ICCnp values under two different assumptions (Gaussian and Gamma) are often 

very similar (see the supplementary materials). 

An issue with the ICCnp is that it is not a parametric version of ICC, and its comparison 

to typical parametric ICCs is not straightforward. More importantly, it is not clear 

whether this method can be extended to a Cox model that has more than one random 

effect (at least, practically speaking). However, we can solve both issues by 

restructuring the time-to-event data of the Cox model into a data set where we can fit a 

GLMM and then obtain a parametric version of ICC via GLMMs. 

Cox proportional-hazards models and generalized 
linear mixed-effects models 
In the statistical literature, it has been shown that the frailty model (Equation 3) can be 

fitted as a Poisson GLMM (known as the piece-wise exponential model; e.g., Hirsch et 

al., 2016) or a binomial GLMM (the discrete-time model: Finkelstein, 1986; Suresh et 

al., 2022; for an accessible overview see Austin, 2017). Here, we show how a discrete-

time model, more specifically a binomial GLMM with the complementary log-log 

(cloglog) link can be used to fit a comparable model as Equation 3 by “exploding” the 

time-to-event data by defining arbitrary discrete time intervals (Figure 1 shows an 

example of such an exploded data set compared to the original). In the supplementary 
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material, we used simulations to demonstrate that the number and duration of time 

intervals do not impact the estimates of the fixed and random effect variances. If we 

assume we have three (arbitrary discrete) time intervals (t1, t2 & t3), this binomial 

GLMM (without an intercept) is defined as: 

ln I
−ln K1 − 𝜆!)-(𝑡)L

−ln41 − 𝜆"-(𝑡)5
M = 𝑏.#𝑥.# + 𝑏.$𝑥.$ + 𝑏./𝑥./ + 𝑏&'(𝑥&'( + 𝛼! ,  (6) 

where 𝜆!)-(𝑡) is the hazard rate at the time 𝑡 for the ith subject at the jth occasion in the 

kth time interval (𝑘 = 𝑡1, 𝑡2, 𝑡3), 𝜆"-(𝑡) is the baseline hazard rate for the 𝑘th time 

interval, 𝑥.#, 𝑥.$, 𝑥./ are the indicator variables for the time intervals, and 𝑏.#, 𝑏.$, 𝑏./ are 

the regression coefficients for the time intervals (the population-average hazard rates at 

times t1, t2, and t3). Note that the cloglog link is ln4−ln(1 − 𝜆)5 where 𝜆 is the rate that 

the event occurs. Thus, the left-hand side of Equation 6 consists of the cloglog-

transformed hazard rate (𝜆!)-(𝑡)) and baseline hazard rate (𝜆"-(𝑡)). 

Rather remarkably, 𝑏&'( and 𝜎*$ in Equation 6 are estimated to be the same as those in 

Equation 3 despite the very different data structures for the two models (i.e., time-to-

event data vs. exploded data; Figure 1). Note that, in the supplemental materials, we 

show the equivalence of 𝑏&'( and 𝜎*$ between the Cox (frailty) model, fitted with coxph 

and coxme, and the binomial GLMM, fitted with glmer with event (0 or 1) as the 

response. 
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Figure 1: Demonstration of a simple time-to-event clustered dataset in the traditional 
form (left) and the “exploded” form (right). Time intervals (“Time start” to “Time stop”) 
replace the “Latency” variable, and an ”Event” column is created that notes whether that 
individual achieved the event in that interval and trial. 

	

Given the equivalence of the regression parameters, Equation 6 will not typically need 

to be fit. We can use variance components obtained from Cox models to estimate ICC 

under the assumptions of a binomial GLMM with the complementary log-log link. Under 

this GLMM, the distribution-specific variance 𝜎+$ (as used in Equation 4) is 𝜋$/6 on the 

latent scale. This means we can define ICC for Equation 3 and 6 as (Nakagawa et 

al. 2017): 

ICC =
𝜎*$

𝜎*$ + 𝜋$/6
.  (7) 

In Figure 2, we show the parametric version of ICC and the non-parametric version 

(ICCnp) are well correlated but not equivalent (analogous to the relationship between 
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Pearson’s r and Kendall’s 𝜏). We prefer the use of ICC as in Equation 7 over ICCnp 

because the parametric version is more comparable to other ICC estimates derived 

from GLMMs that are commonly used in ecology and evolution (Nakagawa et al. 2017). 

Furthermore, the advantage of this approach is that we can add more than one random 

effect. For example, imagine we have additional levels of clustering (such as population 

identity) modelled as random effects. Adding those additional random effects to 

Equation 3 yields: 

ln 6
𝜆!)0(𝑡)
𝜆"(𝑡)

7 = 𝑏&'(𝑥&'( + 𝛼! + 𝛾0 ,  (8) 

𝛾0 ∼ 𝑁40, 𝜎1$5, 

where 𝛾0 is the random effect for the 𝑙th level of the second cluster, which is assumed to 

be normally distributed with the mean of zero and the variance of 𝜎1$ (although Cox 

models with more than one random factor cannot be fitted with the coxph function but 

can be fitted with the coxme function). It is important to notice that the two random 

effects can be ‘nested’ or ‘crossed’ and the difference affects interpretation, but not the 

model fitting (provided the data are coded appropriately; Schielzeth and Nakagawa, 

2013).	
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Figure 2: Repeatability estimates from the parametric equation for ICC (in blue) 
compared to the nonparametric ICC (in red) obtained from Kendall’s 𝜏	.  Repeatability 
values from the two estimates are correlated, but not identical. 

 

An example of the nested random effects is individual (𝛼!) and population (𝛾0) where 

individuals are nested within populations. In this case, the ICC for individuals can be 

defined as: 

ICCind1 =
𝜎*$ + 𝜎1$

𝜎*$ + 𝜎1$ + 𝜋$/6
.  (9) 
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The reason both variance components are included in the numerator of the ICC for 

individuals is that some of the individual consistency comes from individuals belonging 

to specific populations. Yet, one may be purely interested in the individual 𝜎*$ without 

the effect of population 𝜎1$. If so, they need to adjust Equation 9 accordingly. 

Incidentally, if you do not include the population random effects in a GLMM, Equation 7 

will give you the same ICC value as Equation 9 with both individual and population 

random effects.  

An example of the crossed random effects is individual (𝛼!) and year (𝛾0) where 

individuals are not nested within years but observed across multiple years. This time, 

the ICC for individuals can be written as: 

ICCind2 =
𝜎*$

𝜎*$ + 𝜎1$ + 𝜋$/6
.  (10) 

If one wants to remove or adjust for the effect of year, then ICC for individuals simplifies 

to Equation 7. Indeed, all the ICC formulas presented above represent ‘adjusted’ 

repeatabilities (ICC) sensu Nakagawa and Schielzeth (2010) because the effect of a 

fixed effect (sex, in our example) is accounted for in the models. We can obtain 

‘unadjusted’ repeatability (ICC) by fitting the model without the fixed effect (sex), for 

example by changing Equation 3: 

ln 6
𝜆!)(𝑡)
𝜆"(𝑡)

7 = 𝛼! .  (11) 

Importantly, the model (e.g., Equation 11) without any fixed effects should give an ICC 

equal to or larger than those with fixed effects (e.g., Equation 3). In the supplementary 
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materials (https://kelseybmccune.github.io/Time-to-Event_Repeatability/Supplementary-

materials.html), we show how to fit the models and obtain the ICC estimates we 

described above. 

Case study 

We used data from a study comparing the performance of Mexican jays (Aphelocoma 

wollweberi) on a multi-access puzzle box in captivity (n = 10 individuals) and the wild (n 

= 7; McCune et al., 2019). The repeated time-to-event measure consisted of the latency 

to access food from each of the 4 different access options (loci). It was not the goal of 

the original study to evaluate the individual repeatability of solving performance, but that 

is what we focused on here. Around 44% of the data were censored as not all jays 

solved one or more of the puzzle box loci in the allotted experimental timeframe. We 

used the coxme function (Therneau, 2022) to model the latency to solve each locus on 

the puzzle box as a function of treatment (wild or captive jay; a fixed effect) with 

individual identity as a random effect. This analysis results in an adjusted (accounting 

for the fixed effect of wild/captive) variance estimate (as in Equation 3) of 3.16. Using 

Equation 7, we estimate the ICC for individual identity as 0.66 (CI: 0.38-0.87; p < 0.01). 

However, if we are not interested in the effect of the treatment as a part of among-

individual variation of solving latency (i.e., Equation 11), then we get the unadjusted 

random effect variance and an ICC estimate of 0.74 (CI: 0.49-0.90; p < 0.01) from 

Equation 7. For the data and code, including functions to estimate the p-values and 

95% confidence intervals of ICC, see the supplementary materials. 
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Conclusion 

Accurate and standardized ways of estimating consistent individual differences are 

important for answering fundamental questions in animal behavior, evolution, and 

ecology (e.g., invasive species: Carere and Gherardi, 2013; ecosystem services: 

Zwolak, 2018). The techniques in this paper provide a standardized and potentially 

more accurate method for repeatability estimates from time-to-event data, one of the 

most commonly collected measures in animal behavior (Table 1; also see Reale et al., 

2007; Takola et al., 2021). There are a few assumptions that data must meet for the use 

of Cox proportional hazards models. We note that researchers including fixed effects in 

their models should check that they do not violate the proportional hazards assumption 

of a constant hazard ratio across time (Machin et al., 2006). Finally, many behavioral 

and evolutionary ecologists may believe Cox regression and related models are only for 

“survival” analyses. However, there are many different uses without collecting 

longitudinal (e.g., time to fledge with clusters being the nest identity and latency to 

breed or mate with individuals as clusters). We hope that Cox and related regression 

analyses will be more widely used to address a much wider range of questions in the 

future.   
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