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 Abstract 
 Satellite imagery is critical for understanding land-surface change in the rapidly warming 
 Arctic. Since the 1980s, studies have found positive trends in the normalised difference 
 vegetation index (NDVI) derived from satellite imagery over the Arctic - commonly referred to 
 as  ‘Arctic greening’  and assumed to represent increased  vegetation productivity. However, 
 greening analyses use satellite imagery with pixel sizes ranging from tens to hundreds of 
 metres and do not account for the integration of abiotic phenomena such as snow within 
 vegetation indices. Here, we use high resolution drone data from one Arctic and one 
 sub-Arctic site to show that fine-scale snow persistence within satellite pixels is associated 
 with both reduced magnitude and delayed timing of annual peak NDVI, the base metric of 
 Arctic greening analyses. We found higher snow persistence within Sentinel-2 pixels is 
 associated with a lower magnitude and later peak NDVI, with a mean difference in NDVI of 
 0.088 and seven days between high and low snow persistence pixels. These effects were 
 stronger in NASA HLSS30 data, representative of Landsat data commonly used in greening 
 analyses. Our findings indicate that unaccounted changes in fine-scale snow persistence 
 may contribute to Arctic spectral greening and browning trends through either ecological 
 responses of vegetation to snow cover or abiotic interactions between snow and the 
 estimated peak NDVI. In order to improve our understanding of Arctic land-surface change, 
 studies should integrate very-high-resolution data to estimate the dynamics of late season 
 snow within coarser satellite pixels. 

 Introduction 
 Arctic temperatures are rising four times faster than those at lower latitudes  (Rantanen  et al.  , 
 2022)  , driving concurrent changes in Arctic vegetation  (Myers-Smith  et al.  , 2020)  and snow 
 cover  (AMAP, 2017; Callaghan  et al.  , 2011)  . Earth  observation provides a multidecadal basis 
 for monitoring changes in the Arctic land-surface  (AMAP, 2017)  . Since the 1980s, trends in 
 the normalised difference vegetation index (NDVI) over the Arctic indicate both spectral 
 greening (positive trends) over large areas (13% to 42%) and browning (negative trends) 
 over more limited areas (1% to 4%), with remaining areas not experiencing a directional 
 change  (Myers-Smith  et al.  , 2020)  . Most commonly,  greening is interpreted as enhanced 
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 vegetation productivity driven by warming temperatures  (Myers-Smith  et al.  , 2020)  , while 
 hypothesised drivers of browning are more diverse  (Phoenix and Bjerke, 2016)  . However, 
 the mid-to-coarse spatial resolutions of long-term satellite imagery (Landsat: 30 m; MODIS: 
 500 m; AVHRR GIMMS  3g  : 8 km) used in greening analyses  integrate both biotic and abiotic 
 phenomena within the vegetation index of any given pixel  (Myers-Smith  et al.  , 2020)  . Where 
 the duration and extent of fine-resolution summer snow patches are changing, this may 
 confound greening analyses  (Myers-Smith  et al.  , 2020;  Huemmrich  et al.  , 2021)  . To fully 
 understand the drivers of Arctic spectral trends and their implications for both Arctic 
 ecosystems and global climate feedbacks  (Post  et al.  ,  2019)  , we must quantify the influence 
 of changing snow cover on these trends. 

 Arctic greening analyses integrate information across satellite pixels that do not match the 
 spatial heterogeneity of the tundra land surface. Variation in vegetation biomass, species 
 composition and non-vegetative land surfaces are found within the extents of satellite pixels 
 (Beamish  et al.  , 2020; Myers-Smith  et al.  , 2020; Niittynen  et al.  , 2020; Suvanto, Le roux and 
 Luoto, 2014)  . Remote sensing using drones gathers  very-high-resolution imagery. At one 
 Arctic site, spatial variation in NDVI was found to peak at 0.5 m  (Assmann  et al.  , 2020)  . 
 Fine-scale spatial variation results in spectral mixing, where abiotic phenomena are 
 integrated within the spectral signature of satellite pixels  (Pettorelli  et al.  , 2005; Beamish  et 
 al.  , 2020; Myers-Smith  et al.  , 2020)  . Where abiotic  phenomena and vegetation are both 
 present within a satellite pixel, it is difficult to quantify their relative contribution to the pixel’s 
 NDVI  (Pettorelli  et al.  , 2005)  . 

 Adding further complexity, greening analyses subsequently integrate NDVI observations 
 across time. Studies interpolate seasonal NDVI curves per-pixel and take the curve’s annual 
 maximum value (  peak NDVI  ), or less commonly sum the  daily NDVI values above a given 
 threshold (  time-integrated NDVI,  or  TI-NDVI  )  (Bhatt  et al.  , 2021; Pettorelli  et al.  , 2005)  . 
 Greening analyses assume these NDVI metrics represent the emergent seasonal vegetative 
 signal of the area within a given pixel  (Myers-Smith  et al.  , 2020; Pettorelli  et al.  , 2005)  . Both 
 TI-NDVI and peak NDVI magnitude are used to infer vegetation productivity (e.g.  Berner  et 
 al.  , 2020; Bhatt  et al.  , 2013)  , while phenology is  inferred from the timing of peak NDVI (e.g., 
 May  et al.  , 2020)  . However, the integration of non-vegetative  land surfaces within NDVI 
 metrics may contribute to, or drive, trends in both the magnitude and timing of the peak 
 NDVI. For this reason, the spectral dynamics of non-vegetative land-surfaces should be 
 considered in Arctic greening analyses. 

 Snow cover is a dynamic non-vegetative land surface, which can influence the NDVI of a 
 pixel both directly through spectral integration and indirectly through interactions with 
 vegetation  (Wang, Springer and Gamon, 2023; Pedersen  et al.  , 2018)  . Decreases in NDVI 
 have been linked to spectral mixing of snow cover within experimental boreal plots  (Wang, 
 Springer and Gamon, 2023)  , with similar effects hypothesised  for tundra landscapes 
 (Beamish  et al.  , 2020; Myers-Smith  et al.  , 2020)  .  Snow cover can also alter functional 
 diversity  (Niittynen, Heikkinen and Luoto, 2020)  ,  affect species distribution  (Niittynen and 
 Luoto, 2018)  and is associated with lower biodiversity  (Niittynen, Heikkinen and Luoto, 
 2018)  , while vegetation can in turn influence snow  depth  (Myers-Smith and Hik, 2013)  . 
 Despite snow interacting with NDVI, greening analyses have been limited in their ability to 
 account for snow by the spatial resolution of satellite imagery and snow data products 
 (Beamish  et al.  , 2020)  . Some greening studies include  coarse snow metrics  (Zeng and Jia, 
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 2013; Pedersen  et al.  , 2018)  , while others attempt to mask snow from analyses (e.g.,  Jia, 
 Epstein and Walker, 2009; Berner  et al.  , 2020)  . Due to the imperfect classification of 
 fine-scale snow cover within satellite data products  (Stillinger  et al.  , 2023)  , snow is implicitly 
 included in analyses even where studies have attempted to exclude it. Recent efforts to map 
 fine-resolution snow cover at landscape scales with drone imagery  (Rauhala  et al.  , 2023; 
 Revuelto  et al.  , 2021)  provide a solution for quantifying  the influence of snow on NDVI 
 metrics at Arctic focal sites. 

 In this study, we use drone imagery to test whether snow persistence within Sentinel-2 and 
 NASA HLSS30 pixels is related to the timing and magnitude of peak NDVI at three tundra 
 plots (Figure 1). We hypothesise greater snow persistence within satellite pixels will both 
 limit the magnitude and delay the timing of peak NDVI, through either spectral integration of 
 snow within NDVI observations or snow-vegetation interactions. Specifically, we ask: (1) Do 
 satellite pixels with higher snow persistence have a lower magnitude peak NDVI? And (2), 
 do satellite pixels with higher snow persistence have later timing of peak NDVI? To address 
 these questions, we used drone repeat surveys to estimate within-pixel snow persistence 
 across late spring and early summer for Sentinel-2 and HLSS30 data. We then extracted 
 pixel-by-pixel peak NDVI magnitude and its timing from Sentinel-2 and HLSS30 products by 
 fitting smooth-spline curves and interpolating across the growing season. Finally, we tested 
 the relationship between snow persistence and both peak NDVI magnitude and timing using 
 frequentist ordinary least squares (OLS) and Bayesian Integrated Nested Laplace 
 Approximation (INLA). Overall, our study quantitatively assesses the influence of fine-scale 
 snow persistence on two key vegetation metrics used in Arctic greening analyses. 
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 Figure 1.  (a) Conceptual diagram of the project illustrating  that pixels containing snow 
 patches which persist later into the growing season will have seasonal NDVI curves of a 
 different shape than pixels which contain lower snow persistence. (b) Hypotheses for this 
 work, drawn from the differing conceptual NDVI curves. (c) Location of test plots within the 
 Arctic/sub-Arctic, within their local context, and the drone plots themselves (1:15,000 scale). 
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 Methods 
 Site Description 
 We tested the relationship between snow persistence and peak NDVI at one Arctic tundra 
 (Blæsedalen: 69.3° N, 53.46° W) and one sub-Arctic alpine tundra field site (Kluane: 60.96° 
 N, 138.42° W) (Figure 1). Blæsedalen is a north-south oriented glacial valley on the island of 
 Qeqertarsuaq (Disko Island) in West Greenland and Kluane is a north-facing slope located 
 within the foothills of the St. Elias range in the Yukon territory of northwest Canada. The 
 2000 - 2020 average annual precipitation was 480 mm at Blæsedalen and 304 mm at 
 Kluane, of which ~36% and ~24% respectively fell between the months of November and 
 February  (Harris  et al.  , 2020)  . 

 At Blæsedalen, we chose a nine hectare plot (BL) on the valley’s western aspect 
 approximately 200 m above sea level, containing mesic tundra heath interspersed with bare 
 and patterned ground. At Kluane, we chose two plots on a northern aspect. The lower plot 
 (KL) was 7.1 hectares in size and 1620 m above sea level in an area of graminoid vegetation 
 interspersed with tall shrubs, while the higher plot (KH) was 12.7 hectares in size and 1750 
 m above sea level in an area dominated by graminoid species. We chose plot locations to 
 encompass late lying snow and vegetation typical of the surrounding landscape. 

 Satellite imagery acquisition and processing 
 Satellite imagery time-series were collated for two sensors: (1) the Multi-Spectral-Instrument 
 (MSI) aboard the Sentinel-2 constellation; (2) the NASA Harmonised-Landsat-Sentinel S30 
 (HLSS30) product, analogous to the Optical-Land-Imager aboard Landsat 8  (Claverie  et al.  , 
 2018)  . As HLSS30 data is generated from Sentinel-2  imagery it reduced the impact on our 
 analyses of differences in observation dates between sensors. 

 Sentinel-2 MSI Level-2A data were obtained through the  Copernicus Browser  by filtering for 
 all imagery between April 1  st  and October 31  st  in  the year of drone data collection (Kluane: 
 2022; Blæsedalen: 2023), then selecting all tiles visually free of cloud in proximity to the 
 plots. This resulted in a time series of 16 images for Blæsedalen and 12 images for Kluane 
 between the months of April and October (Tables S1, S2). 

 We used  NASA EarthData Search  to download all HLSS30  tiles matching the Sentinel-2 
 time series we generated for Blæsedalen. We did not generate time series of HLSS30 
 imagery for Kluane, as snow cover was too sparse to support meaningful analyses at a 30 m 
 resolution. HLSS30 data was not available for October 17  th  and we identified quality issues 
 with imagery from September (see supplementary 1.5.2, Figure S6), resulting in a 
 time-series of 11 images for Blæsedalen (Table S3). 

 All satellite imagery was cropped to the extent of the drone imagery over each plot. All data 
 handling was done with the terra package in R (version 1.7.55). 

 Drone imagery acquisition and processing 
 We derived snow cover from time-series of high resolution (5 cm) RGB imagery, which we 
 captured through repeat drone surveys during the period of snow-melt and vegetation 
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 green-up at each plot (see supplementary 1.3). We processed all data through Agisoft 
 Metashape v1.7.5 (St Petersburg, Russia) with flexible solving between bands to correct for 
 band coregistration  (Garieri  et al.  , 2022)  . From Agisoft  Metashape we output a series of 
 multiband geoTIFF files at a standardised spatial extent and grain size (5 cm), in the same 
 coordinate reference system as the satellite imagery (Blæsedalen: UTM 21 N; Kluane: UTM 
 08 N). 

 Calculation of snow persistence metric 
 To calculate a metric describing the persistence of snow within Sentinel-2 and HLSS30 
 pixels, we first classified all drone pixels for every time step at each plot as snow-covered or 
 snow-free using a simple threshold approach on the red-band (see supplementary S1.4). For 
 each drone timestep at each plot, we extracted the number of snow-covered drone pixels 
 within each satellite pixel (Sentinel-2, HLSS30) and calculated snow-cover-extent as a 
 percentage of the satellite pixel area. We then plotted snow-cover-extent across time 
 between the first and last drone image over each plot, interpolated linearly between the 
 observations and integrated the area under the curve (Figure 3d). The resulting snow 
 persistence metric provides a combined measure of snow cover extent and duration per 
 satellite pixel. However, different drone observation dates (Figure 4d) at each plot mean the 
 snow persistence metric is plot-specific and subsequent analyses must treat plots 
 separately. 

 Calculation of peak NDVI 
 To extract the timing and magnitude of peak NDVI from satellite pixels, we derived an NDVI 
 time series for each plot by calculating the standardised difference between the red and 
 near-infrared band of Sentinel-2 and HLSS30 imagery (see supplementary 1.5). We 
 removed noise outside the growing season by re-assigning negative NDVI observations a 
 value of zero  (Beck  et al.  , 2006)  . To ensure curve  fitting was equally bounded by low NDVI in 
 the spring and autumn, we added three synthetic NDVI observations of zero to the end of 
 each time series (see supplementary 1.5). We then fitted both double-logistic curves  (Beck 
 et al.  , 2006)  and smooth-spline curves  (Berner  et  al.  , 2020)  to the NDVI time-series. For all 
 plots and sensors, we found smooth-spline curves best represented our data (Figures 
 S11-13) and extracted the peak NDVI value and its timing for each pixel. 

 Statistical analyses 
 To compare high and low snow persistence Sentinel-2 pixels, we calculated the difference 
 between the average magnitude and timing of peak NDVI for pixels in the upper and lower 
 quartile of snow persistence at each plot. We then averaged the difference across all plots. 
 We subsequently used linear models to test whether peak NDVI magnitude and timing are 
 related to snow persistence within Sentinel-2 and HLSS30 pixels. As the snow persistence 
 metric is plot-specific, we developed separate models for peak NDVI timing and magnitude 
 at each plot and for each satellite data product. 

 First, we tested the relationships between peak NDVI magnitude and timing with snow 
 persistence using ordinary least squares (OLS) regression. For Blæsedalen and Kluane 
 Low, simple linear models provided a sufficient fit to the data. However, visual inspection of 
 the Kluane High data indicated a non-linear relationship and we fitted logarithmic models for 
 this plot instead (  y = ln(x+1)  , where  y  is peak NDVI  magnitude or timing and  x  is the snow 

 6 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

https://www.zotero.org/google-docs/?xISpjv
https://www.zotero.org/google-docs/?mFKIsh
https://www.zotero.org/google-docs/?uQqxut
https://www.zotero.org/google-docs/?uQqxut
https://www.zotero.org/google-docs/?84L00A


 persistence metric). The non-linearity of the relationships at Kluane High could be driven by 
 the inflation of zero and near-zero values in the snow persistence predictor combined with a 
 reduced variance in the response variables towards the higher end of the predictor (Figures 
 S15, S16). 

 Next, we assessed whether spatial autocorrelation in the predictor and response variables 
 influenced the observed relationships (see supplementary S1.6.1). We found significant 
 spatial autocorrelation for all variables at all plots, with variogram range values between 
 ~13-125 m. We then fitted all models again using Bayesian Integrated Nested Laplace 
 Approximation (INLA) with a Matérn 2D covariance function (r/INLA, v24.02.09) to account 
 for the observed spatial autocorrelation. When fitting these models, we followed the 
 recommendations of  Beguin  et al.  (2012  ; see supplementary  S1.6.2). 

 Both the simple OLS and spatial INLA Matérn 2D regressions were consistent in the 
 direction and significance of trends for all models, with the exception of Sentinel-2 peak 
 NDVI magnitude at Blæsedalen. Here, the INLA Matérn 2D indicated non-linearities in the 
 data after accounting for spatial autocorrelation. To address these concerns, we tested 
 whether incorporating a breakpoint at the snow persistence value of five would provide a 
 more meaningful fit. 

 Finally, at Blæsedalen we compared the effect size between each model using Sentinel-2 
 data and the equivalent model using HLSS30 data. 

 In the remainder of this manuscript we will use the OLS models for visualisation due to their 
 simplicity and ease of interpretation. We refer to the INLA Matérn 2D models in the text and 
 report full outputs of all models in the supplementary materials. 

 Results 
 Seasonal NDVI curves differ between high and low snow 
 persistence Sentinel-2 pixels 
 We observed variance in the amplitude and timing of curves fitted to the NDVI time series for 
 the Sentinel-2 pixels. Taken across all plots, those pixels with snow persistence values in the 
 lower quartile had a peak NDVI that was on average 0.088 higher and 7.64 days earlier than 
 for pixels in the upper quartile (Figure 2). 

 7 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

https://www.zotero.org/google-docs/?Xi4wAJ


 Figure 2.  NDVI curves for Sentinel-2 pixels with higher  snow persistence generally have a 
 lower and later peak than curves for pixels with lower snow persistence. Curves plotted from 
 NDVI values fitted by a smoothed-spline model based on observed Sentinel-2 NDVI across 
 a single season. The shaded grey area represents the range of days within which all pixels 
 at each site reached their peak NDVI, while the corresponding colour ribbon represents the 
 mean snow persistence of all pixels which reached peak NDVI on each day within that 
 period. The snow persistence colour gradient shows the relative snow persistence of that 
 point standardised to the maximum and minimum snow persistence within each plot. 

 Higher snow persistence is associated with lower peak NDVI in 
 Sentinel-2 data 
 A higher snow-persistence was associated with a lower peak NDVI in the Sentinel-2 pixels 
 across all three plots (Figure 3). The OLS models using a linear fit showed significant (  p  < 
 0.01) negative relationships between snow persistence and peak NDVI magnitude at all 
 plots (KL: -0.005 ± 0.001; KH: -0.023 ± 0.001; BL: -0.005 ± 0.001; Table S4). For Kluane 
 High, the logarithmic model (y ~ ln(x + 1)) also indicated a significant negative relationship 
 (-0.089 ± 0.004,  p  < 0.01; Table S5). The INLA Matérn  2D models effectively accounted for 
 spatial autocorrelation (Figures S20-23). The slope estimates for Kluane Low (mean = 
 -0.003, 95%CI [-0.004, -0.002]) and Kluane High (mean = -0.005, 95%CI [-0.006, -0.004]) 
 were both significantly negative. However, the 95%CI for Blæsedalen overlapped with zero 
 (Table S16). Here, the breakpoint model indicated an initially positive slope (mean = 0.003, 
 95%CI [0.001, 0.005]) for the snow-persistence interval [0, 5], followed by a negative slope 
 (mean = -0.002, 95%-CI [-0.004, -0.00031]) for the interval (5, 24] (Table S17). 
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 Figure 3.  (a, b, c)  Peak NDVI magnitude had a negative  relationship with snow persistence 
 in Sentinel-2 data at all three sites. Lines represent the predicted mean responses from the 
 OLS regression. For Kluane Low (a) and Blæsedalen (c) these represent a linear fit (y ~ x). 
 For Kluane High (b) the line represents a logarithmic fit  (y ~ ln(x + 1).  (d) Conceptual 
 diagram showing the calculation of snow persistence as the integrated snow cover between 
 the first and last imagery date at a given site, interpolating linearly between observations. 

 Higher snow persistence is associated with later peak NDVI in 
 Sentinel-2 data 
 A higher snow persistence was associated with later peak NDVI timing in Sentinel-2 pixels 
 across all three plots (Figure 4). The OLS models using a linear fit showed significant (  p  < 
 0.01) positive relationships between snow persistence and peak NDVI timing at all plots (KL: 
 0.91 ± 0.054; KH: 1.392 ± 0.056; BL: 0.38 ± 0.022; Table S6). For Kluane High, the 
 logarithmic model (y ~ ln(x + 1) (Figure 4b) showed a significant positive relationship (5.696 
 ± 0.185,  p  < 0.01; Table S7). INLA Matérn 2D models  effectively accounted for spatial 
 autocorrelation (Figures S25-27). The slope estimates for Kluane Low (mean = 0.458, 
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 95%CI [0.38, 0.537]), Kluane High (mean = 0.57, 95%CI [0.489, 0.652]) and Blæsedalen 
 (mean = 0.24, 95%CI [0.202, 0.277]) were all significantly positive (Table S18). 

 Figure 4.  (a, b, c) Peak NDVI timing had a positive relationship with snow persistence in 
 Sentinel-2 data at all three sites. Lines for Kluane Low (a) and Blæsedalen (c) were fitted 
 using a linear fit. The line for Kluane High (b) was fitted using a logarithmic model (y ~ ln(x + 
 1). (d) Dates of drone imagery used to generate snow persistence metric. Differences in 
 timing of observations between sites means a universal metric could not be calculated. 

 Higher snow persistence predicts peak NDVI value and timing in 
 NASA HLSS30 data 
 A higher snow persistence was associated with both a lower peak NDVI magnitude and later 
 peak NDVI timing in HLSS30 data at Blæsedalen (Figure 5). The simple OLS models found 
 a negative relationship between snow persistence and peak NDVI magnitude (-0.01,  p  < 
 0.01; Table S4) and a positive relationship between snow persistence and peak NDVI timing 
 (1.399 ± 0.126,  p  < 0.01; Table S6). INLA Matérn 2D  models effectively accounted for spatial 
 autocorrelation (Figures S24, S28). The 95% CI of the posterior distribution indicated a 
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 negative slope between snow persistence and peak NDVI magnitude (mean = -0.01, 95%CI: 
 [-0.013, -0.006], Table S16), and a positive slope between snow persistence and peak NDVI 
 timing (mean = 1.385, 95%CI [1.138, 1.632]; Table S18). We found that for HLSS30 data the 
 effect sizes between snow persistence and peak NDVI metrics are stronger than in 
 Sentinel-2 data. 
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 Figure 5.  Snow persistence was related to the magnitude and timing of peak NDVI in 
 HLSS30 data at Blæsedalen. The relationships were consistent with those found in 
 Sentinel-2 data, but the effect sizes were stronger. Mapped Sentinel-2 peak NDVI timing (a) 
 visually corresponds with snow persistence (b) and this spatial patterning is preserved in 
 HLSS30 peak NDVI timing (c). The shape and distribution of NDVI curves was similar 
 between coarser HLSS30 data (d) and finer Sentinel-2 data (Figure 1c). (e)  HLSS30 peak 
 NDVI magnitude had a relationship with snow persistence which is consistent with Sentinel-2 
 data (Figure 3c). (f)  HLSS30 peak NDVI timing had a relationship with snow persistence 
 which is consistent with Sentinel-2 data (Figure 4c). The snow persistence colour gradient 
 shows the relative snow persistence of that point standardised to the maximum and 
 minimum snow persistence for each data product (Sentinel-2, HLSS30) at the Blæsedalen 
 plot. The peak NDVI timing colour gradient shows the relative peak NDVI timing of that point 
 standardised to the maximum and minimum peak NDVI day of year for each data product at 
 the Blæsedalen plot. 

 Discussion 
 Summary 
 Our analyses show that higher snow persistence within satellite pixels corresponds with a 
 lower magnitude and delayed timing of peak NDVI across two tundra sites and two satellite 
 data products at different spatial and spectral resolutions. We found only one exception, 
 when accounting for spatial autocorrelation at Blæsedalen, where initial increases in snow 
 persistence corresponded with a  higher  magnitude of  peak NDVI. Surprisingly, we found 
 relationships between snow persistence and peak NDVI were stronger in coarser HLSS30 
 data than in Sentinel-2 data. Our findings indicate that snow persistence contributes to 
 spatial variability in the timing and magnitude of peak NDVI in satellite data products. 
 Changes in sub-pixel snow persistence are poorly accounted for in analyses of Arctic 
 greening  (Myers-Smith  et al.  , 2020)  , yet we provide  initial evidence that they may in places 
 contribute to or drive observed Arctic greening and browning trends. 

 Ecological interactions between snow and peak NDVI magnitude 
 Reduced vegetation productivity or different species composition in areas of consistently 
 late-lying snow patches may explain the observed correspondence between higher snow 
 persistence and lower magnitude of peak NDVI. Limited vegetation productivity due to a 
 snow-shortened growing season has previously been proposed to explain negative 
 relationships between coarse snow products, peak NDVI magnitude  (Tassone  et al.  , 2024; 
 Crichton  et al.  , 2022; Wang  et al.  , 2018)  and early  season NDVI  (Bjerke  et al.  , 2015)  . Snow 
 is also a driver of species distribution  (Niittynen  and Luoto, 2018)  and differences in NDVI 
 have previously been attributed to community composition (e.g.,  Jia, Epstein and Walker, 
 2004)  . As we did not incorporate plot-level vegetation  data in this analysis, we are unable to 
 partition these effects or estimate the influence of snow-driven differences in productivity and 
 species composition on NDVI across the growing season. Nonetheless our results indicate 
 that either, or both, of these mechanisms could be present. 
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 Reversal of snow - NDVI relationships at low snow persistence 
 values 
 At Blæsedalen we found the relationship between higher snow persistence and lower peak 
 NDVI magnitude is reversed at low snow persistence values, where peak NDVI magnitude 
 initially increases with snow persistence. Similar results have been reported for MODIS 
 (Pedersen  et al.  , 2018)  and AVHRR GIMMS  g3  data  (Wang  et al.  , 2018)  , where limited 
 increases in snow cover provide greater access to moisture without restricting access to 
 other resources. Other possible explanations include insulation of the soil from ground frost 
 (Bjerke  et al.  , 2015)  and of roots from frost injury  (Templer, 2012)  . Changes in the direction 
 of the relationship between snow persistence and peak NDVI magnitude may exist for all our 
 plots, however our data do not capture variation in snow persistence where snow completely 
 melted out before the first drone observation. Where relationships with changes of direction 
 exist, these would complicate our ability to predict vegetative and spectral responses to 
 changing Arctic snow cover  (AMAP, 2017)  . 

 Ecological interactions between snow and peak NDVI timing 
 We found that higher snow persistence was associated with a later timing of peak NDVI in 
 Sentinel-2 and HLSS30 data. Similarly, many studies have found that high pre-melt snow 
 water equivalent or late snowmelt timing delays NDVI derived spring phenology metrics due 
 to late phenological cues and resource access  (Qi  et al.,  2021; Assmann  et al.  , 2019; 
 Bieniek  et al.,  2015; Zeng and Jia, 2013; Zeng, Jia  and Epstein, 2011)  , with these 
 relationships supported by field studies (e.g.,  Bjorkman  et al.,  2015)  . However,  Pedersen et 
 al. (2018)  found a non-linear relationship in MODIS  (500 m) data where both early and late 
 snowmelt timing resulted in an earlier peak of NDVI. We suggest that non-linear 
 relationships between snow and phenology may be a function of phenological mixing within 
 coarser satellite pixels  (Helman, 2018)  . The linear  relationship that we found between higher 
 snow persistence and later timing of peak NDVI has precedent in both NDVI derived spring 
 phenology metrics and ecological field studies. 

 Abiotic interactions between snow and peak NDVI 
 While correspondence between snow persistence and peak NDVI may represent ecological 
 responses of vegetation to late lying snow, it may alternatively represent abiotic spectral 
 mixing of snow within a satellite pixel’s NDVI. Fractional snow cover decreases NDVI  (Wang, 
 Springer and Gamon, 2023)  and it follows that snow  coincident with the timing of peak NDVI 
 would limit peak NDVI magnitude. However, this effect is limited for our data as no pixels at 
 Kluane and few pixels at Blæsedalen (Sentinel-2: 7.25%; Landsat: 25.64%) contain snow 
 beyond July 26  th  . Instead, we found an indirect effect,  whereby late-lying snow melts rapidly 
 and produces an outsized NDVI response  (Huemmrich  et al.  , 2021)  , which is poorly 
 represented by curve fitting models and results in underestimated magnitude of peak NDVI 
 (Figure S14). Similarly, the response of NDVI to late-season snow melt may in places drive 
 the timing of peak NDVI more than vegetation phenology, as reported for spring phenology 
 metrics  (Jin  et al.  , 2017)  . Most studies assume NDVI  represents vegetation productivity, yet 
 the NDVI and consequently the timing and magnitude of peak NDVI may be mechanistically 
 influenced by fine-scale snow cover, with similar effects likely for aggregate metrics such as 
 the TI-NDVI. 
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 Snow - peak NDVI relationships across spatial and spectral 
 resolutions 
 Despite a spatial resolution nine times coarser than Sentinel-2, relationships between snow 
 and both the magnitude and timing of peak NDVI were stronger in HLSS30 data. It is 
 possible that the signal-to-noise ratio is stronger in HLSS30 data or that the spectral 
 integration of snow cover is stronger in NDVI derived from HLSS30 data. Variation in the 
 strength of relationships between snow and peak NDVI magnitude dependent on the spatial 
 and spectral resolution of data contributes one possible explanation to observed differences 
 in NDVI trends between satellite data products  (Myers-Smith  et al.  , 2020)  . Regardless of 
 mechanism, we found a strong association of snow persistence with the timing and 
 magnitude of peak NDVI in HLSS30 data, which represent the spatial and spectral resolution 
 of Landsat data commonly used  (Myers-Smith  et al.  ,  2020)  in Arctic greening analyses. 

 Implications for Arctic greening analyses 
 Changes in snow cover have been observed across the Arctic  (AMAP, 2017)  and our 
 findings indicate that reductions in late-lying snow cover may induce spectral  greening  , 
 whereas increased snow cover could induce spectral  browning  . While this effect may 
 represent ecological responses to snow cover, we suggest that the spectral integration of 
 changing snow within satellite pixels may in places abiotically drive both the magnitude and 
 timing of peak NDVI. Where snow drives spectral trends, there is greater potential for 
 misinterpreting vegetation indices as true changes in vegetation productivity or phenology. 
 Underestimates of peak NDVI magnitude due to the presence of snow may lead to the 
 omission of areas of genuine vegetation change.  However,  our analyses were limited to a 
 single season and by spatially autocorrelated plots of limited extents, whereby simple OLS 
 models may overestimate and INLA Matérn 2D models may underestimate effect sizes 
 (Beguin  et al.  , 2012)  . Future research could use multi-season  very-high-resolution satellite 
 imagery to relate snow persistence within Landsat and MODIS pixels to spectral trends over 
 time, incorporating plot level vegetation data wherever possible. 

 Conclusions 
 Spectral analyses of satellite data products show that the Arctic is ‘  greening  ’ in many 
 locations and ‘  browning  ’ in others, with these trends  commonly attributed to temperature 
 driven changes in Arctic vegetation. However, recent work has highlighted the complexity of 
 heterogeneous greening trends  (Myers-Smith  et al.  ,  2020)  . Snow cover has changed in 
 many Arctic locations  (AMAP, 2017)  , yet late season  snow is often too fine in scale to be 
 either accounted for or masked from mid-to-coarse spatial resolution satellite data products. 
 We demonstrate that this fine-scale snow persistence within satellite pixels is associated 
 with both a lower magnitude and later timing of peak NDVI, with stronger effect sizes for 
 HLSS30 data. Where snow cover is changing, it may drive spectral greening and browning 
 trends through either ecological responses of vegetation or abiotic integration of snow cover 
 within the estimated peak NDVI. We recommend that future work explores the spatial extent 
 of the relationship between snow and peak NDVI and better resolves the mechanisms 
 underlying these relationships. 
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