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Abstract 17 

Feature extraction from environmental observation data based on deep learning models has made 18 

significant progress. However, the current methods may not be optimal because of the increasing 19 

volume of data, complexity of data characteristics, and labeled data limitations. In this study, we 20 

focused on deep metric learning as a new application for environmental observation data to overcome 21 

these challenges. The extraction of features such as patterns and changes from large and complex 22 

environmental observation data using a deep metric learning approach may provide new opportunities 23 

for monitoring ecosystems experiencing unprecedented loads from climate change and human 24 

activities. We expect that deep metric learning will be a powerful tool for various ecosystem 25 

monitoring systems, from remote sensing of wide-area data to ecological data obtained through field 26 

surveys. 27 
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Introduction 33 

Understanding environmental changes through continuous and long-term monitoring is an important 34 

process that can provide a warning of biodiversity loss and adverse environmental changes (Pasher et 35 

al., 2014). Monitoring and assessing the impacts of ongoing conservation programs are important for 36 

sustainable and effective ecosystem management. Monitoring through images and videos, which 37 

observes in a non-contact or non-destructive manner can reduce the stress on ecosystems and living 38 

organisms (Marini et al., 2018); they are one of the main methods of ecosystem monitoring. Recently, 39 

computer vision-based ecosystem monitoring has significantly progressed with the development of 40 

deep learning (Franceschini et al., 2023; Jamali et al., 2022; Zhang et al., 2020). Recent developments 41 

in observation equipment technology have enabled data accumulation at higher frequencies and 42 

resolutions over a wider area. Because of the great compatibility between these backgrounds and the 43 

technology provided by deep learning, ecosystem monitoring employing deep learning models will be 44 

a promising field in the future. However, with the development of various methods, challenges specific 45 

to ecosystem monitoring have emerged. It is often difficult to prepare large labeled datasets, and there 46 

may be cases in which the observed data characteristics belong to untrained classification classes. To 47 

address these challenges, new methods that use deep metric learning, which is a combination of deep 48 

learning and metric learning, have been proposed. 49 

 50 
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In general, metric learning projects a smaller distance between samples belonging to the same class, 51 

while increasing the distance between samples belonging to different classes. Deep metric learning 52 

adopts the metric learning concept and learns the distance or similarity between data (Kaya & Bilge, 53 

2019; Lu et al., 2017a) (Fig. 1 and 2). This advancement provides a solution to the challenges 54 

associated with few-shot and zero-shot learning methods. Few-shot learning is a method designed to 55 

handle various tasks by efficiently learning from a few data sets (Li, X. X. et al., 2023), and zero-shot 56 

learning is a learning method that handles unknown classes not present in the training data by adding 57 

supplemental information to existing models (Zabihzadeh & Masoudifar, 2023). With the deep 58 

learning approach, the classification accuracy tends to depend on the amount of labeled training data, 59 

and it has been difficult to achieve sufficient effectiveness for small amounts of data or unknown 60 

classes. In contrast, deep metric learning techniques, which can be applied to small datasets or datasets 61 

with unknown classes, are often used for face recognition and verification (Golwalkar & Mehendale, 62 

2022; Hu et al., 2014; Lu et al., 2017b) and anomaly detection (Kosuge et al., 2023). Recently, it has 63 

also been applied in the field of natural science such as remote sensing, agriculture, and wildlife 64 

identification. In this study, we introduce some examples of research that have used deep metric 65 

learning and discuss the potential of this technology in the field of ecosystem monitoring. Such 66 

approaches towards increasingly large and complex data streams may lead to solutions for more 67 

effective utilization of spatiotemporal imbalances in ecosystem monitoring data. 68 
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 69 

Deep metric learning application in remote sensing 70 

Improvements in Earth observation technology have provided the opportunity to access vast amounts 71 

of data (Vance et al., 2024). At the same time, there has been growing interest in developing techniques 72 

for processing, analyzing, searching, and clustering the obtained data. Methods based on deep learning 73 

models have significantly contributed to the performance of these technologies. However, current 74 

deep-learning models require preparing large labeled datasets for training, and the significant cost 75 

incurred in this process is a challenge. Therefore, methods that use a small or limited number of labeled 76 

datasets have been developed. The few-shot object detection method developed for aerial image 77 

analysis uses deep metric learning and knowledge inheritance to successfully improve the detection 78 

performance in novel categories (Li, W. Z. et al., 2023). A deep metric learning approach with 79 

generative adversarial network regularization was designed to achieve more accurate high spatial 80 

resolution remote sensing image retrieval with small training samples. It has been demonstrated to 81 

outperform state-of-the-art methods (Cao et al., 2020). Various characterization methods for remote 82 

sensing images have been proposed to address the increasing complexity of observational data 83 

associated with recent developments in remote-sensing technology. Characterization methods that 84 

incorporate deep metric learning are promising in this area; however, the limitations of labeled data 85 

may prevent their application to various opportunities. To address this issue, a semi-supervised deep 86 
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metric learning model (specifically, a metric space that jointly preserves the discrimination capability 87 

for labeled and unlabeled remote sensing scenes trained using convolutional neural networks (CNNs)) 88 

was proposed, which can be implemented with a small amount of labeled data (Kang et al., 2020). The 89 

impact of annotation errors on image characterization was also investigated, and a new loss function 90 

was employed to augment label noise tolerance in the remote sensing image characterization 91 

framework based on deep metric learning (Kang et al., 2021). Sphere loss has also been proposed to 92 

simultaneously reduce the intra-class distance and increase the interclass distance (Wang et al., 2021). 93 

A similarity retention loss based on deep metric learning (Zhao et al., 2020) has also been proposed to 94 

improve the efficiency of the retrieval of large amounts of remote sensing images, and a new 95 

architecture for deep metric learning based on residual attention has been developed (Cheng et al., 96 

2021). In this architecture, the residual attention is improved in terms of number and position, as the 97 

residual attention branch obtains more distinctive features, and improvements in search tasks have 98 

been demonstrated. 99 

Deep metric learning has also been applied to images obtained using various sensors and to synthetic 100 

images. Remote-sensing images obtained using hyperspectral imaging comprise tens to hundreds of 101 

spectral bands. This vast amount of spectral information provides better object discrimination than 102 

multispectral imagery and has been applied to environmental monitoring and precision agriculture. 103 

Synthetic aperture radar (SAR), an all-weather sensor, observes the physical properties of the ground 104 
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surface, such as bumps, slopes, and undulations. Polarimetric SAR observations obtained using SAR 105 

enable object identification by receiving multiple pieces of information. Because of these 106 

characteristics, SAR sensors are used in variety of applications, such as monitoring ground changes 107 

(uplift and subsidence) (Zhang et al., 2021) and deforestation (Bouvet et al., 2018). As with the remote 108 

sensing images described above, the limitation of labeled training data has been an issue for images 109 

obtained using either sensor. To address this problem, hyperspectral image classification, for example, 110 

proposed a deep metric learning-based feature embedding model that can address both same-scene 111 

and cross-scene classification tasks under the constraint of a few labeled samples (Deng et al., 2019). 112 

New CNNs have been developed using both multiscale convolution and determinantal point process-113 

based diversity-promoting deep metrics (Gong et al., 2019), and the application of online hard mining 114 

concepts to deep metric learning has significantly improved the classification accuracy of limited 115 

labeled data (Dong et al., 2021). A new deep semi-supervised metric learning network was proposed 116 

to reduce labeled data limitations in polarimetric SAR classification, and the use of discriminative 117 

information obtained from metric learning improved the classification performance (Liu et al., 2020). 118 

A pan-sharpened image, which is a high-resolution multispectral image obtained by combining high-119 

resolution panchromatic and low-resolution multispectral images (Vivone et al., 2015), was designed 120 

to overcome the physical limitations of spatial and spectral resolutions in optical imaging. Despite 121 

advancements in various pan-sharpening techniques, the inherent biases introduced during image 122 
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synthesis continue to present challenges, highlighting the need for further refinement in this field. A 123 

combined approach incorporating deep metric learning was demonstrated to perform better than 124 

previous methods in sharpening spatial information and preserving spectral information (Xing et al., 125 

2018). 126 

 127 

Remote sensing is used to monitor changes in land use and vegetation in various situations, for 128 

example, changes caused by temporary events, such as human-induced disturbances and natural 129 

disasters, to relatively long-term events, such as climate change. The recent developments in 130 

observation technology have provided various possibilities of wide-area monitoring by aircraft and 131 

satellites. However, there are also many challenges, such as the processing and analysis of increasingly 132 

complex data and the spatiotemporal imbalance in the amount of data. An approach that incorporates 133 

deep metric learning to address these issues may enable more stable and accurate global monitoring. 134 

On the contrary, since it is difficult to predict the ecological impacts of environmental changes caused 135 

by recent climate change and anthropogenic loading, it has become paramount to develop frameworks 136 

that can handle unknown categories in the future. 137 

 138 

Possible application of deep metric learning to ecological field observation data 139 

In ecosystem monitoring, many computer vision techniques were employed in surveys conducted at 140 
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the ground level. In recent years, the miniaturization of observation equipment, improved battery 141 

performance, and the development of recording media have made it possible to obtain large-scale field 142 

data. Against such backdrops, the handling, analysis, classification, and clustering of large amounts of 143 

data, are challenged by limited training data and extreme data-volume imbalances among classes. 144 

Deep metric learning has provided many effective solutions to such problems in remote sensing. 145 

However, their application in ground-level ecosystem monitoring is still in its initial stages. Miele et 146 

al. (2021) proposed revisiting animal re-identification using image similarity networks and metric 147 

learning with CNNs to re-identify individual giraffes based on their body surface patterns. In this study, 148 

deep metric learning techniques were utilized to overcome an unknown class, which is difficult to 149 

solve using current deep learning models. Despite the limited number of images per individual in the 150 

training dataset, the CNN re-identification performance reached a top-1 accuracy of approximately 151 

90%, whereas it performed slightly worse for unknown individuals.  152 

 153 

Recently, its application to DNA sequence data obtained from environmental DNA metabarcoding has 154 

been reported. For dimensionality reduction and clustering of the huge amount of complex and high-155 

dimensional sequence data generated, Lamperti et al. (2023) proposed a deep learning model that 156 

incorporates deep metric learning and combines multiple neural networks. They used this method to 157 

visualize ecological characteristics from environmental DNA datasets in two-dimensional space and 158 
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demonstrated that features could be extracted more effectively than compared with previous methods. 159 

 160 

While these methods demonstrate the potential of deep metric learning for other flora and fauna and 161 

various datasets, they also suggest challenges to overcome, such as the need for more valid training 162 

datasets, diverse data collection, training time proportional to the data volume, and the identification 163 

of unknown classes. Recently, a zero-shot deep metric learning approach using only a few samples (or 164 

even one sample) was proposed to identify diseases and pests in plant leaves (Zabihzadeh & 165 

Masoudifar, 2023). The proposed method uses General Discriminative Feature Learning (Al-Kaabi et 166 

al., 2023) as the deep feature extractor and uses a proxy-based loss that effectively captures the overall 167 

structure of the embedding space with fast convergence. This approach is effective in rare cases or 168 

when it is difficult to collect large datasets. If such few-shot or zero-shot learning techniques are 169 

applied to surveys of rare species of wild plants and animals, there will be an increasing number of 170 

opportunities to provide important information for the maintenance and conservation of biodiversity.  171 

 172 

Like individual identification, wildlife behavior recognition provides important information for 173 

ecosystem monitoring. Information obtained from wildlife behavior recognition is very important for 174 

maintaining and conserving ecosystems, such as understanding the ecology of animals and their 175 

distribution and movement based on this information. Behavior recognition using deep metric learning 176 
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has already been applied to humans and has shown promising results as a solution to the problems of 177 

intra-class variation due to individual differences and the processing of untrained behaviors (Gutoski 178 

et al., 2021; Li et al., 2024). These challenges could also apply to wildlife behavior detection, which 179 

is difficult to encounter, and extreme imbalances in data can be expected. Therefore, applying human-180 

applied technologies to wildlife will accelerate the development of ecosystem monitoring technologies. 181 

However, this may be a barrier to accelerated technological development, because the amount and 182 

variety of wildlife behavior data are far less balanced than those of humans. Advancements in 183 

observation equipment and methods, as well as the development of new technologies, such as few-184 

shot learning or zero-shot learning, may provide solutions to this challenge. 185 

 186 

Future remarks 187 

Deep metric learning is very effective at learning distances and similarities between data and can be a 188 

powerful tool for extracting similarities and changes in complex data often observed in ecosystems. 189 

In past ecosystem monitoring, some data, especially ground-level data, were often spatiotemporally 190 

heterogeneous and difficult to handle. However, for themes such as climate change, where long-term 191 

data validation is important, incorporating heterogeneous data with the latest large-scale data may lead 192 

to new hypotheses. Developing methods for monitoring biodiversity and population dynamics using 193 

deep metric learning will provide opportunities to solve ecosystem monitoring challenges, such as 194 
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manual image analysis in the big data era, and open new avenues for biodiversity research and 195 

conservation. However, future challenges such as data dependency, model overfitting, and 196 

interpretability remain. Collaboration among researchers from various disciplines is essential for 197 

maximizing the potential of deep metric learning to protect ecosystems and mitigate the impacts of 198 

human activities and climate change (Carey et al., 2019). 199 
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Figure captions 209 

Fig. 1 210 

Visual representation of framework of deep learning and deep metric learning. 211 

 212 
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 Fig. 2 213 

Distance Relationship for a Siamese Network (A) Desired handwritten data discrimination for 3 and 214 

8 digits (B) after Siamese network applied to MNIST data for 3 and 8 digits. The figures and captions 215 

are taken from Kaya and Bilge (2019). Note: The number of epochs indicates how many times to 216 

iterate over the entire training dataset. 217 

 218 
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