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Abstract 32 

Accelerated biodiversity loss during the Anthropocene has destabilised 33 

functional links within and between ecosystems. Migratory species that cross 34 

different ecosystems on their repeated journeys between breeding and non-breeding 35 

sites are particularly sensitive to global change because they are exposed to various, 36 

often ecosystem-specific threats. As these bring both lethal and non-lethal 37 

population impacts, many migratory species are declining, making this group 38 

especially vulnerable to global change.  39 

To mitigate their decline, research at a continental and flyway scale is 40 

required to adequately monitor changes in the migratory and demographic 41 

processes of populations during all parts of the annual cycle. The Motus Wildlife 42 

Tracking System (Motus) could provide a solution to data gaps that exist for small, 43 

migratory species. Motus is an automated telemetry system for animal tracking, 44 

which provides a collaborative network by using a single VHF radio frequency for all 45 

tracked individuals, in combination with an individual tag identifier. Motus can provide 46 

information on movements made by individuals of small migrant species, thus aiding 47 

our understanding of aspects of their migration that could impact demographic 48 

parameters.  49 

Here we describe conservation-focused research opportunities, with a 50 

particular lense on small European migrant birds. We highlight examples from the 51 

existing network, and identify geographical gaps which, if filled, could track continent-52 

wide movements. We conclude that Motus is a useful tool to produce individual-level 53 

migration information for a variety of small-bodied taxa, and that a drive to expand 54 

the network will improve its ability to direct conservation plans for such species.   55 

  56 
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Introduction 57 

 Biodiversity loss driven by land use change, exploitation of natural resources, 58 

and affected further by climatic disruption, is a defining feature of the Anthropocene 59 

(Sala et al. 2000). A decline in habitat availability and disruption to ecosystem 60 

structure, reducing critical services such as nutrient cycling, carbon storage and 61 

flood control, has led to declines in a wide range of taxa globally (Jaureguiberry et al. 62 

2022). The impacts of anthropogenic development do not just manifest through 63 

physical changes, i.e. habitat loss, but also through increases in zoonotic and vector-64 

borne diseases (Jaureguiberry et al. 2022), and pest outbreaks (Ayres and 65 

Lombardero 2018). These impacts affect species’ distributions, abundances, fitness, 66 

and consequently their ability to complete their life cycle successfully (Bellard et al. 67 

2012). 68 

Of particular concern are migratory species, which serve as ecological 69 

indicators and providers of vital contributions to ecosystem functioning, including 70 

biomass production, pollination, and pest control (Bauer and Hoye 2014, Satterfield 71 

et al. 2020). Migratory species experience a variety of environmental conditions on 72 

their seasonal, sometimes inter-continental journeys (Turbek et al. 2018, Zurell et al. 73 

2018; Horton et al. 2020; Howard et al. 2020). Rapid changes in land use and 74 

configuration, throughout their annual cycle, can mean that their requirements for 75 

reproduction and survival are compromised (Birnie-Gauvin et al. 2020, Marcacci et 76 

al. 2022, Rigal et al. 2023). There are also additional threats such as (illegal) hunting 77 

(Jiguet et al. 2019), the extension and complication of ecological barriers (Gauld et 78 

al. 2022), as well as increasingly unpredictable climatic patterns decoupling the 79 

phenology of ecologically linked species (Iler et al. 2021, Clarke et al. 2022).  80 
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These challenges directly conflict with the multi-factorial optimisation of 81 

migration, which is often based on inherited, integrated migration strategies 82 

(Åkesson and Helm 2020; Schmaljohann et al. 2022, Fattorini et al. 2023). While 83 

migrant species differ in their migratory timing, distance, speed, and route, their 84 

journeys all involve repeated, alternating migratory endurance flights and stopover 85 

periods for resting, recovering and fuelling (Alerstam et al. 2003; Åkesson and 86 

Hedenström 2007; Schmaljohann et al. 2022). Understanding the factors impacting 87 

population trends of these species, i.e., the changes in vital rates that drive 88 

population growth or decline, is essential (Morrison et al. 2016), as many migratory 89 

species cannot respond to changes at a sufficiently rapid pace, producing 90 

widespread  population declines (Both et al. 2006, Wilcover & Wikelski 2008, Frick et 91 

al. 2020, Rosenberg et al. 2019, Vickery et al. 2023).  92 

The Convention on the Conservation of Migratory Species highlights the need 93 

for a multi-species, flyway level perspective in terms of research into population 94 

declines (UNEP/CMS 2020, Frick et al. 2020, Marcacci et al. 2022, Chowdury et al. 95 

2023, Vickery et al. 2023). However, gathering data from a sufficiently high number 96 

of individuals from different populations at this scale, is extremely challenging 97 

(Morrison et al. 2016; McKinnon and Love 2018), and reliant on international 98 

collaboration (Nadal et al. 2020; Vickery et al. 2023, Serratosa et al. 2024). 99 

Particularly for small and light migratory passerines, waders and highly aerial 100 

species such as swifts, their size and behaviour have rendered it difficult to study 101 

their movements (Wikelski et al. 2007, Fiedler 2009). 102 

 103 

 104 
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Current methods and their limitations 105 

Studying when and where differences in population processes occur in 106 

migratory birds is notoriously difficult (Doerr and Doerr 2005; Border et al. 2017, 107 

Telensky et al. 2020). However, quantifying variation in survival, mortality, emigration 108 

and immigration (summarized as dispersal), is crucially important to formulate 109 

effective conservation measures for populations and species that are at risk of 110 

decline (Gómez et al. 2021, DeMars et al. 2023).   111 

Currently, we have little detailed spatial and temporal information on migrating 112 

small birds. Broad scale migration patterns across Europe, including concentrations 113 

of both avian and insect migrants passing through marine and mountainous regions, 114 

have been identified using radar (Bruderer & Jenni 1990, Bruderer & Liechti 1999, 115 

Nilsson et al. 2019, Weisshaupt et al. 2021, Hirschhofer et al. 2024). Yet radar data 116 

largely do not allow us to tease out species-specific and individual-level variation in 117 

large-scale movements (Schmaljohann et al. 2008, Zaugg et al. 2008), which would 118 

facilitate links to demography, physiology and ecology.  119 

In contrast, several million individuals have been marked using metal or 120 

colour rings across Europe (Du Feu et al. 2016, Spina et al. 2022), contributing to 121 

our fundamental knowledge of bird movements. Yet recapture, recovery, and 122 

resighting probabilities are largely low (across 32 European level ringing schemes, 123 

recovery rate for all species combined varied from 0.6 – 7.6%; Baillie 1995). This is 124 

particularly the case on the wintering grounds but is highly variable amongst species 125 

and locations (Thorup et al. 2014). For example, the Willow Warbler (Phylloscopus 126 

trochilis) is ringed in huge numbers on its breeding ground in northern Europe, but 127 

only a very small number of recoveries take place in Africa. Specifically, in Finland, 128 
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about 16000 individuals of this species need to be marked on the breeding grounds 129 

for each recovery in sub-Saharan Africa (Hedenström and Pettersson 1987). 130 

We can address the disadvantages of these methods by tracking individual 131 

migratory, pre- and post-breeding dispersal (Mukhin et al. 2005, Züst et al. 2023), 132 

and nomadic, non-breeding movements (Snell et al. 2018; Mckinnon et al. 2019). 133 

However, individual tracking of small migrants requires tracking devices weighing a 134 

maximum 3-5 % of an individual’s body weight (Barron et al. 2010), which excludes 135 

most tracking technology on the market (Figure 1; Bridge et al. 2011, McKinnon & 136 

Love 2018), including new low-power, wide area devices such as SigFox or 137 

LoRaWAN (Wild et al. 2023). Radio- transmitters, however, have already reached 138 

minimum weights of currently 0.13 g (Lotek NanoPin), lighter than the smallest light-139 

level geolocators (Lotek: 0.3 g), and significantly smaller than GPS units which 140 

require significant energy to relay information to a satellite and fix a position. Some 141 

radio-tracking systems, e.g., the tRackIT System and the ATLAS project, have 142 

narrow spatial coverage and a limit on how many individuals (c. 200) they can 143 

monitor concurrently (Gottwald et al. 2019, Beardsworth et al. 2022). 144 

The Motus Wildlife Tracking System (Motus) exploits a network of VHF 145 

receiving stations aligned on the same frequency, which continuously receive and 146 

record uniquely coded signals of tagged individuals using mostly directional Yagi 147 

antennae without the need for recapture (Taylor et al. 2017, Imlay et al. 2020). Here, 148 

we focus on filling conservation and demographic-specific knowledge gaps using 149 

Motus to track migratory birds, and we hope to further spark the collaborative spirit of 150 

Motus to create a denser network in Europe and resemble the situation in North 151 

America.  152 
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Motus and its benefits 153 

Motus originated in Canada as a partnership between Acadia University and 154 

Birds Canada (Taylor et al. 2011, 2017), and its spread across the Americas is a 155 

great success story of collaborative research (see https://motus.org). Globally, to 156 

date (December 2024) there are now 875 established tagging projects, which 157 

combined have tagged 50,688, animals of 402 species. The entire Motus network at 158 

the moment consists of 2060 receivers, and the largest single project array consists 159 

of 109 receivers in Ontario.  160 

Publications resulting from Motus data total 214, which combined were cited 161 

according to Zotero >500 times. The number of publications based on Motus data 162 

has more than doubled since 2015/16 (Figure 2), and the lead and coauthors of 163 

these publications are rarely just limited to academics; the application of Motus has 164 

been recognised by multiple stakeholders such as the US Fish & Wildlife Service 165 

(USFWS), National Parks Service (NPS), Canadian Wildlife Service (CWS) and 166 

BirdLife Europe (Machado et al. 2024). 167 

Investment in the network across North America continues to grow, including 168 

in March 2024 a grant of $3.1 million CSD awarded to a consortium of five Canadian 169 

universities and Birds Canada to continue installing Motus receiving stations across 170 

the country, as well as to invest in community-based science. This investment, 171 

combined with a specific mention within the CMS of automated radio tracking 172 

deployed at a flyway scale (COP13, Resolution 12.26) demonstrates the value, and 173 

potential future value, of Motus to conservation.  174 

The initiation of Motus in Europe started in 2017, and although the network 175 

has grown slower than in the Americas there is now a dense network of passive 176 
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receiving stations (e.g. Figure 3) along the coasts of Germany, the Netherlands, and 177 

the UK, and to a slightly lesser extent in Sweden, Denmark, Belgium and France, 178 

with a number of additional stations in other countries, and offshore (Figure 4). 179 

The network of stations in Europe is still patchy, particularly in eastern 180 

Europe, and there is a lack of a universally-permitted tracking frequency, so does not 181 

yet allow continuous tracking across the continent. In many European countries, the 182 

frequency of 150.1 MHz is authorised either temporarily or permanently for wild 183 

animal telemetry tracking. Multi-frequency detection by Motus receivers is possible, 184 

but it incurs additional expense for extra equipment. For example, adding antennas 185 

to receiving stations for monitoring the license-free frequency of 434 MHz would cost 186 

approximately €80 – 300 per station, for an additional 1 - 4 antennas, plus the extra 187 

cost of cables. For the tags, researchers can select from among a number of options 188 

and device parameters, including burst interval (usually from 1 s to 1 min), battery or 189 

solar power, attachment and antenna type, in line with their specific scientific 190 

requirements (Figure 1).  191 

Motus has many promising features, including its extended temporal and 192 

spatial data gathering capacity, compared to standard radio-tracking. In addition to 193 

autonomous, near-real-time recording of the receivers and sub-0.5 g tags, the spatial 194 

scale of detections is in the order of several kilometres, rather than orders of 195 

magnitude higher as with geolocators (Taylor et al. 2017), although new multi-sensor 196 

tags have shown substantial improvements in positional accuracy (Nussbaumer et 197 

al. 2023). Receiving stations can, in theory, be placed anywhere (see Figure 3b) and 198 

have a 10 kilometre-plus detection range, and therefore data capture is less limited 199 

by researcher effort, in contrast to commonly used methods such as bird ringing 200 

(Griffin et al. 2020; Flack et al. 2022). Fixed positioning of the receiving stations 201 
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(ideally at sites of importance to the species of interest to maximise detection 202 

probability), along with an unrestricted recording period, also enables standardized 203 

data collection, reducing observer-bias (Griffin et al. 2020). 204 

Despite the advantages, there are drawbacks of radio-tracking studies in 205 

general. Most studies do not detect all of the individuals which are tagged; the 206 

reasons for this are many and are not mutually exclusive, but can include loss of the 207 

tag, predation, emigration, tag failure, topography or weather conditions. Crewe et al. 208 

(2020) reported rates closer to 50-70%, whereas a dense coverage of receivers on 209 

the small island of Helgoland repeatedly resulted in detection rates of 95-100% 210 

(Karwinkel et al. 2022, 2024). There are also uncommon occurrences of high levels 211 

of ‘false positive’, or uncoded detections, which can appear if large numbers of 212 

individuals are released at once close to a receiver. Mitigations, such as staggered 213 

switching on of the tags to encourage differential pulse emission, can be put in place, 214 

and the numbers required to cause this confusion mean this is unlikely to happen in 215 

a ‘natural’ scenario.   216 

Motus is already producing important insights into the movements of migrating 217 

and wintering European birds, including a better understanding of the migratory and 218 

pre-migratory movements of sea-crossing thrushes (Brust et al. 2019) and 219 

differences between long and short distance migrants in stopover time and flight 220 

direction (Packmor et al. 2020, Rüppel et al. 2023). Examples from Europe and 221 

North America show that Motus can gather long-term, annual cycle data, in a 222 

relatively low-cost manner, on groups and time periods (e.g. juvenile fledging) that 223 

are often missing from population studies (Satterfield et al. 2020, Martell et al. 2023). 224 

 225 
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How Motus can help to address knowledge gaps in small migratory bird 227 

movement by collecting demographic information. 228 

Survival and mortality  229 

Despite the biological significance of survival and mortality on population size 230 

and its dynamics (Sandercock 2020), little is known about both rates in migratory 231 

passerines. Within migratory species, variation in survival among populations can be 232 

linked to alternative routes and their different pressures (Hewson et al. 2016). The 233 

latter may increase population-specific immediate and delayed fitness costs 234 

(Dhanjal-Adams et al. 2017), which might be particularly prevailing in those areas 235 

that support high numbers of ‘co-migrants’ (multiple species moving through major 236 

sites and corridors simultaneously – Cohen et al. 2020). The convergence of 237 

otherwise spatially segregated populations at single locations may also increase the 238 

probability of disease transmission with delayed fitness costs (Cohen et al. 2020).  239 

 To obtain information on route- or area-specific mortality rates, focusing 240 

receiving station placement in closely packed ‘fence’ or ‘curtain’ formation (Figure 4) 241 

would provide ‘checkpoints’ for tagged migrants along their migratory routes. If there 242 

are sufficient stations intersecting migratory routes (and adequate numbers of 243 

individuals are tagged), then obstacles that slow down migration can be identified, 244 

alongside estimates of mortality rates for such areas (Klaassen et al. 2014, Buechley 245 

et al. 2021). Survival has been successfully estimated using Motus for the Kirtland’s 246 

warbler (Setophaga kirtlandii; Cooper et al. 2024). This species’ limited population 247 

size and discrete wintering range, lends itself to Motus, and a robust design 248 

Cormack-Jolly-Seber model allowed the calculation of apparent survival rates with a 249 
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high level of certainty, knowing that a high proportion of marked individuals had been 250 

detected.  251 

Gonzalez et al. (2021) used Motus to identify habitat-specific overwinter 252 

survival rates in the Swainson’s Thrush (Catharus ustulatus), which can be used to 253 

inform habitat protection and management on the wintering grounds. Motus has also 254 

been used by Brunner et al. (2022) to identify high migratory connectivity amongst 255 

populations of the elusive Swainson’s warbler (Limnothlypis swainsonii), which has 256 

implications for population-specific changes and can direct future monitoring work. 257 

These cross-continental studies demonstrate the power of Motus to collect data at 258 

multiple scales, helped by the fact that tags do not need to be recaptured to retrieve 259 

the data, therefore reducing bias. Extensive testing of detection capability of an 260 

antenna array in a fixed area, is essential to maximise coverage and the ability to 261 

produce survival estimates. Better still if survival is estimated across a limited area 262 

(Cooper et al. 2024) and restricted temporal period to increase the robustness of the 263 

estimates (Evans et al. 2020, Bliss et al. 2020).  264 

Identification of Stopover sites 265 

Motus can be used in regional arrays that expand outwards from a known 266 

stopover site, allowing identification of exploratory and regional movements by birds 267 

that may be assessing the wider area, often undertaken at night (Taylor et al. 2011, 268 

Brown and Taylor 2015, Schmaljohann & Eikenaar 2017). In Europe, this could build 269 

on current ringing efforts at hotspots (e.g. Bay of Biscay; Strait of Gibraltar) but at 270 

spatial scales not feasible for ringing. Pinpointing specific sites for targeted 271 

conservation efforts is important, where limited, localised stopover site use could 272 

induce higher vulnerability in certain migrating species (Bayly et al. 2013, Gómez et 273 

al. 2014, Hagelin et al. 2021).   274 
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Temporal information on arrival and departure time, using Motus on multiple 275 

individuals of different species, can help with elucidating the functions of stopover 276 

sites (Moore 2018, Linscott and Senner 2021, Schmaljohann et al. 2022). 277 

Identification of these functions could be very valuable in the context of future global 278 

climate change, when the current conditions of stopover sites may degrade, or they 279 

might even disappear completely (Bayly et al. 2018). Smetzer and King (2018) used 280 

a regional Motus network to identify a major stopover area for Blackpoll warblers 281 

(Setophaga striata) and Red-eyed Vireos (Vireo olivaceous) in the Gulf of Maine of 282 

the United States. The prolonged stopovers recorded by both species suggest that 283 

the region may serve as a major refuelling area when preparing for long-distance 284 

migratory endurance flights, thus demonstrating the area’s high conservation value.  285 

Stopover sites on either side of ecological barriers, could be equipped with 286 

Motus stations in high densities, (e.g. distance of 5 - 10 km between stations but 287 

variation in detection distance due to topography and the behaviour of the species 288 

must be taken into account), to provide insights into how birds respond to such 289 

barriers (e.g. Sjöberg et al. 2015, Zenzal et al. 2021). This might include local to 290 

regional scale movements before crossing, intrinsic and extrinsic conditions required 291 

for a successful crossing, stopover duration, departure directions, and potential 292 

differences between populations and seasons. Both Holberton et al. (2019) and 293 

Herbert et al. (2022) used Motus to demonstrate site-based variation in stopover 294 

duration, which was related, at least in part, to bird condition and morphology. This 295 

indicates some level of migratory connectivity, and as such, loss, or degradation of 296 

one or more stopover sites could have population level implications.  297 
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Dispersal, immigration and emigration  298 

Natal and breeding dispersal are critical but understudied fundamental 299 

biological processes, partly because nestling and juvenile survival is generally so low 300 

that high manpower and financial investment is required to track a few individuals. 301 

Dispersal consists of the initial process of emigration from a breeding site, and the 302 

subsequent immigration to another (Matthysen & Clobert 2012).   303 

Species with discrete breeding sites restricted by habitat may display genetic 304 

structure that could increase, and become inbred, with further habitat loss and 305 

climate change without immigration (Day et al., 2023). These changes may 306 

consequently lead to their rapid decline if survival is also low (Schaub et al. 2012, 307 

2013). Understanding how these populations are connected through immigration and 308 

emigration (e.g. as in le Roux & Nocera 2021 using Motus on Chimney swifts) to 309 

avoid loss of genetic diversity, is important for deciding what conservation measures 310 

might be useful (Driscoll et al. 2014). We can estimate emigration and immigration 311 

rates of a species of interest, through comprehensive tagging campaigns (ethical 312 

considerations of such projects notwithstanding; Soulsbury et al. 2020), where Motus 313 

stations cover initial breeding sites, and at the same time the potential areas to 314 

where the birds might disperse.  315 

Regional scale movements of juvenile Blackpoll warblers (Setophaga striata), 316 

Kirtland’s Warbler and Barn Swallow (Hirundo rustica), have been demonstrated 317 

prior to migration using the Motus network (Brown and Taylor 2015, 2017; Evans 318 

2018; Cooper and Marra 2020). Data are particularly needed from juveniles to 319 

assess when, how and why they decide on breeding site settlement (Doerr and 320 

Doerr 2005; Mukhin et al. 2018), and these studies suggest that tracking the 321 
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dispersal of breeders, and fledging juveniles, to new habitats in the region, is feasible 322 

using this system.  323 

Questions remain about the function of exploratory dispersal movements, 324 

which may be preparatory information gathering trips (‘homing target’ or ‘habitat 325 

optimization’ hypotheses, Mitchell et al. 2015), or pre-migratory flights (Züst et al. 326 

2023). This exploration may also relate to range expansion, and individual or species 327 

responses to climate change (Driscoll et al. 2014, Dufour et al. 2021, 2022). Tracking 328 

individuals during the dispersal phase can help us to understand the role of (long-329 

distance) dispersal in the evolution of new migration routes and wintering grounds, 330 

perhaps as part of the wider phenomenon of vagrancy (Lees & Gilroy 2009, Dufour 331 

et al. 2021, 2022).  332 

Motus’ ability to expand spatially and temporally beyond the capabilities of 333 

manual VHF tracking, thus reducing bias and monitoring ‘hidden’ movements (Züst 334 

et al. 2023), can then increase the power of both juvenile fledging studies (Cox et al. 335 

2012), and medium-long distance post-breeding dispersal (Evans et al. 2018, Hayes 336 

et al. 2024). Results from such studies can benefit practical conservation decisions 337 

to improve our understanding of how far and in what direction juveniles disperse. 338 

Tracking of many different young individuals can also highlight how individual 339 

phenotypes and differences in body condition might lead to differential post-fledging 340 

survival (Motus fledging study of barn swallows: Evans et al. 2020), and how this 341 

might be affected by surrounding habitat quality (Wood thrush: Hayes et al. 2020). 342 

These practical elements are invaluable to formulate effective conservation 343 

measures and facilitate population stability (Travis and Dytham 2013; Niebuhr et al. 344 

2015, Endriss et al. 2019). 345 
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Understanding migratory decisions 346 

In addition to using the Motus network to describe migration, it can facilitate 347 

an ‘experimental’ approach, i.e. extending laboratory-based studies in natural 348 

scenarios (Goymann et al. 2010 and Schmaljohann and Klinner (2020). For instance, 349 

by radio-tagging “lean” and “fat” individuals of a species on a single day to minimize 350 

the effect of weather variation on the birds’ departure decision (e.g. Karwinkel et al 351 

2022, 2024). When numerous individuals subject to the same external conditions are 352 

tracked at the same time, this may then allow estimation of conditions when most 353 

individuals migrate (Delingat et al. 2008, Schmaljohann & Klinner 2020), for example 354 

during favourable winds (Lagerveld et al. In Press).  355 

Parameters derived from flights of individuals tracked with Motus such as 356 

departure and landing decisions, speed and routes (Figure 5a; Brust et al. 2019, 357 

Packmor et al. 2020, Brunner et al. 2022; Linhart et al. 2023, Ruppel et al. 2023), 358 

can allow comparisons in behaviour among individuals of different populations, and 359 

those that orient across and around barriers (Figure 5b; Schmaljohann & Naef-360 

Daenzer 2011, Woodworth et al. 2015; Brust and Hüppop 2022). An improved 361 

understanding of migration behaviour, its limitations and flexibility among different 362 

species, can help us to better predict how species might adapt to changes around 363 

them and improve efforts towards their conservation (Sutherland 1998).  364 

Obtaining individual responses to environmental stressors 365 

Motus can also address identifiable conservation concerns, and detect 366 

responses to specific forms of anthropogenic or environmental disruption. 367 

Anthropogenic structures, such as offshore wind turbines, can attract migratory birds, 368 

potentially causing increased mortality through collision (Perrow 2019) or evoke 369 
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avoidance behaviour leading to increased, delayed, fitness costs due to longer 370 

routes and higher energy expenditure (Schwemmer et al. 2023). Such impacts are 371 

still largely unquantified on migratory populations of birds (Marques et al. 2021). One 372 

possibility is to use Motus in combination with acoustic monitoring (as in Lagerveld et 373 

al. 2023), whereby we can localise the interaction of tracked individuals with near- 374 

and offshore infrastructure, and contextualise these known individuals amongst con- 375 

and allospecifics, detected by the acoustic recorders (Loring et al. 2019, Willmott et 376 

al. 2023). 377 

 Other anthropogenic disruptors are (agro-) chemicals such as neonicotinoids, 378 

which can impair the progress of migration in different taxa (Cabrera-Cruz et al. 379 

2020). Eng et al. (2019) used Motus tracking to show responses to neonicotinoid 380 

ingestion by White-crowned sparrows (Zonotrichia leucophrys), whereby migrating 381 

birds on stopover are severely impaired in their ability to fuel, despite significantly 382 

increasing the length of stopover. 383 

  Further, artificial light at night (ALAN) has been shown to attract night-384 

migratory birds to bright, often urban, areas (McLaren et al. 2018, Smith et al. 2021, 385 

Horton et al. 2023). These areas may act as potential ecological traps (i.e., 386 

inadequate stopover sites that might present higher risk of mortality; Van Doren et al. 387 

2021). Similarly, anthropogenic electromagnetic radiation (‘electrosmog’) has been 388 

shown to disrupt the magnetic compass of night-migratory songbirds (Engels et al. 389 

2014). As this was observed in the lab environments with caged birds, it poses the 390 

question whether ‘electrosmog’ is also a hazard for freely moving birds in the wild. 391 

Here we can apply Motus tracking, where directional and time to depart data can be 392 

collected by local and regional arrays of receivers positioned in and around areas of 393 

high urban density.   394 
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Combining Motus tracking with physical samples 395 

Simultaneously collecting samples (e.g. feathers, saliva, blood or faeces) that 396 

tell us something about the physiological state of the animals, together with 397 

movement behaviour, can help us better understand how the physiology of an 398 

individual influences its migratory decisions. The high temporal resolution of tracking 399 

with Motus now allows us to link physiological indicators, especially those changing 400 

rapidly (e.g. hormones), much closer to their movement (e.g. Eikenaar et al 2020). 401 

This could for example include site quality, by correlating stopover duration and 402 

habitat use, as recorded by Motus, with body condition and immune function 403 

(Schmaljohann & Naef-Daenzer 2011, Hegemann et al. 2018, Brust et al. 2022). 404 

This would allow us to understand whether the sites provide the necessary functions 405 

for stopover required by migrants. If not, targeted conservation measures could be 406 

taken to restore the missing functions.  407 

Genetic analyses in conjunction with recorded migratory behaviour (direction 408 

and routes, which are accessible with the high spatiotemporal accuracy of Motus), 409 

could indicate population-specific differences and possible significant regions in the 410 

genetic structure that are important for the genetic coding of migratory behaviour 411 

(Ruegg et al. 2014, Bossu et al. 2022, Sharma et al. 2023). Blood and faecal 412 

samples could be used to monitor the prevalence of pathogens that can be linked to 413 

body condition, population origin and subsequent migration decisions (ideally 414 

seasonal migration success; Neima et al. 2020, Morales et al. 2022). In the long 415 

term, standardised studies of migratory behaviour combined with sampling of tagged 416 

individuals could allow predictions of responses to global climate and habitat 417 

changes (Saura et al. 2014, Anderson et al. 2019). 418 
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Practical next steps: the logistics of developing Motus for flyway level research 419 

 Achieving greater geographical, i.e. near-continental, coverage of the Motus 420 

network stations is underway. However, this requires a strategic placement plan, cf. 421 

Lefevre and Smith (2020), based around the key questions discussed in this essay, 422 

and the special physical features of European landscapes (Figures 4, 5). The 423 

network will require significant capital investment and a collaborative spirit amongst 424 

researchers, conservationists and volunteers alike, because this task is too big for 425 

single groups.   426 

Single groups can realize regional-scale networks through discrete projects 427 

which is a necessary way of completing a continent-wide network (Taylor et al. 2017, 428 

Griffin et al. 2020). Ideally, such projects fill in geographical gaps based on species 429 

ecology and migratory behaviour already garnered from other technologies (e.g. 430 

geolocators; Bayly et al. 2018, or radar; Robinson 2023). As well as capital, the 431 

development of the network will require significant time and focus to maintain 432 

equipment and retrieve data, particularly in remote areas. Such receivers are less 433 

likely to be monitored remotely because of signal and power restrictions, and 434 

therefore greater logistical efforts are required to obtain the stored data and 435 

undertake maintenance.   436 

Cost per receiver can be realised for as little as €3000 - 5000 (~ four 437 

directional antennas, Sensorgnome receiver), but may approach €10000 dependent 438 

on requirements for installation and precise configuration of antennas. Each tag, 439 

whether from CTT or Lotek, is approximately €200, although this approaches €300 440 

for the very smallest models. While cheaper than large, satellite enabled tags, this 441 

does not approach the low cost of metal or colour rings that allow researchers to 442 

capture and mark many thousands of birds. Cost reduction is hampered by limited 443 
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market competition and a lack of open-source development, which contrasts the 444 

collaborative nature of Motus entirely, and must be addressed going forward to allow 445 

tagging on a much larger scale. 446 

Lastly, the amount of data collected from Motus is enormous and is likely to 447 

continue to grow alongside other biologging data (López-López 2016), so 448 

appropriate statistical tools will need to continue to be developed. Complex Bayesian 449 

modelling frameworks to appropriately analyse Motus data have been developed, 450 

and tested in limited circumstances, e.g., modelling movement offshore (Cranmer et 451 

al. 2017; Baldwin et al. 2018), and estimating flight heights (Lagerveld et al. In 452 

press). Extending the applicability of these methods and developing integrated 453 

frameworks with multiple data types would enable researchers to make better use 454 

and further inferences about migratory parameters that can inform conservation 455 

(Gregory et al. 2023).  456 

These challenges can only be solved in the long term, with a coordinated, 457 

international, collaborative effort, to develop joint funding applications and to work 458 

together for the benefit of the wider Motus community. This community must contain 459 

academics, policymakers, government officials, conservationists, amateur biologists 460 

and ecologists, who can develop well-defined, focused study objectives. The 461 

involvement of a diverse number of stakeholders is required, not just to share the 462 

cost burden and coordination responsibilities, but also to ensure fair data sharing, 463 

and the direct integration of such data into policy and conservation actions (UNEP 464 

2020, Gregory et al. 2023; Guilherme et al. 2023).   465 
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Final Outlook 466 

In this time of rapid ecosystem disruption, it is vital to work collaboratively to 467 

conserve migratory species. We need to work at multiple scales to answer questions 468 

about how species are confronting environmental changes. Motus can provide multi-469 

scale data on the movements of bird without the need for recapture, even on species 470 

as small as Nathusius pipistrelles Pipistrellus nathusii (Bach et al. 2022, Briggs et al. 471 

2023, Lagerveld et al. In Press), Yellow-browed warbler Phylloscopus inornatus), 472 

and large insects, such as the monarch butterfly (Knight et al. 2019, Wilcox et al. 473 

2021). Motus’ features and capabilities make it an attractive and exciting prospect for 474 

exploring as yet unanswered ecological, evolutionary, and behavioural questions.  475 

There is a significant amount of logistical and planning work to develop and 476 

grow the network to reach its full potential in terms of basic and applied science, but  477 

such efforts that also focus on expanding the collaboration between parties, and 478 

realizing developed conservation strategies will result in benefits for birds, nature as 479 

a whole and ultimately, by supporting the One Health approach, us as humans.   480 
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Figure 1: Number of publications per year (2011 – 2023), resulting from Motus data.. Source: motus.org  915 
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 916 

Figure 2: Capability and context of tags enabled for Motus. Icons indicate tag types and are positioned 917 

approximately in relation to their mean battery lifetime and size. Grey dotted lines represent variation on both 918 

axes taking into account programming influence on battery life and differences among and between device types. 919 

Orange ‘wifi’ symbols represent transmission capability, independent of the bird´s return to a specific location.  920 
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 921 

Figure 3a. European Robin (Erithacus rubecula) with attached radio transmitter with radio transmitter and 922 

attached leg-loop harness illustratively shown above the bird; b. a Motus receiving station (6 metre height), with 4 923 

six-element-Yagi antennas pointing in four directions. The station is powered by solar, with a buffer battery (in 924 

aluminium box on ground). The electronics are installed in the small yellow box at the pole. Detailed information 925 

about tagging animals and building stations can be found at the Motus Webpage (motus.org/resources/) and from 926 

the regional Motus coordinators (motus.org/groups/regional-coordination-groups/). Photos: T.K. 927 
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 928 

Figure 4: Current Motus receiving station network (purple dots) across the European 929 

continent, along with hypothetical future stations (yellow dots) to demonstrate potential to answer 930 

demographic and conservation-focused questions about bird migration. Blue arrows highlight flyways 931 

and movements of particular study interest.  932 
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 933 
 934 
Figure 5: Studying behaviour of migrating animals at barriers; a: currently operational receiving 935 

stations (green dots) along the North Sea coast, and examples of tracks collected from birds and 936 

bats; b: examples of potential station placement (yellow dots) and data collection at Gibraltar, Iberian 937 

peninsula, where many thousands of migratory species will cross an important migratory barrier, the 938 

Mediterranean Sea. Blue arrows exemplify expected flight paths that could be detected by the set-up.  939 


