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Abstract 29 

Accelerated biodiversity loss during the Anthropocene has destabilised 30 

functional links within and between ecosystems. Migratory species that cross 31 

different ecosystems on their repeated journeys between breeding and non-breeding 32 

sites are particularly sensitive to global change because they are exposed to various, 33 

often ecosystem-specific threats. As these bring both lethal and non-lethal 34 

population impacts, many migratory species are declining, making this group 35 

especially vulnerable to global change.  36 

To mitigate their decline, research at a continental and flyway scale is 37 

required to adequately monitor changes in the demographic processes of 38 

populations and understand the needs of migratory species, during all parts of the 39 

annual cycle. The Motus Wildlife Tracking System (Motus) could provide a solution 40 

to data gaps that exist particularly for small and migratory species. Motus is an 41 

automated telemetry system for animal tracking, which originated in North America.  42 

It provides a collaborative network by using the same VHF radio frequency for all 43 

tracked individuals, in combination with an individual tag identifier. Motus can provide 44 

information on movements made by individuals of the smallest bird and bat, and 45 

even larger insect species, thus aiding our understanding of aspects of their 46 

migration that could impact demographic parameters.  47 

Here we emphasise conservation-focused research opportunities, with a 48 

particular lense on European migrant taxa. We highlight examples from the existing 49 

network, and identify geographical gaps in the network which need to be filled to 50 

track continent-wide movements. We conclude that Motus is a useful tool to produce 51 

individual-level migration information for a variety of small-bodied taxa, and that a 52 
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drive to expand the network will improve its ability to conservation plans for such 53 

species.   54 

  55 
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Introduction 56 

 Biodiversity loss driven by land use change, exploitation of natural resources, 57 

and affected further by climatic disruption, is a defining feature of the Anthropocene 58 

(Sala et al. 2000). A decline in habitat availability and significant disruption to 59 

ecosystem structure, reducing critical services such as biomass production, 60 

pollination and pest control, has led to declines in a wide range of taxa globally 61 

(Jaureguiberry et al. 2022). The impacts of anthropogenic development do not just 62 

manifest through physical changes, i.e. habitat loss, but also through increases in 63 

zoonotic and vector-borne diseases (Jaureguiberry et al. 2022), and pest outbreaks. 64 

These impacts affect species’ distributions, abundances, fitness, and consequently 65 

their ability to complete their life cycle successfully (Bellard et al. 2012). 66 

Of particular concern are migratory species, which serve as ecological 67 

indicators and direct providers of vital contributions to ecosystem functioning, 68 

including biomass production, pollination, pest control (Bauer and Hoye 2014, 69 

Satterfield et al. 2020). Migratory species experience a variety of environmental 70 

conditions on their seasonal, sometimes trans-hemispheric journeys (Turbek et al. 71 

2018, Zurell et al. 2018; Horton et al. 2020; Howard et al. 2020). Rapid changes in 72 

land use and configuration, throughout their annual cycle, can mean that their 73 

requirements for reproduction and survival are no longer met (Birnie-Gauvin et al. 74 

2020, Marcacci et al. 2022, Rigal et al. 2023). There are also additional threats such 75 

as hunting (Jiguet et al. 2019), augmentation of ecological barriers (Gauld et al. 76 

2022), as well as increasingly unpredictable climatic patterns decoupling the 77 

phenology of ecologically linked species (Iler et al. 2021, Clarke et al. 2022).  78 
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Understanding the factors impacting the population status of migratory 79 

species, i.e., the changes in vital rates that drive population growth or decline, is 80 

essential (Morrison et al. 2016). These species face challenges which directly 81 

conflict with the multi-factorial optimisation of migration, which form often inherited, 82 

integrated migration strategies (Åkesson and Helm 2020; Schmaljohann et al. 2022, 83 

Fattorini et al. 2023). Phenotypic flexibility and genetic change through heritable 84 

traits (‘micro-evolution’) can facilitate some adjustments and adaptations (Hiemer et 85 

al. 2018, Ozsanlav-Harris et al. 2024). However, many migratory species cannot 86 

respond to changes at a sufficiently rapid pace, meaning that population declines are 87 

widespread (Both et al. 2006, Wilcover & Wikelski 2008, Frick et al. 2017, 88 

Rosenberg et al. 2019, Vickery et al. 2023).  89 

The Convention on the Conservation of Migratory Species (CMS; Resolution 90 

12.26) highlights the need for a multi-species, flyway level perspective in terms of 91 

research into population declines (UNEP/CMS 2020, Frick et al. 2020, Marcacci et 92 

al. 2022, Chowdury et al. 2023, Vickery et al. 2023). However, gathering sufficient 93 

data from a robust number of individuals from different populations, is extremely 94 

challenging (Morrison et al. 2016; McKinnon and Love 2018). Research at a flyway 95 

scale is complicated and reliant on international collaboration (Nadal et al. 2020; 96 

Vickery et al. 2023, Serratosa et al. 2024). This is particularly the case for our 97 

smallest species, namely migratory passerines, waders and swifts, bats, and insects, 98 

whose size and behaviour have rendered them difficult to study (Wikelski et al. 2007, 99 

Fiedler 2009, Bridge et al. 2013). Infact, we are only now beginning to properly 100 

quantify the volumes of migratory insects crossing the continent (Hawkes et al. 101 

2024), and the impact of this moving biomass is still little understood (Chapman et al. 102 

2015).  103 
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Where are the knowledge gaps in the study of small migratory species? 104 

Currently, we have little detailed spatial and temporal information on small 105 

bird, bat and insect migration. Broad scale migration patterns across Europe, 106 

including concentrations of both avian and insect migrants passing through marine 107 

and mountainous regions, have been identified using radar (Bruderer & Jenni 1990, 108 

Bruderer & Liechti 1999, Nilsson et al. 2019, Weisshaupt et al. 2021, Hirschhofer et 109 

al. 2024). Yet radar data, derived from echo signatures, largely do not allow us to 110 

tease out species-specific and indeed individual-level variation in large-scale 111 

movements (Schmaljohann et al. 2008, Zaugg et al. 2008), which would facilitate 112 

links to demography, physiology and ecology.  113 

In contrast, several million individuals have been marked using metal or 114 

colour rings across Europe (Du Feu et al. 2016), contributing to our fundamental 115 

ecological knowledge of bird movements. Yet recapture, recovery, or resighting 116 

probability is often low (across 32 European level ringing schemes recovery rate for 117 

all species combined varied from 0.6 – 7.6%; Baillie 1995), particularly on the 118 

wintering grounds (only one of 49 Hoopoe Upupa epops and four of 121 Wryneck 119 

Jynx torquilla ringed in Europe and subsequently recovered, were found on the 120 

African continent; Reichlin et al. 2009), and highly variable amongst species and 121 

locations (Thorup et al. 2014).  122 

Many of the disadvantages of the aforementioned methods can be addressed 123 

by tracking individuals and indeed, following their migratory movements. Flack and 124 

colleagues (2022) stress several major data-deficient migration research areas that 125 

could be filled by employing tracking, including how information on bird migration can 126 

be used to facilitate better conservation and management strategies. There are also 127 
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other fundamental biological processes that would benefit from individual tracking. 128 

These include dispersal; more nomadic, non-breeding movements (Snell et al. 2018; 129 

Mckinnon et al. 2019); as well as pre- and post-breeding movements (Mukhin et al. 130 

2005, Züst et al. 2023).  131 

 However, individual tracking of small migrants requires tracking devices 132 

weighing only 3-5 % of an individual’s body weight (Barron et al. 2010), which 133 

excludes most tracking technology on the market (Figure 1; Bridge et al. 2011, 134 

McKinnon & Love 2018). Radio-tracking, however, has already reached masses of 135 

under 0.5g, and the Motus Wildlife Tracking System (hereafter Motus, Taylor et al. 136 

2017) is producing tags equivalent to, and lower than, the weight of the smallest 137 

geolocators. Here, with Motus as a methodological basis, we focus on conservation 138 

and demographic-specific knowledge gaps in the study of small migratory birds, bats 139 

and insects. 140 

Motus – Automated VHF tracking technology 141 

Motus originated in Canada as a partnership between Acadia University and 142 

Birds Canada (Taylor et al. 2011, 2017), and its spread across the Americas is a 143 

great success story of collaborative research (see https://motus.org). The initiation of 144 

Motus in Europe has been later and its growth slower, but there is now a dense 145 

network of stations along the coasts of Germany and the Netherlands, and to a 146 

lesser extent in Sweden, Denmark, Belgium and the UK, with a number of additional 147 

stations in other countries, and on offshore research and energy platforms. 148 

Motus exploits a network of passive VHF receivers (Figure 2), aligned on the 149 

same frequency, which continuously receive and record uniquely-coded signals of 150 

tagged individuals, using directional Yagi antennae, without the need for recapture 151 
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(Mitchell et al. 2015; Taylor et al. 2017; Mckinnon et al. 2019; Imlay et al. 2020). The 152 

lightest tags currently available weigh 0.13 g and have a maximum interval between 153 

pulses of 29 s, which can provide 20-22 days of data. Researchers are able to select 154 

from among a number of options and device parameters (burst interval, battery or 155 

solar power, attachment and antenna type), in line with their specific question (Figure 156 

1). With the Motus system, it is now possible to track movements of light insects, 157 

such as the monarch butterfly (Knight et al. 2019, Wilcox et al. 2021).  158 

Motus is already producing important insights into the movements of birds, 159 

bats, and insects. For example, Gómez et al. (2014) and Zenzal et al. (2021) 160 

revealed the intricacies of strategies of birds crossing the Gulf of Mexico; and 161 

Brunner et al. (2022) discovered several unknown aspects of migratory connectivity 162 

and ecology in the elusive Swainson's warbler Limnothlypis swainsonii. Studies in 163 

Europe are now beginning to understand more about the migratory and pre-164 

migratory movements of Nathusius pipistrelles Pipistrellus nathusii (Bach et al. 2022, 165 

Briggs et al. 2023) and sea-crossing of thrushes (Brust et al. 2019). The existing 166 

work suggests myriad areas for future studies that would benefit greatly from using 167 

automated VHF telemetry. These examples show that Motus can be a tool to obtain 168 

a ‘holistic’ view of species’ ecology, by gathering data on groups and time periods 169 

(e.g. juvenile fledging) previously understudied (Martell et al. 2023).  170 

How Motus can help to address knowledge gaps in migratory taxa 171 

movement 172 

To understand population change and guide conservation measures, we need 173 

data on key population parameters, which necessarily require long-term, broad 174 

spatial scale, annual cycle data collection (Satterfield et al. 2020). Yet, funding, time, 175 
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and staff resources, and the vast areas over which migration occurs, make this 176 

difficult (Lefevre and Smith 2020). A relatively low-cost, collaborative, spatially 177 

dispersed network of Motus stations can essentially create a vast open-air 178 

laboratory. Taylor et al. (2017) presented a detailed account of the benefits and 179 

opportunities of Motus, as well as areas that require further development and 180 

investment, but we address here the key strengths and challenges that we perceive 181 

in relation to pertinent conservation focused questions and in the context of other 182 

tracking devices. 183 

Firstly, receiving stations can be placed anywhere (see Figure 2b) and be 184 

controlled remotely, and this autonomy means that data capture efforts are less 185 

limited by researcher effort, in contrast to commonly used methods such as bird 186 

ringing (Griffin et al. 2020; Flack et al. 2022). Fixed positioning of the receiving 187 

stations, along with a unrestricted recording period, also enables standardized data 188 

collection and reduces observer-bias (Griffin et al. 2020). Secondly, there is no 189 

requirement to recapture the birds to retrieve data, which can be recorded by one or 190 

more stations. In this way, Motus reduces bias encountered in studies where all 191 

information derives only from the fraction of successfully recaptured individuals (as 192 

with data loggers). Another benefit is that tracking occurs in near real time, as long 193 

as receivers are able to transfer data to the server quickly.  194 

Lastly, the spatial scale of detections is in the order of several kilometres, 195 

rather than orders of magnitude higher as with geolocators (Taylor et al. 2017), 196 

although new multi-sensor tags have shown substantial improvements in positional 197 

accuracy (Nussbaumer et al. 2023). Pinpointing specific sites for targeted 198 

conservation efforts is important, given that limited, localised stopover site use could 199 

induce higher vulnerability in certain migrating species (Bayly et al. 2013; Gómez et 200 
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al. 2014). Motus’ potential to help create species actions plans in this way has been 201 

recognised outside of the research community, and recommendations for its use to 202 

monitor understudied small species are included in the records from COP13 on the 203 

Convention of Migratory Species (UNEP/CMS 2020). Widespread adoption of Motus 204 

by conservation and research organisations, who may then allow others to install 205 

Motus stations on their land, could vastly improve network coverage. 206 

Still, there are some caveats. Most Motus studies do not report a 100% 207 

detection rate; reporting rates are closer to 50-70% (Crewe et al. 2020), even when 208 

the tags are deployed close to a receiving station. Potential reasons for this are: 209 

habitat type and topography, weather conditions, characteristics of the antennae and 210 

the flight altitude and orientation of the animal in relation to the antennas of the 211 

receiver (Crewe et al. 2020). Furthermore, the network of stations is still patchy and 212 

this low spatial coverage does not yet allow continuous tracking across the continent 213 

in Europe, and is particularly sparse where data are lacking the most in eastern 214 

Europe. With this opinion paper, we hope to further spark the collaborative spirit of 215 

Motus to create a denser network in Europe and resemble the situation in North 216 

America.  217 

Obtaining demographic information using Motus  218 

Understanding when and where differences in population processes occur, is 219 

notoriously difficult (Doerr and Doerr 2005; Border et al. 2017, Telensky et al. 2020). 220 

Migrating species are diverse in their timing, routes, distance and speed, but most 221 

employ repeated, alternating migratory and stationary periods for resting, recovering 222 

and fuelling (Alerstam et al. 2003; Åkesson and Hedenström 2007; Schmaljohann et 223 

al. 2022). Differences among species in the location and timing of these patterns 224 
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may affect how pressures accumulate and carry over, and therefore how strongly 225 

their populations are impacted by interacting environmental changes (Sawyer et al. 226 

2009, Patchett et al. 2018, Nadal et al. 2022; Rueda-Uribe et al. 2022).  227 

Quantifying variation in a number of different life history processes, primarily 228 

survival, mortality, emigration/ immigration (dispersal), as well as immediate 229 

behavioural responses to environmental stressors, can then direct conservation 230 

efforts for these populations and/or species (Gómez et al. 2021, DeMars et al. 2023). 231 

In the following sections, we address these different life history processes, identifying 232 

the most profitable opportunities to expand our knowledge of small species 233 

migration, using Motus.  234 

Survival and mortality  235 

Survival and mortality clearly affect population dynamics, altering age and sex 236 

structure (Schorcht et al. 2009), and affecting future reproduction (Saracco et al. 237 

2008). Within migratory species, variation in survival among populations can be 238 

linked to alternative routes and their different pressures (Hewson et al. 2016). 239 

Pressures can create pinch points, which may lower fitness and increase mortality 240 

(Dhanjal-Adams et al. 2017), particularly those that support high numbers of ‘co-241 

migrants’ (multiple species moving through major sites and corridors simultaneously 242 

– Cohen et al. 2021). The convergence of otherwise spatially segregated populations 243 

at single locations may also have additional consequences for disease transmission 244 

(Cohen et al. 2021).  245 

Focusing Motus station placement at key staging areas, bottlenecks and 246 

barriers, in closely-packed ‘fence’ or ‘curtain’ formation (Figure 3) would provide 247 

‘checkpoints’ for tagged migrants, leading to the comparison of local apparent 248 
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survival rates along and among different routes for multiple populations of different 249 

species, and under a range of environmental conditions. Because of the single 250 

frequency strategy, ‘hits’ from different individuals of different species can be collated 251 

with ease to denote flyway-level site importance. Stations on either side of barriers 252 

could also provide insights into how migratory animals assess the scale of the barrier 253 

in front of them (Figures 3, 4).  254 

If there are sufficient stations along a route (and adequate numbers of tagged 255 

individuals), then obstacles that slow down or terminate migration can be identified. 256 

Parameters derived from flights of individuals tracked with Motus such as speed, 257 

routes (Brust et al. 2019, Brunner et al. 2022; Linhart et al. 2023), can allow 258 

comparisons among individual birds, bats or insects of different populations, and 259 

those that orient across and around barriers (Woodworth et al. 2015; Brust and 260 

Hüppop 2022). Currently little is known about locations of high mortality across 261 

Europe for small migrating taxa (acknowledged by Serratosa et al. 2024, specific 262 

locational information and cause of death is limited to larger migratory species with 263 

accurate positional loggers). For migratory insects, incomplete trajectory information, 264 

including locations of stopover sites and wintering areas hinders the implementation 265 

of any conservation plans (Chowdury et al. 2021). This need should encourage us to 266 

place receiving stations at known – and suspected – locations of stopover and 267 

potential mortality (e.g. Figure 4b).  268 

Dispersal, immigration and emigration  269 

Juvenile and post-breeding dispersal are critical but understudied 270 

fundamental biological processes, consisting of the initial process of emigration from 271 

a breeding site, and the subsequent immigration to another the following season 272 

(Matthysen & Clobert 2012). Data are particularly needed from young individuals to 273 
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assess when juveniles make decisions about breeding site settlement (Doerr and 274 

Doerr 2005; Mukhin et al. 2018). For species with discrete breeding sites restricted 275 

by habitat, some populations may display genetic structure that could increase and 276 

become inbred with further habitat loss and climate change (Day et al., 2023). 277 

Understanding how these populations are connected through immigration and 278 

emigration is important for deciding what conservation measures might be useful 279 

(Driscoll et al. 2014).   280 

We can derive differential rates of emigration and immigration of a species of 281 

interest, among different locations (le Roux and Nocera 2021) through 282 

comprehensive tagging campaigns (ethical considerations of such projects 283 

notwithstanding – Soulsbury et al. 2020), supported by groups of Motus stations 284 

around key breeding sites. Using Motus, juvenile Blackpoll warblers (Setophaga 285 

striata), Kirtland’s Warbler (Setophaga kirtlandii) and Barn Swallow (Hirundo rustica), 286 

have been shown to make large exploratory movements upon fledging prior to 287 

migration (Brown and Taylor 2015, 2017; Evans 2018; Cooper and Marra 2020). 288 

Questions remain about the function of such exploratory movements (Züst et al. 289 

2023), in particular because long-distance dispersal to new breeding sites appears to 290 

be rare overall, although potentially underestimated given the difficulty of monitoring 291 

such movements. It is unclear how this exploration may relate to range expansion 292 

and individual or species responses to climate change (Driscoll et al. 2014).  293 

Motus can facilitate local to large scale, low effort tracking, and its ability to 294 

expand spatially and temporally beyond the capabilities of manual VHF tracking can 295 

increase the power of both juvenile fledging studies (Cox et al. 2012), and medium-296 

long distance post-breeding dispersal (Evans et al. 2018, Hayes et al. 2024). 297 

Practical conservation decisions could benefit from understanding how far and in 298 
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what direction juveniles disperse, and how individual phenotypes and condition 299 

levels (Morales et al. 2010) might lead to differential survival based on fledging 300 

strategy (Evans et al. 2020) and surrounding habitat quality (Hayes et al. 2020). 301 

Knowledge of this variation within and among species, gained by observing dispersal 302 

movements using Motus, could drive conservation measures that would facilitate 303 

population stability (Travis and Dytham 2013; Niebuhr et al. 2015, Endriss et al. 304 

2019). 305 

Identification of Stopover sites 306 

 We can identify the importance of stopover sites with strategic placement of 307 

Motus stations. Smetzer and King (2018) used a regional Motus network at the Gulf 308 

of Maine of the United States, and identified the use of a major staging area for 309 

Blackpoll warblers (Setophaga striata) and Red-eyed Vireos (Vireo olivaceous). The 310 

directional information collected by Motus showed that tagged individuals originated 311 

from multiple breeding populations across the North American continent, 312 

demonstrating the area’s importance to the two species nationally. Such a study 313 

could be carried out at similar areas in Europe such as in the large natural wetlands 314 

in the Bay of Biscay, and the Strait of Gibraltar (Figure 4b), and therefore could be 315 

used to focus conservation resources.   316 

Understanding migratory decisions 317 

Motus can facilitate a ‘quasi-experimental’ approach as proffered and 318 

demonstrated by Goymann et al. (2010) and Schmaljohann and Klinner (2020), and 319 

can extend capture-mark-recapture studies such as that undertaken by Knoblauch et 320 

al. (2021) and Menz et al. (2022), on dragonflies and moths respectively. Studies on 321 

insects have shown reliance on both celestial and sun compasses, as with birds 322 
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(Åkesson et al. 1996), and that there is significant selection of favourable winds, to 323 

facilitate their journeys over and around barriers (Menz et al. 2022).    324 

When numerous individuals subject to the same external conditions are 325 

tracked at the same time, this may then allow estimation of conditions when most 326 

individuals migrate (Delingat et al. 2008, Schmaljohann & Klinner 2020), as well as 327 

better understanding of ‘optimal’ strategies (Åkesson et al. 2002, Hedenström 2008). 328 

Such fundamental understanding of migration processes can also help to prioritise 329 

important locations to target for conservation or management.  330 

Exploring the evolution of migratory routes via vagrants 331 

Motus could also play a role in improving our understanding of vagrants, for 332 

example how they act as potential agents of evolution of new migratory routes and/or 333 

of range expansion (Dufour et al. 2022). Their influence on population change has 334 

only been explored in a few cases, for example that of Richard’s Pipit (Dufour et al. 335 

2023). For example, small songbirds, travelling in a westerly direction from Siberian 336 

breeding grounds, and are hard to track because of their small size and distant, 337 

widespread, less accessible breeding grounds (Dufour et al. 2021). Such knowledge 338 

gaps could be addressed using Motus by detecting departure directions of vagrants. 339 

Motus can collect data on unsuccessful phenotypes, i.e. individuals that would not be 340 

recaptured anyway. Studies could investigate the fate of vagrants in the north-341 

western parts of Europe (e.g., the UK and Republic of Ireland, Helgoland; Thorup et 342 

al. 2012), and a potential candidate for this research might be the Yellow-browed 343 

warbler (Phylloscopus inornatus), as suggested by Dufour et al. (2022).  344 
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Obtaining individual responses to environmental stressors 345 

Motus studies of individuals can also address identifiable conservation 346 

concerns, and detect how animals respond to specific forms of anthropogenic or 347 

environmental disruption. Obstructions, such as wind turbines, can incur extra fitness 348 

pressure from detours, as well as direct mortality. Impacts are still largely 349 

unquantified on migratory populations of birds (Marques et al. 2021) and bats 350 

(Lagerveld et al. 2014, Bach et al. 2022, although see Serratosa et al. 2024). Motus 351 

has been used to track Nathusius pipistrelles (Pipistrellus nathusii) migrating along 352 

the coast and to islands (Bach et al. 2022). Using Motus in combination with acoustic 353 

monitoring (Lagerveld et al. 2023), we can localise the interaction of individuals with 354 

near- and offshore infrastructure, through careful placement of receiving stations on 355 

substations and energy platforms (Loring et al. 2019, Willmott et al. 2023). 356 

 Other anthropogenic disruptors are (agro-) chemicals such as neonicotinoids, 357 

which can impair the progress of migration (Cabrera-Cruz et al. 2020). Eng et al. 358 

(2019) used Motus tracking to show responses to neonicotinoid ingestion by White-359 

crowned sparrows (Zonotrichia leucophrys), whereby migrating birds on stopover are 360 

severely impaired in their ability to put on fat, vital for migration, despite significantly 361 

increasing the length of stopover. In contrast, Wilcox et al. (2021) found no 362 

impairment of Monarch butterflies Danaus Plexippus when tracked with Motus, after 363 

being given the neonicotinoid Clothianidin.    364 

  Further, artificial light at night (ALAN) poses a potential thread for migratory 365 

birds (McLaren et al. 2018, Smith et al. 2021). From large-scale radar analyses we 366 

know that night-migratory birds are attracted to bright areas (Horton et al. 2023), 367 

where birds can be drawn into potential ecological traps (i.e., inadequate stopover 368 

sites that might present higher risk of mortality; disorientation; Van Doren et al. 369 
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2021). However, the extent of this effect on individuals has not been examined, yet, 370 

which poses a suitable question to apply Motus tracking. Similarly, anthropogenic 371 

electromagnetic radiation (“electrosmog”) has been shown to disrupt the magnetic 372 

compass of night-migratory songbirds (Engels et al. 2014). As this was observed in 373 

the lab environments with caged birds, it poses the question whether ‘electrosmog’ is 374 

also a hazard for freely moving birds in the wild. Once properly understood, 375 

appropriate mitigation and conservation can be designed and further tested to 376 

reduce the environmental impact of humans on migratory animals in the future. 377 

Combining Motus tracking with physical samples 378 

Motus movement data can be collected alongside physical samples (e.g., 379 

feathers, morphological measurements, blood and faeces). Such samples can help 380 

us understand links between physical condition and site quality, for example by 381 

measuring stopover time, habitat use, direction of departure, and correlating with 382 

immune function (Schmaljohann & Naef-Daenzer 2011, Hegemann et al. 2018, Brust 383 

et al. 2022). Additional genetics could be particularly valuable if information on 384 

putative origin of individuals could also be inferred (Ruegg et al. 2014), thus 385 

shedding light on the genetic architecture underlying migratory patterns in different 386 

populations (Bossu et al. 2022, Sharma et al 2023). Blood and faecal samples could 387 

be used to monitor pathogen prevalence, which can be linked to physical condition, 388 

population origin, and subsequent movement decisions (Taylor et al. 2011, Neima et 389 

al. 2020), all of which may give insights into population declines and predict 390 

responses to global climate and habitat change (Saura et al. 2014, Anderson et al. 391 

2019).  392 
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Practical next steps: the logistics of developing Motus for flyway level 393 

research 394 

 Currently, there are vast areas across the European continent that are not yet 395 

covered by Motus, but the collaboration of researchers in North America has 396 

demonstrated that it is possible to obtain a near-continent-wide network of Motus 397 

stations. One major challenge European researchers encounter is the lack of a 398 

single frequency the tags emit the signal. Whilst in a number of European countries 399 

the frequency of 150.1 MHz is authorised either temporarily or permanently for wild 400 

animal telemetry tracking, in others only an alternative frequency is permitted. 401 

Although multi-frequency detection by Motus receivers is possible, for example 402 

introducing the licence-free frequency 434 MHz alongside the commonly used 150.1 403 

MHz frequency in Europe, it incurs additional expense for extra equipment.  404 

A second challenge is achieving sufficient spatial coverage by Motus stations. 405 

The progress of a continent-wide network comprised of potentially hundreds of 406 

different stakeholders across many nations is a big task and will require a strategic 407 

placement plan (Lefevre and Smith 2020), concentrating on coastlines, barriers or 408 

bottlenecks (Figures 3, 4). A complementary focus on regional-scale networks, which 409 

can feasibly be funded as part of a discrete project, is also necessary, essentially 410 

forming a dual bottom-up/ top-down approach (Taylor et al. 2017, Griffin et al. 2020). 411 

Regional projects could be structured in such a way that they ‘fill in’ gaps while 412 

meeting study-specific design features. Key clusters of stations could be efficiently 413 

positioned according to detection likelihood, but focusing on areas where we have 414 

little information collated (Griffin et al. 2020).  415 
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Lastly, the amount of data harvested from Motus is huge and will likely 416 

continue to grow alongside other biologging data (López-López 2016) and will 417 

require the continued development of appropriate statistical tools. Complex Bayesian 418 

modelling frameworks to appropriately analyse Motus data have been developed, 419 

and have been tested in limited circumstances, e.g., modelling movement offshore 420 

related to avian wind turbine interactions (Cranmer et al. 2017; Baldwin et al. 2018). 421 

Extending the applicability of these methods and developing integrated frameworks 422 

with multiple data types would enable researchers to make better use and further 423 

inferences about migratory parameters that can inform conservation (Gregory et al. 424 

2023).  425 

These challenges can only be solved in the long term, with a coordinated, 426 

international, collaborative effort. Platforms are needed to bring together multiple 427 

research groups to develop joint funding applications and to work together for the 428 

benefit of the wider Motus community. This community must contain academics, 429 

policymakers, government officials, and conservationists, who can develop well-430 

defined, focused study objectives. The involvement of a diverse number of 431 

stakeholders, not just to share the cost burden and coordination responsibilities, but 432 

also to ensure fair data sharing, and the direct integration of such data into policy 433 

and conservation actions (UNEP 2020, Gregory et al. 2023; Guilherme et al. 2023).   434 

 435 

 436 
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Final Outlook 437 

In this time of transformation and ecosystem disruption globally, it is vital to 438 

work collaboratively to conserve migratory species efficiently. We need to work at the 439 

right scale to answer questions about how species are confronting environmental 440 

changes. Motus can provide data at a local, regional and intercontinental scale, on 441 

the movements of our smallest bird, bat, and even some insect species, without the 442 

need for recapture. With such data we can address conservation-relevant questions 443 

to fill the corresponding gaps in knowledge so that effective conservation measures 444 

can be more precisely formulated for the species in focus. Motus’ features and 445 

capabilities make it an attractive and exciting prospect for exploring as yet 446 

unanswered ecological, evolutionary, and behavioural questions.  447 

There is a significant amount of logistical and planning work to develop and 448 

grow the network to reach its full potential in terms of basic and applied science, but 449 

effort to grow the network, expand the collaboration between the involved parties 450 

and realize the thereout developed conservation strategies will result in benefits for 451 

birds, nature as a whole and ultimately, us as humans.   452 
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 883 

Figure 1: Capability and context of tags enabled for Motus. Icons indicate tag types and are positioned 884 

approximately in relation to their mean battery lifetime and size. Grey dotted lines represent variation on both 885 

axes taking into account programming influence on battery life and differences among and between device types. 886 

Orange ‘wifi’ symbols represent transmission capability.  887 

888 
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 889 

Figure 2a. European Robin (Erithacus rubecula) with attached radio transmitter with radio transmitter and 890 

attached leg-loop harness illustratively shown above the bird; b. a Motus receiving station (6m height), with 4 six-891 

element-Yagi antennas pointing in four directions. The station is powered by solar, with a buffer battery (in 892 

aluminium box on ground). The electronics are installed in the small yellow box at the pole. Detailed information 893 

about tagging animals and building stations can be found at the Motus Webpage (motus.org/resources/) and from 894 

the regional Motus coordinators (motus.org/groups/regional-coordination-groups/). Photos: T.K. 895 
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 896 

Figure 3: Current Motus receiving station network (purple dots) across the European continent, along 897 

with hypothetical future stations (yellow dots) to demonstrate potential to answer demographic and 898 

conservation-focused questions about bird migration. Blue arrows highlight flyways and movements of 899 

particular study interest.   900 
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 901 
 902 
Figure 4: Studying behaviour of migrating animals at barriers; a: currently operational receiving 903 

stations (green dots) along the North Sea coast, and examples of tracks collected from birds and 904 

bats; b: examples of potential station placement (yellow dots) and data collection at Gibraltar, Iberian 905 

peninsula, where many thousands of migratory species will cross an important migratory barrier, the 906 

Mediterranean Sea. Blue arrows exemplify expected flight paths that could be detected by the set-up.  907 


