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Abstract

Automated detection of acoustic signals is crucial for effective monitoring of vocal animals1

and their habitats across large spatial and temporal scales. Recent advances in deep learning2

have made high performance automated detection approaches accessible to more practitioners.3

However, there are few deep learning approaches that can be implemented natively in R.4

The ‘torch for R’ ecosystem has made the use of convolutional neural networks (CNNs)5

accessible for R users. Here, we provide an R package and workflow to use CNNs for6

automated detection and classification of acoustics signals from passive acoustic monitoring7

data. We provide examples using data collected in Sabah, Malaysia. The package provides8

functions to create spectrogram images from labeled data, compare the performance of9

different CNN architectures, deploy trained models over directories of sound files, and extract10

embeddings from trained models. The R programming language remains one of the most11

commonly used languages among ecologists, and we hope that this package makes deep12

learning approaches more accessible to this audience. In addition, these models can serve as13

important benchmarks for future automated detection work.14
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1 Summary16

Automated detection of acoustic signals is crucial for effective monitoring of vocal animals and their habitats17

across large spatial and temporal scales. Recent advances in deep learning have made high performance18

automated detection approaches accessible to more practitioners. However, there are few deep learning19

approaches that can be implemented natively in R. The ‘torch for R’ ecosystem has made the use of20

convolutional neural networks (CNNs) accessible for R users. Here, we provide an R package and workflow to21

use CNNs for automated detection and classification of acoustics signals from passive acoustic monitoring22

data. We provide examples using data collected in Sabah, Malaysia. The package provides functions to23

create spectrogram images from labeled data, compare the performance of different CNN architectures,24
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deploy trained models over directories of sound files, and extract embeddings from trained models. The R25

programming language remains one of the most commonly used languages among ecologists, and we hope26

that this package makes deep learning approaches more accessible to this audience. In addition, these models27

can serve as important benchmarks for future automated detection work.28

2 Statement of need29

2.1 Passive acoustic monitoring30

We are in a biodiversity crisis, and there is a great need for the ability to rapidly assess biodiversity in31

order to understand and mitigate anthropogenic impacts. One approach that can be especially effective for32

monitoring of sound-producing yet cryptic animals is the use of passive acoustic monitoring (Gibb et al.33

2018), a technique that relies on autonomous acoustic recording units. PAM allows researchers to monitor34

acoustically active animals and their habitats at temporal and spatial scales that are impossible to achieve35

using only human observers. Interest in use of PAM in terrestrial environments has increased substantially36

in recent years (Sugai et al. 2019), due to the reduced price of autonomous recording units and improved37

battery life and data storage capabilities. However, the use of PAM often leads to the collection of terabytes38

of data that is time- and cost-prohibitive to analyze manually.39

2.2 Automated detection40

Automated detection for PAM data refers to identifying the start and stop time of signals of interest within a41

longer sound recording (Stowell 2022). Some of the early non-deep learning approaches for the automated42

detection of acoustic signals in terrestrial PAM data include binary point matching (Katz, Hafner, and43

Donovan 2016), spectrogram cross-correlation (Balantic and Donovan 2020), or the use of a band- limited44

energy detector and subsequent classifier, such as support vector machine (Clink et al. 2023; Kalan et al.45

2015). Recent advances in deep learning have revolutionized image and speech recognition (LeCun, Bengio,46

and Hinton 2015 ), with important cross-over for the analysis of PAM data. Traditional approaches to47

machine learning relied heavily on feature engineering, since early machine learning algorithms required a48

reduced set of representative features that were manually chosen by researchers, such as features estimated49

from the spectrogram.50

Deep learning does not require feature engineering (Stevens, Antiga, and Viehmann 2020), as the algorithms51

include a step that identifies relevant features from the input. This can lead to faster development time and52

increased ability to represent complex patterns typically seen in image and acoustic data. Convolutional53

neural networks (CNNs) — one of the most widely used deep learning algorithms—are useful for processing54

data that have a ‘grid-like topology’, such as image data that can be considered a 2-dimensional grid of pixels55

(Goodfellow, Bengio, and Courville 2016). The ‘convolutional’ layer learns the feature representations of the56

inputs; these convolutional layers consist of a set of filters which are basically two-dimensional matrices of57

numbers and the primary parameter is the number of filters (Gu et al. 2018). If training data are scarce,58

overfitting may occur as representations of images tend to be large with many variables (LeCun, Bengio, and59

others 1995).60

2.3 Transfer learning61

Training deep learning models generally requires a large amount of training data and substantial computing62

resources. Transfer learning is an approach wherein the architecture of a pretrained CNN (which is generally63

trained on a very large dataset) is applied to a new classification problem. For example, CNNs trained on the64

ImageNet dataset of > 1 million images (Deng et al. 2009) such as ResNet have been applied to automated65

detection/classification of primate and bird species from PAM data (Dufourq et al. 2022; Ruan et al. 2022).66

Generally, very few practitioners train a CNN from scratch, and there are two common approaches for transfer67

learning. The first option is to use the CNN as a feature extractor, and train only the last classification68

layer. The second option is known as ‘fine-tuning’, where instead of initializing a neural network with random69

weights, the initialization is done using the pre-trained network. Using these pre-trained weights are valuable70

because the model has already learned useful feature representations (Takhirov 2021). Both approaches71

require substantially less computing power than training from scratch. The functions in the ‘gibbonNetR’72

package allow users to train models using both types of transfer learning.73
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2.4 State of the field74

The two most popular open-source programming languages are R and Python (Scavetta and Angelov 2021).75

Python has surpassed R in terms of overall popularity, but R remains an important language for the life76

sciences (Lawlor et al. 2022). ‘Keras’ (Chollet and others 2015), ‘PyTorch’ (Paszke et al. 2019) and77

‘Tensorflow’ (Martín Abadi et al. 2015) are some of the more popular neural network libraries; these libraries78

were all initially developed for the Python programming language. One of the earliest implementations of79

automated detection using R was the ‘monitoR’ package, that included functions for template detection (Katz,80

Hafner, and Donovan 2016). The ‘warbleR’ package included functions for energy-based detection, which81

identifies signals of interest in a certain frequency range above specified energy thresholds (Araya-Salas and82

Smith-Vidaurre 2017). The ‘gibbonR’ package combined energy-based detection with tranditional machine83

learning classification (Clink and Klinck 2019).84

Until recently, deep learning implementations in R relied on the ‘reticulate’ package which served as an85

interface to Python (Ushey, Allaire, and Tang 2022). Early implementations of automated detection using86

deep learning in R relied on the ‘reticulate’ package Silva et al. (2022). However, the recent release of87

the ‘torch for R’ ecosystem provides a framework based on ‘PyTorch’ that runs natively in R and has no88

dependency on Python (Falbel 2023). Running natively in R means more straightforward installation, and89

higher accessibility for users of the R programming environment. Keydana (2023) provides tutorials for90

image and audio classfication in the ‘torch for R’ ecosystem, and the functionality in ‘gibbonNetR’ relies91

heavily on these tutorials. Variations of the transfer learning approaches included in this package have92

already been implemented in Python (Dufourq et al. 2022). Recent advances have used embeddings from93

audio classification models trained on bird songs for new classification problems, and in many cases these94

embeddings led to better performance than general audio or image datasets (Ghani et al. 2023).95

3 Overview96

This package provides functions to create spectrogram images using the ‘seewave’ package (J. Sueur, T.97

Aubin, and C. Simonis 2008), and train and deploy six CNN architectures: AlexNet (Krizhevsky, Sutskever,98

and Hinton 2017) , VGG16, VGG19 (Simonyan and Zisserman 2014), ResNet18, ResNet50, and ResNet15299

(He et al. 2016)) trained on the ImageNet dataset (Deng et al. 2009 ). This package has been used for100

automated detection of gunshots (Vu et al. 2024) and the calls of two gibbon species (Clink, Kim, et al. 2024;101

Clink, Cross-Jaya, et al. 2024). The package also has functions to evaluate model performance, deploy the102

highest performing model over a directory of sound files, and extract embeddings from trained models to103

visualize acoustic data. We provide an example dataset that consists of labelled vocalizations of the loud calls104

of four vertebrates (see detailed description below) from Danum Valley Conservation Area, Sabah, Malaysia105

(Clink and Hamid Ahmad 2024). Detailed usage instructions for ‘gibbonNetR’ can be found Here106

3.1 Data summary107

We include sound files and spectrogram images of five sound classes: great argus pheasant (Argusianus108

argus) long calls (Clink et al. 2021), helmeted hornbills (Rhinoplax vigil), and rhinoceros hornbills (Buceros109

rhinoceros) (Kennedy et al. 2023), female gibbons (Hylobates funereus) and a catch-all “noise” category.110

The data come from two separate PAM arrays in Danum Valley Conservation Area, Sabah, Malaysia. The111

training and validation data come from a wide array of Swift autonomous recording units placed on ~750 m112

spacing (Clink et al. 2023), and the test data come from a different, smaller array (~250 m spacing) within113

the same area. We used a band-limited energy detector to identify signals that were 3-sec or longer duration114

within the 400-1600 Hz range, and then a single observer (DJC) manually sorted the detections into their115

respective categories (Clink et al. 2023).116

3.2 Preparing training, validation, and test data117

The package currently uses spectrogram images (Figure 1) to train and evaluate CNN model performance,118

and we includes a function that can be used to create spectrogram images from Waveform Audio File Formant119

(.wav) files. The .wav files should be organized into separate folders, with each folder named according to the120

class label of the files it contains. We highly recommend that your test data come from a different recording121

time and/or location to better understand the generalizability of the models (Stowell 2022).122
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Figure 1: Spectrograms of training clips for CNNs

3.3 Model training123

The package currently allows for the training of six different CNN architectures (‘alexnet’, ‘vgg16’, ‘vgg19’,124

‘resnet18’, ‘resnet50’, or ‘resnet152’), and the user can specify if they want to freeze the feature extraction125

layers or not. There is also the option to train a binary or multi-class classifer.126

3.4 Evaluate model performance127

We can compare the performance of different CNN architectures (Figure 2). Using the ‘get_best_performance’128

function we can evaluate the performance of different model architectures on the test dataset for the specified129

class. We can calculate the best F1, precision, recall using the ‘caret’ package (Kuhn 2008), and the area130

under the ROC (Receiver Operating Characteristic) curve using the ‘ROCR’ package (Sing et al. 2005),131

which is a threshold or confidence independent metric that evaluates the classifier’s ability to discriminate132

between positive and negative classes.133

PerformanceOutput <- get_best_performance(performancetables.dir=performancetables.dir,134

class=’female.gibbon’,135

model.type = "multi",136

Thresh.val=0)137

PerformanceOutput$f1_plot138

3.5 Extract embeddings139

Embeddings from deep learning models can be used as features in unsupervised approaches, with promising140

results for call repertoires (Best et al. 2023) and individual identity (Lakdari et al. 2024). This package141

contains a function to use pretrained CNNs to extract embeddings, where the trained model path, along with142

test data location and target class are specified. Depending on the research question, this output could be143

used to visualize true and false positives from automated detection, or to explore differences in call types or144

potential number of individuals in the dataset.145

3.6 We can plot the unsupervised clustering results146

In Figure 3 the top plot is a Uniform Manifold Approximation and Projection (UMAP) where each point147

represents one call, and the colors indicate the original class label. The bottom plot is the same UMAP plot,148
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Figure 2: Evaluating performance of pretrained CNNs

but with points colored based on cluster assignment by the ‘hdbscan’ algorithm (Hahsler, Piekenbrock, and149

Doran 2019).150

3.6.1 Explore the unsupervised clustering results151

We can calculate the Normalize Mutual Information score, which provides a value between 0 and 1, indicating152

the match between cluster labels and actual labels. We also create a confusion matrix using the ‘caret’153

package (Kuhn 2008) which returns the results when we use the unsupervised clustering algorithm function154

‘hdbscan’ (Hahsler, Piekenbrock, and Doran 2019) to match the target class to the cluster with the largest155

number of observations of that particular class.156

4 Future directions157

There have been huge advances in the fields of deep learning and automated detection for PAM data in158

recent years. The approach presented in this package is one of the first to use the ‘torch for R’ ecosystem159

and to employ automated detection using deep learning natively in R. More recent approaches that use160

models that are explicitly trained on bioacoustics data, such as BirdNET (Ghani et al. 2023), have been161

introduced. There is a huge need in the field of bioacoustics to do benchmarking, wherein different model162

architectures and performance are compared across diverse datasets. The methods presented here can provide163

important benchmarks for future work, and for understanding how and if deep learning advances improve164

performance over more traditional methods. In addition, this package provides a comprehensive suite of tools165

for processing, analyzing, and visualizing acoustic data, providing robust support for tasks such as automated166

detection, feature extraction, classification, and data visualization, which are critical for conservation work167

using PAM. The R package is available on Github, where issues can be opened.168
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Figure 3: UMAP plot of embeddings from test data set colored by actual label (top) and unsupervised cluster
assignment (bottom).
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