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Abstract
Automated detection of acoustic signals is crucial for effective monitoring of vocal animals1

and their habitats across large spatial and temporal scales. Recent advances in deep learning2

have made high performance automated detection approaches accessible to more practitioners.3

However, there are few deep learning approaches that can be implemented natively in R.4

The ‘torch for R’ ecosystem has made the use of convolutional neural networks (CNNs)5

accessible for R users. Here, we provide an R package and workflow to use CNNs for6

automated detection and classification of acoustics signals from passive acoustic monitoring7

data. We provide examples using data collected in Sabah, Malaysia. The package provides8

functions to create spectrogram images from labeled data, compare the performance of9

different CNN architectures, deploy trained models over directories of sound files, and extract10

embeddings from trained models. The R programming language remains one of the most11

commonly used languages among ecologists, and we hope that this package makes deep12

learning approaches more accessible to this audience. In addition, these models can serve as13

important benchmarks for future automated detection work.14

Keywords deep learning · passive acoustic monitoring · gibbon · automated detection15

1 Statement of need16

1.1 Passive acoustic monitoring17

We are in a biodiversity crisis, and there is a great need for the ability to rapidly assess biodiversity in order to18

understand and mitigate anthropogenic impacts. One approach that can be especially effective for monitoring19

of vocal yet cryptic animals is the use of passive acoustic monitoring (Gibb et al. 2018), a technique that20

relies on autonomous acoustic recording units. PAM allows researchers to monitor vocal animals and their21

habitats at temporal and spatial scales that are impossible to achieve using only human observers. Interest in22

use of PAM in terrestrial environments has increased substantially in recent years (Sugai et al. 2019), due to23

reduced price of the recording units and improved battery life and data storage capabilities. However, the24
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use of PAM often leads to the collection of terabytes of data that is time- and cost-prohibitive to analyze25

manually.26

1.2 Automated detection27

Automated detection for PAM data refers to identifying the start and stop time of signals of interest within a28

longer sound recording (Stowell 2022). Some of the early non-deep learning approaches for the automated29

detection of acoustic signals in terrestrial PAM data include binary point matching (Katz, Hafner, and30

Donovan 2016), spectrogram cross-correlation (Balantic and Donovan 2020), or the use of a band- limited31

energy detector and subsequent classifier, such as support vector machine (Clink et al. 2023; Kalan et al.32

2015). Recent advances in deep learning have revolutionized image and speech recognition (LeCun, Bengio,33

and Hinton 2015 ), with important cross-over for the analysis of PAM data. Traditional approaches to34

machine learning relied heavily on feature engineering, since early machine learning algorithms required a35

reduced set of representative features that were chosen by researchers, such as features estimated from the36

spectrogram.37

Deep learning does not require feature engineering (Stevens, Antiga, and Viehmann 2020), as the algorithms38

include a step that identifies relevant features from the input. This can lead to faster development time and39

increased ability to represent complex patterns typically seen in image and acoustic data. Convolutional40

neural networks (CNNs) — one of the most widely used deep learning algorithms—are useful for processing41

data that have a ‘grid-like topology’, such as image data that can be considered a 2-dimensional grid of pixels42

(Goodfellow, Bengio, and Courville 2016). The ‘convolutional’ layer learns the feature representations of the43

inputs; these convolutional layers consist of a set of filters which are basically two-dimensional matrices of44

numbers and the primary parameter is the number of filters (Gu et al. 2018). If training data are scarce,45

overfitting may occur as representations of images tend to be large with many variables (LeCun, Bengio, and46

others 1995).47

1.3 Transfer learning48

Training deep learning models generally requires a large amount of training data and substantial computing49

resources, which. Transfer learning is an approach wherein the architecture of a pretrained CNN (which is50

generally trained on a very large dataset) is applied to a new classification problem. For example, CNNs51

trained on the ImageNet dataset of > 1 million images (Deng et al. 2009) such as ResNet have been applied52

to automated detection/classification of primate and bird species from PAM data (Dufourq et al. 2022;53

Ruan et al. 2022). Generally, very few practitioners train a CNN from scratch, and there are two common54

approaches for transfer learning. The first option is to use the CNN as a feature extractor, and train only the55

last classification layer. The second option is known as ‘fine-tuning’, where instead of initializing a neural56

network with random weights, initialization is done using the pre-trained network. Using these pre-trained57

weights are valuable because the model has already learned useful feature representations (Takhirov 2021).58

Both approaches require substantially less computing power than training from scratch. The functions in the59

‘gibbonNetR’ package allow users to train models with both types of transfer learning.60

1.4 State of the field61

The two most popular open-source programming languages are R and Python (Scavetta and Angelov 2021).62

Python has surpassed R in terms of overall popularity, but R remains an important language for the life63

sciences (Lawlor et al. 2022). ‘Keras’ (Chollet and others 2015), ‘PyTorch’ (Paszke et al. 2019) and64

‘Tensorflow’ (Martín Abadi et al. 2015) are some of the more popular neural network libraries; these libraries65

were all initially developed for the Python programming language. One of the earliest implementations of66

automated detection using R was the ‘monitoR’ package, that included functions for template detection (Katz,67

Hafner, and Donovan 2016). The ‘warbleR’ package included functions for energy-based detection, which68

identifies signals of interest in a certain frequency range above specified energy thresholds (Araya-Salas and69

Smith-Vidaurre 2017). The ‘gibbonR’ package combined energy-based detection with tranditional machine70

learning classification (Clink and Klinck 2019).71

Until recently, deep learning implementations in R relied on the ‘reticulate’ package which served as an72

interface to Python (Ushey, Allaire, and Tang 2022). Previous implementations of automated detection using73

deep learning in R relied on the ‘reticulate’ package Silva et al. (2022). However, the recent release of the ‘torch74

for R’ ecosystem provides a framework based on ‘PyTorch’ that runs natively in R and has no dependency on75

Python (Falbel 2023). Running natively in R means more straightforward installation, and higher accessibility76
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for users of the R programming environment. Keydana (2023) provides tutorials for transfer learning in the77

‘torch for R’ ecosystem, and the functions in ‘gibbonNetR’ rely heavily on these tutorials. Variations of the78

transfer learning approaches included in this package have already been implemented in Python (Dufourq et79

al. 2022). Recent advances have used embeddings from audio classification models trained on bird songs80

for new classification problems, and in most cases these embeddings led to better performance than general81

audio or image datasets (Ghani et al. 2023).82

2 Overview83

This package provides functions to create spectrogram images using the ‘seewave’ package (J. Sueur, T. Aubin,84

and C. Simonis 2008), use transfer learning for six CNN architectures: AlexNet (Krizhevsky, Sutskever, and85

Hinton 2017) , VGG16, VGG19 (Simonyan and Zisserman 2014), ResNet18, ResNet50, and ResNet152 (He et86

al. 2016)) trained on the ImageNet dataset (Deng et al. 2009 ). This package has been used for automated87

detection of gunshots (Vu et al. 2024) and gibbon calls (Clink, Kim, et al. 2024; Clink, Cross-Jaya, et88

al. 2024). The package also has functions to evaluate model performance, deploy the highest performing89

model over a directory of sound files, and extract embeddings from trained models to visualize acoustic data.90

We provide an example dataset that consists of labelled vocalizations of the loud calls of four vertebrates91

(see detailed description below) from Danum Valley Conservation Area, Sabah, Malaysia (Clink and Hamid92

Ahmad 2024). Detailed usage instructions for ‘gibbonNetR’ can be found Here93

2.1 Data summary94

We include sound files and spectrogram images of five sound classes: great argus pheasant (Argusianus95

argus) long calls (Clink et al. 2021), helmeted hornbills (Rhinoplax vigil), and rhinoceros hornbills (Buceros96

rhinoceros) (Kennedy et al. 2023), female gibbons (Hylobates funereus) and a catch-all “noise” category.97

The data come from two separate PAM arrays in Danum Valley Conservation Area, Sabah, Malaysia. The98

training and validation data come from a wide array of Swift autonomous recording units placed on ~750 m99

spacing (Clink et al. 2023), and the test data come from a different, smaller array (~250 m spacing) within100

the same area. We used a band-limited energy detector to identify signals that were 3-sec or longer duration101

within the 400-1600 Hz range, and then a single observer (DJC) manually sorted the detections into their102

respective categories (Clink et al. 2023).103

2.2 Preparing training, validation, and test data104

The package currently uses spectrogram images (Figure 1) to train and evaluate CNN model performance,105

and we includes a function that can be used to create spectrogram images from Waveform Audio File Formant106

(.wav) files. The .wav files should be organized into separate folders, with each folder named according to the107

class label of the files it contains. We highly recommend that your test data come from a different recording108

time and/or location to better understand the generalizability of the models (Stowell 2022).109
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Figure 1: Spectrograms of training clips for CNNs

2.3 Model training110

The package currently allows for the training of six different CNN architectures (‘alexnet’, ‘vgg16’, ‘vgg19’,111

‘resnet18’, ‘resnet50’, or ‘resnet152’), and the user can specify if they want to freeze the feature extraction112

layers or not. There is the option to train a binary or multi-class classifer.113

2.4 Evaluate model performance114

We can compare the performance of different CNN architectures (Figure 2). Using the ‘get_best_performance’115

function we can evaluate the performance of different model architectures on the test dataset for the specified116

class. We can calculate the best F1, precision, recall using the ‘caret’ package (Kuhn 2008), and the area117

under the ROC (Receiver Operating Characteristic) curve using the ‘ROCR’ package (Sing et al. 2005),118

which evaluates the classifier’s ability to discriminate between positive and negative classes.119

PerformanceOutput <- gibbonNetR::get_best_performance(performancetables.dir=performancetables.dir,
class='female.gibbon',
model.type = "multi",Thresh.val=0)

PerformanceOutput$f1_plot
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Figure 2: Evaluating performance of pretrained CNNs

2.5 Extract embeddings120

Embeddings from deep learning models can be used as features in unsupervised approaches, with promising121

results for call repertoires (Best et al. 2023) and individual identity (Lakdari et al. 2024). This package122

contains a function to use pretrained CNNs to extract embeddings, where the trained model path, along with123

test data location and target class are specified. Depending on the research question, this output could be124

used to sort between true and false positives for automated detection, or to explore differences in call types125

or potential number of individuals in the dataset.126

2.6 We can plot the unsupervised clustering results127

In Figure 3 the top plot is a Uniform Manifold Approximation and Projection (UMAP) where each point128

represents one call, and the colors indicate the original class label. The bottom plot is the same UMAP plot,129

but with points colored based on cluster assignment by the ‘hdbscan’ algorithm (Hahsler, Piekenbrock, and130

Doran 2019).131

#> processing embeddings132

#> Unupervised clustering for female.gibbon133
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Figure 3: UMAP plot of embeddings from test data set colored by actual label (top) and unsupervised cluster
assignment (bottom)

2.6.1 We can explore the unsupervised clustering results134

We can calculate the Normalize Mutual Information score, which provides a value between 0 and 1, indicating135

the match between cluster labels and actual labels. We also create a confusion matrix using the ‘caret’136

package (Kuhn 2008) which returns the results when we use the unsupervised clustering algorithm function137

‘hdbscan’ (Hahsler, Piekenbrock, and Doran 2019) to match the target class to the cluster with the largest138

number of observations of that particular class.139

3 Future directions140

There have been huge advances in the fields of deep learning and automated detection for PAM data in recent141

years. The approach presented in this package is one of the first to use the ‘torch for R’ ecosystem and to142

employ automated detection using deep learning natively in R. More recent approaches use transfer learning143

from models that are explicitly trained on bioacoustics data, such as BirdNET (Ghani et al. 2023), have144

been introduced. There is a huge need in the field of bioacoustics to do benchmarking, wherein different145

model architectures and performance are compared across diverse datasets. The methods presented here can146

provide important benchmarks for future work, and for understanding how and if deep learning advances147

improve performance over more traditional methods. In addition, this package provides a comprehensive148

suite of tools for processing, analyzing, and visualizing acoustic data, providing robust support for tasks149

such as automated detection, feature extraction, classification, and data visualization, which are critical for150

conservation work using PAM. The R package is available on Github, where issues can be opened.151
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