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Abstract 12 

1. The fundamental unit of spatial ecology is a species range: the geographic area that it 13 

occupies. Species ranges are delineated by range edges (also known as boundaries or 14 

limits). Why range edges occur where they do and not elsewhere, and what makes them 15 

move, has been an active area of research since the 19th century. In the present day, 16 

range edge dynamics are an important metric of biodiversity’s response to climate 17 

change, as species shift toward the poles to track their climatic niches. Yet methods for 18 

measuring range edges and quantifying their displacement have never been formalized.  19 

2. Here I described common methods for describing range edge positions and applied 20 

them to example data for a bird species and a fish species, using some of the most 21 

popular datasets in climate biogeography: the Audubon Society Christmas Bird Count 22 

and a National Oceanic and Atmospheric Administration bottom trawl survey.  23 

3. I showed that the choice of range edge metric influences where range edge positions 24 

are estimated to occur; whether they are estimated to be shifting over time; and the 25 

estimated rate of shift. The lack of universal metrics for range edges has likely shaped 26 

statistics reported in synthesis studies that measured overall biodiversity responses to 27 

climate change and global rates of range shifts. Through simulation, I found that reliably 28 

detecting range edge shifts may require decades of data or more, suggesting that many 29 

global change studies in this field are underpowered.  30 

4. Pairing metrics to research questions, sharing raw data and code, and conducting power 31 

analyses before reporting statistically significant results will all help to minimize this 32 

issue. Going forward, the field of biogeography should confront the degree to which ad 33 

hoc methods have influenced our understanding of range edge dynamics, and move 34 

toward universally accepted metrics.  35 
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Data/code 36 

The data and code for this project are available on GitHub. An anonymized link to the repository 37 

can be found here: https://anonymous.4open.science/r/range-edge-methods-48BD/.  38 

Keywords 39 

Range edges; range boundaries; range limits; biogeography; range shifts; non-random 40 

subsampling; time-series; power analysis 41 

Introduction 42 

Range edges (or limits, or boundaries) are a fundamental unit of spatial ecology. Range 43 

edges are commonly understood to delineate where a species’ geographic range ends on a 44 

map (Gaston 2003). They have fascinated ecologists and evolutionary biologists since the 45 

origins of our field (MacArthur 1972; Wallace 1876). Range edges are dynamic, over short and 46 

long time scales (Boisvert-Marsh et al. 2014; Williams & Blois 2018). In recent decades, many 47 

species’ range edges have begun to shift polewards in concert with global climate change 48 

(Hickling et al. 2006; Parmesan & Yohe 2003). These recent shifts have underscored how range 49 

edges are part of humanity’s relationship with nature; they influence our management 50 

boundaries and conservation plans, and are embedded in our culture and history (Pecl et al. 51 

2017). Range edges are also where we often test foundational hypotheses in ecology and 52 

evolutionary biology—about dispersal, population genetics, species interactions, species 53 

invasions, and of course biogeography (Sexton et al. 2009; Willi & Van Buskirk 2019). Here I 54 

define range edges as geographical limits outlining the boundaries of a species’ range (Figure 55 

1).  56 
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 57 

Figure 1. Illustration of terms and concepts relevant to species range edges, using a Northern 58 

Hemisphere orientation (i.e., the poleward edge is toward the north). Note that the present study 59 

focused only on geographical range edges (not depth or elevational edges).  60 

 61 

To measure the position of a species’ range, studies commonly use some version of an 62 

abundance-weighted geographical center, i.e., a range centroid (La Sorte & Thompson, III 2007; 63 

Perry et al. 2005). No such universal metric exists for range edges, and their quantification is far 64 

more variable in literature (Lawlor et al. 2024). Further, because centroid metrics are mean 65 

statistics and range edge metrics are extreme value statistics, greater variation may be 66 

expected in the latter. Range edges have been characterized using expert opinion, species 67 

distribution models, or through metrics based on species’ abundance or presence, in one, two, 68 

or three spatial dimensions—each using bespoke methods that are not standardized within 69 

fields or among studies (Gaston 2003; Guisan & Thuiller 2005). The effect of these 70 

methodological choices on analytical conclusions has been little-explored, although a recent 71 
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study illuminated how user decisions influence the delineation of species range maps (Hughes 72 

et al. n.d.).  73 

While biogeography in the 20th century focused on describing species ranges (Gaston 74 

2000; MacArthur 1972), the field is increasingly focused on range shifts in light of human 75 

impacts on the planet (Parmesan & Yohe 2003). A large and growing literature has documented 76 

recent shifts in species’ ranges and range edges, often tracking local climate velocities and/or 77 

moving toward the poles (Lenoir et al. 2020). Many of these studies have compared a historic 78 

dataset to a modern “resurvey” to measure range edge shifts. Unfortunately, this approach may 79 

lead to misleading inferences about global change impacts (Stuble et al. 2021), and longitudinal 80 

studies with more time points for studying range edge dynamics are rare. Inconsistencies in 81 

global change metrics used by individual studies and researchers have ripple effects in 82 

synthesis science, making it difficult to accurately estimate large-scale patterns and trends 83 

(Brown et al. 2016; Lenoir et al. 2020). Further, simulation testing found that many years of data 84 

are often required to accurately estimate population trends (White 2019); if the same is true of 85 

range trends, many range edge shift studies are possibly underpowered.  86 

The challenge of measuring range edge dynamics is evident in my own work. Using a 87 

50-year annual time-series of marine bottom trawl surveys with hundreds of samples per year, 88 

colleagues and I found that it was still difficult to separate the signal of a putative range edge 89 

shift from noise [CITATION REDACTED FOR DOUBLE-BLIND PEER REVIEW]. A follow-up 90 

study that used alternative methods to measure range edge dynamics came to very different 91 

conclusions about which species’ range edges had shifted and how far [CITATION REDACTED 92 

FOR DOUBLE-BLIND PEER REVIEW].  93 

Here I applied a suite of range edge metrics that are common in the biogeography 94 

literature (Table 1) to standardized biodiversity data. I found substantial heterogeneity in the 95 

edge positions measured and the resulting estimates of range edge shifts. I showed that 96 
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methodological choices in measuring range edges can influence not only the rate of inferred 97 

shifts, but whether shifts are identified at all. I also simulated range edge data to demonstrate 98 

that for realistic values of shift rates and interannual variability, many decades of data are likely 99 

to be needed to reliably quantify edge shifts.  100 

 101 

 102 

Method Description Examples 

Most distal 
point 

Edge is identified at the most distal point 
observation or occupied grid cell along a 
single dimension (typically latitude)  

(La Sorte & Thompson, III 
2007; Schoeman et al. 2015) 

Mean of 
distal points 
or grid cells 

Mean of n most distal point observations or 
occupied grid cells along a single dimension 
(typically latitude)  

(Hällfors et al. 2021; Hickling 
et al. 2006; Kerr et al. 2015) 

Abundance-
weighted 
mean of 
distal points 
or grid cells 

Abundance-weighted mean of n most distal 
point observations or occupied grid cells 
along a single dimension (typically latitude)  

(Perry et al. 2005) 

Quantile of 
observations 

Quantile of observations in a single dimension 
(usually latitude), often 0.01, 0.05, or 0.1 for 
equatorward edges, and 0.9, 0.95, or 0.99 for 
poleward edges  

(Fredston-Hermann et al. 
2020; Sittaro et al. 2017; Zhu 
et al. 2012) 

Quantile of 
modeled 
distribution 

Species distribution model is fitted to data, 
and then quantiles of presence or abundance 
are extracted from the models 

(Fredston et al. 2021) 

Table 1. Summary of common methods for measuring range edge positions, typically for use in 103 

studying climate-related range shifts. This does not represent an exhaustive review of the 104 

literature. Many other examples of these approaches exist, as do many other bespoke methods.  105 
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Methods 106 

This manuscript uses two species as focal examples: Urophycis tenuis (white hake), a 107 

marine fish whose distribution in the Northwest Atlantic includes an equatorward range edge 108 

that falls within the Northeast US continental shelf, and Coragyps atratus (black vulture), a bird 109 

species with a poleward range edge in the continental US. Both of these range edges—the 110 

equatorward edge of the white hake and the poleward edge of the black vulture—have been 111 

described as shifting northward by previous studies (Fredston-Hermann et al. 2020; La Sorte & 112 

Thompson, III 2007). 113 

Data on the white hake was downloaded from FISHGLOB, an international effort to 114 

collate, harmonize, and publish scientific bottom trawl surveys (“FishGlob_data” 2023; 115 

Maureaud et al. 2024). I used data from the Northeast US, where a biannual survey has been 116 

operated since the 1960s by the National Oceanic and Atmospheric Administration, NOAA 117 

(Azarovitz 1981; Despres-Patanjo et al. 1988). Consistent with other publications using this 118 

dataset, I used data from the fall survey from 1972 onward (Fredston-Hermann et al. 2020; 119 

Pinsky et al. 2013). Data on the black vulture was downloaded from the National Audubon 120 

Society Christmas Bird Count, or CBC (National Audubon Society 2023). I downloaded 121 

historical data on the black vulture from the CBC online data portal. Consistent with other 122 

publications using this dataset, I used data from 1975 onward (La Sorte & Thompson, III 2007).  123 

For each of these species, I calculated annual range edge positions using a subset of 124 

the methods in Table 1: the three methods based on distal points, and quantiles of observations 125 

(0.9, 0.95, and 0.99 for a poleward edge, and 0.01, 0.05, and 0.10 for an equatorward edge). 126 

For the metrics based on a mean of points, I used n=3, i.e., a mean of the three most distal 127 

points. I estimated whether edges had shifted over time using linear regression of edge position 128 
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(in degrees latitude) on year with a significance threshold of 0.05. P-values less than 0.001 are 129 

reported as “< 0.001” in-text.  130 

Regardless of which edge metric is chosen, researchers must also ensure that their 131 

study has sufficient power to detect a “true trend”. I conducted a set of simulations to evaluate 132 

which combinations of edge shift rates and time-series lengths have sufficient power to detect 133 

significant shifts when they occur, using non-random resampling (White & Bahlai 2021). I 134 

simulated the position of a range edge over a century given some shift rate and error:  135 

𝑒𝑑𝑔𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ! 	= 𝑠ℎ𝑖𝑓𝑡	𝑟𝑎𝑡𝑒	 × 𝑦𝑒𝑎𝑟	 + 𝑒	 136 

Where t represented year and e represented an error term. The error term was drawn 137 

each year from a normal distribution with a mean of 0 and a standard deviation of 0.65, which 138 

was derived from the mean conditional standard deviations of the linear regressions previously 139 

fitted to white hake and black vulture data. Using realistic values from literature (Lenoir et al. 140 

2020), I tested range edge shift rates from 0.01 – 0.1 °lat/year in 0.01 °lat/year steps.  141 

I then subsetted the simulated data into different time-series lengths, as if an observer 142 

were only able to record n continuous years of data, where n ranged from three to 100. For 143 

each time-series length, I fitted linear regressions of position on time to every possible subset of 144 

the simulated data. For example, for a time-series length of four years, I fitted a regression to 145 

the simulated data from years one, two, three, and four; another to years two, three, four, and 146 

five; another to years three, four, five, and six; and so on. Then for each time-series length, I 147 

estimated its power as how often the regressions found the “correct” result (a significant positive 148 

shift, with a significance threshold of 0.05). I repeated the workflow above 100 times to generate 149 

a distribution of power values for every combination of time-series length and edge shift rate. In 150 

interpreting the results, I considered a power value of 0.8 or higher to mean that the analysis 151 

accurately captured the “true trend” of the simulated data.  152 
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All data analysis was conducted in R version 4.1.1 (R Core Team 2021). Code and data 153 

to reproduce the results can be found online at [GitHub link to be inserted after peer review].  154 

Results 155 

For both the poleward edge of the black vulture and the equatorward edge of the white 156 

hake, different methods estimated dramatically different range edge positions—in some years, 157 

more than five degrees of latitude apart (Figure 2). Interannual variability was also lower for 158 

quantile-based approaches than for methods using most distal points (Figure 2).  159 

All methods tested found a significant shift in the poleward range edge position of the 160 

black vulture from 1975-2023 (Figure 2). However, the methods differed markedly in the 161 

estimated shift rates. Shift rates using edge metrics that were based on most distal points were 162 

all within one standard deviation of one another (most distal point: 0.097 ± 0.013 °lat/year, p < 163 

0.001; mean of most distal points: 0.085 ± 0.0052 °lat/year, p < 0.001; abundance-weighted 164 

mean of most distal points: 0.081 ± 0.0051 °lat/year, p < 0.001). By contrast, the shift rates 165 

using quantile edge metrics were much slower, especially the 0.95 quantile method (0.9 166 

quantile: 0.038 ± 0.0075 °lat/year, p < 0.001; 0.95 quantile: 0.028 ± 0.0035 °lat/year, p < 0.001; 167 

0.99 quantile: 0.036 ±  0.0017 °lat/year, p < 0.001).  168 

For the equatorward edge of the white hake, the three methods using abundance-169 

weighted quantiles found a significant northward shift in edge position from 1972-2019, and the 170 

methods calculated using most distal points did not (Figure 2). The rates of shift estimated by 171 

the three quantile methods all fell within one standard error of each other (0.1 quantile: 0.0086 ± 172 

0.0036 °lat/year, p = 0.02; 0.05 quantile: 0.015 ± 0.0046 °lat/year, p = 0.003; 0.01 quantile: 173 

0.016 ±  0.0054 °lat/year, p = 0.004).  174 

 175 
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176 

 177 

Figure 2. Positions of the poleward edge of the black vulture (Coragyps atratus) estimated from 178 

the Christmas Bird Count (top) and the equatorward edge of the white hake (Urophycis tenuis) 179 

in the Northwest Atlantic estimated from an annual NOAA survey (bottom) using various 180 

methods that are common in the biogeography literature. Solid lines indicate that a linear 181 
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regression of latitude on year found a significant shift (p ≤ 0.05) over the time-series; dashed 182 

lines indicate no significant shift.   183 

 Using realistic time-series lengths, shift rates, and error terms, I simulated that many 184 

decades of data would often be needed to reliably detect range edge shifts (Figure 3). The 185 

median minimum time-series length required to accurately detect a significant shift ranged from 186 

94 years (in the third-slowest range edge shift rate tested, 0.003 °lat/year) to 59 years (for edge 187 

shift rates of 0.085 – 0.1 °lat/year). Across all time-series subsets and simulation iterations, the 188 

shortest time-series to reach the statistical power threshold of 0.8 was 14 years long, in a 189 

simulation where the range edge shift rate was 0.099 °lat/year—the second-fastest shift rate I 190 

tested. Conversely, for the slowest rates of range edge shifts tested (0.001 – 0.011 °lat/year), at 191 

least one iteration of the simulation never reached the statistical power threshold of 0.8 after 192 

100 years (Figure 3).  193 

  194 
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 195 

 196 

 197 

Figure 3. Results of a non-random subsampling analysis exploring statistical power in analyses 198 

of simulated range edge data, showing the number of years required to accurately identify 199 

significant shifts in the simulation, i.e., when the simulated analysis reached a power level of 0.8 200 

(top) and the relationship between time-series length and statistical power for four example 201 

rates of range edge shift (bottom). The dashed line represents the end of the simulation after 202 
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100 years (top) and the power threshold of 0.8 (bottom). Both plots show results for simulations 203 

run 100 times. In the top plot, the color fill represents what proportion of those iterations falls 204 

within each band, and the black line is the median value. In the bottom plot, each line is an 205 

iteration of the simulation.  206 

Discussion 207 

 Here I used two prominent long-term monitoring datasets—each of which encompasses 208 

decades of warming and has been previously found to reveal climate-related range edge shifts 209 

(Fredston-Hermann et al. 2020; La Sorte & Thompson, III 2007)—to show that estimated edge 210 

positions, shift rates, and statistical significance depend on methodological choices by 211 

researchers (Figure 2). Quantile-based methods showed less interannual variability in edge 212 

position than distal points-based methods, and different approaches estimated notably disparate 213 

edge positions—sometimes differing by up to five degrees of latitude (Figure 2). For the 214 

equatorward edge species, only quantile-based methods found a significant northward shift. 215 

While all methods found a significant northward shift in the poleward edge species, their 216 

estimated magnitudes were very different (Figure 2).  217 

It is generally understood that individual researcher decisions affect science (Gould et al. 218 

2023), and previous work in global change biology found that methodological decisions explain 219 

a large proportion of variation in estimated range shifts (Brown et al. 2016; Lenoir et al. 2020). 220 

This issue is especially salient for range edges, which are extreme value statistics that may be 221 

highly sensitive to seemingly small differences in methodology. The results presented here only 222 

represent a subset of common approaches to estimating range edge positions (Table 1), and 223 

many other approaches exist in literature. Thus, the effect of ad hoc methods on range edge 224 

measurements and estimated shift rates may be even greater than demonstrated here with a 225 
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handful of approaches. Observer error, low and/or variable probability of detection, and changes 226 

in sampling over time can further confound range edge measurements.  227 

 Studies often pool results about poleward and equatorward edge shifts as if they were 228 

comparable processes. Especially when using presence-only metrics, this approach may have 229 

the unintended consequence of biasing results toward recording range edge extensions over 230 

range edge retractions. This is because in order for a range edge retraction to be found using 231 

presence-only data, every individual in a population has to vanish from the most distal site(s); 232 

but for a range edge extension to occur just one individual has to spread beyond the historical 233 

range (Thomas et al. 2006). Indeed, a recent synthesis of evidence for range shifts revealed 234 

that poleward edge shifts are much more commonly recorded than equatorward edge shifts 235 

(Lawlor et al. 2024). Whether this phenomenon is considered a “feature” or a “bug” in analysis 236 

depends on the research question (and note that range edge extensions can also be difficult to 237 

detect if populations are small and/or monitoring effort is low; see Robinson et al. (2015)). 238 

Researchers aiming to identify the full geographical area occupied by a species—i.e., a range 239 

map—may prefer to use presence-only metrics for precisely the reason that they capture the 240 

most distal occupied sites. However, if the goal is to calculate rates of range edge shifts or to 241 

understand where the vast majority of a species’ density is found, abundance-weighted metrics 242 

may provide a more accurate picture of equatorward edge dynamics. Alternatively, researchers 243 

may want to combine these metrics in a single study to capture both distal colonization or 244 

extinction events and changing abundance patterns.  245 

Even when range edges are measured with abundance-weighted metrics, it must be 246 

emphasized that colonization and extirpation are distinct processes that happen at very different 247 

rates. The relatively slow rate of extirpation, which may cause “extinction debt”, means that 248 

equatorward-edge populations could be declining even if their geographical shifts are slower 249 

than at the poleward edge (Hampe & Petit 2005; Jackson & Sax 2010; Tilman et al. 1994). This 250 
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is evident in the white hake equatorward edge example: the statistically significant shift rates I 251 

calculated were less than 2 km/year, which is far slower than literature syntheses on marine 252 

range shift rates overall (Lenoir et al. 2020; Poloczanska et al. 2013). It may be that measuring 253 

demographic parameters in range edge populations is a more reliable predictor of their 254 

trajectories than abundance (Gaston et al. 2009). Researchers may also consider more 255 

biologically relevant metrics that exclude adult migration and foraging from range measurement. 256 

For example, range expansion in California sea otters has been modeled using only abundance 257 

data on females and pups (Krkošek et al. 2007), since males are mobile foragers and their 258 

geographical distributions are not reflective of the species’ year-round range.  259 

 This study focused on geographical range edges measured primarily in one dimension: 260 

latitude. In the context of global change, species are expected to track climate velocities, which 261 

do not always point north (Burrows et al. 2014). Range edge dynamics in response to climate 262 

change may be better captured by measuring shifts relative to these local climate velocities 263 

(Pinsky et al. 2013), or along custom “rulers” that correspond to coastlines, isotherms, contours, 264 

or other features that range-shifting species might follow (Fredston et al. 2021). While not 265 

discussed here, depth and elevational range edges are typically studied in an ad hoc fashion 266 

similar to geographical range edges, and their reported positions and shifts may be similarly 267 

sensitive to researchers’ methodological choices.  268 

Methods matter in measuring range edge dynamics, but so does statistical power. Non-269 

random resampling of time-series datasets can reveal how much data is necessary to detect a 270 

“true trend” (White 2019; White & Bahlai 2021). The simulation results presented here 271 

underscore the long time-series that may be needed to reliably detect the signal of a range edge 272 

shift (Figure 3). This analysis was not intended to provide quantitative rules of thumb, and did 273 

not explore the effects of different range edge metrics on estimated shift rates and statistical 274 

significance. Rather, it is the type of simulation that could be conducted by researchers 275 
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analyzing novel empirical data to test whether their study is underpowered. By adapting the shift 276 

rate, time-series length, and error rate parameters to their own study systems, researchers can 277 

simulate how likely they are to detect a significant shift should one exist. The example values I 278 

used suggest that decades of data may be needed to reliably detect modern range edge shifts 279 

(Figure 3).  280 

While the exact threshold for statistical power varies by system and study, the 281 

implication remains that studies with just a few time points are unlikely to reflect true rates of 282 

edge shifts (Stuble et al. 2021). Publishing under-powered interpretations of ecological time-283 

series is not uncommon, despite statistical evidence that doing so may lead to misleading 284 

inferences about trajectories of populations and ecosystems with complex dynamics (Bahlai et 285 

al. 2021; McCain et al. 2016; White 2019). With high interannual variability being a common 286 

feature of range edges, and few large-scale, long-term, and high-resolution datasets such as 287 

the CBC and NOAA surveys available (Thomas et al. 2006), it remains an open question if and 288 

how the field is ready to accurately quantify range edge dynamics.  289 

The simulation presented here did not address additional sources of uncertainty, such as 290 

observer error and the abundance and detectability of a species. These can be quantified and 291 

partitioned from biological processes using species distribution models (Brodie et al. 2022). 292 

Another advantage of using species distribution models is that they can quantify uncertainty 293 

associated with range edge positions (Fredston et al. 2021). However, the degree to which 294 

species distribution models accurately predict biological parameters (e.g., presence, 295 

abundance) is widely debated (Lee-Yaw et al. 2022), and their usefulness in projecting future 296 

species distributions—one primary focus of modern biogeography—is unclear (Fourcade et al. 297 

2018; Sofaer et al. 2018). Mechanistic models may provide an alternative path toward 298 

forecasting range edge dynamics while accounting for observation error (Briscoe et al. 2019).  299 
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Syntheses of edge shift rates across studies, systems, and taxa is facilitated by 300 

researchers sharing their raw data, which allows future re-analysis or meta-analysis with 301 

different methods and motivating questions (Carpenter et al. 2009). Ecological synthesis is 302 

especially important in the context of global change biology, because the field-collected 303 

datasets researchers use to study biogeography in a warming world are each irreplaceable 304 

(Wolkovich et al. 2012). In addition to open data, open code will make it possible to investigate 305 

the effect of methodological choices on reported measurements of range edges. Openly sharing 306 

data and code has many other advantages that are well-described (Cheruvelil & Soranno 2018; 307 

Fredston & Lowndes 2024; McKiernan et al. 2016; O’Dea et al. 2021).   308 

Species range edges are a core concept in biogeography, and range edge shifts are 309 

among the most common metrics of “species on the move” in a warming world (Lenoir et al. 310 

2020). Predicted future range edge shifts are already influential in biodiversity conservation and 311 

natural resource management, as models project when species will shift out of protected areas 312 

or across jurisdictional boundaries (Pinsky et al. 2018). Yet range edges lack a universally 313 

accepted measurement, and the ad hoc approach taken by global change studies to date 314 

makes it impossible to accurately synthesize—let alone forecast—the true rates of range edge 315 

shifts in the Anthropocene. Improving measurements of range edge positions and shifts would 316 

enable global change researchers to better describe changes that are occurring and to more 317 

effectively relate them to important environmental variables. Several recommended best 318 

practices for quantifying range edge dynamics emerge from this study: 319 

1. Range edge metrics should be chosen to match a research question, and care 320 

should be taken when comparing poleward and equatorward edge dynamics—321 

especially when using presence-based approaches. Sensitivity analyses can 322 

reveal whether results are driven by the choice of metric.  323 
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2. Researchers should conduct simulations to ensure that their studies are not 324 

under-powered, especially when testing for shifts in range edge positions.  325 

3. Demographically relevant parameters, such as population growth rates or 326 

abundance of reproductive females, may lead to more informative metrics of 327 

range edge dynamics than simple inventories of presence or abundance.  328 

4. Publishing raw data and code means that range edge studies can be re-analyzed 329 

in the future to assess the effect of methodological choices on results and to 330 

conduct syntheses and meta-analyses about range edge dynamics.  331 

The methods that I tested here (Table 1) are simple statistics, and it is likely that none of 332 

them are an ideal metric for range edges. Far more sophisticated approaches exist that could 333 

be applied to measuring the boundaries of species’ ranges. For example, kernel densities, 334 

contour estimation, and two- and three-dimensional range edge metrics all merit much greater 335 

attention in the biogeography and global change biology fields. How to measure other 336 

foundational properties of species—e.g., abundance, growth rates, population structure—has 337 

received extensive research attention in quantitative ecology for many years. By contrast, 338 

biogeography has yet to grapple with to what degree our understanding of range edge dynamics 339 

is driven by methods rather than biological processes, let alone to move toward universally 340 

accepted metrics. It is time for range edges to get their due.  341 
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