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Abstract

Ancestral state reconstruction involves estimating the unknown trait values of hypothetical
ancestral species at internal nodes of a phylogenetic tree. In this review, I’ll illustrate the
theory and practice of ancestral state reconstruction for both discrete and continuously-valued
phenotypic traits, highlight several use cases via a set of empirical examples, and discuss the
statistical properties of ancestral state estimation as well as its limitations.

1 Preface

Some time during 2023 I was asked to contribute a section on ‘Ancestral Reconstruction: Theory & Practice’
for the second edition of a compendium titled the ‘Encyclopedia of Evolutionary Biology’ (Kliman 2016).
Not having carefully read the instructions, but enthusiastic about the task, I proceeded to write what I
expected to be a lengthy book chapter on the subject, including some original research. As it turns out, and
as I realized before submitting my article to the publisher, this was totally inconsistent with the aims of the
project which called for a much more compact and less detailed treatment of the subject. Having identified
my blunder, I was forced to go back to the drawing board and produce a much more appropriate length piece
for the Encyclopedia. The present article is the fruit of my original labor and is geared towards researchers
more interested in the technical details of ancestral reconstruction and its application.1 I hope that it can
serve this purpose here.

2 Introduction

Ancestral state reconstruction2 is the general practice of estimating the value or values of a feature or attribute
at the set of common ancestors of the operational taxa3 of a phylogenetic tree (Schluter et al. 1997; Yang
2006, 2014; Revell and Harmon 2022). Ancestral state reconstruction falls within the domain of phylogenetic
comparative methods4 (Pagel 1997; Nunn 2011; O’Meara 2012; Harmon 2019; Revell and Harmon 2022),

1As a sidenote, here recorded unironically as a footnote, let me add that though they overlap thematically, all of
the text and content of this article is original and not redundant with my Encyclopedia of Evolutionary Biology entry!

2Ancestral state reconstruction is also often referred to as ancestral character estimation. These are the same thing,
and I’ll use the two terms interchangeably here.

3Operational taxa are the named tips or leaves in a reconstructed phylogenetic tree. In many studies using
phylogenetic comparative methods, operational taxa are nominal species, but they could also be subspecies, populations,
cultural groups (in the case of language phylogenies), genera, or other units of study (e.g., Walker et al. 2012; Hall et
al. 2018; Yaxley and Foley 2019; Li et al. 2022).

4For the purposes of this article, phylogenetic comparative methods are the set of methodologies that are used
(typically) downstream of phylogenetic inference to test hypotheses about evolution based on a tree, and often in
combination with trait data for the terminal taxa of that tree.
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and has long been relentlessly popular. The popularity of ancestral reconstruction is easy to comprehend.
Evolutionary biologists are often inherently interested in the evolutionary past, and ancestral character
estimation promises us a window towards that otherwise invisible history (Revell and Harmon 2022).
Undertaking ancestral state reconstruction requires that we have a reconstructed tree5,6, as well as observations
of a phenotypic trait of interest from some or all of the terminal taxa of that tree (Nunn 2011; Revell and
Harmon 2022). Modern ancestral state reconstruction also requires that we have a model or hypothesized
model for how our character trait evolved over the macroevolutionary time represented by our phylogeny.7
Finally, we’ll use a formal statistical inference procedure to obtain a set of estimates of our trait at some or
all of the internal nodes of the tree.
In the sections below, I’ll first offer some preliminaries on the goals of this article and on terminology. I’ll
then proceed to describe the procedures for estimating ancestral phenotypes, first for discrete and then for
continuously-valued traits, accompanying each section with a small number of empirical examples. Finally, I’ll
discuss some limitations of ancestral state estimation, focusing particularly on those arising from identifiable
inadequacies of the assumed trait evolution model.

3 Preliminaries

This article focuses on phylogenetic ancestral state reconstruction of discrete and continuously-valued
phenotypic traits. A phylogenetic tree is a acyclic8, directed graph, typically used as a model to represent
the historical relationships among species unified by common descent (Felsenstein 2004; Yang 2014; Revell
and Harmon 2022). Phylogenies are also used to approximate other entities connected via a similar form of
ancestor-descendant relationship, such as human cultural groups, viral sequences of an emerging infectious
disease, or metastatic tumor cell lines in a cancer patient (e.g., Gray et al. 2009; Nunn 2011; Somarelli et al.
2017; Turakhia et al. 2020; Quinn et al. 2021).
Phylogenies consist of three main components: nodes, branches, and tips (Yang 2006; Baum and Smith 2012;
Revell and Harmon 2022). Nodes are hypothetical ancestral taxa located at the nexus point of two or more
descendant branches. A branch (often referred to as an edge, and I’ll use the terms interchangeably here)9 is
a connection between two different nodes: parent (i.e., ancestral) and daughter (i.e, descendant). Branches
often have the property of length, which, in the type of tree used for ancestral state reconstruction, often
represents elapsed time in some unit. Finally, a tip (often referred to as a leaf, and I’ll sometimes use that
term here) is an external node of the tree, not connected to any descendant nodes, that is used to represent a
species or other operational taxon of the phylogeny. Once again, in the type of phylogenetic tree used for
ancestral state reconstruction, tips most often have as an attribute a label, indicating to which taxon they
correspond (Felsenstein 2004; Baum and Smith 2012).
Though ancestral state reconstruction can also be undertaken for nucleotide sequence or other molecular
characters (e.g., Yang 2014), in this article I’ll focus on ancestral state reconstruction of phenotypic traits
(Schluter et al. 1997; Nunn 2011; Revell and Harmon 2022). A phenotypic trait is an observable attribute –
be it physical, morphological, behavioral, ecological, physiological, cellular, etc. – of the operational taxa

5Or set of trees, e.g., from a bootstrapping analysis or Bayesian posterior sample.
6None of the methods of this article technically require that our input tree be ultrametric or time-calibrated.

Normally, however, I recommend using an ultrametric or time-calibrated tree unless we have a formal, a priori
hypothesis that the rate of evolution of our trait is better predicted by non-ultrametric branch lengths – for instance
the branch lengths obtained from Maximum Likelihood phylogeny inference – than by units of chronological time.
The circumstances in which this is true are, I believe, quite rare.

7At the risk of upsetting some enthusiasts, and apart from in this footnote, I will avoid discusing parsimony as
a method for ancestral state reconstruction here. Parsimony, better known as a technique of phylogeny inference,
is a procedure whereby we seek to identify the set of ancestral states that will minimize the minimum number of
evolutionary changes in our character that are required to explain the observed data pattern. This set of node values
can then be characterized as the maximum parsimony or most parsimonious ancestral states. Even though this
might seem sensible and will often provide very reasonable ancestral character estimates, parsimony leaves us with
substantial difficulty in assessing the strength of evidence in support of this most parsimonious solution – compared
to, say, an alternative only slightly less parsimonious one – and does not provide any firm criteria for averaging across
any equally parsimonious sets of states. For this reason, and others, I have decided to focus on explicit, probabilistic
procedures of ancestral state inference in this article.

8Acyclic just means that the graph doesn’t form loops or cycles.
9Branch is the term that predominates in the phylogenetic literature, whereas edge is used more commonly by

biomathematicians and graph theoreticians.
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of the tree. In the field of phylogenetic comparative biology, we conventionally subdivide phenotypic traits
into two general categories (whilst realizing that some traits may not fall neatly into either): discrete and
continuous (Pagel 1997; Felsenstein 2004; Revell and Harmon 2022; Revell 2024).
Discrete characters are phenotypic attributes that can only assume one of fixed and finite set of values
(Revell and Harmon 2022). These might range from a discretely-categorized ecological trait (e.g., marine
vs. freshwater habitat use in fishes, Betancur-R. et al. 2015), to a counted meristic character (e.g., pre-caudal
vertebra number in primates, Spear et al. 2023), to a behavioral specialization (e.g., diel activity pattern
in vertebrates, Anderson and Wiens 2017), to a categorical physical attribute (e.g., carotenoid-pigmented
feathers in birds, Thomas et al. 2014).
Continuous characters, on the other hand, are phenotypic traits that can assume any of an infinite number
of values on a real number scale (Revell and Harmon 2022). Continuous characters needn’t be unbounded –
for example, a continuous character is often bounded on the lower end by the value of zero. Nonetheless,
unbounded evolution is a frequent assumption of continuous character models in phylogenetic comparative
analysis (but see Boucher and Démery 2016).10 A continuous trait might range from a linearly measured
morphological feature (e.g., orbit size in extant and extinct cetaceans, Churchill and Baltz 2021), to a mass
or volume (e.g., encephalization in birds, Marugán-Lobón et al. 2021), to a continuously-varying life history
trait (e.g., average gestational length in mammals, Danis and Rokas 2023), even to a molecular genomic
attribute (e.g., genome size in plants, Wang et al. 2021).
Our distinction between discrete or continuous characters seems relatively clear when put forward in this
manner. Nonetheless, as previously alluded, it may not always be straightforward to decide a priori whether
a character should be coded as discretely or continuously-valued. For example, plumage color could be
quantified numerically using a reflectance spectrometer or scored discretely against a palette containing
a finite number of elements (e.g., Durán-Castillo et al. 2021). A meristic (counted) trait might differ
discontinuously from individual to individual, but vary intraspecifically such that among-species differences
are better-approximated as a continuous random variable than placed in discrete bins. The position of this
article is that the best way to reconcile this paradox, and contemplate whether a character trait should be
categorized as discrete or continuous, is to consider the decision to be an implicit component of our model:
in other words, as a necessary approximation of reality. If our trait varies in a manner that is closer to
discontinuous than continuous, then (as a model approximation) treating it as discretely-valued is probably
most appropriate! Logically, the converse will also be true.

4 Discrete characters

4.1 The Mk model

The standard model used to study the evolution of discrete characters, and thus to reconstruct their ancestral
values, is one that’s popularly known as the Mk model (Pagel 1994; Pagel 1997; Lewis 2001; Harmon
2019). This model describes a continuous time Markov chain (the ‘M’ in Mk) with k possible states (Revell
and Harmon 2022). This Mk stochastic process is fully parameterized by a k × k matrix, Q, in which all
non-diagonal elements of the matrix (qi,j for any i ̸= j) give the instantaneous transition rates between states
i and j, while the diagonal elements are equal to the negative off-diagonal row sums such that each row of the
Q matrix adds to zero. An example value of Q for a binary discrete character is given below.

Q =
[
−q0,1 q0,1
q1,0 −q1,0

]
=

[
−0.2 0.2
0.2 −0.2

]
In this Q matrix the instantaneous forward and backward rates of transition between the two different levels
of our character, 0 and 1, are q0,1 = q1,0 = 0.2.11 This value, q0,1 = q1,0 = 0.2, is a rate of change in the
character under our modeled stochastic process – meaning that, on average, 0.2 changes of our trait would
be expected to occur every time interval.12 The waiting times between events under this continuous-time

10A continuous trait, such as body size, that is bounded on the lower end by zero can often be transformed to an
unbounded scale by computing the logarithm. Indeed, this is a common practice for continuous traits in phylogenetic
comparative biology.

11For this example Q is symmetric to simplify subsequent calculations – but it needn’t be as a general rule! Indeed,
many biological processes predict an asymmetry of backward and forward transition rates between character levels,
and this is a common observation of empirical studies.

12Likewise, five time units are expected to be required (on average) for a single change in the character to occur.
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Figure 1: A simple, three-taxon, rooted phylogeny with two trait values of a discrete character (0 and 1)
mapped at the tips of the tree. The two nodes of the tree (labeled root and internal, respectively) in whose
states we might be interested in are indicated on the figure, as are the lengths of the four branches of the
tree. See main text for more details.

process will have an exponential distribution with a shape parameter determined by q0,1 and q1,0, and the
probability that (after some time) a change has occurred can be computed by integrating this distribution.
Indeed, the matrix of probabilities (as opposed to rates) that, after any arbitrary interval of time (given by
t), our Markov process that began in state i is now found in condition j is calculable as the simple matrix
exponential of Q × t (Pagel 1997; Lewis 2001; Harmon 2019).

Pt = exp(Qt)

Here, each element of Pt (pi,j for all i and j) gives the probability P (j|i, t): in other words, the chances of
being found in state j after time t having started the time interval in condition i.
Figure 1 shows a simplified rooted phylogeny with three terminal taxa (A, B, and C ) and two observed levels
(0 and 1) of a discrete phenotypic trait. To compute the probability of the observed data at the tips of this
tree under our Markov chain (Mk) model, we might begin by calculating Pt=0.4, Pt=0.3, and Pt=0.7 for our
transition matrix Q. If we were to do so, we’d obtain the following three values.13

Pt=0.4 = exp(Q × 0.4) =
[
0.926 0.074
0.074 0.926

]

Pt=0.3 = exp(Q × 0.3) =
[
0.943 0.057
0.057 0.943

]

Pt=0.7 = exp(Q × 0.7) =
[
0.878 0.122
0.122 0.878

]
Now, with these probability matrices in hand, we can proceed on to measuring the total probability of the
data at the tips of the tree of Figure 1. To do this, one more probability that we need to consider is the
(prior) probability that the global root of the tree was in condition 0 or condition 1 – normally given as π0
and π1, respectively. There are various ways we might set π (see FitzJohn et al. 2009; Yang 2014; Revell and
Harmon 2022). For simplicity here, I’ll just say π0 = π1 = 0.5 (a ‘flat’ root prior); however, identifying a
suitable root prior (π) has been the subject of more substantive discussion elsewhere (FitzJohn et al. 2009;
Yang 2014).

13Our tree has a total of four edges, but two of them have exactly the same total length of t = 0.3 (Figure 1).
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Having set π, we can compute the total probability of our data by summing the probability of our tip data
(A in condition 1, B in 0, and C in 0, shown here as P (1, 0, 0)), across all four possible combinations of states
at the root and internal nodes of our tree, respectively: 0 & 0, 0 & 1, 1 & 0, and 1 & 1.

P (1, 0, 0) = π0 × P (0|0, tAB) × P (1|0, tA) × P (0|0, tB) × P (0|0, tC)
+ π0 × P (1|0, tAB) × P (1|1, tA) × P (0|1, tB) × P (0|0, tC)
+ π1 × P (0|1, tAB) × P (1|0, tA) × P (0|0, tB) × P (0|0, tC)
+ π1 × P (1|1, tAB) × P (1|1, tA) × P (0|1, tB) × P (0|1, tC)
= 0.0267

In which P (1|0, tA) is the (1,2)th element of Pt=0.3, P (0|0, tC) is the (2,2)th element of Pt=0.7, and so on
(Yang 2014; Harmon 2019).
After we calculate all the relevant quantities of our equation, we should find that the total probability of
our data on this tree is 0.0267, given our transition matrix (Q) and modeled process.14 In this case, for
demonstrative purposes only, I’ve explicitly enumerated all of the possible internal node and root states of our
tree; however, this would become very onerous for even a modestly-sized phylogeny of five or ten operational
taxa.15 Fortunately, Felsenstein (1981) described a highly efficient ‘pruning’16 algorithm to compute this
exact probability.
So far we’ve treated Q as if it were fixed. In practice, we invariably estimate Q, typically by identifying the
value of Q that maximizes the probability of our data given the tree: our Maximum Likelihood estimate,
by definition (Revell and Harmon 2022). Obviously, it makes little sense to try to estimate Q from a tree
containing only three observations! Consequently, for now we’ll continue using this same fixed value of Q,
but we should at the same time keep in mind that in any empirical studies Q is nearly invariably estimated
from the same data that are being used to reconstruct ancestral states – rather than set to a fixed value or
known a priori.

4.2 Marginal vs. joint ancestral state estimation

An important consideration when discussing ancestral state reconstruction of discrete characters is the
distinction between what are known as marginal and joint reconstruction (Yang 2006; Revell and Harmon
2022).17 Marginal reconstruction involves proceeding from node to node on the phylogeny, and, at each node,
computing the probability of observing the tip data of our tree conditioned on fixing the node we’ve visited to
each one of the set of distinct values of our trait. This set of probabilities, referred to as marginal likelihoods,
are normally rescaled such that they add to 1.0,18 at which point they’re frequently referred to as the node
marginal scaled likelihoods. Yang (2006, 2014) has pointed out that these scaled likelihoods are also a type of
empirical Bayes posterior probability.19 They can thus be validly interpreted as the (posterior) probabilities
that each node is in each of the observed character states, whilst conditioning on our fitted transition process,
Q. Joint reconstruction, on the other hand, involves identifying the set of all internal node values (among all
possible such sets) that maximizes the probability of our data. As observed by Yang (2006), these needn’t
necessarily be the set of states with the highest marginal scaled likelihoods!

14Importantly, this is the probability of observing the data pattern [1, 0, 0] given our tree and matrix Q, not the
probability of the tree or Q. That means that if we were to identify all possible data patterns ([0, 0, 0], [0, 0, 1], and
so on), compute their probabilities, and then sum these quantities, this sum should be equal to 1.0.

15Indeed, it’s virtually impossible for larger trees.
16Felsenstein’s procedure is called a pruning algorithm because it proceeds in a “post-order” fashion – that is, from

the tips towards the root of the tree – performing a calculation based only on the descendant subtree of each internal
node, pruning this subtree out of the phylogeny, and then using the computed quantities for the next, more rootward
calculation.

17In theory, the same distinction could be made for continuous traits – except that, in that case, our marginal and
joint estimates are the same!

18Doing so merely entails dividing each by the total likelihood.
19Empirical Bayes estimation involve fixing one level of the Bayesian heirarchy – in this case, the value of our

transition matrix Q – to its most likely value, and then computing our posterior probabilities while conditioning on
this fixed level.
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4.3 Marginal ancestral state estimation

Marginal ancestral state reconstruction involves traversing the tree and at each node calculating the probability
of the tip data in our tree under our model, conditioned on our current node being in each of our character
levels. These ‘marginal’ probabilities are then normalized by dividing by their sum at each node, at which
point they can be interpreted as the (empirical Bayes posterior) probability that each node is in each state of
the character (Yang 2006; Revell and Harmon 2022). Since we’ve already calculated all the relevant quantities
for our example of Figure 1, let’s proceed and evaluate first the marginal likelihoods at the root, then the
marginal likelihoods for our single internal node.

P (root = 0) = π0 × P (0|0, tAB) × P (1|0, tA) × P (0|0, tB) × P (0|0, tC)
+ π0 × P (1|0, tAB) × P (1|1, tA) × P (0|1, tB) × P (0|0, tC)
= 0.5 × 0.0434 + 0.5 × 0.0035
= 0.0234

P (root = 1) = π1 × P (0|1, tAB) × P (1|0, tA) × P (0|0, tB) × P (0|1, tC)
+ π1 × P (1|1, tAB) × P (1|1, tA) × P (0|1, tB) × P (0|1, tC)
= 0.5 × 0.0005 + 0.5 × 0.0060
= 0.0033

Here P (root = 0) gives the probability of our observed data (conditioning on Q), given that the root is in
state 0; while P (root = 1) gives the probability of our data, given that the root is in state 1.20 If these
two quantities are rescaled by their sum, however (which is also, recall, the total likelihood), we obtain the
marginal scaled likelihoods for states 0 and 1 of P (0, 1) = [0.878, 0.122] at the root node of the tree.
Now let’s repeat the same procedure for the single internal node of our phylogeny of Figure 1.

P (internal = 0) = π0 × P (0|0, tAB) × P (1|0, tA) × P (0|0, tB) × P (0|0, tC)
+ π1 × P (0|1, tAB) × P (1|0, tA) × P (0|0, tB) × P (0|1, tC)
= 0.5 × 0.0434 + 0.5 × 0.0005
= 0.0219

P (internal = 1) = π0 × P (1|0, tAB) × P (1|1, tA) × P (0|1, tB) × P (0|0, tC)
+ π1 × P (1|1, tAB) × P (1|1, tA) × P (0|1, tB) × P (0|1, tC)
= 0.5 × 0.0035 + 0.5 × 0.0060
= 0.0047

Once again, if these two quantities are rescaled by their sum, which is also the total likelihood (just as it was
for the root node), we’ll have the marginal scaled likelihoods for conditions 0 and 1 of P (0, 1) = [0.822, 0.178].
Figure 2a gives the marginal ancestral state reconstruction of our tree and data in Figure 1,21 conditioned on
the value of Q indicated earlier in the article.
As for computing the total likelihood, above, for demonstrative purposes I have enumerated all the terms
of each marginal likelihood. This would quickly become prohibitively complicated for even modestly-sized
phylogenies so in practice computer implementations of marginal ancestral state reconstruction use one of
various fast algorithms based on pruning to compute these quantities (Felsenstein 1981; Yang 2006).

4.4 Joint reconstruction

The other type of ancestral state reconstruction that we might perform under the Mk model, in addition to
the method of marginal ancestral state reconstruction that we just learned, is what’s typically referred to as

20Importantly, P (root = 0) and P (root = 1) do not give the probability that the root state was in condition 0
or condition 1, respectively. If they did, then we would expect their values to add to 1.0! Just to reiterate what is
also stated in the main text, they give the probabilities of our tip data (under the model) given that the root is in
condition 0 or in condition 1, respectively.

21Mapped to the corresponding nodes of the tree using a pie diagram, as is very commonly done in empirical studies
that use marginal ancestral state reconstruction.
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Figure 2: (a) Marginal ancestral state reconstruction based on the tree and data of Figure 1. (b) Joint
ancestral reconstruction. See main text for more details.

joint reconstruction (Yang 2006; Revell and Harmon 2022). In this case, our estimated ancestral states are
merely the set of such states that jointly maximize the probability of our data at the tips of the tree.
In our example from Figure 1, there are a total of four possible sets of states at the two nodes of the phylogeny:
[0, 0], [0, 1], [1, 0], and [1, 1].22 Uncoincidentally, these four sets of states correspond to the four terms of our
equation for the probability of our data (P (0, 0, 1)), above. In other words:

P ([0, 0]) = π0 × P (0|0, tAB) × P (1|0, tA) × P (0|0, tB) × P (0|0, tC) = 0.0217
P ([0, 1]) = π0 × P (1|0, tAB) × P (1|1, tA) × P (0|1, tB) × P (0|0, tC) = 0.0017
P ([1, 0]) = π1 × P (0|1, tAB) × P (1|0, tA) × P (0|0, tB) × P (0|1, tC) = 0.0002
P ([1, 1]) = π1 × P (1|1, tAB) × P (1|1, tA) × P (0|1, tB) × P (0|1, tC) = 0.0030

Here, P ([0, 0]) gives the probability of our data at the tips of the tree, conditioning on both the root and
single internal node of the tree being in states 0 and 0, respectively. The same interpretation can be made
of P ([0, 1]), P ([1, 0]), and so on. From this set of values we can see that the combination of states that
jointly maximizes the probability of our data are [0, 0] – in other words, condition 0 at both the root and
single internal node of the tree (Figure 1). This set thus becomes our joint Maximum Likelihood ancestral
state estimate. We could also imagine rescaling the set of probability values by their sum and reporting
the probabilities of each set of states conditioned on Q – though this is not typically undertaken in joint
reconstruction. Figure 2b illustrates the joint reconstruction from our tree and data of Figure 1.

4.5 Stochastic character mapping

In addition to joint and marginal reconstruction, a third important and popular method of ancestral state
estimation under the Mk model is the procedure called stochastic character mapping (Huelsenbeck et al.
2003; Bollback 2006; Revell and Harmon 2022; Revell 2024).23 Under stochastic character mapping, complete
character histories (including character state changes along the branches of the tree) are randomly24 sampled
from their probability distribution under a model.
Stochastic character mapping is a computationally intensive method. The most efficient algorithm to generate
a single stochastic character map minimally involves two traversals of the tree. The first of these is a post-order
(tip to root) “pruning” traversal in which a set of conditional likelihoods of each subtree is calculated for each

22In general, there will be a number km of such sets for k character levels and m nodes. It goes without saying that
computer implementations of joint ancestral state reconstruction do not comprehensively enumerate all possible node
state combinations to find the set that maximizes the likelihood!

23Stochastic character mapping originally derives from a closely related approach called ‘mutational mapping’
(Nielsen 2002) and was first generalized to phenotypic traits by Huelsenbeck et al. (2003).

24In other words, “stochastically,” hence the name of the method.
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Figure 3: A set of ten stochastic character maps for the tree and data of Figure 1. See main text for more
details.

node of the tree. These are the set of marginal likelihoods, under our model, for only the data descended
from a given node.25 Once the root node is reached, these calculated quantities also correspond to the
marginal likelihoods at this node and sum to the total probability of our data under the model. A root state
is randomly sampled with probability equal to its marginal scaled likelihoods.
Next, we undertake a pre-order tree traversal. Looking at each daughter node from the root, we first calculate
a set of updated probablities (p) that each of the two or more daughters is in each state of our character. For
each daughter, this vector of probabilities, p, is simply equal to the ith row of the exponentiated product of
Q, the transition matrix, and the elapsed time of the daughter edge, multiplied element-wise26 by the vector
of conditional likelihoods of the subtree for that node – the values that we computed in our prior post-order
tree traversal. In other words, p = exp(Qt)i· ⊙ L, in which the subscript i· indicates the ith row of exp(Qt),
⊙ is the element-wise vector product, and L is a vector of conditional likelihoods.
We then proceed to the daughter node and randomly sample a state for it according to the probabilities
given by p. We use simulation and rejection sampling to obtain a discrete character character history along
that edge consistent with our sampled parent and daughter node states. Finally, we recursively traverse the
phylogeny in a post-order (root to tip) fashion repeating this procedure for each pair of parent and daughter
nodes.27 Figure 3 gives an example of ten stochastic character histories, given our phylogeny and data of
Figure 1 and the Q transition matrix of our previous sections in which q0,1 = q1,0 = 0.2. Normally, we’d
generate many more than ten stochastic character histories!
A single stochastic character map contains almost no information about evolutionary history, but a set of many
such maps can be used to measure the posterior probabilities that each node is in each state of our character,
as well as to generate an estimate of the probability distribution of the number of changes of each type on the
tree. Indeed, when a single, fixed value of Q is used for stochastic mapping, the relative frequencies of each
state at each node and the marginal scaled likelihoods from our previous section should exactly converge as
the number of stochastic simulations goes to ∞.28 An advantage of stochastic character mapping, however,
is that it also allows us to take into account uncertainty in the transition process represented by Q. For
example, it’s straightforward to sample Q from its Bayesian posterior distribution using MCMC, or to use a

25Note that if we generate more than one stochastically mapped history for a given tree and value of Q, as we
nearly invariably should, these values can be recycled across simulations and do not need to be recomputed.

26Also known as the Hadamard product.
27Of course, if the daughter node is a tip then typically the state will be known rather than sampled probabilistically,

but our procedure is otherwise identical.
28Though normally they will be highly similar after 100 or 1,000 simulations.
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Table 1: Estimated transition rates, log-likelihood, number of parameters, AIC, and model weights for two
different discrete character evolution models for the evolution of the presence or absence of tail spines in
lizards. See main text for more details.

q0,1 q1,0 log(L) d.f. AIC weight
ER model 0.00152 0.00152 -123.5618 1 249.1235 0.0688
ARD model 0.00059 0.01112 -119.9564 2 243.9129 0.9312

set of transition processes in proportion to their weight based on model comparison (e.g., Revell and Harmon
2022; Revell 2024).

4.6 Empirical examples

4.6.1 Marginal reconstruction: Diel activity pattern in primates

To demonstrate marginal reconstruction, we’ll study diel activity pattern29 among 90 species of primates.
The phylogeny and data for this example come from Kirk and Kay (2004; but see a similar analysis using
different data in Santini et al. 2015).
Our first step, in this case, will be to fit a set of four Mk models to our tree and data. We can begin with
a very simple model in which we assume that the rates of transitions between all three pairs of our states
(nocturnal ↔ diurnal, nocturnal ↔ cathemeral, and diurnal ↔ cathemeral) are all equal one to the other,
and in both directions. This model is called the ‘equal-rates’ (ER) model and our matrix, Q, will have just
one parameter to be estimated. Next, we might proceed to fit a model in which the backward and forward
transition rates between each pair of states are equal (one to the other), but different for each character state
pair. This is called the ‘symmetric’ (SYM) model and has a total of three parameters. We’ll fit a model
in which every transition rate in each direction is permitted to assume a different rate. This is called the
‘all-rates-different’ (ARD) model, and our Q matrix for this model will include a total of six parameters to
be estimated.30 Lastly, we’ll fit a model in which we imagine that the cathemeral condition is intermediate
between the nocturnal and diurnal activity states, whereby any lineage evolving from one to the other must
first pass through the state of cathemeral diel activity. This set of fitted models, and their AIC values and
Akaike weights, is given in Figure 4.
Since the weight of evidence is fairly even across each in our set of four models31, I elected to use model-
averaged marginal ancestral state estimation.32 The resultant marginal ancestral states are shown in Figure 5.
They reveal that the common ancestor was most likely nocturnal (under our fitted model), and also suggest
multiple transitions to diurnal diel activity pattern in different parts of the primate tree of life (Figure 5).

4.6.2 Joint reconstruction: Tail spines in lizards

To illustrate joint reconstruction, we’ll use a phylogeny from Pyron et al. (2013) along with a dataset of tail
spine presence and absence in lizards originally published by Ramm et al. (2020). To commence, we can fit
a set of just two Mk models for this binary trait: the ER model, in which the back-and-forth transitions
between our two states are forced to take place at the same rate; and the ARD model in which they can
differ.33

The results from this analysis are shown in Table 1. Our analysis indicates much higher model weight (0.93
vs. 0.07) for the ARD compared to the ER model. Consequently, we used only this model for our subsequent
joint ancestral state reconstruction, given in Figure 6.34

29Coded as ‘nocturnal,’ ‘diurnal,’ and ‘cathemeral’ (active randomly during the day or night) in these data.
30In general the ARD model has a total of k × (k − 1) parameters for k states.
31This is a bit unusual, in my experience. Typically, one model tends to be substantially better-supported than the

rest!
32Model-averaging simply involves taking the Akaike weights, multiplying them by the marginal scaled likelihoods

for each model, and then summing across models (Revell, 2024).
33We might have also considered two irreversible models: one in which tail spines can only be gained in our tree;

and another in which they are only lost. In this case, doing so would not have substantively changed our results.
34An interesting ‘footnote’ (get it?) to this result is that the ML joint reconstruction at the global root of the

tree is ‘non-spiny,’ but in an analogous marginal reconstruction the most probable condition for the same node was
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Figure 6: Joint reconstruction of the presence and absence of tail spines on a phylogeny of 658 species of
lizards. Reconstruction was performed under the best-supported Mk model which featured unequal back and
forth transition rates between the two different character levels of the tree (the ARD model; Table 1). See
main text for more details.

Joint reconstruction involves a key difference in interpretation compared to marginal reconstruction. Now,
we can no longer point to a particular node and say that the most probable state is “spiny” or “non-spiny.”
Rather, we might say that “in the most probable joint reconstruction, the ancestral condition at the global
root was non-spiny,” or something to that effect. Since researchers more often wish to be able to make specific
statements about particular nodes,35 marginal reconstruction tends to be the much more popular of these
two techniques among comparative biologists.

4.6.3 Stochastic character mapping: Leaf armature in palms

To demonstrate stochastic character mapping, I used a recent dataset and phylogeny published by Onstein et
al. (2022). In this example, the phylogeny contains a total of 2,539 tree species from the family Arecaceae
(the palms), and data for the presence of absence of leaf armature (spines, hooks, or prickles on the palm
leaves) for all but 120 of these taxa. The trait data of this study were compiled by Onstein et al. (2022) from
the PalmTraits 1.0 database (Kissling et al. 2019), and the palm phylogeny is derived from an earlier tree by
Faurby et al. (2016).
To begin, I re-coded all data deficient species (which had been left out by Onstein et al. 2022) as ambiguous36

for the trait of leaf armature, and then I proceeded to fit a total of four Mk trait evolution models: the ER
model, the ARD model, and two irreversible models (one in which leaf armature could be acquired but not
lost, and a second in which the reverse was true). A summary of parameter estimates and model support is

‘spiny.’ We haven’t included this analysis here, but the reader is encouraged to download the data and discover this for
themselves!

35Rather than the most probable set of conditions across all nodes.
36Coding for ambiguity simply involves observing, a priori, that an ambiguous tip could equally likely be in one

condition or the other. The total probability of the data then becomes the sum of the probability conditioning first
on the tip state being in one state and then in the other. This total probability can be computed efficiently via the
pruning algorithm of Felsenstein (1981).
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Table 2: Estimated transition rates, log-likelihood, number of parameters, AIC, and model weights for four
different discrete character evolution models for the evolution of the presence or absence of leaf armature in
palms. See main text for more details.

q0,1 q1,0 log(L) d.f. AIC weight
ER model 0.00392 0.00392 -431.5580 1 865.1161 0.57424
absent → present 0.01162 0.00000 -617.2943 1 1236.5886 0.00000
present → absent 0.00000 0.01279 -485.6286 1 973.2573 0.00000
ARD model 0.00338 0.00471 -430.8572 2 865.7145 0.42576

leaf armature

absent
present

Figure 7: A single stochastically-sampled character history of the absence (grey) or presence (black) of leaf
armature (spines or other defensive structures) in 2,539 species of palms. The phylogeny and data for this
example come from Faurby et al. (2016) and Onstein et al. (2022), respectively. See main text for more
details.

given in Table 2. I found almost no support for the two irreversible models, but roughly similar weights of
evidence for the two different reversible models: ER and ARD (Table 2).
I next generated 500 stochastic character maps in which each of the four models were sampled randomly
with probabilities given by their relative model weights (Table 2). Note that the sampling algorithm and
total sample size of stochastic character maps is such that it ensures almost no irreversible (absent → present
or present → absent) stochastic character histories will be sampled. A single, randomly chosen stochastic
mapped tree is shown in Figure 7.
Normally, relatively little can be learned from a single, stochastic character history such as that shown in
Figure 7. On the other hand, neither is anything to be gained by visualizing 500 such histories – particularly
for large phylogenetic trees! For this reason, various tactics have been proposed to summarize the results
across a set of stochastic character maps (Revell 2013, 2024; Revell 2014b; Revell and Harmon 2022). Two such
analyses are shown in Figure 8. In particular, Figure 8a shows a posterior density map (Revell 2013; Revell
2014b) obtained by measuring the relative frequency of each of the two states over our set of 500 stochastic
simulations across all edges and nodes of the tree. These frequencies give the posterior probabilities37 along
all of the edges and nodes of the phylogeny. Figure 8b, on the other hand, illustrates a visualization of the
posterior probability distribution of the number of changes of each type on the phylogeny. These distributions

37These will be empirical Bayes posterior probabilities for a fixed value of Q; however, full Bayesian probabilities
are also possible – for example, if the Q matrix is sampled from its posterior probability distribution using MCMC.
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Figure 8: (a) Probability density of the absence/presence of leaf armature based on 500 stochastic character
mapping on a phylogenetic tree of 2,539 palm species. The four models of Table 2 were randomly sampled in
proportion to their model weights following Revell (2024). Probability density of changes from leaf armature
absent to present (b) and present to absent (c) from 500 stochastic character maps.

are obtained simply by counting the changes in each of the 500 stochastically sampled character maps (e.g.,
Revell 2024).
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Figure 9: (a) Three-taxon phylogenetic tree of Figure 1, but in which each edge of the tree has been plotted
with a different color. (b) Single illustrative realization of Brownian motion evolution on the tree of figure
panel (a). See main text for more details.

5 Continuous characters

5.1 The Brownian motion model

The standard model employed to study the evolution of continuous traits, as well as (especially) to reconstruct
their ancestral values, is one called the Brownian motion model (Felsenstein 1973; Felsenstein 1985; O’Meara
et al. 2006; Harmon 2019). Brownian motion is a continuous time, directionless, random walk model (Harmon
2019; Revell and Harmon 2022). Under Brownian motion, successive evolutionary changes are independent
and come from a Gaussian distribution with mean of 0 and variance of σ2 × t, in which σ2 is the instantaneous
rate of the Gaussian process and t is the elapsed time (Harmon 2019). Figure 9 shows a simulation of
Brownian motion38 evolution (Figure 9b) on the same simplified phylogenetic tree of three taxa that we saw
earlier in the article (e.g., Figure 1), but in which I have re-colored the edges with different shades of gray
(Figure 9a) so that they can be matched more easily with the Brownian trait evolution scenario (Figure 9b).
Brownian motion evolution will produce a realized trait vector of phenotypic values among species that has an
expected value (E[x]) equal to the root state (x0), and a multivariate normal distribution with variance equal
to the total height of each tip above the root multiplied by the instantaneous Brownian rate, σ2 (O’Meara et
al. 2006). In other words x ∼ MVN (x0, σ2C) in which C is an N × N matrix (for N tips in the tree), where
each i,jth element contains the height above the root of the most recent common ancestor of taxa i and j.
This matrix, C, for our phylogeny of Figure 9a would be calculated as follows (Revell and Harmon 2022).

C =
[ A B C

A tA + tAB tAB 0.0
B tAB tB + tAB 0.0
C 0.0 0.0 tC

]
=

[ A B C
A 0.7 0.4 0.0
B 0.4 0.7 0.0
C 0.0 0.0 0.7

]

To compute the probability density of a set of data (x) at the tips of the tree for any particular value of σ2

and x0, we must evaluate the following density function.39

38Technically to create the visualization I discretized the depth of the tree into 200 units making this a discrete-time
random walk, but the effect is the same.

39If this expression seems familiar to some readers, they should not be surprised: it is just a typical multivariate
normal probability density function!
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P (x) =
exp(− 1

2 [x − x0]′(σ2C)−1[x − x0])√
(2π)N × det(σ2C)

Finding the set of values for x0 and σ2 that maximize the value of this expression would provide us with the
Maximum Likelihood estimates of these model parameters (O’Meara et al. 2006; Revell and Harmon 2022).

5.2 Ancestral state estimation under Brownian motion

Under Brownian motion evolution of our trait, not only are the tips distributed as a multivariate normal
random variable, so are the values of internal nodes (Schluter et al. 1997; Rohlf 2001; Revell and Harmon
2022). To find those node values that maximize the probability of our tip data, x, we merely have to expand
the matrix C to include one additional row and column for each (non-root) internal node of the tree. In our
three-taxon phylogeny of Figure 9a there is only one such node (labeled “internal”) and our matrix C thus
looks as follows.

C =


A B C internal

A tA + tAB tAB 0.0 tAB

B tAB tB + tAB 0.0 tAB

C 0.0 0.0 tC 0.0
internal tAB tAB 0.0 tAB

 =


A B C internal

A 0.7 0.4 0.0 0.4
B 0.4 0.7 0.0 0.4
C 0.0 0.0 0.7 0.0

internal 0.4 0.4 0.0 0.4


To find the set of ancestral states under Brownian motion that maximize the probability of our observed data
(our ML states), we simply identify the internal node values and root state (x0) that jointly maximize the
probability of the tip data given our model. Figure 10 gives a log-likelihood surface for the ancestral values
at the root node of the tree (on the x-axis) and the single internal node: showing the maximum likelihood
values of x0 and xinternal to be 1.29 and 1.82, respectively. The figure also includes an illustrative course of
numerical optimization on this likelihood surface, though this result would (naturally) depend on our starting
value and specific optimization routine (Figure 10).
In practice, rapid algorithms have been identified to find the set of internal node values that maximize the
probability density of the data under our model (e.g., Rohlf 2001). For instance, Rohlf (2001) points out that
the Maximum Likelihood ancestral state at any node i can be expressed as a simple weighted average of the
tip taxa values, in which the set of weights (wi) is given by the following expression.

wi =
((

1′C−11
)−1 1 + CHiO

(
I − C−111′ (

1′C−11
)−1

))
C−1

Here, I is the identity matrix and 1 is a conformable vector of 1.0s (Rohlf 2001). The only unfamiliar term,
CHiO is the ith row of the m × N matrix (CHO) containing the height of the root of the most recent common
ancestor of each ith internal node (in rows) and each jth tip (in columns). For our tree of Figure 9, the
matrix CHO would be as follows.

CHO =
[ A B C

root 0.0 0.0 0.0
internal 0.4 0.4 0.0

]
If we apply the equation of Rohlf (2001) to our tree of Figure 9a, then we will obtain the following sets of
weights.

w =
[ A B C

root 0.28 0.28 0.44
internal 0.44 0.44 0.12

]
Finally, using these weights and our original data of Figure 9, we will get the following two results for xroot

and xinternal, our estimated root and internal node states, respectively.

xroot = wrootx′ = 0.28 × 2.22 + 0.28 × 1.82 + 0.44 × 0.36 = 1.29
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Figure 10: Log-likelihood surface for the numerical values of the root and internal nodes of the tree and
phenotypic trait data of Figure 9. The grey line shows an illustration of numerical optimization on this
surface which convergences to the Maximum Likelihood values of both node states. See main text for more
details.

xinternal = winternalx′ = 0.44 × 2.22 + 0.44 × 1.82 + 0.12 × 0.36 = 1.82

Not by coincidence, these values are identical to the ones that we obtained by numerically maximizing the
likelihood in Figure 10. Although we could imagine obtaining variances and confidence intervals for our
ancestral state estimates from the curvature of the likelihood surface, Rohlf (2001) also provides more reliable
and efficient analytic standard errors, which, in turn, have been implemented in widely-used software for
ancestral state estimation of continuous traits (e.g., Revell 2024).

5.3 Empirical examples

5.3.1 Brownian motion: Environmental niche evolution in liolaemid lizards

To explore ancestral character estimation for continuous characters under Brownian motion, I began with a
dataset of maximum environmental temperature in degrees Celsius for lizards of the South American family
Liolaemidae derived from Esquerré et al. (2019). With these data and phylogeny in hand, I proceeded to
estimate ancestral states under a Brownian model of evolutionary change, and then projected the observed
(at the tips) and reconstructed (along edges and at nodes) values onto the tree using a visualization method
described in Revell (2013; 2014b).
Figure 11 shows the result of this analysis. Although the estimated ancestral value at the deepest nodes of
the phylogeny are predictably intermediate,40 the projection nonetheless reveals an interesting pattern of
similarity in thermal environment (phylogenetic signal, Blomberg et al. 2003; Revell 2024) between related
species (Figure 11). The ancestral state reconstruction also helps us to see multiple shifts in environmental
temperature distributed among the different major clades of the phylogeny (Figure 11).

40After all, ancestral state estimates under the Brownian motion model are a simple weighted mean of the species
trait values, as shown above.
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Figure 11: A phylogenetic tree of the Maximum Likelihood ancestral states (along edges) and observed
values (at the tips) of maximum environmental temperature among lizards of the South American family
Liolaemidae. See main text for more details.

5.3.2 Brownian motion: Body size in the frog genus Conraua

In addition to environmental temperature in Liolaemidae (Figure 11), I also estimated ancestral states for
overall body size41 for African frogs from the genus Conraua, known commonly as slippery (Blackburn et al.
2020) or giant (Channing and Rödel 2019) frogs.
The Conraua frog clade includes the world’s largest frog – the Goliath frog, Conraua goliath – making their
evolutionary history of body size particularly interesting (Blackburn et al. 2020). The tree and data for this
example derive from Blackburn et al. (2020) and Channing and Rödel (2019), respectively, and a similar
ancestral state reconstruction analysis was undertaken by Blackburn et al. (2020).
To estimate node states in this group, I obtained maximum body size values of six species of Conraua
frog (Channing and Rödel 2019), along with a single representative value of 53 mm for the outgroup clade
Petropedetidae (as in Blackburn et al. 2020), although the latter has been left out of all plots. I transformed
all values using the natural logarithm for estimation, and then back-transformed my estimates and their
confidence limits to the linear scale for graphing.
Figure 12 shows two different visualizations of ancestral state estimates for Conraua frogs. First, Figure
panel 12a uses a continuous color gradient (similar to that of Figure 11) mapped to the nodes and tips of
the plotted tree. Figure 12b, by contrast, shows a projection of the tree into a phenotype space, called a
‘traitgram’ following Evans et al. (2009; Revell 2013; Revell et al. 2018). Overlain grey polygons give the
95% confidence intervals around estimated ancestral values. In both graphs, we see the dramatic shift to
large body size in the lineage leading to the Goliath frog, C. goliath (Figure 12).

6 Properties of ancestral state estimation

Though relentlessly popular, ancestral character estimation has been subject to numerous criticisms over
the years (e.g., Cunningham et al. 1998; Cunningham 1999; Omland 1999; Losos 2011; Gascuel and Steel
2020). These critiques have assumed (very roughly) two flavors. On the one hand, ancestral state estimates,
particularly for nodes close to the root of the tree, tend to have broad uncertainty. Indeed, Ané (2008) shows

41Reported as snout-to-vent length, or SVL (Blackburn et al. 2020).
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Figure 12: Ancestral state reconstruction of body size in the Conraua frogs. (a) Projection of the observed (at
the tips) or estimated (at nodes) ancestral values of body size in mm. (b) Traitgram projection of phylogenetic
tree into trait space, based on the ancestral reconstruction. The superimposed grey polygons show 95%
confidence limits around estimated values. See main text for more details.

that the effective sample size42 for our estimate of the root node of the tree under Brownian motion tends to
be much smaller than the number of tips, and perhaps as small as 5 or 6 for trees containing dozens of terminal
taxa, or more (Ané 2008). Similarly, Gascuel and Steel (2020) point out a paradox, or tradeoff, between the
conditions under which we can estimate the state at the root of the tree for a discretely-valued trait, and
the conditions under which the rates of change between character levels are estimable – a phenomenon they
denominate the ‘Darwinian uncertainty principle.’43

Observing that the confidence intervals around ancestral states are broad is not the same as arguing that they
are wrong, however: it’s merely a reminder that phylogenetic comparative methods are ordinary statistical
methods too (Revell et al. 2018; Revell and Harmon 2022). As such, it would be incorrect to treat an
estimated ancestral state as if it were a quantity known without error (Losos 2011). Indeed, when the our
underlying model assumptions are valid, ancestral state estimation has suitable statistical properties (Revell
and Harmon 2022).
A more pernicious problem arises when the model is wrong (Revell and Harmon 2022).44 Under these
circumstances, it becomes possible to confidently estimate wrong ancestral node states.45

To investigate ancestral state estimation when model assumptions are violated, I’ll consider three different
case studies: discrete character evolution under the hidden-rates model (Beaulieu et al. 2013); discrete trait
evolution under the threshold model (Felsenstein 2005, 2012; Revell 2014a); and bounded Brownian evolution
(Boucher and Démery 2016). I’ll show that when an incorrect model is used (specifically, a homogenous-rate
Mk model for the discrete data and unbounded Brownian motion for continuous characters), bad statistical

42A measure the amount of independent information contained by the data.
43In short, when the rate of evolution is low, relatively few changes of the trait will have accrued and deep ancestral

conditions are straightforward to estimate. On the other hand, these few changes of the trait will have provided little
information about the rate of change between character levels. When the rate of change between states is high, on the
other hand, precisely the converse will be true. See Gascuel and Steel (2020) for more details.

44Or, rather ‘badly wrong’ – seeing how, in point of fact, all models are wrong, even if many are useful (to paraphrase
the statistician George Box, 1976).

45This, too, one could argue, falls into the category of ancestral state reconstruction behaving as do all normal
statistical methods! On the other hand, some evidence suggests that ancestral reconstruction is particularly sensitive
to model assumption violations.
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Figure 13: Accuracy of ancestral state reconstruction of discrete (a) and continuous (b) characters when the
model for estimation is correct. (a) Node marginal scaled likelihoods (of state "1") compared to the relative
frequency that each node was in that condition. If the scaled likelihoods are an accurate measure of the true
probability of that each node was in each character state, then these values should form a 1:1 line. Point
diameters have been scaled by the natural logarithm of the sample size (number of nodes) for each bin. (b)
Distribution of the relative frequency (from 100 simulations) in which the true ancestral value fell on the
95% confidence interval of each node estimate, averaged across all nodes by simulation. See main text for
additional details.

behavior emerges. On the other hand, however, I will also show that this effect is substantively diminished
under the correct, generating model for each case.

6.1 Ancestral state estimation when the model is right

Before showing that ancestral state estimation can misbehave when the model of evolution is wrong, it seems
useful to undertake a very brief exploration of the properties of ancestral state reconstruction when the model
used for estimation fully captures the generating evolutionary process: in other words, when the model is
“right.” This is genuinely the best case scenario for ancestral character estimation, so we might expect to find
statistical properties are optimal in this scenario.
To begin with, I simulated 100 stochastic, pure-birth phylogenies, each containing a total of 501 taxa (and
thus 500 internal nodes), with a total root to tip height of 10.0.46 I next generated one binary (0/1) character
and one continuous character for each tree. The discrete character was simulated with a generating value of
Q that matched the illustrative value of Q used earlier in the article.

Q =
[
−q0,1 q0,1
q1,0 −q1,0

]
=

[
−0.2 0.2
0.2 −0.2

]
In addition to this discretely-valued character, I also simulated one continuous trait for each tree under
Brownian motion using a starting value of x0 = 0.0 and a Brownian motion (stochastic diffusion) rate of
σ2 = 1.0.

46This tree depth has no particular meaning. By trial and error I discovered that it tended to result in a relatively
even distribution of marginal scaled likelihoods across simulations.
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To measure the performance of ancestral state reconstruction for discrete characters when the generating
model was known and used for estimation, I first binned the marginal scaled likelihoods of the node being in
condition “1” into 50 equal-sized intervals, each 0.02 units wide. For each bin, I then simply counted the
number of nodes across all simulations whose true states were equal to “1”. This count, divided by the total
number of nodes in that bin, would be expected to be equal to the midpoint of the bin if the marginal scaled
likelihoods genuinely correspond to a probability that the node is in each state, under the model. So, for
instance, if the marginal scaled likelihood ban spanned 0.19 through 0.21, with a midpoint of 0.2, then we
would expect to find that (on average) 20% of nodes in this bin should be in condition “1” (and 80% thus in
condition “0”), and so on.47

To measure the performance of ancestral state estimation when the generating model was known for continuous
characters, I simply quantified the fraction of node-wise 95% confidence intervals for which the true value fell
within the interval.48

Figure 13 summarizes the results of this analysis. In Figure 13a, we see that the relative frequency of being
in condition “1” closely tracks the marginal scaled likelihoods. In Figure 13b, we likewise see that the
distribution of true node values that fall on the 95%, averaged by simulation, is centered closely on 95%, with
a mean of 94.98% and a range of [0.916, 0.976] (Figure 13). In summary, when the model for estimation is
correct, ancestral state reconstruction can work precisely as intended.

6.2 Ancestral state estimation when the model is wrong

In the previous section, I illustrated how ancestral state reconstruction can be statistically well-behaved when
the model for estimation is correct. Using a trio of very simple examples, I’ll now try to demonstrate how
ancestral character estimation might go astray when the model for estimation is badly wrong. I’ll do this by
simulating data under three different trait evolution models that we haven’t yet discussed: two for discrete
characters; and a third for continuous traits. Note that the purpose of this section is not to prove that we can
recover the good statistical behavior of ancestral state reconstruction when the correct model is used, though
that is sometimes true and will be true in these particular cases. To the contrary, my intention is to highlight
the substantial sensitivity or vulnerability to model assumption violations of our standard reconstruction
methods.

6.2.1 Ancestral states under a hidden-rates model

To show this, I’ll first use a model called the hidden-rates model (Marazzi et al. 2012; Beaulieu et al. 2013;
Boyko and Beaulieu 2021; Revell and Harmon 2022; Revell 2024). The hidden-rates model is one in which,
for each observed level of a discrete trait, there might be one or more unobserved conditions, each with their
own rates of transition of the observed state. Figure 14 illustrates evolution under a flavor of the hidden-rates
model in which the observed condition “1” has two hidden levels: “1” in which the trait can still transition
back to the “0” form; and “1*” in which it cannot.49 An attribute of trait evolution under the hidden-rates
model is heterogeneity in the rate of transition between states. This is apparent in Figure 14b and 14c in
which we see that transitions occur frequently between the two visible conditions of the trait, “0” and “1”,
until the condition “1” changes to the hidden state “1*” (Figure 14). It’s relatively easy to imagine a trait
that could evolve in this way. Considering parity mode in squamate reptiles, for instance, perhaps when
viviparity (which, in some squamates might be called ‘ovoviviparity’ and is little more than egg retention
through hatching), has recently evolved, it can still be lost. Over time, however, additional adaptations or loss
of function mutations accumulate and viviparity eventually evolves into a condition from which oviparity can
no longer re-emerge. This evolutionary scenario would be well-captured by the model illustrated in Figure 14.
To simulate under this model I used the following transition matrix, Q, between observed and unobserved
levels of each of the two trait conditions.

47If I’m not mistaken, B. O’Meara originally suggested this to me as a procedure for measuring the accuracy of a
statistical method designed to compute probabilities during the Evolution conference some years ago now.

48I could have also measured the correlation between the generating and estimated values, or the average difference
(bias) between the known values and the estimates.

49The character codndition of “1*” is also then an ‘absorbing’ state for the character.
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Figure 14: A graphical illustration of the hidden rates model. (a) The structure of a hidden-rates model
with one hidden, absorbing condition (“1*”) of the observed level “1”. (b) Simulated evolution with both
hidden levels of “1” shown. (c) Simulated history from (b), but with the two levels of “1” merged into a
single, observed trait. See main text for more details.

Q =
[ 0 1 1∗

0 −0.20 0.20 0.00
1 0.20 −0.30 0.10

1∗ 0.00 0.00 0.00

]

I used the same one hundred, 501 taxon phylogenies that were simulated for the previous section. After
simulation, I merged the two different hidden levels of character “1” (that is, “1” and “1*”) into a single,
observed character condition.50 Finally, as opposed to estimating ancestral states under the correct model,
I began by using an incorrect model of evolution without hidden states, but in which the back-and-forth
transition rates between the two observed character conditions were allowed to occur with different rhythms.
The result from this analysis is given in Figure 15a. Even though most points fall on the 1:1 line, we also
see a large fraction of nodes that are not resolved into one condition or the other, even though they have
(known) true state “0” (Figure 15a).
In addition to simply reconstructing under the standard Mk model, we also fit and estimated ancestral states
using the hidden-rates model, which was the generating evolutionary scenario of our data. The results from
this analysis are given in Figue 15b which more closely resembles panel a of Figure 13 (in which the true
model was known and used for estimation) than it does Figure 15a. This suggests that good statistical
properties of estimation are largely recovered when the correct model is used.

6.3 Ancestral states under the threshold model

The next discrete character evolution model that we’ll consider is one that’s called the threshold model
(Wright 1934; Felsenstein 2005, 2012). Under the threshold model, our discrete character is underlain by
an unobserved quantitative trait called ‘liability.’ Every time liability crosses a pre-defined (but unknown)
threshold, our observed discrete character changes state. The model derives originally from evolutionary
quantitative genetics where it was used by Wright (1934) to describe variation in digit number of guinea pigs,
but was much later adapted by Felsenstein (2005; 2012) to phylogenetic comparative biology. A simulation of

50This is because in empirical studies the ‘hidden’ level of character “1” and its unhidden condition are the same
observed state!
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Figure 15: Accuracy of ancestral state reconstruction of discrete characters when the hidden rate model
of Figure 14 was used for simulation. (a) Node marginal scaled likelihoods (of state “1”) compared to the
relative frequency that each node was in that condition using a standard Mk model for estimation. (b)
The same as (a), but in which the generating hidden-rates model was used. If the scaled likelihoods are an
accurate measure of the true probability of that each node was in each character state, then these values
should form a 1:1 line. As in Figure 13, point diameters have been scaled by the natural logarithm of the
sample size (number of nodes) for each bin. See main text for additional details.

discrete character evolution under the threshold model is given in Figure 16. Panel (a) of the figure shows
the Brownian evolution of the normally unobserved liabilities (and thresholds), whereas panel (b) illustrates
the resultant discrete trait evolution on the branches and nodes of the phylogeny.
Various features of the evolution of our discrete character are manifestly different between Figure 16b and
evolution under a standard Mk scenario. Most conspicuously, and not unlike the hidden-rates model of
Figure 14, the tempo of evolutionary change for the discrete trait varies from clade to clade of the tree. This
is because in parts of the tree where the evolutionary process for the liability is close to a threshold, the
character changes frequently in state. By contrast, when the liability is far from any threshold, the discrete
character may experience long periods of stasis with little to no change at all (Revell 2014a; Revell and
Harmon 2022).
To simulate evolution under the threshold model, I used the same one hundred, 501 taxon phylogenies that
were simulated for the previous sections. I next simulated a continuous trait (liability) evolving via Brownian
motion with a rate equal to σ2 = 0.1, an ancestral value of x0 = 2.0, and thresholds between character
levels of [0, 1, 3].51 For each dataset, I fit an ordered Mk model,52 as well as the threshold model. To fit the
threshold model I used the discrete approximation of Boucher and Démery (2016; Revell 2024). For each
fitted model, I computed marginal ancestral states in the typical way. Finally, as in Figure 16, I compared
the marginal scaled likelihoods that each node was in each state to the genuine frequency of the node being
in the corresponding condition. If the ancestral state reconstruction method is working properly, these values
should form a 1:1 line. The result of this analysis is shown in Figure 17.
As is evident from the figure, I found marginal ancestral reconstruction to be quite inaccurate when the Mk
model was used for estimation (Figure 17a). In particular, marginal scaled likelihoods tended to overestimate

51This typically resulted in four levels of the discrete character, but in a small subset of simulations only three
character levels were observed.

52I chose to do this because the threshold model itself is intrinsically ordered.
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Figure 16: Illustration of evolution under the threshold model. (a) The evolution of liabilities: the unobserved
continuous character whose condition determines the state of the discrete trait. The thresholds between
discrete character levels in the threshold trait are shown using the vertical dotted lines. (b) The realized
evolution of the discrete character across the branches and nodes of the phylogeny. See main text for more
details.

the probability that a node was in each state when low, and underestimate the same quantity when high
(Figure 17a). In contrast, when estimation was performed using the generating, threshold model, good
statistical behavior of marginal estimation was fully recovered (Figure 17b).

6.3.1 Ancestral states under bounded Brownian motion

As discussed earlier in this article, the typical model for ancestral state reconstruction of continuous traits
is one of unbounded Brownian motion evolution, also known as stochastic diffusion or a continuous time
random walk. To investigate the sensitivity of continuous character ancestral state reconstruction to model
misspecification, we first generated 100 datasets, one for each our 100 simulated 501 taxon trees of the
previous two sections. In this case, however, our generating model is bounded Brownian evolutionary change,
with x0 = 0.0, σ2 = 1.0, and upper and lower bounds of [−2, 2]. Bounded Brownian motion (with reflective
bounds) is just like standard Brownian motion, but in which whenever the boundary condition is reached,
the evolutionary process reflects back into the bounded space (Boucher and Démery 2016).
Following simulation, we first reconstructed ancestral states under a standard (unbounded) Brownian model,
and then under bounded Brownian evolution, the latter utilizing the method of Boucher and Démery (2016).
We measured the statistical behavior of ancestral state estimation in the same way as in Figure 13b; however,
since the true value of an estimated parameter might fall within the confidence interval of the estimate either
because the estimate is accurate or because the confidence interval is wide, we also measured accuracy of
ancestral estimates by calculating the correlation between the known generating values and the estimates for
each simulation. The results of this analysis are given in Figure 18.
We see that when data are simulated under bounded Brownian evolution, but unbounded Brownian motion is
assumed as a model for estimation, confidence intervals are too narrow (Figure 18a), with a mean fraction of
true ancestral states falling within the 95% confidence intervals of the estimates of 80.8% (range: [71.6, 87.6];
Figure 18a). By contrast, almost exactly 95% of confidence intervals estimated under bounded Brownian
evolution (Boucher and Démery 2016) included the true, generating values of the states (average: 94.6%;
range: [92.0, 97.8]; Figure 16a).
In addition to having the correct confidence intervals, estimates obtained under bounded Brownian motion
were also more accurate (Figure 18b). The mean correlation between generating and estimated ancestral
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Figure 17: Accuracy of ancestral state reconstruction of discrete characters when the hidden rate model of
Figure 16 was used for simulation. (a) Node marginal scaled likelihoods compared to the relative frequency
that each node was in that condition using a standard Mk model for estimation. (b) The same as (a), but
in which the generating threshold model was used. If the scaled likelihoods are an accurate measure of the
true probability of that each node was in each character state, then these values should form a 1:1 line.
Point diameters have been scaled by the natural logarithm of the sample size (total number of probabilities
computed) for each bin. Note that these don’t sum to the number of nodes because multiple values are
calculated for each node in each simulation, depending on the number of levels (3 or 4) of the trait. See main
text for additional details.

states when unbounded Brownian evolution was assumed as a model for estimation was r̄ = 0.822 – compared
to a mean of r̄ = 0.843 when the correct model was used (Figure 18b).

7 A short note on implementation

Ancestral character estimation is implemented in the R statistical computing software (R Core Team 2024)
package phytools (Revell 2012, 2024). phytools in turn depends on the core R phylogenetics packages ape
(Paradis and Schliep 2019) and phangorn (Schliep 2011).

8 Conclusions

Ancestral state reconstruction has long been among the most relentlessly popular analyses of phylogenetic
comparative biology. In this article, I have tried to overview the theoretical and practical basics of ancestral
state reconstruction for discrete and continuously-valued character traits. I have shown how ancestral state
reconstruction can be applied to empirical datasets of various types, such as estimating the ancestral conditions
of environmental temperature in liolaemid lizards, diel activity pattern in primates, or body size in frogs.
In spite of its popularity, ancestral state estimation has some limitations. In particular, ancestral node
estimates often come associated with very broad confidence limits, deep in the phylogenetic tree. Additionally,
ancestral state reconstruction can be highly sensitive to violations of the assumptions of the evolutionary
model used for estimation. Though both of these attributes (broad confidence intervals when the amount
of information about a parameter is low; and sensitivity to model assumptions) are properties of many
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Figure 18: Accuracy of ancestral state reconstruction of continuous characters when data were simulated
under Brownian motion evolution with reflective bounds. (a) Frequency distribution of the fraction of nodes
falling in within the 95% confidence interval of each node estimate, averaged across all nodes by simulation
both when a standard Brownian model (grey) and bounded model (shading lines) was used for estimation.
(b) Distribution of correlation between true and estimated ancestral states when the data were generated
under bounded Brownian evolution, and either a standard Brownian motion model (grey) or bounded model
(shading lines) was used for estimation. See main text for additional details.

statistical inference methods, enthusiasts of ancestral state reconstruction have sometimes failed to sufficiently
appreciate the nature and depth of these limitations.
In an age when phylogenetic data is ever easier to produce, I have little doubt that the appeal of ancestral
character state reconstruction will continue to grow into the future. I hope that this article will provide a
helpful introductory guide to those biologists and scientists of other disciplines who dare to venture into this
endeavor.
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