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Abstract 

Climate strongly influences the composition and diversity of forest plant 

communities. Recent studies have highlighted the role of tree canopies in shaping understory 

thermal conditions at small spatial scales (i.e. microclimate), especially in lowland forests. 

In mountain forests, however, the influence of topography in environmental conditions (i.e., 

topoclimate) is ought to also influence plants’ perceived temperature. Understanding how 

topography and canopies interactively affect understory temperature is key to identifying 

stable refugia that could shelter cold-adapted forest specialist plants under climate change. 

Here we report on growing season understory temperatures using 48 loggers in 

contrasting topographic features and canopy of a mid-range mountain valley spanning from 

475 m a.s.l. to 1203 m a.s.l. in the Vosges Mountains (NE France). We disentangle the relative 

importance and the effects of topography vs. canopy in determining local temperatures. We 

then evaluate how topography and canopy-induced variation in temperature drive plant 

community composition and richness in 306 floristic surveys across the studied mountain 

valley. 

Our results show that topography outweighed canopy cover in explaining growing 

season understory temperatures. Regardless of canopy, the daily mean temperature of the 

growing season in south-facing ridges was 1.5 °C (CI: 0.62 – 2.38°C) warmer than shaded 

valley bottoms, while dense canopies cooled temperatures by 0.5 °C (CI: 0.02 – 0.98 °C) 

compared to less dense canopies. Topoclimate explained community composition as much 

as elevation and was the only significant predictor of species richness. Cold topoclimates 

harbored 30% more species than the average species richness across our plots. This increase 

in species richness was explained by an increase of cold-adapted species, both forest 

specialist and generalist species. 

Our findings highlight a stronger role of topography compared to canopy cover on 

community composition in mountain forests via topoclimatic cooling of north-facing slopes 

and valley bottoms. The importance of topographic features to explain temperature cooling 

and diversity underpins their role as present and likely future microrefugia. 

Keywords 

Community ecology, forest, topoclimate, microclimate, topography, climatic refugia, 

diversity, understory vegetation.   
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1. Introduction 

The study of topography influences on vegetation has fascinated ecologists for more 

than 150 years (Johnston et al., 1848), and has further gained in relevance in the context of 

the 21st century climate warming (Ashcroft, 2010; Dobrowski, 2011; IPCC, 2021; Lenoir et 

al., 2017). Species distribution and climatic conditions are often modeled at a coarse 

resolution (typically 1 km or coarser), and thereby fail to capture local variation of climate 

at finer grains (Franklin et al., 2013) :for instance, the topoclimate shaped by terrain (i.e. 

slope and aspect mainly) and the forest-induced microclimate (Bramer et al., 2018; De 

Frenne et al., 2021; Kemppinen et al., 2023). Enhanced predictive power obtained by using 

smaller grain climatic data confirms that species physiological limits are better captured by 

topography and forest microclimate (Haesen et al., 2023). Given that these factors can 

attenuate warm macroclimate temperatures, their study is key to identify areas where local 

conditions are continually buffered in a warmer future (Ashcroft, 2010; De Frenne et al., 

2021; Haesen et al., 2023; Hannah et al., 2014). Such areas, refugia, are of utmost 

importance as they can host source populations of cold-adapted species endangered by 

climate change. Protection offered by these refugia can be disrupted in when it is induced 

by tree canopies whereas topography-induced buffering is more stable (Ashcroft, 2010; 

Hylander et al., 2022). As these buffer components coexist in temperate mountainous 

forests, determining which buffering process is at play will allow to better predict and map 

sources of biodiversity persistence. 

Variation in aspect can create contrasting local temperatures as slopes oriented to 

the equator receive more solar radiation, and west-facing slopes receive radiation during 

the warmest period of the day. As a result, southwest-facing slopes in northern hemisphere 

mountains display warmer mean temperatures, longer growing seasons and shorter snow 

cover durations (Ashcroft et al., 2008; Davis et al., 2019; Rita et al., 2021; Rolland, 2003). 

The physical properties of air also interact with topographic features such as hydrological 

basins (McLaughlin et al., 2017), valley bottoms and sinks. This phenomenon creates local 

areas of cold and dense air pooling that decouple, i.e. remove any correlation, between 

local conditions from the regional climate (Gudiksen et al., 1992; Pastore et al., 2022), thus 

creating topographic refugia (Dobrowski, 2011). These temperature variations are observed 

on a moderate scale, from fifty to hundreds of meters, and will be called hereafter 

topoclimate (Lenoir et al., 2013). To focus on moderate scale and magnitude variation in 

temperature, we exclude from our definition of topoclimate the lapse rate induced from 

elevation, as this process has a much stronger effect on temperature, comparable to 

macroclimatic variation (Lenoir et al., 2013; Rolland, 2003). 

The topoclimate interacts with what we define as forest-induced microclimate (with 

smaller scale variation, from a meter to 25 m) to jointly determine the understory 

temperature experienced by forest organisms (De Frenne et al., 2021). Canopy shading and 

evapotranspiration lead to an overall decrease of temperature throughout the year, 
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exacerbated in summer by a buffering of high temperatures compared to open-air (De Frenne 

et al., 2021; Zellweger, Coomes, et al., 2019). These buffering effects are apparent and 

well documented in temperate lowland forests, but their relative importance in contrast to 

elevation and topography is less known, and current evidence has not reached consensus 

(Macek et al., 2019; Vandewiele et al., 2023). In temperate mountain forests, we expect 

that topography (elevation excluded) displays more variability than canopy cover, placing it 

as the main driver of understory temperature and thus community composition.  

Community composition was proven to respond to canopy cover in lowland forests. 

This is evidenced by the decrease of the average thermal optimum of the present species (a 

proxy of species’ affinity to climate) in forests where tree canopy is densifying (De Frenne 

et al., 2013; Dietz et al., 2020; Richard et al., 2021) and where colder understory 

temperatures are predicted (Zellweger et al., 2020). This sheltering of cold-adapted species 

by a dense canopy needs to be compared with the sheltering provided by topography in 

mountain forests, as topographical refugia are likely to offer longer-term buffering of 

temperature, whereas canopy cover is prone to sudden perturbation(dieback, windfall, etc.) 

(Ashcroft, 2010; Finocchiaro et al., 2023). Topographic refugia also harbor cold-adapted 

flora and host populations of species outside their expected climatic range (Ellis & Eaton, 

2021; Finocchiaro et al., 2023; Haesen et al., 2023; Macek et al., 2019). Less know is how 

variation in temperature owing to topography and canopy cover can influence local diversity. 

No change in diversity will indicate a reshuffling of community with microclimate, however 

we expect an increase in diversity as a moderate cooling can relieve cold-adapted species 

stress and competition without inducing dieback in species not adapted to cold conditions. 

In temperate mountain forests, it is possible that the sheltering provided by topography 

resembles the effect of canopy (e.g. lower maximum temperature, higher humidity). To test 

this hypothesis, we will also study the species’ characteristics, expecting an increase of 

forest specialists that could demonstrate that topoclimate can mimic understory conditions 

of dense forests.   

Here, we assessed the effects and relative importance of elevation, topography and 

canopy cover on in situ measured understory temperatures and plant community 

composition and richness. This partitioning will shed light on whether communities are more 

responsive to canopy or topographic variability, processes that have very different spatial 

and temporal patterns. This will allow conservation planning to efficiently target 

conservation areas. After accounting for the elevation gradient, we specifically asked: (1) 

Does topography (aspect and topographic position) outweigh canopy in explaining understory 

temperature? (2) does topography and canopy-induced variation in temperature determine 

community richness and mean species thermal optimum? (3) Are plant habitat preference 

and climatic affinity related to understory temperature? 
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2. Materials and Methods 

2.1. Study Area 

Our study region (221 km²) is delineated by the basin of the Thur River, located in 

one of the southmost valleys of the Vosges Mountain range in France (Figure 1). The Vosges 

are characterized by a continental climate with harsh winters and short and stormy summers. 

Its mean annual temperature ranges from 6 °C to 10°C and precipitation ranges from 800 to 

2,000 mm year-1(period 1970-2000, Météo France weather stations IGN, 2013). The Thur 

River basin  is on the warm and dry end gradient of the Vosges Mountains (IGN, 2013). Forests 

cover 76% of the Vosges, which transitions from mixed oak stands and monospecific Picea 

abies stands to mixtures of Picea abies, Abies alba and Fagus sylvatica  as elevation increases 

IGN, 2013). The soil of our study region is mostly shallow loam and sand with coarse 

elements. The most acidic soils are found at higher altitude because of the dominance of 

needles in the humus and the lower temperature at mountaintops (IGN, 2013; Piqué et al., 

1994; Thomas et al., 1999). The topography is highly variable, with an elevation ranging 

from 327 to 1424 m a.s.l. (but forest occurrence stops past 1250 m a.s.l.) with high 

topographic heterogeneity (Figure 1, Figure S1).  

 

 
Figure 1: Study area (black outline) with the location of the temperature loggers (white 

circles) and the floristic surveys (black crosses). The colored scale represents elevation 

above sea level, in meters, obtained from a 25-m spatial resolution digital elevation model 
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(IGN, 2017). Hillshade effects have been added to visualize the terrain. The blue line 

represents the Thur River and its tributaries. The inset shows the Vosges Mountain range 

(grey) and the location of the studied valley (black point) in western Europe. 

2.2. Temperature Predictors 

We used 25-meter resolution digital elevation model (IGN, 2017) to extract elevation 

(m a.s.l.), slope and aspect and to calculate topographical indices. Elevation was kept as is, 

as the lapse rate predictor, but does not fall under our definition of topography as we 

considered it a macroclimatic feature given how much control it has over temperature. This 

is evidenced by spatial autocorrelation (semivariance) of elevation saturating at a distance 

ten times greater than small scale topographic features (Figure S2). Accordingly, our 

definition of topoclimatic effect will be focused on smaller scale topographic features 

described hereafter. We specifically wanted to investigate the difference in radiation 

received between slopes of differences aspects, a well know driver of topoclimate 

temperatures, which its effect is less clear under canopy (Macek et al., 2019). We did so by 

computing the Heat Load Index (HLI). HLI ranges from 0 to 1 (least to most incoming solar 

radiation) contingent on latitude, slope orientation and steepness. It is a measure of how 

daily mean temperature is warmed by topographic features most exposed to sunlight, and 

during the warmest period of the day (south and west slope in the northern hemisphere).  

To investigate how cold air pooling, dictated by the topography of river basins, 

influences temperature, we computed a topographic position index (TPI). Cold air pooling 

ought to be a prominent explanatory factor of community persistence (Finocchiaro et al., 

2023; Pastore et al., 2022). To do so, we normalized the Euclidian distance between the 

nearest ridge and nearest thalweg (TPI = Dthalweg / (Dthalweg +Dridge). TPI is the relative 

position of the cell in the shortest trajectory between a ridge and a drainage basin end, 

ranging from 0 (valley bottom) to 1 (ridge, Piedallu et al., 2023).  

We obtained the ‘tree cover density’ from the 2018 product of the Copernicus 

monitoring service as proxy for local canopy closure (Copernicus, 2018; Sannier et al., 2023). 

This product consists of a 10-meter resolution percentage of canopy presence within the 

pixel (ranging from 0 to 100%) and was successfully used before to model microclimate 

buffering by canopy (Haesen et al., 2021). To validate the assumption that this is a proxy of 

local canopy closure, and thus microclimatic variation induced by canopy, we correlated it 

with our field measurements of canopy closure (see below, 2.3 Temperature sampling). We 

rescaled this product to match the 25-m resolution of our other maps using bilinear 

interpolation (Hijmans, 2020). We rasterized (25-meter resolution) a 20-meter precision 

polygon map of French forest (IGN, 2019) to create a mask of the forested area of our study 

region to limit our analysis and temperature projection to forests, as we only investigate 

understory flora and temperatures in this study. 

Our in our study region, within forested areas, our elevation ranges from 327 to 1362 

m a.s.l., HLI ranges from 0.16 to 1, TPI from 0 to 1, slope from 0.1 to 50° and canopy closure 
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from 0 (temporary deforested) to 1 (Figure S1). Variation in canopy closure was hover low, 

as 90% of the cells display a canopy closure higher than 72% (Figure S1), this indicates that 

the remote sensed product we use may not reflect finer scale gaps in canopy. 

2.3. Temperature Sampling  

We created a stratified sampling scheme to capture forest understory microclimate 

variability (Lembrechts et al., 2021; Schweiger et al., 2016). We created 8 elevation strata 

(spanning 20 m a.s.l. intervals) separated by 102 m. Those strata thus range from [468 - 488] 

to [1184 - 1204] m a.s.l. They are meant to control for the lapse rate (steady decrease in air 

temperature as pressure decreases with elevation, Lembrechts et al., 2021), it is the main 

driver of temperature in the study area but we wanted to separate lapse rate from other 

topographic features effect.  

Inside each of these strata, we defined 8 types of plots: 4 plots of below and above 

the median canopy closure of our study area (90% canopy closure) with a south or a north-

facing slope (HLI > 0.70 and HLI < 0.60, respectively, value chosen to avoid flat terrains of 

HLI: 0.66). These 4 plots had moderate topographic position indices (between 0.2 and 0.8) 

and slope (10° < slope < 25°), to avoid confounding their effects with the canopy closure 

and heat load effects. Additionally, we defined 2 plots with contrasting topographic position 

indices (lower than 0.2 and higher than 0.8) under high canopy closure and moderate slope. 

Lastly, we defined 2 plots with contrasting slopes: one on flat (slope < 10°) and one steep 

(slope > 25°) under high canopy closure and moderate topographic position (summary of the 

sampling scheme:  

 

Table S1). These theorical strata and plots were designed to systematically cover 

elevation, HLI, TPI and canopy closure variability, yielding similar results as the PCA-based 

approach proposed in Lembrechts et al., 2021 as shown in Figure S3. 

Of the initial 64 theoretical plots spanning the 8 strata, only 59 of the defined 

situations occurred, mostly because we lacked low topographic position indices (valley 

bottom) in high elevation classes. We randomly selected one cell for each plot and stratum 

located in public forests. We repeated this random drawing 10,000 times and kept the set 

of plots that maximized the mean minimum geographical distance between plots to reduce 

spatial autocorrelation.   

We established the 59 temperature loggers in May 2021 and recorded their location 

with a GNSS receiver (Trimble TDC600, accuracy= ± 2 m undercover). We placed every logger 

in public forests to avoid legal constraints (public forest makes up 80% of the forested area 

in our study region), with no constraints regarding accessibility. We measured canopy closure 

(0-100%) by a visual observation in a 25-meter radius around the logger. We also estimated 

canopy closure (0-100%) with a planar picture of the canopy by means of a smartphone 

(Samsung A40, focal length: 25mm, sensor size: 1/2.8") placed on top of the logger and the 
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sky segmentation ‘Glama’ application (Tichý, 2016). Plots tagged as low canopy cover were 

placed accordingly by selecting sites with less than 50% canopy closure as computed by 

‘Glama’. The visual estimation of canopy closure (25-meter radius) was significantly 

correlated with the remote sensed tree density (R² of the linear relationship = 30.0%, Figure 

S4), but a weak and non-significant correlation was found with the picture analyzed by 

‘Glama’ (Figure S4). 

We recorded air and soil temperatures with TMS-4 loggers (resolution= 0.0625 °C, 

accuracy= ±0.5 °C) protected with a radiation shield (Wild et al., 2019). The loggers 

recorded temperature every 15 minutes until August 2022. We used air temperature 15 cm 

above the soil surface because it is likely the most representative temperature experienced 

by understory plants. We cleaned the time series with the ‘myClim’ R package (Man et al., 

2023). More specifically, we removed any duplicates, checked for missing values, and 

resolved inconsistent time step to the closest 15 minutes default of our loggers. We 

calibrated the loggers beforehand for a range of -20 °C to +40 °C by placing them in a freezer 

and drying oven along with a T-type thermocouple (accuracy= ±0.2 °C). From the recorded 

period, we focused on the growing season (GS hereafter), from 01/04/2023 to 15/08/2023, 

as it is the most critical period for plant growth. Out of the 59 loggers, 11 were either 

malfunctioning, stolen, destroyed by animals or displayed erroneous values and were 

discarded.  

We checked the capacity of our final sample to cover the variability of our study 

region following the PCA-based approach of Lembrechts et al., (2021). Our final sampling 

was able to cover the variability of the valley, except for extreme values of low canopy 

cover and the unusual valley bottoms of high elevations. The loss of loggers was evenly 

distributed over plot types, except for the low canopy cover that suffered the most losses 

(Figure S3). 

2.4. Floristic and Species Characteristic Dataset 

To test how flora responded to understory temperature, we compiled floristic surveys 

performed (during the growing season) by students and professors covering soil and climatic 

transect of the region between 2009 and 2022 (average year= 2015.6). All plots were 

surveyed for all vascular plant species in the herb layer (smaller than 1 m) and their 

percentage ground cover was visually estimated. We had 306 floristics surveys in total across 

the study region. Floristic surveys were performed in 20 x 20 m squares (400 m²) with the 

GPS position (recorded with built-in tablet GPS; accuracy= ± 10 m) as the center. We used 

this position to extract elevation, heat load index, topographic position index and canopy 

cover for every survey. We harmonized taxonomy to the TaxRef V13 standard (Gargominy, 

2022). We focused on herbaceous species in the analysis to focus on community dynamics 

that may reflect shorter-term climate while not being directly targeted by forest 

management interventions.  
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One of the objectives of our study is to assess whether local variation of temperature 

due to topography and canopy benefits cold-adapted species, as they are projected to be 

the most threatened by climate warming (Thuiller et al., 2005). For this purpose, we used 

the species’ thermal optimum value from ClimPlant V.1.2 (Vangansbeke et al., 2021). These 

thermal optima are computed from the mean annual temperature (°C) within the range of 

species obtained from Europe-extent distribution atlases and represent the median 

temperature of the realized niche. Out of the 348 unique recorded species, 309 were 

assigned a thermal optimum value, covering 90.0% of the occurrences of the whole floristic 

dataset. We averaged the thermal optimum of every species (without weighting for 

abundance) of a given survey to obtain the Community Thermal Index (hereafter CTI), which 

quantifies the thermal preference of the whole community (Borderieux et al., 2023; 

Vangansbeke et al., 2021). We did not weigh the calculation by species abundance, from a 

conservation standpoint rarer species may be the most interesting in CTI calculation but may 

be underrepresented when weighted by abundance. We calculated species richness of a plot 

as the number of recorded species whether they had an associated thermal optimum in the 

database or not. By doing so, we wanted to include rare species that were not included in 

ClimPlant so that our specific richness is representative of the species pool of our study 

region. The soil of our study region can greatly vary in acidity, we also assigned a pH optimum 

value obtained from a bioindication database to each species (Gégout et al., 2005), and 

averaged (not weighted by abundance) it to obtain to control for soil conditions via a 

bioindicated pH per plot. 

We used the EuForPlant regional list of forest plant species (Heinken et al., 2022) to 

assess species habitat affinity. We assigned to each species one of the following affinities: 

(1.1) species of closed forest (1.2) species which occur in forest edges and openings (2.1) 

Species which primarily occur in forests but also found in cultural landscapes and forest 

remnants (2.2) species of open habitats that occurs in forest exclusively through opening 

and early succession. We excluded species of open vegetation (classified “O”) because of 

their low number of occurrences (n= 42). In total, 274 species were assigned to an affinity 

class, covering 85.7% of the occurrences.  

2.5. Understory Temperature Modeling 

We aggregated the 15-minute frequency time series of the recorded temperature of 

the growing season 2022 (a warmer than average year, see 3.1) to daily mean and maximum 

temperature. This aggregation process first removed values outside of the 5th to 95th centile 

interval of daily values to avoid biasing results due to logger malfunction or a brief burst of 

sunshine on a logger (thus maximum temperature is the 95th centile). We then averaged the 

mean or maximum daily temperature to obtain one unique value per logger, the mean daily 

and maximum daily temperature of the growing season. Having a unique value facilitates 

the modeling process by removing the need to account for the lack of statistical dependence 

of temperature time series, and one summary value of the GS is enough as we aim to uncover 

spatial variation of community composition instead of temporal variation. 



10 

We wanted to disentangle the relative contribution of lapse rate, topography and 

canopy to understory temperature, and wanted to map estimates of understory over the 

study area. To this end, we used a linear model to predict mean and maximum daily 

temperature of the growing season with elevation, heat load index, topographic position 

index and remote sensed canopy density as explanatory variables. We preferred remote-

sensed canopy cover over the in-situ measurements which allowed us to map the 

temperature models over the entire study area, and thus infer the understory temperature 

of floristic surveys (mostly without canopy closure records). The warming due to radiation 

can be tempered when there is canopy to intercept light, canopy buffering is most apparent 

during the warmest hour of the day (Davis et al., 2019; De Frenne et al., 2021). To account 

for this, we tested an interaction between heat load index and canopy closure and retained 

the interaction in the final model if found significant. We checked the assumption of linearity 

between temperature and its predictors by visually assessing the raw data (Figure S5) and 

the residuals (Zuur & Ieno, 2016). The Variance Inflation Factor never exceeded 1.2 in our 

understory temperature models, indicating no sign of correlation among predictors. 

For each understory temperature model, we did an analytical partitioning of variance 

to assess which process influenced understory temperature most (Barbosa et al., 2013). The 

contribution of the predictors was grouped into three groups: elevation, “topoclimate” (TPI 

and HLI) and “microclimate” (canopy closure). For simplicity and because shared effects had 

little contribution, we added to each group contribution half of their shared effect to 

summarize the contribution of the three groups in three numbers. 

We additionally fitted two linear models with the field measured canopy closure (25 

m radius observation and planar photography) instead of the remotely sensed measurement 

to test different methods of canopy closure estimations (Table S2, Table S3).  

We used the mean understory temperature model (R² = 92.2%) to map the 

contribution of elevation (i.e., lapse rate), of topoclimate (heat load index and topographic 

position) and of forest-induced microclimate (canopy closure) to the mean understory 

temperature separately. We mapped the lapse rate by using only the intercept and the 

elevation parameter. We mapped the topography effect on temperature compared to a 

reference situation (heat load index of a flat terrain = 0.66 and topographic position index 

equal to 0.5, prediction of + 1.34°C) and using the two topographic indices. We mapped the 

contribution of canopy cover by multiplying its parameter to the tree density product, this 

projection is however extrapolated for the 20% of pixels with a canopy closure lower than 

79%. This extrapolation was necessary to cover the whole study region and to predict 

temperature to floristic surveys within those areas. To assess the spatial autocorrelation of 

the resulting maps (Figure S2), we computed their variogram (scaled semivariance), with a 

lag of 25 m and a cutoff of 2000 m (Naimi et al., 2014). 
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2.6. Floristic Composition Analyses 

We used a linear model to predict CTI. Species richness being a positive discrete 

number, we used a negative binomial generalized linear model as overdispersion prevented 

the use of a Poisson model. The predictors of both models were the contribution to mean 

understory temperature of elevation, topoclimate and microclimate (the unit of every 

predictor is thus °C). The soil of our study region can display very different nutrition status 

and acidity, which can impact both the richness and composition of a community (Degen et 

al., 2005; Koerner et al., 1997; Zellweger et al., 2015). In addition, soil pH is also negatively 

correlated with elevation (Pearson coefficient: 0.40 ,Piqué et al., 1994; Thomas et al., 

1999). To account for this, bioindicated pH was also a predictor in the models. We tested 

that no collinearity between soil acidity and elevation arose when including both by 

computing a Variance Inflation Factor (VIF, Fox & Weisberg, 2019). For both models, 

elevation displayed the higher VIF (1.27, well below the threshold of 5, that indicates 

collinearity, James et al., 2023).  

We assessed the validity of our models (including temperature models) by testing the 

assumption of normality and homoscedasticity of the residuals model following (Zuur & Ieno, 

2016). All assumptions were met (Figure S6), all the P-values of the Kolmogorov-Smirnov 

test, dispersion test and outlier test of the normalized Dharma residuals were not significant 

(Hartig, 2024). We tested the significant difference from 0 of the estimated parameters with 

a Wald test. 

As the 306 surveys uniformly covered the topography effect on temperature (Figure 

S7), we could split them into three classes of 102 surveys corresponding to a “cold”, 

“moderate” and “warm” topoclimate effect (a linear prediction of contribution to 

temperature by TPI and HLI as there was no interaction with canopy cover). The thresholds 

separating the three classes were determined so that classes have equal number of plots. 

This discretization allows to directly compare the total occurrence of species, as in Figure 

4, thanks to a fixed sampling intensity between classes. It also allows to compute more 

comprehensive effects of topoclimate over CTI and species richness (e.g. “cold” plots exhibit 

on average 5 more species than “warm” plots) than with linear estimates. We tested the 

difference in species richness and CTI between these classes with Wilcoxon rank-sum tests 

(Rey & Neuhäuser, 2011). 

2.7. Software 

We handled spatial data with the ‘raster’ and ‘sf’ package (Hijmans, 2020; Pebesma, 

2018), all the later analyses were carried on with R.4.2.2 (R Core Team, 2019). We computed 

HLI (McCune & Keon, 2002) using the ‘spatialEco’ R package (Evans & Murphy, 2021). We 

used the ‘MASS’ package to fit the negative binomial generalized model (Venables & Ripley, 

2002). We computed the VIF using the ‘car’ package (Fox & Weisberg, 2019). Microclimate 

temperatures were cleaned using the ‘myClim’ R package (Man et al., 2023). We used 

‘ggplot2’ and ‘ggspatial’ packages for data visualization (Dunnington & Thorne, 2020; 
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Wickham, 2011). We performed variance partitioning with the ‘modEVA’ package (Barbosa 

et al., 2013). 

3. Results 

3.1. Environmental Determinant of the Understory Temperature 

The growing season (GS) temperature of 2022 was above average (mean GS 

temperature of the period 2005-2020=11.6°C, mean 2022 GS temperature=13.2°C, 

Markestein weather station (1,184 m a.s.l), (Météo France, 2024)). As a result, the mean 

daily temperature of the understory (15 cm above the soil surface) was 14.6 °C and spanned 

between 11.9 °C to 17.5 °C for the higher (1203 m a.s.l) and lower (475 m a.s.l) elevation 

sensors, respectively. The mean daily maximum temperature of the GS was 19.3 °C and 

reached a maximum of 24.7 °C for the lowest elevation plots.  

The lapse rate explained 87.4% of the variation in mean temperature, the topographic 

factors (heat load and topographic position index) 3.95%, and canopy cover accounted for 

0.82%. The R² of the linear model was 92.2%. Elevation was the primary driver of mean 

temperature variation, with a lapse rate estimated at -0.68°C by 100m (Table 1). The model 

revealed that HLI – contingent on aspect and slope – was the second driver of mean 

temperature, which can vary up to 1°C between low and high radiation slopes. Topographic 

position also had a significant effect on temperature: the mean temperature was 0.56°C 

lower in the bottom of a valley compared to ridges. Lastly, canopy closure (remotely sensed) 

cooled understory temperatures. An increase of 20% of total canopy cover resulted in a 

decrease of 0.57°C. No significant interaction between topography features metric and 

canopy closure was found in the mean and maximum understory temperature model. 

The same predictors except for topographic position were significant in the mean 

daily maximum temperature model, but the model explained overall less variation (R² of 

81.2 %). The heat load index had a higher contribution (21.5%) in the maximum temperature 

compared to the mean temperature model, daily maxima varied for 3.3°C between low and 

high heat load indices (Table S4). Canopy closure has a stronger effect (contribution to R² 

of 3.2%) on maximum temperature than on mean temperature. 

Same models where remotely-sensed canopy closure was replaced with field-

measured canopy closure showed overall similar trends, but with difference in estimates 

significance. Canopy cover visually estimated in a 25-meter radius was not significant in 

predicting mean temperature (Table S2). Immediate canopy cover (smartphone 

photography) above the logger explained significantly mean temperature with an interaction 

with heat load index, low immediate canopy cover in high radiation slopes displayed warmer 

mean temperature (Table S3).  

Table 1: Estimated parameters, their standard error and p-values of the predictors included 

in models of the daily mean growing season temperature. The range of the predictors in 
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the calibration dataset and their standardized effect size on the temperature (standard 

deviation * estimate) are displayed. The percentage of explained variation per type of 

predictor is included. P-values were obtained with a Wald test on parameters. Heat load 

and topographic position have no units (n.u., refer to the methods for their calculation).  

Predictor  Type of 

predictor 

Estimate Standard 

error 

Range Effect 

size (°C) 

Explained 

variation 

(%) 

P-value 

Intercept (°C)  21,1 1,11    <10-4 

Elevation (m 

a.s.l.) 

Elevation -0.00684 0.000311 475 : 1203 -1.50 87.4 <10-4 

Heat load index 

(n.u) 
Topoclimate 

1.53 0.333 0.34 : 0.95 0.30 

3.95 

<10-4 

Topographic 

position (n.u) 

0.656 0.276 0.15 : 1 0.16 0.0220 

Canopy closure 

(%) 

Microclimate -0.0272 0.0115 79.0: 100 -0.16 0.817 0.0229 

 

The spatial variation of elevation, topography and canopy closure reveals a complex 

and fine-grained contribution of this factors to the forest understory climate (Figure 2). We 

mapped the individual contributions of elevation (Figure 2.a), topoclimate (heat load index 

and topographic position summed; Figure 2.b) and canopy cover (i.e., microclimate; Figure 

2.c) in the study area. We observed strong effects on understory temperatures caused by 

steep spatial difference of elevation, topography and fine-grained canopy cover (Figure 2.d). 

Lapse rate autocorrelation peaked at 6000 m, while topography in was autocorrelated in a 

moderate scale 750 m, canopy-induced variation in temperature autocorrelated in the 

smallest scale and peaked at 450 m (Figure S2).  

 



14 

 

Figure 2: a) Elevation induced change in mean growing season understory temperature of 

the growing season (lapse rate of -0.68°C.100 m-1), assuming a canopy closure of 90% and 

no effect from topography. b) mean understory temperature effect induced by topography 

(heat load and topographic position, i.e. topography) assuming an average canopy cover 

(90%), compared to a moderate situation (flat terrain midslope). c) mean understory 

temperature cooling induced by canopy closure assuming no effect from topography. For 

visualization purposes only we restrained the minimal cooling to -1.5°C, however some 

pixels displayed lower values up to 0°C due to low canopy closure. d) 2 km per 2 km zoomed 

inset of the red square of the other panels, their color gradient corresponds to the color 

scale presented in the other panels a-c, respectively. Blank pixels represent land covers 

other than forests or forests outside of the study region. Linear model R²: 92.2%. 

3.2. Microclimatic Determinants of the Floristic Composition 

Floristic surveys harbored on average 19 herbaceous species (s.d. 10.7), and a mean 

community thermal index (CTI) of 7.8 °C (s.d. 0.55). Bioindicated soil pH was the main 

predictor of CTI and species richness (Table 2). More acidic soils had less diverse and cold-

adapted communities. The overall linear CTI model explained a moderate amount of 

variability (R²: 35.6%).  
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After soil pH, elevation-induced (lapse rate) and topoclimate were the main predictor 

of CTI, of comparable importance (effect size of 0.14 and 0.12 respectively). Topographic 

effect was also a significant predictor of species richness, of major importance (an increase 

of 1.5 species per plot per decrease, of one standard deviation of topographic effect on 

temperature, i.e., cooling, Table 2). The lapse rate was not significant in explaining species 

richness (Table 2). The forest-induced microclimate was not a significant predictor in any of 

the models (Table 2). We focused the subsequent community analysis around topoclimatic 

effects, as canopy cooling did not significantly explain the species richness nor CTI.  

Mean and maximum temperature were highly correlated (Pearson coefficient: 0.86), 

as a result, a similar effect on flora is found when using predicted effect on max temperature 

instead of mean temperature, with a small decrease in fit quality (-1.4% in R² for CTI model, 

-6 in log-likelihood for the species richness model, Table S5).  
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Table 2: Estimated parameters, their standard error and p-values of the predictors of the 

community thermal index (CTI) linear model, and the species richness negative binomial 

generalized linear model. The range of the predictors and their standardized effect size 

on the community predicted variable (standard deviation * estimate) are displayed. The P-

value is obtained by a Wald test on the parameter.  

 

We divided the 306 floristic surveys into cold, moderate and warm topoclimatic 

classes each comprised of 102 surveys based on topography-induced change in temperature. 

The cold topoclimatic class displayed 23 species on average, while the two other classes 

displayed 18.5 species on average (Figure 3.a). This difference of approximately 5 species 

was significantly different (Figure 3.a). The mean CTI of the cold topoclimatic class was 7.7 

°C, which is significantly lower by 0.19°C than the CTI of the two other classes (Figure 3.b). 

No such differences were found when using microclimatic (canopy) cooling was used to 

create the classes (Figure S8). This discretization of the dataset displayed results as those 

observed using the continuous predictors of the linear model (Table 2, Figure S7). 

Model Predictor Estimate Standard 
error 

Range Effect 
size 

P-value 

Species 
richness 

Intercept 
(°C) 

0.212 0.403   0.598  

Lapse rate 
(°C) 

0.0218 0.0187 12.6 : 18.5 0.46 0.243  

Topography 
effect (°C) 

-0.38 0.0795 -1.55 : -0.13 -1.50 <10-4  

Canopy 
cooling (°C) 

0.0439 0.121 -2.72 : -1.31 0.13 0.716  

Bioindicated 
pH 

0.406 0.0315 3 : 7.15 5.2 <10-4  

Community 
Thermal 

Index (°C) 

Intercept 
(°C) 

5.18 0.406   <10-4  

Lapse rate 
(°C) 

0.0885 0.0188 12.6 : 18.5 0.14 <10-4  

Topography 
effect (°C) 

0.364 0.0804 -1.55 : -0.13 0.12 <10-4  

Canopy 
cooling (°C) 

-0.0236 0.123 -2.72 : -1.31 -0.049 0.848  

Bioindicated 
pH 

0.272 0.0308 3 : 7.15 0.25 <10-4  
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Figure 3: Species richness (a) and community thermal index (b) of 306 floristic surveys 

evenly spread into three topoclimate classes of even number of plots (n=102 species by 

class). The p-value significance of a Wilcoxon test between two classes is displayed as 

follows: (ns): p>0.05 (*): p<0.05(**): p<0.01 (***): P<0.001. 

The decreases in CTI and the increase in species richness in the cold topoclimatic 

class were explained by a surplus of relatively cold-adapted species (i.e. with a species 

thermal optimum of 9 °C or less) (Figure 4.a). A two-sided Kolmogorov-Smirnov test 

confirmed that the distribution of species thermal optimum in the cold topoclimate class is 

significantly different from the other two (P-value against warm= < 10-6, P-value against 

moderate = 0.00282). No difference in distribution was found between the warm and 

moderate class (P-value = 0.18). The plots (n=102 vegetation surveys) in cold topoclimates 

displayed in total more than 50 to 100 more occurrences of relatively cold-adapted species 

per thermal optimum classes (1°C) than the other two categories (Figure 4.a). The 

intermediate topoclimatic class (n=102) also had a higher number of cold-adapted species 

compared to the warm topoclimatic class (n=102, Figure 4.a). The cold topoclimatic class 

displayed 300 more forest-specialist species occurrences (Heinken et al., 2022) than the 

other warmer topoclimatic classes, whereas the occurrences of generalist species increased 

by 200 in total (Figure 4.b). We recorded a total of 246, 242 and 223 species (i.e., species 

pool) in the cold, intermediate and warm topoclimatic classes, respectively. A total of 58, 

41, and 33 species were unique to the cold, intermediate and warm topoclimatic classes, 

respectively. This means that there are nestedness of species between communities, as 

shown in Figure S9. 
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Figure 4: Occurrences of species in the three topoclimatic classes as a function of a) their 

thermal optimum (°C) and b) their habitat affinity defined by the EuForPlant list as follows: 

1,1: closed forest mainly 1,2: forest edges and opening 2,1: forest and open vegetation 2,2: 

mainly in open vegetation (Heinken et al., 2022) The plot-scale occurrence of species is also 

shown (e.g., 400 occurrences corresponds to approximately 4 species per plots). 

4. Discussion 

We found that both canopy cover and topographic factors strongly influenced 

(without interacting) understory temperature during the growing season. We disentangled 

the elevation gradient from the topoclimatic and canopy-induced factors by estimating the 

lapse rate separately, which was expectably the main driver of understory temperature 

(Figure 2). After controlling for the lapse and pH, the temperature cooling by topographic 

factors (Heat load and topographic position) was the only significant driver of community 

composition and richness. Our understory temperature model allowed us to separately 

predict the lapse rate, topoclimatic effect and canopy cover cooling with mean temperature 

as a unit. This allows inferring direct links between temperature variation and communities, 

a necessary step to advance correlative studies. 

4.1. Understory temperature determinants 

The positive correlation found between temperature and heat load can be attributed 

to the higher radiation an equator-facing slope receives, which increases both the mean and 

daily maximum temperature of the growing season in closed forests. This contrasts with a 

previous study which only found an effect of heat load on maximum temperature (Macek et 

al., 2019). We measured temperature at 15 cm above the surface, which may explain the 

higher sensitivity of mean GS temperature to aspect compared to Macek et al., (2019), who 

measured temperature at 2 m above the surface. Alongside heat load, we found that 

topographic position influenced mean temperature so that ridges were warmer, and valley 

bottoms were cooler (given equal elevation) but had no effect on maximum temperature. 
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We attribute this decrease in temperature to cold air pooling that occurs during nighttime, 

thus influencing mean daily temperature but with a minimal effect during the hottest hour 

of the day, when air temperature is homogeneously warm (Smith et al., 2010; Vosper & 

Brown, 2008). The cooling effect of understory temperature by canopy cover was most 

apparent for maximum temperature but was also significant for mean temperature, although 

with a small effect size of -0.16 °C. These observations concur with studies with comparable 

sampling (Davis et al., 2019; Macek et al., 2019).  

We found that topoclimatic factors outweighed canopy closure in explaining 

understory temperature in our study area. This finding adds to the current divergent results 

from Macek et al., (2019) who found no effect of canopy and Vandewiele et al., (2023) who 

found a predominance of canopy control on temperature in mountain forests. These 

apparent contrasting results illustrate the complexity of factors in mountain forest 

microclimates, potentially depending on site-specific variations in topography and canopy 

cover, alongside with synoptic conditions leading to difference in transmittance. Our 

sampling design and subsequent loss of loggers hampered our ability to capture the canopy 

closure gradient effect on temperature. In our effort of representativeness, our “low 

canopy” plots displayed a remotely sensed canopy closure of 75%, as there was a dramatic 

decrease of pixels with values lower than that (Figure S9). However, Zellweger et al., (2019) 

showed that temperature canopy cooling is more apparent at low canopy cover levels, and 

saturates past 80% canopy cover. Our limited number of loggers below that threshold could 

also be the reason why we did not observe a strong effect of canopy on temperature. We 

argue that our results are interpretable as a comparison of topographic and canopy effects 

within already forested stands, but not as a comparison of open and closed forests. In 

previous iterations of the temperature models, we tried to account for the ration of 

broadleaved and evergreen canopy trees (Díaz-Calafat et al., 2023) but found no significant 

effect. This could be due to the study period of the growing season, representing leaf-on 

conditions and thus reducing the difference in canopy buffering induced by lack of leaves in 

leaf-off conditions.  

Part of the challenge to determine canopy cover controls in mountain forests stems 

from the myriads of methods that are used to estimate canopy cover, ranging from 

hemispheric photographs, terrestrial lidar derived metrics to remotely sensed canopy cover 

estimations (Ma et al., 2017; Zellweger, De Frenne, et al., 2019). We used Copernicus tree 

density 2018 satellite images to calibrate the microclimatic model and predict its buffering 

effect on communities. Remote sensed tree closure density does not account for the vertical 

profile of trees, which have profound influence on sunlight interception and consequently 

on understory temperatures (Gril et al., 2023; Zellweger, Coomes, et al., 2019). Remotely 

sensed canopy cover was significantly but poorly correlated with our field measures (visual 

estimation and photography). This poor correlation could increase uncertainty in subsequent 

prediction of canopy-induced change in temperature, making more difficult to study 

community composition and richness. Consistent hemispheric photography of loggers and 
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vegetation plots, or remote sensed lidar offers appealing alternatives to better capture 

canopy closure variation independent of the topography context. 

We fitted additional understory temperature models with in-situ measurements of canopy 

cover to conservatively reject canopy cover as prominent driver of microclimate and 

consequently community composition. These models showed no correlation between 

understory temperatures and canopy closure except from the interaction between 

immediate canopy closure (photography) and Heat Load Index (Table S2, 

Table S3). Previous studies have shown that a localized lack of canopy has stronger warming 

effect when being located in equator-facing slopes (Davis et al., 2019; Rita et al., 2021). 

This explains why our most local measure of canopy closure only shows a significant 

interaction. This demonstrates the need to simultaneously study multiple microclimatic 

drivers and their interactions in mountain ranges (Davis et al., 2019; Greiser et al., 2020). 

4.2. Understory temperature effect on communities 

We found that temperature variation owing to topography was equally important in 

shaping a community’s affinity to climate compared to that of the elevational gradient 

(Table 2,after soil pH has been controlled for). This is likely a consequence of environmental 

selection pressure on community assembly. Lower temperature at higher altitudes or in 

topographically shaded slopes can exert a selection pressure on species not adapted to cold 

whereas lower elevation and high radiation slopes select species not sensitive to late 

freezing and adapted to warmer temperature (Figure 3, Rita et al., 2021; Wei et al., 2024). 

Our prediction of both elevation and topography control on mean temperature are quantified 

the same unit, Celsius degrees °C, but topography-induced temperature effect on 

community composition is fourfold compared to that of elevation (Table 2). This implies that 

temperature alone cannot drive the difference in community composition, and other 

biophysical factors correlated with topography-induced temperature should be at play. 

Maximum temperature could be a better predictor of the crossing of physiological thresholds 

dictating species selection (Macek et al., 2019; Pérez‐Navarro et al., 2021). However, this 

hypothesis could not be tested with our dataset as mean and maximum understory 

temperature were highly correlated. Soil moisture and vapor pressure deficit can also 

explain the important contribution of topography to communities (Davis et al., 2019).  

Our topographic position metric relies on hydrography, demonstrating that cold air 

pooling could occur alongside wetter soils and synergistically favor cold-adapted species not 

tolerant to drought (Bénichou & Le Breton, 1987; Finocchiaro et al., 2023; Raduła et al., 

2018). Conversely, ridges and south facing slopes exacerbate the effect of warmer 

temperature by desiccation, via stronger winds and evaporation, respectively (Davis et al., 

2019; Piedallu et al., 2023; Rita et al., 2021). These underlying factors altogether can also 

explain the differences we found in contribution to community composition. They 

underscore the potential in using several microclimate variables (e.g., mean temperature, 

vapor pressure deficit) to predict community patterns and species distribution, explicitly 



21 

considering other microscale biophysical factors in a multivariate fashion (Pérez‐Navarro et 

al., 2021). The improvement of mechanistic modeling of microclimate (Maclean, 2020) could 

also improve predictions of present and future community composition. 

The cold-adapted communities we observed in cold topoclimates are the result of an 

increase in relatively cold-adapted species occurrences rather than of a decrease in 

relatively warm-adapted species (Figure 3). This hints that the constraints on community 

assembly, in our study region, are a result of temperature becoming too warm for cold-

adapted species, rather than otherwise. This increase in occurrences explains the higher 

specific richness in cold topoclimates (Figure 3). Further to an understory cooling, colder 

topoclimates could also increase moisture, thus alleviating competition for water during 

summer and allowing more species to co-occur (Raduła et al., 2018; Sanczuk et al., 2022). 

Canopy cover has been identified as the driver of the diversity of many taxa in lowland 

forests due to its buffering of microclimate and light interception (Tinya et al., 2021; 

Zellweger et al., 2015). Its lower contribution to microclimate variation in mountain forests 

and the limitation in its measurement mentioned earlier may explain why we do not detect 

this pattern. 

Aside from the technical limitations in estimating canopy control on temperature we 

discussed above, other factors may be at play in explaining the lack of flora response to 

canopy-induced microclimate. It was outside of the scope of our analysis but explicitly 

unveiling seasonal microclimatic differences from leaf out timing can help uncover fine 

community differences such as presence of species vulnerable to cold winter, late freezing 

and spring ephemeral species. We also showed that after the lapse rate and topoclimate, 

canopy-induced microclimate is the most variable in space (i.e., spatially autocorrelated in 

smaller scale, Figure S2). A recent study has shown that plant’s thermal preference 

computed with macroclimate are not responsive to microscale variation in temperature, but 

rather reflect macroclimatic provenance differences (Gril et al., 2024). Surprisingly, 

topography, a moderate spatial scale contributor of temperature, had an important effect 

on these macroscales estimate of plant thermal preference. This demonstrates that 

topoclimate, being more stable in space and time, can promote cold-adapted species 

comparably to a macroclimate gradient.  

4.3. Implications 

How local cooler and wetter conditions are decoupled from the climate warming 

trend is of utmost importance as they allow for the persistence of cold-adapted species 

(Greiser et al., 2020; Lenoir et al., 2017), or provide opportunities to facilitate colonization 

and facilitates range shifts (Serra-Diaz et al., 2015). The thermal heterogeneity topoclimate 

produced in mountain ranges (Figure 2) should also be considered as a driver of landscape-

scale diversity (Stein et al., 2014) and a potential source of community adaptation because 

species of diverging climatic adaptation coexist in a relatively small area (Hylander et al., 

2022; Lenoir et al., 2013, 2013). More specifically, our results support the “identifying and 
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protecting microrefugia” section highlighted by Hylander et al., (2022), as north-facing 

slopes and topographic depressions are easily identifiable from maps, and their cooling 

capacities and cold-adapted communities can be confirmed by visits in the field.  

The predominance of topoclimate as a driving force of community composition and 

richness allows for potential stable refugia to occur. Indeed, buffering of community by 

canopy alone is prone to disturbances (e.g., increased mortality of trees triggered by climate 

change) and the magnitude of the buffering effect on community is still under scrutiny 

(Bertrand et al., 2020). Still, a continuity of tree cover in cold topoclimate is recommended, 

as it ultimately creates the understory microclimate that benefits from such topographic 

effects. This could be achieved through selective logging and continuous cover silviculture 

and the reduction of edge effects thanks to buffer zones around the microrefugia. 

Topography displaying higher control over communities shows that targeting cold 

topoclimates is an efficient conservation strategy than increasing canopy density in already 

closed forests. Conservation targeting cold topoclimates is more robust because of the 

increase in redundancy and biodiversity those locations provide (Figure S9). Additionally, 

maintaining a connected forest will foster the benefits of the thermal heterogeneity created 

by topography (Hylander et al., 2022). Indeed, warm topoclimates ought to serve as source 

populations of species adapted to the current climate, and cold topoclimates have the 

potential to maintain cold-adapted populations (given sufficient buffering and areas wide 

enough to sustain a population), resulting in a landscape with heterogenous communities. 

In summary, we show that elevation, topography, and to a lesser extent, canopy 

closure determines growing season understory temperature in the Vosges mountains in 

France. Besides elevation, the contribution of topoclimate was the main predictor of 

community composition and diversity. Understory plant communities of cold topoclimates 

(north facing slopes and valley bottoms) harbored a higher number of generalist and forest 

specialist cold-adapted species. Our results place topography as a prominent driver of forest 

temperature and a key factor to consider for protecting forest cold-adapted species in the 

context of accelerated global warming.  
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8. Supplementary materials  

 

Figure S1: Distribution of the value of the four tested predictor of understory temperature 

thorough all the cells of the study region (forested cells of the Thur valley). 
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Figure S2: Variogram of the 3 maps of flora predictors (Figure 2), with a lag of 25m. 

Canopy cooling scale semivariance saturates first, followed by topographic effect and the 

lapse rate. The saturation of the lapse rate is not shown but is estimated at 6000 m.  

 

 

Table S1: Summary of the sampling scheme. The left number represents the theorical 

number of plots for the combination of targeted topographic feature and canopy closure 

(there were in total 8 strata), the right number represents the number of plots that had 

usable temperature data (logger found functioning). All other topographic feature aside 

from the targeted one were set to an intermediate value (nor high or low), read M&M 2.3 

for more information on the sampling scheme. 

  Canopy closure 

  Low (< 80%) High (> 80%) 

Heat Load Index 
Low (< 0.6) 8 - 5 8 - 8 

High (> 0.7) 8 - 5 8 - 8 

Topographic 
Position Index 

Low (< 0.2)  8 - 7 

High (> 0.8)  8 - 6 

Slope 
Low (< 10°)  8 - 4 

High (> 25°)  8 - 5 
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Figure S3; Principal component analysis of the spatial factor (Elevation, HLI, TPI, slope, 

canopy closure) ought to influence microclimate. Each point represents a forested cell (25m 

per 25 m, 289,733 cells) of the Thur Valley. Axis 1 is explained by elevation and topographic 

position (low values mean high elevation and TPI), Axis 2 represents mostly head load index 

(low values mean high HLI), Axis 3 represents mostly canopy cove (low values mean low 

canopy closure). The position in the PCA projection of the initial sampling and the final 

selection of loggers is shown (Lembrechts et al., 2021). 
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Figure S4: Relationship between Copernicus remote sensed tree density and canopy closure 

estimated in a 25-meter radius circle (a) and canopy cover estimated by a smartphone 

photography and segmented by the ‘Glama’ application (b). The blue line corresponds to a 

fitted linear model which equation, Person R², and its statistical significance are displayed 

(***): P<0.001, (*) P<0.1. The ribbons are the confidence interval of the model. 
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Figure S5: Relationship between mean (a) and maximum (b) understory temperature of 

the growing season with the 4 predictors of the linear temperature model. A loess 

smoother (blue) and an univariate linear model (orange) and their confidence interval are 

also displayed. 
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Table S2: Estimated parameters, their standard error and p-values of the predictors 

included in models of the field canopy closure daily mean growing season temperature. The 

range of the predictors in the calibration dataset and their standardized effect size on the 

temperature (standard deviation * estimate) are displayed. The percentage of explained 

variation per type of predictor is included. P-values were obtained with a Wald test on 

parameters.  

Predictor  Type of 

predictor 

Estimate Standard 

error 

Range Effect 

size (°C) 

Explained 

variation (%) 

P-value 

Intercept (°C)  19.2 0.605    <10-4 

Elevation (m 

a.s.l.) 

Elevation -0.00656 0.000333 475 : 

1203 

-1.49 56.5 <10-4 

Heat load 

index (n.u) 
Topography 

1.52 0.359 0.335 : 

0.951 

0.29 

21.5 

<10-4 

Topographic 

index (n.u) 

0.42 0.295 0.201 : 1 0.15 0.163 

Canopy 

closure 25 

radius (%) 

Canopy -0.00767 0.00599 50 : 95 -0.092 3.17 0.208 

 

 

Table S3: Estimated parameters, their standard error and p-values of the predictors 

included in models of the immediate canopy closure (i.e. ‘Glama’ application) daily mean 

growing season temperature. The range of the predictors in the calibration dataset and 

their standardized effect size on the temperature (standard deviation * estimate) are 

displayed. The percentage of explained variation per type of predictor is included. P-values 

were obtained with a Wald test on parameters. The canopy cover was estimated visually in 

a 25-meter radius circle around the loggers. Immediate canopy cover was measured used a 

hemispherical photography above the logger and a sky segmentation application. 

Predictor  Type of 

predictor 

Estimate Standard 

error 

Range Effect 

size (°C) 

P-value 

Intercept (°C)  16.2 0.812   <10-4 

Elevation (m 

a.s.l.) 

Elevation -0.00672 0.000299 475 : 1203 -1.52 <10-4 

Heat load index 

(n.u) 

Topography 5.47 1.22 0.335 : 0.951  <10-4 

Topographic 

index (n.u) 

Topography 0.481 0.256 0.147 : 1 0.15 0.0682 

Immediate 

canopy closure 

(%) 

Canopy 0.0346 0.0109 32.23 : 93.88  0.00311 

Topography 

index X 

Immediate 

canopy closure 

Interaction -0.0547 0.0162   0.00171 
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Table S4: Estimated parameters, their standard error and p-values of the predictors 

included in models of the daily maximum growing season temperature. The range of the 

predictors in the calibration dataset and their standardized effect size on the temperature 

(standard deviation * estimate) are displayed. The percentage of explained variation per 

type of predictor is included. P-values were obtained with a Wald test on parameters. Heat 

load and topographic indices have no units, refer to the methods for their calculation.  

Predictor  Type of 

predictor 

Estimate Standard 

error 

Range Effect 

size (°C) 

Explained 

variation (%) 

P-value 

Intercept (°C)  30.6 2.45    <10-4 

Elevation (m 

a.s.l.) 

Elevation -0.00803 0.000685 475.69 : 

1203.17 

-1.77 
56.5 

<10-4 

Heat load 

index (n.u) 
Topography 

5.35 0.732 0.335 : 0.951 1.05 

21.5 

 

<10-4 

Topographic 

index (n.u) 

0.333 0.607 0.147 : 1 0.081 0.587 

Canopy 

closure (%) 

Canopy -0.0947 0.0253 79.004 : 100 -0.54 
3.17 

<10-4 

Table S5: Estimated parameters, their standard error and p-values of the max temperature 

predictors of the community thermal index (CTI) linear model, and the species richness 

negative binomial generalized linear model. The range of the predictors and their 

standardized effect size on the community predicted variable (standard deviation * 

estimate) are displayed. The P-value is obtained by a Wald test on the parameter. (R² of 

the CTI model: 34.0%) 

 

Model Predictor Estimate Standar
d error 

Range Effect 
size 

P-value 

Species 
richness 

Intercept 
(°C) 

0.307 0.478 NA NA 0.522  

Lapse rate 
(°C) 

0.0351 0.0156 20.6 : 27.5 1.15 0.024  

Topography 
effect (°C) 

-0.112 0.0271 1.79 : 5.36 -1.76 <10-4  

Canopy 
cooling (°C) 

0.00365 0.035 -9.47 : -4.58 0.0464 0.917  

Bioindicate
d pH 

0.413 0.032 3 : 7.15 7.97 <10-4  

Community 
Thermal 

Index (°C) 

Intercept 
(°C) 

4.57 0.484 NA NA <10-4  

Lapse rate 
(°C) 

0.0589 0.0156 20.6 : 27.5 0.106 <10-4  

Topography 
effect (°C) 

0.0965 0.0273 1.79 : 5.36 0.0912 <10-4  

Canopy 
cooling (°C) 

-0.00128 0.0356 -9.47 : -4.58 -0.00093 0.971  

Bioindicate
d pH 

0.268 0.0313 3 : 7.15 0.243 <10-4  
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Figure S6: Relationship between residuals and fitted values, and histogram of residuals of 

the linear mean temperature model (a), the CTI linear model (b) and the species richness 

negative model (c). 
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Figure S7 Species richness (a) and community thermal index (b) of 306 floristic surveys 

evenly spread into three topoclimatic buffering classes, as function of predicted 

topoclimatic effect on temperature (°C, compared to a moderate topographic situation). 
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Figure S8: Species richness (a) and community thermal index (b) of 306 floristic surveys 

evenly spread into three microclimatic cooling classes. The p-value significance of a 

Wilcoxon test between two classes is displayed as follows: (ns): p>0.05. 

 

Figure S9: The first two axes of a correspondence analysis of the 306 floristic surveys spread 

among the three topoclimatic cooling class. 
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