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Abstract 25 

Climate strongly influences the composition and diversity of forest plant 26 

communities. Recent studies have highlighted the role of tree canopies in shaping understory 27 

thermal conditions at small spatial scales (i.e. microclimate), especially in lowland forests. 28 

In mountain forests, however, the influence of topography in environmental conditions (i.e., 29 

topoclimate) is ought to also influence plants’ perceived temperature. Understanding how 30 

topography and canopies interactively affect understory temperature is key to identifying 31 

stable refugia that could shelter cold-adapted forest specialist plants under climate change. 32 

Here we report on growing season understory temperatures using 48 loggers in 33 

contrasting topographic features and canopy of a mid-range mountain valley spanning from 34 

475 m a.s.l. to 1203 m a.s.l. in the Vosges Mountains (NE France). We disentangle the relative 35 

importance and the effects of topography vs. canopy in determining local temperatures. We 36 

then evaluate how topography and canopy-induced variation in temperature drive plant 37 

community composition and richness in 306 floristic surveys across the studied mountain 38 

valley. 39 

Our results show that topography outweighed canopy cover in explaining growing 40 

season understory temperatures. Regardless of canopy, the daily mean temperature of the 41 

growing season in south-facing ridges was 1.5 °C (CI: 0.62 – 2.38°C) warmer than shaded 42 

valley bottoms, while dense canopies cooled temperatures by 0.5 °C (CI: 0.02 – 0.98 °C) 43 

compared to open canopies. Topoclimate explained community composition as much as 44 

elevation and was the only significant predictor of species richness. Cold topoclimates 45 

harbored 30% more species than the average species richness across our plots. This increase 46 

in species richness was explained by an increase of cold-adapted species, both forest 47 

specialist and generalist species. 48 

Our findings highlight a stronger role of topography compared to canopy cover on 49 

community composition in mountain forests via topoclimatic cooling of north-facing slopes 50 

and valley bottoms. The importance of topographic features to explain temperature cooling 51 

and diversity underpins their role as present and future microrefugia. 52 

Keywords 53 

Community ecology, forest, topoclimate, microclimate, topography, climatic refugia, 54 

diversity, understory vegetation.   55 



3 

1. Introduction 56 

The study of topography influences on vegetation has fascinated ecologists for more 57 

than 150 years (Johnston et al., 1848), and has further gained in relevance in the context of 58 

the 21st century climate warming (Ashcroft, 2010; Dobrowski, 2011; IPCC, 2021; Lenoir et 59 

al., 2017). Species distribution and climatic conditions are often modeled at a coarse 60 

resolution (typically 1 km or coarser), and thereby fail to capture local variation of climate 61 

at finer grains (Franklin et al., 2013) :for instance, the topoclimate shaped by terrain and 62 

the forest-induced microclimate (Bramer et al., 2018; De Frenne et al., 2021; Kemppinen et 63 

al., 2023). Enhanced predictive power obtained by using smaller grain climatic data confirms 64 

that species physiological limits are better captured by topography and forest microclimate 65 

(Haesen et al., 2023). Given that these factors can attenuate warm macroclimate 66 

temperatures, their study is key to identify areas where local conditions are continually 67 

buffered in a warmer future (Ashcroft, 2010; De Frenne et al., 2021; Haesen et al., 2023; 68 

Hannah et al., 2014). Such areas, refugia, are of utmost importance as they can host source 69 

populations of cold-adapted species endangered by climate change. Protection offered these 70 

refugia can be disrupted in when it is induced by tree canopies whereas topography-induced 71 

buffering is more stable (Ashcroft, 2010; Hylander et al., 2022). As these buffers coexist in 72 

temperate mountainous forests, determining which buffering process is at play will allow to 73 

better predict and map sources of biodiversity persistence. 74 

Variation in aspect can create contrasting local temperatures as slopes oriented to 75 

the equator receive more solar radiation, and west-facing slopes receive radiation during 76 

the warmest period of the day. As a result, southwest-facing slopes in northern hemisphere 77 

mountains display warmer mean temperatures, longer growing seasons and shorter snow 78 

cover durations (Ashcroft et al., 2008; Davis et al., 2019; Rita et al., 2021; Rolland, 2003). 79 

The physical properties of air also interact with topographic features such as hydrological 80 

basins (McLaughlin et al., 2017), valley bottoms and sinks. This phenomenon creates local 81 

areas of cold and dense air pooling that decouple, i.e. remove any correlation, between 82 

local conditions from the regional climate (Gudiksen et al., 1992; Pastore et al., 2022), thus 83 

creating topographic refugia (Dobrowski, 2011). These temperature variations are observed 84 

on a moderate scale, from fifty to hundreds of meters, and will be called hereafter 85 

topoclimate (Lenoir et al., 2013). To focus on moderate scale and magnitude variation in 86 

temperature, we exclude from our definition of topoclimate the lapse rate induced from 87 

elevation, as this process has a much stronger effect on temperature, comparable to 88 

macroclimatic variation (Lenoir et al., 2013; Rolland, 2003). 89 

The topoclimate interacts with what we define as forest-induced microclimate (with 90 

smaller scale variation, from a meter to tenth of meter) to jointly determine the understory 91 

temperature experienced by forest organisms (De Frenne et al., 2021). Canopy shading and 92 

evapotranspiration lead to an overall decrease of temperature throughout the year, 93 

exacerbated in summer by a buffering of high temperatures compared to open-air (De Frenne 94 
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et al., 2021; Zellweger, Coomes, et al., 2019). These buffering effects are apparent and 95 

well documented in temperate lowland forest, but their relative importance in contrast to 96 

elevation and topography is less known, and current evidence has not reached consensus 97 

(Macek et al., 2019; Vandewiele et al., 2023). In temperate mountain forests, we expect 98 

that topography (elevation excluded) displays more variability than canopy cover, placing it 99 

as the main driver of understory temperature and thus community composition.  100 

Community composition was proven to respond to canopy cover in lowland forests. 101 

This is evidenced by the increases of the average thermal optimum of the present species (a 102 

proxy of species’ affinity to climate) in forests where tree canopy was removed (De Frenne 103 

et al., 2013; Dietz et al., 2020; Richard et al., 2021) and where warmer understory 104 

temperatures are predicted (Zellweger et al., 2020). This sheltering of cold-adapted species 105 

by a dense canopy needs to be compared with the sheltering provided by topography in 106 

mountain forests, as topographical refugia are likely to offer longer-term buffering of 107 

temperature, whereas canopy cover is prone to sudden perturbation(dieback, windfall, etc.) 108 

(Ashcroft, 2010; Finocchiaro et al., 2023). Topographic refugia also harbor cold-adapted 109 

flora and host populations of species outside their expected climatic range (Ellis & Eaton, 110 

2021; Finocchiaro et al., 2023; Haesen et al., 2023; Macek et al., 2019). In temperate 111 

mountain forests, it is possible that the sheltering provided by topography resembles the 112 

effect of canopy (e.g. lower maximum temperature, higher humidity). To test this 113 

hypothesis, we will also study the species’ characteristics, we expect an increase of forest 114 

specialists that could demonstrate that topoclimate can mimic understory conditions of 115 

dense forests.   116 

Here we assessed the effects and relative importance of elevation, topography and 117 

canopy cover on in situ measured understory temperatures and plant community 118 

composition and richness. This partitioning will shed light on whether communities are more 119 

responsive to canopy or topographic variability, processes that have very different spatial 120 

and temporal patterns. This will allow conservation planning to efficiently target 121 

conservation areas. After accounting for the elevation gradient, we specifically asked: (1) 122 

Does topography (aspect and topographic position) outweigh canopy in explaining understory 123 

temperature? (2) does topography and canopy-induced variation in temperature determine 124 

community richness and mean species thermal optimum? (3) Are plant habitat preference 125 

and climatic affinity related to understory temperature? 126 

2. Materials and Methods 127 

2.1. Study Area 128 

Our study region (221 km²) is delineated by the basin of the Thur River, located in 129 

one of the southmost valleys of the Vosges Mountain range in France (Figure 1). The Vosges 130 

are characterized by a continental climate with harsh winters and short and stormy summers. 131 

Its mean annual temperature ranges from 6 °C to 10°C and precipitation ranges from 800 to 132 
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2,000 mm year-1(period 1970-2000, Météo France weather stations IGN, 2013). The Thur 133 

River basin  is on the warm and dry end gradient of the Vosges Mountains   (IGN, 2013). 134 

Forests cover 76% of the Vosges, which transitions from mixed oak stands and monospecific 135 

Picea abies stands to mixtures of Picea abies, Abies alba and Fagus sylvatica  as elevation 136 

increases IGN, 2013). The soil of our study region is mostly shallow loam and sand with coarse 137 

elements. The most acidic soils are found at higher altitude because of the dominance of 138 

needles in the humus and the lower temperature at mountaintops (IGN, 2013; Piqué et al., 139 

1994; Thomas et al., 1999). The topography is highly variable, with an elevation ranging 140 

from 400 to 1424 m a.s.l. (but forest occurrence stops past 1250 m a.s.l.) with high 141 

topographic heterogeneity (Figure 1).  142 

 143 

 144 
Figure 1: Study area (black outline) with the location of the temperature loggers (white 145 

circles) and the floristic surveys (black crosses). The colored scale represents elevation 146 

above sea level, in meters, obtained from a 25-m spatial resolution digital elevation model 147 

(IGN, 2017). Hillshade effects have been added to visualize the terrain. The blue line 148 

represents the Thur River and its tributaries. The inset shows the Vosges Mountain range 149 

(grey) and the location of the studied valley (black point) in western Europe. 150 

2.2. Temperature Predictors 151 

We used 25-meter resolution digital elevation model (IGN, 2017) to extract elevation 152 

(m a.s.l.), slope and aspect and to calculate topographical indices. Elevation was kept as is, 153 

as the lapse rate predictor, but does not fall under our definition of topography as we 154 
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considered it a macroclimatic feature given how much control it has over temperature. Our 155 

definition of topoclimatic effect will be focused on smaller scale topographic features 156 

described hereafter. We specifically wanted to investigate the difference in radiation 157 

received between slopes of differences aspects, a well know driver of topoclimate 158 

temperatures, which its effect is less clear under canopy (Macek et al., 2019). We did so by 159 

computing the Heat Load Index (HLI). HLI ranges from 0 to 1 (least to most incoming solar 160 

radiation) contingent on latitude, slope orientation and steepness, it is a measure of how 161 

daily mean temperature is warmed by topographic features most exposed to sunlight, and 162 

during the warmest period of the day (south and west slope in the northern hemisphere).  163 

To investigate how cold air pooling, dictated by the topography of river basins, 164 

influences temperature, we computed a topographic position index (TPI). Cold air pooling 165 

ought to be a prominent explanatory factor of community persistence (Finocchiaro et al., 166 

2023; Pastore et al., 2022). To do so, we normalized the Euclidian distance between the 167 

nearest ridge and nearest thalweg (TPI = Dthalweg / (Dthalweg +Dridge). TPI is the relative 168 

position of the cell in the shortest trajectory between a ridge and a drainage basin end, 169 

ranging from 0 (valley bottom) to 1 (ridge, Piedallu et al., 2023).  170 

We obtained the ‘tree cover density’ from the 2018 product of the Copernicus 171 

monitoring service as proxy for local canopy closure (Copernicus, 2018; Sannier et al., 2023). 172 

This product consists of a 10-meter resolution percentage of canopy presence within the 173 

pixel (ranging from 0 to 100%) and was successfully used before to model microclimate 174 

buffering by canopy (Haesen et al., 2021). To validate the assumption that this is a proxy of 175 

local canopy closure, and thus microclimatic variation induced by canopy, we correlated it 176 

with our field measurements of canopy closure (see below, 2.3 Temperature sampling). We 177 

rescaled this product to match the 25-m resolution of our other maps using bilinear 178 

interpolation (Hijmans, 2020). We rasterized (25-meter resolution) a 20-meter precision 179 

polygon map of French forest (IGN, 2019) to create a mask of the forested area of our study 180 

region to limit our analysis and temperature projection to forests, as we only investigate 181 

understory flora and temperatures in this study. 182 

2.3. Temperature Sampling  183 

We created a stratified sampling scheme to capture forest understory microclimate 184 

variability (Lembrechts et al., 2021; Schweiger et al., 2016). We created 8 elevation strata 185 

(spanning 20 m a.s.l. intervals) separated by 102 m. Those strata thus range from [468 - 488] 186 

to [1184 - 1204] m a.s.l. They are meant to control for the lapse rate (steady decrease in air 187 

temperature as pressure decreases with elevation, Lembrechts et al., 2021), it is the main 188 

driver of temperature in the study area but we wanted to separate lapse rate from other 189 

topographic features effect.  190 

Inside each of these strata, we defined 8 types of plots: 4 plots of below and above 191 

the median canopy closure of our study area (90% canopy closure) with a south or a north-192 

facing slope (HLI > 0.70 and HLI < 0.60, respectively, value chosen to avoid flat terrains of 193 
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HLI: 0.66). These 4 plots had moderate topographic position indices (between 0.2 and 0.8) 194 

and slope (10° < slope < 25°), to avoid confounding their effects with the canopy closure 195 

and heat load effects. Additionally, we defined 2 plots with contrasting topographic position 196 

indices (lower than 0.2 and higher than 0.8) under high canopy closure and moderate slope. 197 

Lastly, we defined 2 plots with contrasting slopes: one on flat (slope < 10°) and one steep 198 

(slope > 25°) under high canopy closure and moderate topographic position (summary of the 199 

sampling scheme: Table S1). These theorical strata and plots were designed to systematically 200 

cover elevation, HLI, TPI and canopy closure variability, yielding similar results as the PCA-201 

based approach proposed in Lembrechts et al., 2021 as shown in Figure S1. 202 

Of the initial 64 theoretical plots spanning the 8 strata, only 59 of the defined 203 

situations occurred, mostly because we lacked low topographic position indices (valley 204 

bottom) in high elevation classes. We randomly selected one pixel for each plot and stratum 205 

located in public forests. We repeated this random drawing 10,000 times and kept the set 206 

of plots that maximized the mean minimum distance between plots to reduce spatial 207 

autocorrelation.   208 

We established the 59 temperature loggers in May 2021 and recorded their location 209 

with a GNSS receiver (Trimble TDC600, accuracy= ± 2 m undercover). We placed every logger 210 

in public forests to avoid legal constraints (public forest makes up 80% of the forested area 211 

in our study region), with no constraints regarding accessibility. We measured canopy closure 212 

(0-100%) by a visual observation in a 25-meter radius around the logger. We also estimated 213 

canopy closure (0-100%) with a planar picture of the canopy by means of a smartphone 214 

(Samsung A40, focal length: 25mm, sensor size: 1/2.8") placed on top of the logger and the 215 

sky segmentation ‘Glama’ application (Tichý, 2016). Plots tagged as low canopy cover were 216 

placed accordingly by selecting sites with less than 50% canopy closure as computed by 217 

‘Glama’. The visual estimation of canopy closure (25-meter radius) was significantly 218 

correlated with the remote sensed tree density (R² of the linear relationship = 30.0%, Figure 219 

S2), but a weak and non-significant correlation was found with the picture analyzed by 220 

‘Glama’ (Figure S2). 221 

We recorded air and soil temperatures with TMS-4 loggers (resolution= 0.0625 °C, 222 

accuracy= ±0.5 °C) protected with a radiation shield (Wild et al., 2019). The loggers 223 

recorded temperature every 15 minutes until August 2022. We used air temperature 15 cm 224 

above the soil surface because it is the most representative temperature experienced by 225 

understory plants. We cleaned the time series with the ‘myClim’ R package (Man et al., 226 

2023). More specifically, we removed any duplicates, checked for missing values, and 227 

resolved inconsistent time step to the closest 15 minutes default of our loggers. We 228 

calibrated the loggers beforehand for a range of -20 °C to +40 °C by placing them in a freezer 229 

and drying oven along with a T-type thermocouple (accuracy= ±0.2 °C). From the recorded 230 

period, we focused on the growing season (GS hereafter), from 01/04/2023 to 15/08/2023, 231 

as it is the most critical period for plant growth. Out of the 59 loggers, 11 were either 232 
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malfunctioning, stolen, destroyed by animals or displayed erroneous values and were 233 

discarded.  234 

We checked the capacity of our final sample to cover the variability of our study 235 

region following the PCA-based approach of Lembrechts et al., (2021). Our final sampling 236 

was able to cover the variability of the valley, except for extreme values of low canopy 237 

cover and the unusual valley bottoms of high elevations. The loss of loggers was evenly 238 

distributed over plot types, except for the low canopy cover that suffered the most losses 239 

(Figure S1). 240 

2.4. Floristic and Species Characteristic Dataset 241 

To test how flora responded to understory temperature, we compiled floristic surveys 242 

performed (during the growing season) by students and professors covering soil and climatic 243 

transect of the region between 2009 and 2022 (average year= 2015.6). All plots were 244 

surveyed for all vascular plant species in the herb layer (smaller than 1 m) and their 245 

percentage ground cover was visually estimated. We had 306 floristics surveys in total across 246 

the study region. Floristic surveys were performed in 20 x 20 m squares (400 m²) with the 247 

GPS position (recorded with built-in tablet GPS; accuracy= ± 10 m) as the center. We used 248 

this position to extract elevation, heat load index, topographic position index and canopy 249 

cover for every survey. We harmonized taxonomy to the TaxRef V13 standard (Gargominy, 250 

2022). We focused on herbaceous species in the analysis to focus on community dynamics 251 

that may reflect shorter-term climate and are less influenced by management than trees or 252 

shrubs.  253 

One of the objectives of our study is to assess whether local variation of temperature 254 

due to topography and canopy benefits cold-adapted species, as they are projected to be 255 

the most threatened by climate warming. For this purpose, we used the species’ thermal 256 

optimum  value from ClimPlant V.1.2 (Vangansbeke et al., 2021). These thermal optima are 257 

computed from the mean annual temperature (°C) within the range of species obtained from 258 

Europe-extent distribution atlases and represent the median temperature of the realized 259 

niche. Out of the 348 unique recorded species, 309 were assigned a thermal optimum value, 260 

covering 90.0% of the occurrences of the whole floristic dataset. We averaged the thermal 261 

optimum of every species (without weighting for abundance) of a given survey to obtain the 262 

Community Thermal Index (hereafter CTI), which quantifies the thermal preference of the 263 

whole community (Borderieux et al., 2023; Vangansbeke et al., 2021). We did not weigh the 264 

calculation by species abundance, from a conservation standpoint rarer species may be the 265 

most interesting in CTI calculation but may be underrepresented when weighted by 266 

abundance. We calculated species richness of a plot as the number of recorded species 267 

whether they had an associated thermal optimum in the database or not. By doing so, we 268 

wanted to include rare species that were not included in ClimPlant so that our specific 269 

richness is representative of the species pool of our study region. The soil of our study region 270 

can greatly vary in acidity, we also assigned a pH optimum value obtained from a 271 



9 

bioindication database to each species (Gégout et al., 2005), and averaged (not weighted 272 

by abundance) it to obtain to control for soil conditions via a bioindicated pH per plot. 273 

We used the EuForPlant regional list of forest plant species (Heinken et al., 2022) to 274 

assess species habitat affinity. We assigned to each species one of the following affinities: 275 

(1.1) species of closed forest (1.2) species which occur in forest edges and openings (2.1) 276 

Species which primarily occur in forests but also found in cultural landscapes and forest 277 

remnants (2.2) species of open habitats that occurs in forest exclusively through opening 278 

and early succession. We excluded species of open vegetation (classified “O”) because of 279 

their low number of occurrences (42). In total, 274 species were assigned to an affinity class, 280 

covering 85.7% of the occurrences.  281 

2.5. Understory Temperature Modeling 282 

We aggregated the 15-minute frequency time series of the recorded temperature of 283 

the growing season 2022 (a warmer than average year, see 3.1) to daily mean and maximum 284 

temperature. This aggregation process first removed values outside of the 5th to 95th centile 285 

interval of daily values to avoid biasing results due to logger malfunction or a brief burst of 286 

sunshine on a logger (thus maximum temperature is the 95th centile). We then averaged the 287 

mean or maximum daily temperature to obtain one unique value per logger, the mean daily 288 

and maximum daily temperature of the growing season. Having a unique value facilitates 289 

the modeling process by removing the need to account for the lack of statistical dependence 290 

of temperature time series, and one summary value of the GS is enough as we aim to uncover 291 

spatial variation of community composition instead of temporal variation. 292 

We wanted to disentangle the relative contribution of lapse rate, topography and 293 

canopy to understory temperature, and wanted to map estimates of understory over the 294 

study area. To this end, we used a linear model to predict mean and maximum daily 295 

temperature of the growing season with elevation, heat load index, topographic position 296 

index and remote sensed canopy density as explanatory variables. We preferred remote-297 

sensed canopy cover over the in-situ measurements which allowed us to map the 298 

temperature models over the entire study area, and thus infer the understory temperature 299 

of floristic surveys (mostly without canopy closure records). The warming due to radiation 300 

can be tempered when there is canopy to intercept light, canopy buffering is most apparent 301 

during the warmest hour of the day (Davis et al., 2019; De Frenne et al., 2021). To account 302 

for this, we tested an interaction between heat load index and canopy closure and retained 303 

the interaction in the final model if found significant. We checked the assumption of linearity 304 

between temperature and its predictors by visually assessing the raw data (Figure S3) and 305 

the residuals (Zuur & Ieno, 2016). 306 

For each understory temperature model, we did an analytical partitioning of variance 307 

to assess which process influenced  understory temperature most (Barbosa et al., 2013). The 308 

contribution of the predictors was grouped into three groups: elevation, “topoclimate” (TPI 309 

and HLI) and “microclimate” (canopy closure). For simplicity and because shared effects had 310 
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little contribution, we added to each group contribution half of their shared effect to 311 

summarize the contribution of the three groups in three numbers. 312 

We additionally fitted two linear models with the field measured canopy closure (25 313 

m radius observation and planar photography) instead of the remotely sensed measurement 314 

to test different methods of canopy closure estimations (Table S2, Table S3).  315 

We used the mean understory temperature model (R² = 92.2%) to map the 316 

contribution of elevation (i.e., lapse rate), of topoclimate (heat load index and topographic 317 

position) and of forest-induced microclimate (canopy closure) to the mean understory 318 

temperature separately. We mapped the lapse rate by using only the intercept and the 319 

elevation parameter. We mapped the topography effect on temperature compared to a 320 

reference situation (heat load index of a flat terrain = 0.66 and topographic position index 321 

equal to 0.5, prediction of + 1.34°C) and using the two topographic indices. We mapped the 322 

contribution of canopy cover by multiplying its parameter to the tree density product, this 323 

projection is however extrapolated for the 20% of pixels with a canopy closure lower than 324 

79%. This extrapolation was necessary to cover the whole study region and to predict 325 

temperature to floristic surveys within those areas. To assess the spatial autocorrelation of 326 

the resulting maps (Figure S6), we computed their variogram (scaled semivariance), with a 327 

lag of 25 m and a cutoff of 2000 m (Naimi et al., 2014). 328 

2.6. Floristic Composition Analyses 329 

We used a linear model to predict CTI. Species richness being a positive discrete 330 

number, we used a negative binomial generalized linear model as overdispersion prevented 331 

the use of a Poisson model. The predictors of both models were the contribution to mean 332 

understory temperature of elevation, topoclimate and microclimate (the unit of every 333 

predictor is thus °C). The soil of our study region can display very different nutrition status 334 

and acidity, which can impact both the richness and composition of a community (Degen et 335 

al., 2005; Koerner et al., 1997; Zellweger et al., 2015). In addition, soil pH is also negatively 336 

correlated with elevation (Piqué et al., 1994; Thomas et al., 1999). To account for this, 337 

bioindicated pH was also a predictor in the models. We tested that no collinearity between 338 

soil acidity and elevation arose when including both by computing a Variance Inflation Factor 339 

(VIF, Fox & Weisberg, 2019). For both models, elevation displayed the higher VIF (1.27, well 340 

below the threshold of 5, that indicates collinearity, James et al., 2023).  341 

We assessed the validity of our models (including temperature models) by testing the 342 

assumption of normality and homoscedasticity of the residuals model following (Zuur & Ieno, 343 

2016). All assumptions were met (Figure S4). We tested the significant difference from 0 of 344 

the estimated parameters with a Wald test. 345 

As the 306 surveys uniformly covered the topography effect on temperature (Figure 346 

S5), we could split them into three classes of 102 surveys corresponding to a “cold”, 347 

“moderate” and “warm” topoclimate effect. The thresholds separating the three classes 348 
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were determined so that classes have equal number of plots. This discretization allows to 349 

directly compare the total occurrence of species, as in Figure 4, thanks to a fixed sampling 350 

intensity between classes. It also allows to compute more comprehensive effects of 351 

topoclimate over CTI and species richness (e.g. “cold” plots exhibit on average 5 more 352 

species than “warm” plots) than with linear estimates. We tested the difference in species 353 

richness and CTI between these classes with Wilcoxon rank-sum tests (Rey & Neuhäuser, 354 

2011). 355 

2.7. Software 356 

We handled spatial data with the ‘raster’ and ‘sf’ package (Hijmans, 2020; Pebesma, 357 

2018), all the later analyses were carried on with R.4.2.2 (R Core Team, 2019). We computed 358 

HLI (McCune & Keon, 2002) using the ‘spatialEco’ R package (Evans & Murphy, 2021). We 359 

used the ‘MASS’ package to fit the negative binomial generalized model (Venables & Ripley, 360 

2002). We computed the VIF using the ‘car’ package (Fox & Weisberg, 2019). Microclimate 361 

temperatures were cleaned using the ‘myClim’ R package (Man et al., 2023). We used 362 

‘ggplot2’ and ‘ggspatial’ packages for data visualization (Dunnington & Thorne, 2020; 363 

Wickham, 2011). We performed variance partitioning with the ‘modEVA’ package (Barbosa 364 

et al., 2013). 365 

3. Results 366 

3.1. Environmental Determinant of the Understory Microclimate 367 

The growing season (GS) temperature of 2022 was above average (mean GS 368 

temperature of the period 2005-2020=11.6 °C, mean 2022 GS temperature=13.2 °C, 369 

Markestein whether station (1,184 m a.s.l), (Météo France, 2024)). As a result, the mean 370 

daily temperature of the understory (15 cm above the soil surface) was 14.6 °C and spanned 371 

between 11.9 °C to 17.5 °C for the higher (1203 m a.s.l) and lower (475 m a.s.l) elevation 372 

sensors, respectively. The mean daily maximum temperature of the GS was 19.3 °C and 373 

reached a maximum of 24.7 °C for the lowest elevation plots.  374 

Elevation was the primary driver of mean temperature variation, with a lapse rate 375 

estimated at -0.68 °C 100m-1 (Table 1). The model revealed that HLI – contingent on aspect 376 

and slope – was the second driver of mean temperature, which can vary up to 1°C between 377 

low and high radiation slopes. Topographic position also had a significant effect on 378 

temperature: the mean temperature was 0.56° C lower in the bottom of a valley compared 379 

to ridges. Lastly, canopy closure (remotely sensed) cooled understory temperatures. An 380 

increase of 20% of total canopy cover resulted in a decrease of 0.57° C. The lapse rate 381 

explained 87.4% of the variation in mean temperature, the topographic factors (heat load 382 

and topographic position index) 3.95%, and canopy cover accounted for 0.82%. The R² of the 383 

linear model was 92.2%.  384 
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The same predictors except for topographic position were significant in the mean 385 

daily maximum temperature model. The heat load index had a higher contribution (21.5%) 386 

in the maximum temperature compared to the mean temperature model, daily maxima 387 

varied for 3.3°C between low and high heat load indices (Table S4).  388 

Same models where remotely-sensed canopy closure was replaced with field-389 

measured canopy closure showed overall similar trends, but with difference in estimates 390 

significance. Canopy cover visually estimated in a 25-meter radius was not significant in 391 

predicting mean temperature (Table S2). Immediate canopy cover (smartphone 392 

photography) above the logger explained significantly mean temperature with an interaction 393 

with heat load index, low immediate canopy cover in high radiation slopes displayed warmer 394 

mean temperature (Table S3).  395 

Table 1: Estimated parameters, their standard error and p-values of the predictors included 396 

in models of the daily mean growing season temperature. The range of the predictors in 397 

the calibration dataset and their standardized effect size on the temperature (standard 398 

deviation * estimate) are displayed. The percentage of explained variation per type of 399 

predictor is included. P-values were obtained with a Wald test on parameters. Heat load 400 

and topographic position have no units (n.u), refer to the methods for their calculation.  401 

Predictor  Type of 

predictor 

Estimate Standard 

error 

Range Effect 

size (°C) 

Explained 

variation 

(%) 

P-value 

Intercept (°C) 
 

21,1 1,11 
   

<10-4 

Elevation (m 

a.s.l.) 

Elevation -0.00684 0.000311 475 : 1203 -1.50 87.4 <10-4 

Heat load index 

(n.u) 
Topoclimate 

1.53 0.333 0.34 : 0.95 0.30 

3.95 

<10-4 

Topographic 

position (n.u) 

0.656 0.276 0.15 : 1 0.16 0.0220 

Canopy closure 

(%) 

Microclimate -0.0272 0.0115 79.0: 100 -0.16 0.817 0.0229 

 402 

Error! Reference source not found.The spatial variation of elevation, topography 403 

and canopy closure reveals a complex and fine-grained contribution of this factors to the 404 

forest understory climate (Figure 2). We mapped the individual contributions of elevation 405 

(Figure 2.a), topoclimate (heat load index and topographic position summed; Figure 2.b) and 406 

canopy cover (i.e., microclimate; Figure 2.c) in the study area. We observed strong effects 407 

on understory temperatures caused by steep spatial difference of elevation, topography and 408 

fine-grained canopy cover (Figure 2.d). Lapse rate autocorrelation peaked at 6000 m, 409 

topography in was autocorrelated in a moderate scale 750 m, canopy-induced variation in 410 

temperature autocorrelated in the smallest scale and peaked at 450 m (Figure S6). We used 411 

this map and model to predict the mean understory temperature, and the contribution of 412 

the three components described above for further community composition analyses. 413 
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 414 

 415 

Figure 2: a) Elevation induced change in mean growing season understory temperature of 416 

the growing season (lapse rate of -0.68°C 100 m-1), assuming a canopy closure of 90% and 417 

no effect from topography. b) mean understory temperature effect induced by topography 418 

(heat load and topographic position, i.e. topography) assuming an average canopy cover 419 

(90%), compared to a moderate situation (flat terrain midslope). c) mean understory 420 

temperature cooling induced by canopy closure assuming no effect from topography. For 421 

visualization purposes only we restrained the minimal cooling to -1.5°C, however some 422 

pixels displayed lower values up to 0°C due to low to no canopy closure. d) 2 km per 2 km 423 

zoomed inset of the red square of the other panels, their color gradient corresponds to the 424 

color scale presented in the other panels a-c, respectively. Blank pixels represent land 425 

covers other than forests or forests outside of the study region. Linear model R²: 92.2%. 426 

3.2. Microclimatic Determinants of the Floristic Composition 427 

Floristic surveys harbored on average 19 herbaceous species (s.d. 10.7), the mean 428 

community thermal index (CTI) was 7.8 °C (s.d. 0.55). Bioindicated soil pH contributed 429 

significantly to CTI and species richness (Table 2). More acidic soils had less diverse and cold-430 
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adapted communities. Even if soil is a strong explanatory factor, the overall linear CTI model 431 

explained a moderate amount of variability (R²: 35.6%).  432 

After soil pH, elevation-induced (lapse rate) and topoclimate were the main predictor 433 

of CTI, of comparable importance (effect size of 0.14 and 0.12 respectively). Topographic 434 

effect was also a significant predictor of species richness, of major importance (an increase 435 

of 1.5 species per plot per increase of one standard deviation of topographic effect, Table 436 

2). The lapse rate was not significant in explaining species richness (Table 2). The forest-437 

induced microclimate was not a significant predictor in any of the models (Table 2). We 438 

focused the subsequent community analysis around topoclimatic effects, as canopy cooling 439 

did not significantly explain the species richness nor CTI.  440 

Mean and maximum temperature were highly correlated (Pearson coefficient: 0.86), 441 

as a result, a similar effect on flora is found when using predicted effect on max temperature 442 

instead of mean temperature, with a small decrease in fit quality (-1.4% in R² for CTI model, 443 

-6 in log-likelihood for the species richness model, Table S5).  444 

Table 2: Estimated parameters, their standard error and p-values of the predictors of the 445 

community thermal index (CTI) linear model, and the species richness negative binomial 446 

generalized linear model. The range of the predictors and their standardized effect size 447 

on the community predicted variable (standard deviation * estimate) are displayed. The P-448 

value is obtained by a Wald test on the parameter.  449 

 450 

Model Predictor Estimate Standard 
error 

Range Effect 
size 

P-value 

Species 
richness 

Intercept 
(°C) 

0.212 0.403 
  

0.598 

Lapse rate 
(°C) 

0.0218 0.0187 12.6 : 18.5 0.46 0.243 

Topography 
effect (°C) 

-0.38 0.0795 -1.55 : -0.13 -1.50 <10-4 

Canopy 
cooling (°C) 

0.0439 0.121 -2.72 : -1.31 0.13 0.716 

Bioindicated 
pH 

0.406 0.0315 3 : 7.15 5.2 <10-4 

Community 
Thermal 

Index (°C) 

Intercept 
(°C) 

5.18 0.406 
  

<10-4 

Lapse rate 
(°C) 

0.0885 0.0188 12.6 : 18.5 0.14 <10-4 

Topography 
effect (°C) 

0.364 0.0804 -1.55 : -0.13 0.12 <10-4 

Canopy 
cooling (°C) 

-0.0236 0.123 -2.72 : -1.31 -0.049 0.848 

Bioindicated 
pH 

0.272 0.0308 3 : 7.15 0.25 <10-4 
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We divided the 306 floristic surveys into cold, moderate and warm topoclimatic 451 

classes each comprised of 102 surveys based on topography-induced change in temperature. 452 

The cold topoclimatic class displayed 23 species on average, while the two other classes 453 

displayed 18.5 species on average (Figure 3.a). This difference of approximately 5 species 454 

was significantly different (Figure 3.a). The mean CTI of the cold topoclimatic class was 7.7 455 

°C, which is significantly lower by 0.19°C than the CTI of the two other classes (Figure 3.b). 456 

No such differences were found when using microclimatic (canopy) cooling was used to 457 

create the classes (Figure S7). This discretization of the dataset displayed similar patterns 458 

as the those observed using the continuous predictors of the linear model (Table 2, Figure 459 

S5). 460 

 461 
Figure 3: Species richness (a) and community thermal index (b) of 306 floristic surveys 462 

evenly spread into three topoclimate classes of even number of plots. The p-value 463 

significance of a Wilcoxon test between two classes is displayed as follows: (ns): p>0.05 (*): 464 

p<0.05(**): p<0.01 (***): P<0.001. 465 

The decreases in CTI and the increase in species richness in the cold topoclimatic 466 

class were explained by a surplus of relatively cold-adapted species (i.e. with a species 467 

thermal optimum of 9 °C or less) (Figure 4.a). A two-sided Kolmogorov-Smirnov test 468 

confirmed that the distribution of species thermal optimum in the cold topoclimate class is 469 

significantly different from the other two (P-value against warm= < 10-6, P-value against 470 

moderate = 0.00282). No difference in distribution was found between the warm and 471 

moderate class (P-value = 0.18). The plots (n=102 vegetation surveys) in cold topoclimates 472 

displayed in total more than 50 to 100 more occurrences of relatively cold-adapted species 473 

per thermal optimum classes (1°C) than the other two categories (Figure 4.a). The 474 

intermediate topoclimatic class (n=102) also had a higher number of cold-adapted species 475 

compared to the warm topoclimatic class (n=102, Figure 4.a). The cold topoclimatic class 476 

displayed 300 more forest-specialist species occurrences (Heinken et al., 2022) than the 477 

other warmer topoclimatic classes, whereas the occurrences of generalist species increased 478 

by 200 in total (Figure 4.b). We recorded a total of 246, 242 and 223 species (i.e., species 479 
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pool) in the cold, intermediate and warm topoclimatic classes, respectively. A total of 58, 480 

41, and 33 species were unique to the cold, intermediate and warm topoclimatic classes, 481 

respectively. This means that there are nestedness of species between communities, as 482 

shown in Figure S8. 483 

 484 

 485 
Figure 4: Occurrences of species in the three topoclimatic classes as a function of a) their 486 

thermal optimum (°C) and b) their habitat affinity defined by the EuForPlant list as follows: 487 

1,1: closed forest mainly 1,2: forest edges and opening 2,1: forest and open vegetation 2,2: 488 

mainly in open vegetation (Heinken et al., 2022) The plot-scale occurrence of species is also 489 

shown (e.g., 400 occurrences corresponds to approximately 4 species per plots). 490 

4. Discussion 491 

We found that both canopy cover and topographic factors strongly influenced 492 

understory temperature during the growing season. We disentangled the elevation gradient 493 

from the topoclimatic and canopy-induced factors by estimating the lapse rate separately, 494 

which was expectably the main driver of understory temperature (Figure 2). After controlling 495 

for the lapse and pH, the temperature cooling by topographic factors (Heat load and 496 

topographic position) was the only significant driver of community composition and richness. 497 

Our understory temperature model allowed us to separately predict the lapse rate, 498 

topoclimatic effect and canopy cover cooling with mean temperature as a unit. This allows 499 

inferring direct links between temperature variation and communities, a necessary step to 500 

advance correlative studies. 501 

4.1. Understory temperature determinants 502 

The positive correlation found between temperature and heat load can be attributed 503 

to the higher radiation an equator-facing slope receives, which increases both the mean and 504 

daily maximum temperature of the growing season in closed forests. This contrasts with a 505 
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previous study which only found an effect of heat load on maximum temperature (Macek et 506 

al., 2019). We measured temperature at 15 cm above the surface, which may explain the 507 

higher sensitivity of mean GS temperature to aspect compared to Macek et al., (2019), who 508 

measured temperature at 2 m above the surface. Alongside heat load, we found that 509 

topographic position influenced mean temperature so that ridges were warmer, and valley 510 

bottoms were cooler but had no effect on maximum temperature. We attribute this decrease 511 

in temperature to cold air pooling that occurs during nighttime, thus influencing mean daily 512 

temperature but with a minimal effect during the hottest hour of the day, when air 513 

temperature is homogeneously warm (Smith et al., 2010; Vosper & Brown, 2008). The cooling 514 

effect of understory temperature by canopy cover was most apparent for maximum 515 

temperature but was also significant for mean temperature, although with a small effect 516 

size of -0.16 °C. These observations concur with studies with comparable sampling (Davis et 517 

al., 2019; Macek et al., 2019).  518 

We found that topoclimatic factors outweighed canopy closure in explaining 519 

understory temperature in our study area. This finding adds to the current divergent results 520 

from Macek et al., (2019) who found no effect of canopy and Vandewiele et al., (2023) who 521 

found a predominance of canopy control on temperature in mountain forests. These 522 

apparent contrasting results illustrate the complexity and interactions of factors in mountain 523 

forest microclimates, potentially depending on site-specific variations in topography and 524 

canopy cover, alongside with synoptic conditions leading to difference in transmittance. Our 525 

sampling design and subsequent loss of loggers hampered our ability to capture the canopy 526 

closure gradient effect on temperature. In our effort of representativeness, our “low 527 

canopy” plots displayed a remotely sensed canopy closure of 75%, as there was a dramatic 528 

decrease of pixels with values lower than that (Figure S8). However, Zellweger et al., (2019) 529 

showed that temperature canopy cooling is more apparent at low canopy cover levels, and 530 

saturates past 80% canopy cover. Our limited number of loggers below that threshold could 531 

also be the reason why we did not observe a strong effect of canopy on temperature. We 532 

argue that our results are interpretable as a comparison of topographic and canopy effects 533 

within already forested stands, but not as a comparison of open and closed forests. In 534 

previous iterations of the temperature models, we tried to account for the ration of 535 

broadleaved and evergreen canopy trees (Díaz-Calafat et al., 2023) but found no significant 536 

effect. This could be due to the study period of the growing season, representing leaf-on 537 

conditions and thus reducing the difference in canopy buffering induced by lack of leaves in 538 

leaf-off conditions.  539 

Part of the challenge to determine canopy cover controls in mountain forests stems 540 

from the myriads of methods that are used to estimate canopy cover, ranging from 541 

hemispheric photographs, terrestrial lidar derived metrics to remotely sensed canopy cover 542 

estimations (Ma et al., 2017; Zellweger, De Frenne, et al., 2019). We used Copernicus tree 543 

density 2018 satellite images to calibrate the microclimatic model and predict its buffering 544 

effect on communities. Remote sensed tree closure density does not account for the vertical 545 
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profile of trees, which have profound influence on sunlight interception and consequently 546 

on understory temperatures (Gril et al., 2023; Zellweger, Coomes, et al., 2019). Remotely 547 

sensed canopy cover was significantly but poorly correlated with our field measures (visual 548 

estimation and photography). This poor correlation could explain why subsequent prediction 549 

of canopy-induced change in temperature failed at explaining community composition and 550 

richness. Consistent hemispheric photography of loggers and vegetation plots, or remote 551 

sensed lidar offers appealing alternatives to better capture canopy closure variation 552 

independent of the topography context. 553 

We fitted additional understory temperature models with in-situ measurements of 554 

canopy cover to conservatively reject canopy cover as prominent driver of microclimate and 555 

consequently community composition. These models showed no correlation between 556 

understory temperatures and canopy closure except from the interaction between 557 

immediate canopy closure (photography) and Heat Load Index (Table S2,  558 

Table S3). Previous studies have shown that a localized lack of canopy has stronger 559 

warming effect when being located in equator-facing slopes (Davis et al., 2019; Rita et al., 560 

2021). This explains why our most local measure of canopy closure only shows a significant 561 

interaction. This demonstrates the need to simultaneously study multiple microclimatic 562 

drivers and their interactions in mountain ranges (Davis et al., 2019; Greiser et al., 2020). 563 

4.2. Understory temperature effect on communities 564 

We found that temperature variation owing to topography was equally important in 565 

shaping a community’s affinity to climate compared to that of the elevational gradient 566 

(Table 2,after soil pH has been controlled for). This is a consequence of environmental 567 

selection pressure on community assembly; Lower temperature at higher altitudes or in 568 

topographically shaded slopes can exert a selection pressure on species not adapted to cold 569 

whereas lower elevation and high radiation slopes select species not sensitive to late 570 

freezing and adapted to warmer temperature (Figure 3, Rita et al., 2021; Wei et al., 2024). 571 

Our prediction of both elevation and topography control on mean temperature are quantified 572 

the same unit, Celsius degrees °C, but topography-induced temperature effect on 573 

community composition is fourfold compared to that of elevation (Table 2). This implies that 574 

temperature alone cannot drive the difference in community composition, and other 575 

biophysical factors correlated with topography-induced temperature should be at play. 576 

Maximum temperature could be a better predictor of the crossing of physiological thresholds 577 

dictating species selection (Macek et al., 2019; Pérez‐Navarro et al., 2021). However, this 578 

hypothesis could not be tested with our dataset as mean and maximum understory 579 

temperature were highly correlated. Soil moisture and vapor pressure deficit can also 580 

explain the important contribution of topography to communities (Davis et al., 2019).  581 

Our topographic position metric relies on hydrography, demonstrating that cold air 582 

pooling could occur alongside wetter soils and synergistically favor cold-adapted species not 583 

tolerant to drought (Bénichou & Le Breton, 1987; Finocchiaro et al., 2023; Raduła et al., 584 
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2018). Conversely, ridges and south facing slopes exacerbate the effect of warmer 585 

temperature by desiccation, via stronger winds and evaporation, respectively (Davis et al., 586 

2019; Piedallu et al., 2023; Rita et al., 2021). These underlying factors altogether can also 587 

explain the differences we found in contribution to community composition. They 588 

underscore the potential in using several microclimate variables (e.g., mean temperature, 589 

vapor pressure deficit) to predict community patterns and species distribution, explicitly 590 

considering other microscale biophysical factors in a multivariate fashion (Pérez‐Navarro et 591 

al., 2021). The improvement of mechanistic modeling of microclimate (Maclean, 2020) could 592 

also improve predictions of present and future community composition. 593 

The cold-adapted communities we observed in cold topoclimates are the result of an 594 

increase in relatively cold-adapted species occurrences rather than of a decrease in 595 

relatively warm-adapted species (Figure 3). This hints that the constraints on community 596 

assembly, in our study region, are a result of temperature becoming too warm for cold-597 

adapted species, rather than otherwise. This increase in occurrences explains the higher 598 

specific richness in cold topoclimates (Figure 3). Further to an understory cooling, colder 599 

topoclimates could also increase moisture, thus alleviating competition for water during 600 

summer and allowing more species to co-occur (Raduła et al., 2018; Sanczuk et al., 2022). 601 

Canopy cover has been identified as the driver of the diversity of many taxa in lowland 602 

forests due to its buffering of microclimate and light interception (Tinya et al., 2021; 603 

Zellweger et al., 2015). Its lower contribution to microclimate variation in mountain forests 604 

and the limitation in its measurement mentioned earlier may explain why we do not detect 605 

this pattern. 606 

Aside from the technical limitations in estimating canopy control on temperature we 607 

discussed above, other factors may be at play in explaining the lack of flora response to 608 

canopy-induced microclimate. It was outside of the scope of our analysis but explicitly 609 

unveiling seasonal microclimatic differences from leaf out timing can help uncover fine 610 

community differences such as presence of species vulnerable to cold winter, late freezing 611 

and spring ephemeral species. We also showed that after the lapse rate and topoclimate, 612 

canopy-induced microclimate is the most variable in space (i.e., spatially autocorrelated in 613 

smaller scale, Figure S6). A recent study has shown that plant’s thermal preference 614 

computed with macroclimate are not responsive to microscale variation in temperature, but 615 

rather reflect macroclimatic provenance differences (Gril et al., 2024). Surprisingly, 616 

topography, a moderate spatial scale contributor of temperature, had an important effect 617 

on these macroscales estimate of plant thermal preference. This demonstrates that 618 

topoclimate, being more stable in space and time, can promote cold-adapted species 619 

comparably to a macroclimate gradient.  620 

4.3. Implications 621 

How local cooler and wetter conditions are decoupled from the climate warming 622 

trend is of utmost importance as they allow for the persistence of cold-adapted species 623 
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(Greiser et al., 2020; Lenoir et al., 2017), or provide opportunities to facilitate colonization 624 

and facilitates range shifts (Serra-Diaz et al., 2015). The thermal heterogeneity topoclimate 625 

produced in mountain ranges (Figure 2) should also be considered as a driver of landscape-626 

scale diversity (Stein et al., 2014) and a potential source of community adaptation because 627 

species of diverging climatic adaptation coexist in a relatively small area (Hylander et al., 628 

2022; Lenoir et al., 2013, 2013). More specifically, our results support the “identifying and 629 

protecting microrefugia” section highlighted by Hylander et al., (2022), as north-facing 630 

slopes and topographic depressions are easily identifiable from maps, and their cooling 631 

capacities and cold-adapted communities can be confirmed by visits in the field.  632 

The predominance of topoclimate as a driving force of community composition and 633 

richness allows for potential stable refugia to occur. Indeed, buffering of community by 634 

canopy alone is prone to disturbances and increased mortality of trees triggered by climate 635 

change. Still, a continuity of tree cover in cold topoclimate is recommended, as it ultimately 636 

creates the understory microclimate that benefits from such topographic effects. This could 637 

be achieved through selective logging and continuous cover silviculture and the reduction of 638 

edge effects thanks to buffer zones around the microrefugia. Topography displaying higher 639 

control over communities shows that targeting cold topoclimates is an efficient conservation 640 

strategy than increasing canopy density in already closed forests.  Conservation targeting 641 

cold topoclimates is more robust because of the increase in redundancy and biodiversity 642 

those locations provide (Figure S8). Additionally, maintaining a connected forest will foster 643 

the benefits of the thermal heterogeneity created by topography (Hylander et al., 2022). 644 

Indeed, warm topoclimates ought to serve as source populations of species adapted to the 645 

current climate, and cold topoclimates have the potential to maintain cold-adapted 646 

populations (given sufficient buffering from climate), resulting in a landscape with 647 

heterogenous communities. 648 

In summary, we show that elevation, topography, and to a lesser extent, canopy 649 

closure determines growing season understory temperature in the Vosges mountains in 650 

France. Besides elevation, the contribution of topoclimate was the main predictor of 651 

community composition and diversity. Understory plant communities of cold topoclimates 652 

(north facing slopes and valley bottoms) harbored a higher number of generalist and forest 653 

specialist cold-adapted species. Our results place topography as a prominent driver of forest 654 

temperature and a key factor to consider for protecting forest cold-adapted species in the 655 

context of accelerated global warming.  656 
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 989 

8. Supplementary materials  990 

8.1. Figures 991 

 992 

Figure S1; Principal component analysis of the spatial factor ought to influence 993 

microclimate. Axis 1 is explained by elevation and topographic position, Axis 2 represents 994 

mostly head load index, Axis 3 represents mostly canopy cover. The position in the PCA 995 

projection of the initial sampling and the final selection of loggers is shown (Lembrechts et 996 

al., 2021). 997 

 998 

 999 
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 1000 

Figure S2: Relationship between Copernicus remote sensed tree density and canopy closure 1001 

estimated in a 25-meter radius circle (a) and canopy cover estimated by a smartphone 1002 

photography and segmented by the ‘Glama’ application (b). The blue line corresponds to a 1003 

fitted linear model which equation, Person R², and its statistical significance are displayed 1004 

(***): P<0.001, (.) P<0.1. The ribbons are the confidence interval of the model. 1005 
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 1006 

Figure S3: Relationship between mean and maximum understory temperature of the 1007 

growing season with the 4 predictors of the linear temperature model. A loess smoother 1008 

(blue) and an univariate linear model (orange) and their confidence interval are also 1009 

displayed. 1010 

 1011 

 1012 
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 1013 

Figure S4: Relationship between residuals and fitted values, and histogram of residuals of 1014 

the linear mean temperature model (a), the CTI linear model (b) and the species richness 1015 

negative model (c). 1016 

 1017 

 1018 
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 1019 

Figure S5 Species richness (a) and community thermal index (b) of 306 floristic surveys 1020 

evenly spread into three topoclimatic buffering classes, as function of predicted 1021 

topoclimatic effect on temperature (°C, compared to a moderate topographic situation). 1022 

 1023 
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 1024 

Figure S6: Variogram of the 3 maps of flora predictors (Figure 2), with a lag of 25m. 1025 

Canopy cooling scale semivariance saturates first, followed by topographic effect and the 1026 

lapse rate. The saturation of the lapse rate is not shown but is estimated at 6000 m.  1027 

 1028 

 1029 

Figure S7: Species richness (a) and community thermal index (b) of 306 floristic surveys 1030 

evenly spread into three microclimatic cooling classes. The p-value significance of a 1031 

Wilcoxon test between two classes is displayed as follows: (ns): p>0.05. 1032 
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 1033 

Figure S8: The first two axes of a correspondence analysis of the 306 floristic surveys spread 1034 

among the three topoclimatic cooling class. 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

8.2. Tables 1041 

Table S1: Summary of the sampling scheme. The left number represents the theorical 1042 

number of plots for the combination of targeted topographic feature and canopy closure 1043 

(there were in total 8 strata), the right number represents the number of plots that had 1044 

usable temperature data (logger found functioning). All other topographic feature aside 1045 

from the targeted one were set to an intermediate value (nor high or low), read M&M 2.3 1046 

for more information on the sampling scheme. 1047 

  Canopy closure 

  Low (< 80%) High (> 80%) 

Heat Load Index 
Low (< 0.6) 8 - 5 8 - 8 

High (> 0.7) 8 - 5 8 - 8 

Topographic 
Position Index 

Low (< 0.2)  8 - 7 

High (> 0.8)  8 - 6 

Slope 
Low (< 10°)  8 - 4 

High (> 25°)  8 - 5 

 1048 

 1049 

 1050 
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Table S2: Estimated parameters, their standard error and p-values of the predictors 1051 

included in models of the field canopy closure daily mean growing season temperature. The 1052 

range of the predictors in the calibration dataset and their standardized effect size on the 1053 

temperature (standard deviation * estimate) are displayed. The percentage of explained 1054 

variation per type of predictor is included. P-values were obtained with a Wald test on 1055 

parameters.  1056 

Predictor  Type of 

predictor 

Estimate Standard 

error 

Range Effect 

size (°C) 

P-value 

Intercept (°C) 
 

19.2 0.605 
  

<10-4 

Elevation (m 

a.s.l.) 

Elevation -0.00656 0.000333 475 : 1203 -1.49 <10-4 

Heat load 

index (n.u) 

Topography 1.52 0.359 0.335 : 0.951 0.29 <10-4 

Topographic 

index (n.u) 

Topography 0.42 0.295 0.201 : 1 0.15 0.163 

Canopy 

closure 25 

radius (%) 

Canopy -0.00767 0.00599 50 : 95 -0.092 0.208 

 1057 

 1058 

Table S3: Estimated parameters, their standard error and p-values of the predictors 1059 

included in models of the immediate canopy closure (i.e. ‘Glama’ application) daily mean 1060 

growing season temperature. The range of the predictors in the calibration dataset and 1061 

their standardized effect size on the temperature (standard deviation * estimate) are 1062 

displayed. The percentage of explained variation per type of predictor is included. P-values 1063 

were obtained with a Wald test on parameters. The canopy cover was estimated visually in 1064 

a 25-meter radius circle around the loggers. Immediate canopy cover was measured used a 1065 

hemispherical photography above the logger and a sky segmentation application. 1066 

Predictor  Type of 

predictor 

Estimate Standard 

error 

Range Effect 

size (°C) 

P-value 

Intercept (°C) 
 

16.2 0.812 
  

<10-4 

Elevation (m 

a.s.l.) 

Elevation -0.00672 0.000299 475 : 1203 -1.52 <10-4 

Heat load index 

(n.u) 

Topography 5.47 1.22 0.335 : 0.951 
 

<10-4 

Topographic 

index (n.u) 

Topography 0.481 0.256 0.147 : 1 0.15 0.0682 

Immediate 

canopy closure 

(%) 

Canopy 0.0346 0.0109 32.23 : 93.88 
 

0.00311 

Topography 

index X 

Immediate 

canopy closure 

Interaction -0.0547 0.0162   0.00171 
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Table S4: Estimated parameters, their standard error and p-values of the predictors 1067 

included in models of the daily maximum growing season temperature. The range of the 1068 

predictors in the calibration dataset and their standardized effect size on the temperature 1069 

(standard deviation * estimate) are displayed. The percentage of explained variation per 1070 

type of predictor is included. P-values were obtained with a Wald test on parameters. Heat 1071 

load and topographic indices have no units, refer to the methods for their calculation.  1072 

Predictor  Type of 

predictor 

Estimate Standard 

error 

Range Effect 

size (°C) 

Explained 

variation (%) 

P-

value 

Intercept (°C) 
 

30.6 2.45 
   

<10-4 

Elevation (m 

a.s.l.) 

Elevation -0.00803 0.000685 475.69 : 

1203.17 

-1.77 56.5 <10-4 

Heat load 

index (n.u) 
Topography 

5.35 0.732 0.335 : 0.951 1.05 

21.5  

<10-4 

Topographic 

index (n.u) 

0.333 0.607 0.147 : 1 0.081 0.587 

Canopy 

closure (%) 

Canopy -0.0947 0.0253 79.004 : 100 -0.54 3.17 <10-4 

 1073 

Table S5: Estimated parameters, their standard error and p-values of the max temperature 1074 

predictors of the community thermal index (CTI) linear model, and the species richness 1075 

negative binomial generalized linear model. The range of the predictors and their 1076 

standardized effect size on the community predicted variable (standard deviation * 1077 

estimate) are displayed. The P-value is obtained by a Wald test on the parameter. (R² of 1078 

the CTI model: 34.0%) 1079 

 1080 

Model Predictor Estimate Standard 
error 

Range Effect 
size 

P-value 

Species 
richness 

Intercept (°C) 0.307 0.478 NA NA 0.522 

Lapse rate 
(°C) 

0.0351 0.0156 20.6 : 27.5 1.15 0.024 

Topography 
effect (°C) 

-0.112 0.0271 1.79 : 5.36 -1.76 <10-4 

Canopy 
cooling (°C) 

0.00365 0.035 -9.47 : -4.58 0.0464 0.917 

Bioindicated 
pH 

0.413 0.032 3 : 7.15 7.97 <10-4 

Community 
Thermal 

Index (°C) 

Intercept (°C) 4.57 0.484 NA NA <10-4 

Lapse rate 
(°C) 

0.0589 0.0156 20.6 : 27.5 0.106 <10-4 

Topography 
effect (°C) 

0.0965 0.0273 1.79 : 5.36 0.0912 <10-4 

Canopy 
cooling (°C) 

-0.00128 0.0356 -9.47 : -4.58 -0.00093 0.971 

Bioindicated 
pH 

0.268 0.0313 3 : 7.15 0.243 <10-4 


	1. Introduction
	2. Materials and Methods
	2.1. Study Area
	2.2. Temperature Predictors
	2.3. Temperature Sampling
	2.4. Floristic and Species Characteristic Dataset
	2.5. Understory Temperature Modeling
	2.6. Floristic Composition Analyses
	2.7. Software

	3. Results
	3.1. Environmental Determinant of the Understory Microclimate
	3.2. Microclimatic Determinants of the Floristic Composition

	4. Discussion
	4.1. Understory temperature determinants
	4.2. Understory temperature effect on communities
	4.3. Implications

	5. Acknowledgment
	6. Data availability
	7. References
	8. Supplementary materials
	8.1. Figures
	8.2. Tables


