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Abstract 23 

Microclimates strongly influence the composition and diversity of forest plant 24 

communities. Recent studies have highlighted the role of tree canopies in shaping understory 25 

thermal conditions at small spatial scales, especially in lowland forests. In mountain forests, 26 

however, the influence of topography in environmental conditions (e.g. topoclimate) is 27 

ought to also influence plants’ perceived temperature. Understanding how topography and 28 

canopies interactively affect understory temperature is key to identifying stable refugia that 29 

could shelter cold-adapted forest specialist species under climate change. 30 

Here we report on growing season understory temperatures using 48 loggers in 31 

contrasting topographic features of a mid-range mountain valley spanning from 475 m.a.s.l. 32 

to 1203 m.a.s.l. in the Vosges Mountains (NE France). We disentangle the relative importance 33 

and the effects of topography vs. canopies in determining local temperatures. We then 34 

evaluate how topography and canopy-induced variation in temperature drive plant 35 

community composition and richness in 306 floristic surveys distributed across the studied 36 

mountain valley. 37 

Our results show that topography outweighed canopy cover in explaining growing 38 

season understory temperatures. Regardless of canopy, the daily mean temperature of the 39 

growing season in south-facing ridges was 1.5 °C (CI: ± 0.88 °C) warmer than shaded valley 40 

bottoms, while dense canopies cooled temperatures by 0.5 °C (CI: ± 0.48 °C) compared to 41 

open canopies. Topoclimate explained community composition as much as elevation and was 42 

the only significant predictor of species richness. Cold topoclimates harbored 30% more 43 

species than the average species richness across our plots. This increase in species richness 44 

was explained by an increase of cold-adapted species, both forest specialist and generalist 45 

species. 46 

Our findings highlight a stronger role of topography compared to canopy cover on 47 

community composition in mountain forests via topoclimatic cooling of north-facing slopes 48 

and valley bottoms. The importance of topographic features to explain temperature cooling 49 

and diversity underpins their role as present and future microrefugia. 50 

Keywords 51 

Community ecology, forest, topoclimate, microclimate, topography, temperature, climatic 52 

refugia, diversity, understory vegetation.  53 
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1. Introduction 55 

The study of topography influences on vegetation has fascinated ecologists for more 56 

than 150 years (Johnston et al., 1848), and has further gained relevance in the context of 57 

the 21st century climate warming (Ashcroft, 2010; Dobrowski, 2011; IPCC, 2021; Lenoir et 58 

al., 2017). Species distribution and climatic conditions are often modeled at a coarse 59 

resolution (typically 1 km or coarser), and thereby fail to capture local variation of climate 60 

at fine grains (Franklin et al., 2013) : for instance, the topoclimate shaped by topography 61 

and the microclimate shaped by forest canopy (Bramer et al., 2018; De Frenne et al., 2021; 62 

Kemppinen et al., 2023). Given that these factors can attenuate warm macroclimate 63 

temperatures, the study of the effects and interactions between topography and forest 64 

canopy are key to identify areas of climate stability in a warmer future (Ashcroft, 2010; De 65 

Frenne et al., 2021; Haesen et al., 2023; Hannah et al., 2014).  66 

Variations in aspect can create contrasting topoclimates as slopes oriented to the 67 

equator receive more solar radiation. As a result, southwest-facing slopes in northern 68 

hemisphere mountains display warmer mean temperatures, longer growing seasons and 69 

shorter snow cover durations (Ashcroft et al., 2008; Davis et al., 2019; Rita et al., 2021). 70 

The physical properties of air also interact with topographic features such as hydrological 71 

basins (McLaughlin et al., 2017), valley bottoms and sinks, and create local areas of cold and 72 

dense air pooling that decouple local conditions from the regional climate (Gudiksen et al., 73 

1992; Pastore et al., 2022). , thus creating topographic refugia (Dobrowski, 2011). The 74 

topoclimate created by these terrain features interacts with the microclimate induced by 75 

forest canopies and jointly determines the understory temperature experienced by forest 76 

organisms. Canopy shading and evapotranspiration lead to an overall decrease of 77 

temperature throughout the year, compounded by a buffering of high summer temperatures 78 

compared to open-air, and an increase in winter temperatures due to insulation,   (De Frenne 79 

et al., 2021; Zellweger, Coomes, et al., 2019). These buffering effects are apparent and 80 

well documented in temperate lowland forests, but their relative importance in contrast to 81 

elevation and topography is less known, and current evidence has not reached consensus 82 

(Macek et al., 2019; Vandewiele et al., 2023).  83 

Canopy cover cooling of understory temperature has strong effects on forest 84 

communities. This is evidenced by the increases in the average thermal optimum of the 85 

species present (a proxy of species’ affinity to climate) in forests where tree canopy was 86 

removed (De Frenne et al., 2013; Dietz et al., 2020; Richard et al., 2021) and where warmer 87 

understory temperatures are predicted (Zellweger et al., 2020). This sheltering of cold-88 

adapted species by a dense canopy needs to be compared with the sheltering provided by 89 

topography in mountain forests, as topographical refugia are likely to offer longer-term 90 

buffering of temperature. Topographic refugia also harbor cold-adapted flora and host 91 

populations of species outside their expected climatic range (Ellis & Eaton, 2021; Finocchiaro 92 

et al., 2023; Macek et al., 2019). In addition, understanding the characteristics of the 93 
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sheltered species can also bring new insights, an increase of forest generalists for example 94 

demonstrates that topoclimate can mimic understory conditions of dense forests.   95 

Here we assessed the effects and relative importance of elevation, topography and 96 

canopy cover on in situ measured understory temperatures and plant community 97 

composition and richness. After accounting for the elevation gradient, we specifically asked: 98 

(1) Does topography (aspect and topographic position) outweigh canopy in explaining 99 

understory temperature, (2) does topography and canopy-induced variation in microclimate 100 

determine community richness and mean species thermal optimum? (3) Are plant habitat 101 

preference and climatic affinity related to specific temperatures? 102 

2. Materials and Methods 103 

2.1. Study Area 104 

Our study region (221 km²) is delineated by the basin of the Thur River, located in 105 

one of the southmost valleys of the Vosges Mountain range in France (Figure 1). The Vosges 106 

are characterized by a continental climate with harsh winters and short and stormy summers. 107 

Its mean annual temperature ranges from 6 °C to 10°C and precipitation ranges from 800 to 108 

2,000 mm year-1(period 1970-2000, Météo France weather stations IGN, 2013). The Thur 109 

River basin  is on the warm and dry end gradient of the Vosges Mountains   (IGN, 2013). 110 

Forests cover 76% of the Vosges, which transitions from mixed oak stands and monospecific 111 

Picea abies stands to mixtures of Picea abies, Abies alba and Fagus sylvatica as elevation 112 

increases IGN, 2013). The soil of our study region is mostly shallow loam and sand with coarse 113 

elements. The most acidic soils are found at higher altitudes because of the dominance of 114 

needles in the humus and the lower temperature at mountaintops (IGN, 2013; Piqué et al., 115 

1994; Thomas et al., 1999). The topography is highly variable, with an elevation ranging 116 

from 400 to 1424 m.a.s.l (but forest occurrence stops past 1250 m.a.s.l) with high 117 

topographic heterogeneity (Figure 1).  118 

 119 
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 120 
Figure 1: Map of the study area (black outline) with the location of the temperature loggers 121 

(white circles) and the floristic surveys (black crosses). The colored scale represents 122 

elevation above sea level, in meters, obtained from a 25-m spatial resolution digital 123 

elevation model. Hillshade effects have been added to visualize the terrain. The inset shows 124 

the Vosges Mountain range (grey) and the location of the studied valley (black point) in 125 

western Europe. 126 

2.2. Temperature Predictors 127 

We used 25-meter resolution digital elevation models to extract elevation (m.a.s.l.), 128 

slope and aspect and to calculate topographical indices, heat load and topographic position 129 

(IGN, 2017). We handled spatial data with the ‘raster’ and ‘sf’ packages (Hijmans, 2020; 130 

Pebesma, 2018), and all the later analyses were carried on with R.4.2.2 (R Core Team, 2019). 131 

We used ‘ggplot2’ and ‘ggspatial’ packages for data visualization (Dunnington & Thorne, 132 

2020; Wickham, 2011). We computed the heat load index (McCune & Keon, 2002) using the 133 

‘spatialEco’ R package (Evans & Murphy, 2021). The heat load index ranges from 0 to 1 (least 134 

to most incoming solar radiation) contingent on the slope orientation and shading from 135 

nearby topographic features. The topographic position index is the relative position of the 136 

cell in the shortest trajectory between a ridge and a drainage basin end, ranging from 0 137 

(valley bottom) to 1 (ridge, Piedallu et al., 2023).  138 

We obtained the ‘tree cover density’ from the 2018 product of the Copernicus 139 

monitoring service as a proxy for local canopy closure (Copernicus, 2018; Sannier et al., 140 

2023). This product consists of a 10-meter resolution percentage of canopy presence within 141 

the pixel (ranging from 0 to 100%) and was successfully used before to model microclimate 142 

buffering by canopy (Haesen et al., 2021). This product was correlated with our field 143 

measurements of canopy closure (see below, 2.3 Temperature sampling). We rescaled this 144 
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product to match the 25-m resolution of our other maps using bilinear interpolation 145 

(Hijmans, 2020). We rasterized (25-meter resolution) a 20-meter precision map of French 146 

forest to create a mask of the forested area of our study region, in order to limit our analysis 147 

and temperature projection to the forest of the region (IGN, 2019). 148 

2.3. Temperature Sampling  149 

We created a stratified sampling scheme to capture forest understory microclimate 150 

variability (Lembrechts et al., 2021; Schweiger et al., 2016). We created 8 elevation strata 151 

(spanning 20 m intervals) separated by 102 m ranging from [468 - 488] to [1184 - 1204] m 152 

a.s.l., aimed to control for the lapse rate (Lembrechts et al., 2021), as it is the main driver 153 

of temperature in the study area. Inside each of these strata, we defined 8 types of plots: 4 154 

plots of below and above the median canopy cover of our study area (90% canopy cover) with 155 

a south or a north-facing slope (defined as lower or higher than 0.75 heat load index). These 156 

4 plots had moderate topographic position indices (between 0.2 and 0.8) and slope (10° < 157 

slope < 25°), to avoid confounding their effects with the canopy cover and heat load effects. 158 

Additionally, we defined 2 plots with contrasting topographic position indices (lower than 159 

0.2 and higher than 0.8) under high canopy cover and moderate slope. Lastly, we defined 2 160 

plots with contrasting slopes: one flat (slope < 10°) and one steep (slope > 25°) under high 161 

canopy cover and moderate topographic position.  162 

Of the initial 64 theoretical plots spanning the 8 strata, only 59 of the defined 163 

situations occurred, mostly because we lacked low topographic position indices (valley 164 

bottom) in high elevation classes. We randomly selected one pixel for each plot and stratum 165 

located in public forests. We repeated this random drawing 10,000 times and kept the set 166 

of plots that maximized the mean minimum distance between plots to reduce spatial 167 

autocorrelation.   168 

We established the 59 temperature loggers in May 2021 and recorded their location 169 

with a GNSS receiver (Trimble TDC600, accuracy= ± 2 m undercover). We placed every logger 170 

in public forests to avoid legal constraints (public forest makes up 80% of the forested area 171 

in our study region), with no constraints regarding accessibility. We measured canopy closure 172 

(0-100%) by visual observation in a 25-meter radius around the logger. We also estimated 173 

canopy cover (0-100%) with a planar picture of the canopy using a smartphone placed on top 174 

of the logger and the ‘Glama’ application (Tichý, 2016). Plots tagged as low canopy cover 175 

were placed accordingly by selecting sites with less than 50% canopy closure as computed 176 

by ‘Glama’. The visual estimation of canopy closure (25-meter radius) was significantly 177 

correlated with the remote sensed tree density (R² of the linear relationship = 30.0%, Figure 178 

S1), but a weak and non-significant correlation was found with the picture analyzed by 179 

‘Glama’ (Figure S1). 180 

We recorded air and soil temperatures with TMS-4 loggers (resolution= 0.0625 °C, 181 

accuracy= ±0.5 °C) protected with a radiation shield (Wild et al., 2019). The loggers 182 

recorded temperature every 15 minutes until August 2022. We used air temperature 15 cm 183 
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above the soil surface because it is the most representative temperature experienced by 184 

understory plants. We cleaned the time series with the ‘myClim’ R package (Man et al., 185 

2023). We calibrated the loggers beforehand for a range of -20 °C to +40 °C by placing them 186 

in a freezer and drying oven along with a T-type thermocouple (accuracy= ±0.2 °C). From 187 

the recorded period, we focused on the growing season, from 01/04/2023 to 15/08/2023, as 188 

it is the most critical period for plant growth. Out of the 59 loggers, 11 were either 189 

malfunctioning, stolen, destroyed by animals or displayed erroneous values and were 190 

discarded. We checked the capacity of our final sample to cover the variability of our study 191 

region following the PCA-based approach of Lembrechts et al., (2021). Our final sampling 192 

was able to cover the variability of the valley, except for extreme values of low canopy 193 

cover and the unusual valley bottoms of high elevations. The loss of loggers was evenly 194 

distributed over plot types, except for the low canopy cover that suffered the most losses 195 

(Figure S2). 196 

2.4. Floristic and Species Characteristic Dataset 197 

We compiled floristic surveys performed (during the growing season) by students and 198 

professors covering soil and climatic transects of the region between 2009 and 2022 (average 199 

year= 2015.6). All plots were surveyed for all vascular plant species in the herb layer (smaller 200 

than 1 m) and their percentage ground cover was visually estimated. We had 306 floristics 201 

surveys in total across the study region. Floristic surveys were performed in 20 x 20 m squares 202 

(400 m²) with the GPS position (recorded with built-in tablet GPS; accuracy= ± 10 m) as the 203 

center. We used this position to extract elevation, heat load index, topographic position 204 

index and canopy cover for every survey. We harmonized taxonomy to the TaxRef V13 205 

standard (Gargominy, 2022). We focused on herbaceous species in the analysis to focus on 206 

community dynamics that may reflect shorter-term climate and are less influenced by 207 

management than trees or shrubs.  208 

We used the thermal optimum species’ value from ClimPlant V.1.2 (Vangansbeke et 209 

al., 2021). These thermal optima are computed from the mean annual temperature within 210 

the range of species obtained from Europe-extent distribution atlases. Out of the 348 unique 211 

recorded species, 30 were assigned a thermal optimum value, covering 90.0% of the 212 

occurrences of the whole floristic dataset. We averaged the thermal optimum of every 213 

species (without weighting for abundance) of a given survey to obtain the Community 214 

Thermal Index (hereafter CTI), which quantifies the thermal preference of the whole 215 

community (Borderieux et al., 2023; Vangansbeke et al., 2021). We calculated species 216 

richness of a plot as the number of recorded species whether they had an associated thermal 217 

optimum in the database or not. By doing so, we wanted to include rare species that were 218 

not included in ClimPlant so that our specific richness is representative of the species pool 219 

of our study region. We also assigned a pH optimum value obtained from a bioindication 220 

database to each species (Gégout et al., 2005), and averaged (not weighted by abundance) 221 

it to obtain a bioindicated pH per plot. 222 
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We used the EuForPlant regional list of forest plant species (Heinken et al., 2022) to 223 

assess species habitat affinity. We assigned to each species one of the following affinities: 224 

(1.1) species of closed forest (1.2) species that occur in forest edges and openings (2.1) 225 

Species that primarily occur in forests but also found in cultural landscapes and forest 226 

remnants (2.2) species of open habitats that occur in forest exclusively through opening and 227 

early succession. We excluded species of open vegetation (classified “O”) because of their 228 

low number of occurrences (42). In total, 274 species were assigned to an affinity class, 229 

covering 85.7% of the occurrences.  230 

2.5. Understory Temperature Modeling 231 

We aggregated the 15-minute frequency time series of the recorded temperature of 232 

the growing season 2022 to daily mean and maximum temperature. First, we removed values 233 

lower than the 5th centile of the day and values higher than the 95th centile to avoid biasing 234 

results due to logger malfunction or a brief burst of sunshine on a logger. We then averaged 235 

the mean or maximum daily temperature to obtain one unique value per logger, the mean 236 

daily and maximum daily temperature of the growing season.  237 

We used a linear model to predict mean and maximum daily temperature of the 238 

growing season with elevation, heat load index, topographic position index and remote 239 

sensed canopy density as explanatory variables. We preferred remote-sensed canopy cover 240 

over the in-situ measurements which allowed us to map the temperature models over the 241 

entire study area, and thus infer the understory temperature of floristic surveys (mostly 242 

without canopy closure records). We additionally fitted two linear models with the field 243 

measured canopy closure (25 m radius observation and planar photography) instead of the 244 

remotely sensed measurement to test different methods of canopy closure estimations 245 

(Table S2, Table S3). The exceed in warming due to radiation can be amplified when canopy 246 

cannot intercept light, thus, we tested an interaction between heat load index and canopy 247 

closure and retained the interaction in the final model if found significant (Davis et al., 248 

2019).  249 

The mean understory temperature model (R²= 92.2%) allowed us to map the 250 

contribution of elevation (i.e., lapse rate), map the topoclimate (heat load index and 251 

topographic position) and the microclimate (canopy density) separately to the mean 252 

understory temperature (Figure 2). We mapped the lapse rate by using only the intercept 253 

and the elevation parameter. We mapped the contribution of topography cooling compared 254 

to the warmest situation (heat load index and topographic position index equal to 1) 255 

assuming a median canopy cover (90%) and using the two topographic indices. We mapped 256 

the contribution of canopy cover by multiplying its parameter by the tree density product, 257 

this projection is however extrapolated for the 20% of pixels with a canopy closure lower 258 

than 79%. 259 
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2.6. Floristic Composition Analyses 260 

The soil of our study region can display very different nutrition status and acidity, 261 

which can impact both the richness and composition of a community (Degen et al., 2005; 262 

Koerner et al., 1997; Zellweger et al., 2015). In addition, soil pH is also negatively correlated 263 

with elevation. To account for soil acidity, we first fitted a linear model to predict species 264 

richness and CTI with bioindicated pH as the only predictor. These models had a significant 265 

R² of 32.6% and 21.5%, respectively. We then summed the mean species richness or CTI to 266 

the residual of the corresponding bioindicated pH model to obtain the corrected value. The 267 

corrected values allow comparison between communities with bioindicated pH considered 268 

equal.  269 

We used a linear model to predict the corrected species richness and CTI with the 270 

contribution to mean understory temperature of elevation, topoclimate and microclimate 271 

as predictors (the unit of every predictor is thus °C). The parameters of these two models 272 

(species richness and CTI) are shown in Table 2. We discretized our results to better illustrate 273 

the control of the significant predictors of the model. We split the 306 surveys into three 274 

classes with an equal number of surveys, distributed in “cold”, “intermediate” and “warm” 275 

classes. We tested the difference in species richness and CTI between these classes with 276 

Wilcoxon rank-sum tests (Rey & Neuhäuser, 2011). 277 

We tested the assumption of normality and homoscedasticity of the residuals of the 278 

microclimatic model, the species richness and the CTI model following (Zuur & Ieno, 2016), 279 

and we tested the significant difference from 0 of the estimated parameters with a Wald 280 

test. We partitioned the variance of the predictors of all the models with the ‘modEvA’ 281 

package (Barbosa et al., 2013). 282 

3. Results 283 

3.1. Environmental determinant of the understory microclimate 284 

The growing season (GS) temperature of 2022 was above average (mean GS 285 

temperature of the period 2005-2020=13.2°C, mean GS temperature=11.6 °C, Markestein 286 

weather station (1,184 m a.s.l), (Météo France, 2024)), as a result, the mean daily 287 

temperature of the understory (15 cm above the soil surface) was 14.6 °C and spanned 288 

between 11.9 °C to 17.5 °C for the higher (1203 m a.s.l) and lower (475 m a.s.l) elevation 289 

sensors, respectively. The mean daily maximum temperature of the GS was 19.3 °C and 290 

reached a maximum of 24.7 °C for the lowest elevation plots. Elevation was the primary 291 

driver of mean temperature variability, with a lapse rate estimated at -0.68 °C 100m-1 (Table 292 

1). The heat load index– contingent on aspect and slope – was the second driver of mean 293 

temperature, which can vary up to 1°C between low and high radiation slopes (Table 1). 294 

Topographic position had a lesser effect on temperature: the mean temperature was 0.56° 295 

C lower in the bottom of a valley compared to ridges (Table 1). Lastly, canopy closure 296 

(remotely sensed) cooled understory temperatures. An increase of 20% of total canopy cover 297 
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resulted in a decrease of 0.57° C (Table 1). The lapse rate explained 87.4% of the variability 298 

in mean temperature, the topographic factors (heat load and topographic position index) 299 

3.95%, and canopy cover accounted for 0.82%. The R² of the linear model was 92.2%.  300 

The same predictors except for topographic position were significant in the mean 301 

daily maximum temperature model. The heat load index had a higher contribution (21.5%) 302 

in the maximum temperature compared to the mean temperature model, daily maxima 303 

varied for 3.3°C between low and high heat load indices (Table S1).  304 

Canopy cover visually estimated in a 25-meter radius was not significant in predicting 305 

mean temperature (Table S2). Immediate canopy cover (smartphone photography) above 306 

the logger was significant in explaining mean temperature with an interaction with heat load 307 

index, low immediate canopy cover in high radiation slopes displayed warmer mean 308 

temperature (Table S3). 309 

Table 1: Estimated parameters, their standard error and p-values of the predictors included 310 

in models of the daily mean growing season temperature. The range of the predictors in 311 

the calibration dataset and their effect size on the temperature (range * estimate) are 312 

displayed. The percentage of explained variation per type of predictor is included. P-values 313 

were obtained with a Wald test on parameters. Heat load and topographic position have no 314 

units, refer to the methods for their calculation.  315 

Predictor  Type of 

predictor 

Estimate Standard 

error 

Range Effect 

size (°C) 

Explained 

variation 

(%) 

P-value 

Intercept (°C) 
 

21,1 1,11 
   

<10-4 

Elevation (m 

a.s.l) 

Elevation -0.00684 0.000311 475 : 1203 -4.98 87.4 <10-4 

Heat load index 

(n.u) 

Topoclimate 1.53 0.333 0.335 : 0.951 0.945 3.95 <10-4 

Topographic 

position (n.u) 

Topoclimate 0.656 0.276 0.147 : 1 0.56 3.95 0.0220 

Canopy closure 

(%) 

Microclimate -0.0272 0.0115 79.0: 100 -0.57 0.817 0.0229 

 316 

The spatial variation of elevation, topography and canopy closure reveals complex 317 

and fine-grained contributions to the forest understory climate (Fig. 2). We mapped the 318 

individual contributions of elevation (Figure 2.a), topoclimate (heat load index and 319 

topographic position summed; Figure 2.b) and canopy cover (i.e., microclimate; Figure 2.c) 320 

in the study area. We represented topoclimate as a cooling effect compared to a baseline 321 

location of a south-facing valley top (heat load index =1, topographic position=1) (Figure 322 

2.b). The baseline for canopy cooling of temperature was 0% canopy closure (as pixels 323 

displayed the whole 0-100% range), however, the range of microclimatic cooling from our 324 

model is 79% to 100% (80% of the pixel, Figure 2.c). We observed strong effects on understory 325 
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temperatures caused by steep spatial differences in elevation, topography and fine-grained 326 

canopy cover (Figure 2.d). We used this map and model to predict the mean understory 327 

temperature and the contribution of the three components described above for further 328 

community composition analyses.  329 

 330 

 331 

Figure 2: a) Elevation induced change in mean growing season understory temperature of 332 

the growing season (lapse of -0.68°C 100 m-1), assuming a canopy closure of 90% and no 333 

effect from topography. b) mean understory temperature cooling induced by topography 334 

(heat load and topographic position, i.e. topography) assuming an average canopy cover 335 

(90%), compared to the warmest situation (south-facing ridges). c) mean understory 336 

temperature cooling induced by canopy closure (i.e. microclimate) assuming no effect from 337 

topography. We restrained the minimal cooling to -1.5°C, however some pixels displayed 338 

lower values up to 0°C due to low to no canopy closure. d) 2 km per 2 km zoomed inset of 339 

the red square of the other panels, their color gradient corresponds to the color scale 340 

presented in the other panels a-c, respectively. Blank pixels represent land covers other 341 

than forests or forests outside of the study region. Linear model R²: 92.2%. 342 
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3.2. Microclimatic Determinants of the Floristic Composition 343 

Floristic surveys harbored on average 19 herbaceous species (s.d. 10.7), and the mean 344 

community thermal index (CTI) was 7.8 (s.d. 0.55). pH was strongly correlated with CTI 345 

(R²=28.3%) and species richness (R²=32.6%). More acidic soils had less diverse and cold-346 

adapted communities. We accounted for this relationship by extracting the residual of a 347 

linear model predicting CTI or species richness with pH as the sole predictor (see methods). 348 

After accounting for soil effects, elevation-induced change in temperature was the main 349 

predictor of CTI, but it did not significantly explain species richness (Table 2). The 350 

microclimate was not a significant predictor in any of the two models (Table 2). Topoclimate 351 

was the sole significant predictor of species richness, and it significantly explained CTI. The 352 

contribution of topoclimatic cooling to the explained variability of CTI (4.64%) was 353 

comparable to the explained variability by elevation (4.6%). We focused the subsequent 354 

community analysis around topoclimate cooling effects, as canopy cooling did not 355 

significantly explain the species richness nor CTI.  356 

Table 2: Estimated parameters, their standard error and p-values of the predictors of the 357 

specific richness and community thermal index (CTI) linear models. The range of the 358 

predictors and their effect size on the community predicted variable (range * estimate) are 359 

displayed. Both species richness and CTI have previously been corrected for their correlation 360 

with soil pH. The P-value is obtained by a Wald test on the parameter.  361 

 362 

We divided the 306 floristic surveys into cold, intermediate and warm topoclimatic 363 

classes each comprised of 102 surveys based on topography-induced cooling. The cold 364 

topoclimatic class displayed 23 species on average, while the two other classes displayed 365 

18.5 species on average (Figure 3.a). This difference of approximately 5 species was 366 

Model Predictor Estimate Standard 
error 

Range Effect 
size 

P-value Explained 
variation 
(%) 

R² 
(%) 

Species 
richness 

Intercept 
(°C) 

9.71 7.73 
  

0.21  

7.7 
 

Lapse rate 
(°C) 

0.324 0.33 12.6: 18.5 1.91 0.324 0.93 

Topography 
cooling (°C) 

-6.91 1.54 -1.55 : -0.13 -9.78 <10-4 6.76 

Canopy 
cooling (°C) 

0.682 2.35 -2.72: -1.31 0.958 0.771 0.018 

Community 
thermal 

index (°C) 

Intercept 
(°C) 

6.83 0.407 
  

<10-4  

9.2 
 

Lapse rate 
(°C) 

0.076 0.017 12.6 : 18.5 0.449 <10-4 4.6 

Topography 
cooling (°C) 

0.355 0.081 -1.55 : -0.13 0.503 <10-4 4.64 

Canopy 
cooling (°C) 

-0.00586 0.123 -2.72 : -1.31 -0.00822 0.962 0.0063 
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significantly different (Figure 3.a). The mean CTI of the cold topoclimatic class was 7.7 °C, 367 

which is significantly lower by 0.19°C than the CTI of the two other classes (Figure 3.b). No 368 

such differences were found when using microclimatic (canopy) cooling was used to create 369 

the classes (Figure S3). This discretization of the dataset displayed similar patterns as those 370 

observed in an alternative analysis using the continuous predictors of the linear model (Table 371 

2, Figure S4). 372 

 373 
Figure 3: Species richness (a) and community thermal index (b), corrected for bioindicated 374 

pH, of 306 floristic surveys evenly spread into three topoclimatic cooling classes. The 375 

correction consists of extracting the residuals of a linear model with pH as a sole predictor, 376 

this process could thus lead to negative specific richness. The p-value significance of a 377 

Wilcoxon test between two classes is displayed as follows: (ns): p>0.05 (*): p<0.05(**): 378 

p<0.01 (***): P<0.001. 379 

The decreases in CTI and the increase in species richness in the cold topoclimatic 380 

class were explained by a surplus of relatively cold-adapted species (i.e. with a species 381 

thermal optimum of 9 °C or less) (Figure 4.a). The plots (n=102) in cold topoclimates 382 

displayed in total more than 50 to 100 more occurrences of relatively cold-adapted species 383 

per thermal optimum classes (1°C) than the other two categories (Figure 4.a). The 384 

intermediate topoclimatic class (n=102) also had a higher number of cold-adapted species 385 

compared to the warm topoclimatic class (n=102) (Figure 4.a). The cold topoclimatic class 386 

displayed 300 more forest-specialist species occurrences (Heinken et al., 2022) than the 387 

other warmer topoclimatic classes, whereas the occurrences of generalist species increased 388 

by 200 in total (Figure 4.b). We recorded a total of 246, 242 and 223 species (i.e., species 389 

pool) in the cold, intermediate and warm topoclimatic classes, respectively. A total of 58, 390 

41, and 33 species were unique to the cold, intermediate and warm topoclimatic classes, 391 

respectively. This means that there is nestedness of species between communities, as shown 392 

in Figure S5. 393 

 394 
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 395 
Figure 4: Occurrences of species in the three topoclimatic classes as a function of a) their 396 

thermal optimum (°C) and b) their habitat affinity defined by the EuForPlant list as follows: 397 

1,1: closed forest mainly 1,2: forest edges and opening 2,1: forest and open vegetation 2,2: 398 

mainly in open vegetation (Heinken et al., 2022) The plot-scale occurrence of species is also 399 

shown (e.g., 400 occurrences corresponds to approximately 4 species per plots). 400 

4. Discussion 401 

We found that both canopy cover and topographic factors strongly influenced 402 

understory temperature during the growing season. We disentangled the elevation gradient 403 

from the topoclimatic and microclimatic factors by estimating the lapse rate separately, 404 

which was expectably the main driver of understory temperature (Figure 2). After controlling 405 

for the lapse and pH, the temperature cooling by topographic factors, namely topoclimate, 406 

was the only significant driver of community composition and richness. 407 

The positive correlation found between temperature and heat load can be attributed 408 

to the higher radiation an equator-facing slope receives, which increases both the mean and 409 

daily maximum temperature of the growing season in closed forests. This contrasts with a 410 

previous study which only found an effect of heat load on maximum temperature (Macek et 411 

al., 2019). Alongside heat load, we found that topographic position influenced mean 412 

temperature so that ridges were warmer, and valley bottoms were cooler but had no effect 413 

on maximum temperature. We attribute this decrease in temperature to cold air pooling 414 

that occurs during nighttime, thus influencing mean daily temperature but with a minimal 415 

effect during the hottest hour of the day, when air temperature is homogeneously warm 416 

(Smith et al., 2010; Vosper & Brown, 2008). The cooling effect of understory temperature 417 

by canopy cover was most apparent for maximum temperature but was also significant for 418 

mean temperature. These observations concur with studies with comparable sampling (Davis 419 

et al., 2019; Macek et al., 2019). We showed a strong effect of topoclimatic factors on 420 

community composition and richness but no contribution of microclimatic factors. Our 421 
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microclimatic model allowed us to separately predict the lapse rate, topoclimatic cooling 422 

and canopy cover cooling with mean temperature as a unit. This allows inferring direct links 423 

between temperature variation and communities, a necessary step to advance correlative 424 

studies.  425 

The lack of correlation between species richness or community composition (climatic 426 

affinity) with microclimatic cooling is surprising as a majority of studies conducted in lowland 427 

forests concluded that dense canopy cover (or closure) explains both the assembly of 428 

communities and their slow temporal response to climate change (De Frenne et al., 2013, 429 

2019; Maclean et al., 2015; Richard et al., 2021; Zellweger et al., 2020). In mountain forests, 430 

however, the contribution of canopy cover to understory temperature is still under scrutiny 431 

(Davis et al., 2019; Macek et al., 2019; Zellweger, Coomes, et al., 2019). We found that 432 

topoclimatic factors outweighed canopy closure in explaining understory temperature in our 433 

study area (that harbors limited canopy closure variation and high topographic variation), 434 

which may explain the absence of a link between canopy cover and communities. This finding 435 

adds to the current divergent results from Macek et al., (2019) who found no effect of canopy 436 

and Vandewiele et al., (2023) who found a predominance of canopy control on temperature 437 

in mountain forests. These apparent contrasting results illustrate the complexity and 438 

interactions of factors in mountain forest microclimates, potentially depending on site-439 

specific variations in topography and canopy cover, alongside with synoptic conditions 440 

leading to difference in transmittance.  441 

Part of the challenge to determine canopy cover controls in mountain forests stems 442 

from the myriads of methods that are used to estimate canopy cover, ranging from 443 

hemispheric photographs, and terrestrial lidar-derived metrics to remotely sensed canopy 444 

cover estimations (Ma et al., 2017; Zellweger, De Frenne, et al., 2019). We used Copernicus 445 

tree density 2018 satellite images to calibrate the microclimatic model and predict its 446 

buffering effect on communities. Remote sensed tree closure density does not account for 447 

the vertical profile of trees, which have profound influence on sunlight interception and 448 

consequently on understory temperatures (Gril et al., 2023; Zellweger, Coomes, et al., 449 

2019). Remotely sensed canopy cover was significantly but poorly correlated with our field 450 

measures (visual estimation and photography), and the year of remote sensing (2018) does 451 

not match the average year of a floristic survey (2015.6). These inaccuracies and the missing 452 

link of the forest vertical profile could partly explain the lack of a significant relationship 453 

between community compositions and cooling induced by canopy cover. We fitted additional 454 

understory temperature models with in situ measurements of canopy cover to conservatively 455 

reject canopy cover as a prominent driver of microclimate and consequently community 456 

composition. These models showed no correlation between understory temperatures and 457 

canopy closure except for the interaction between immediate canopy closure (photography) 458 

in equator-facing slopes (Table S2, Table S3). This demonstrates the need to simultaneously 459 

study multiple microclimatic drivers and their interactions in mountain ranges (Davis et al., 460 

2019; Greiser et al., 2020). 461 
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We found that temperature variation owing to topography was equally important in 462 

shaping a community’s affinity to climate compared to that of the elevational gradient 463 

(Table 2, after soil pH has been controlled for). This is understandably a consequence of 464 

community assembly dictated in part by the environment. Lower temperatures at higher 465 

altitudes or in topographically shaded slopes can exert a selection pressure on species not 466 

adapted to cold whereas lower elevation and high radiation slopes select species not 467 

sensitive to late freezing and adapted to warmer temperatures (Figure 3). Our prediction of 468 

both elevation and topography control on mean temperature are quantified the same unit, 469 

Celsius degrees °C, but topography-induced temperature effect on community composition 470 

is fourfold compared to that of elevation (Table 2). This implies that mean temperature 471 

alone cannot drive the difference in community composition, and other biophysical factors 472 

correlated with topography-induced temperature should be at play. Maximum temperature 473 

could be a better predictor of the crossing of physiological thresholds dictating species 474 

selection (Macek et al., 2019; Pérez‐Navarro et al., 2021). However, this hypothesis could 475 

not be tested with our dataset as mean and maximum understory temperature were highly 476 

correlated. Soil moisture and vapor pressure deficit can also explain the important 477 

contribution of topography to communities (Davis et al., 2019).  478 

Our topographic position metric relies on hydrography, demonstrating that cold air 479 

pooling could occur alongside wetter soils and synergistically favor cold-adapted species not 480 

tolerant to drought (Bénichou & Le Breton, 1987; Finocchiaro et al., 2023; Raduła et al., 481 

2018). Conversely, ridges and south-facing slopes exacerbate the effect of warmer 482 

temperatures by desiccation, via stronger winds and evaporation, respectively (Davis et al., 483 

2019; Piedallu et al., 2023; Rita et al., 2021). These factors altogether and the differences 484 

we found in contribution to community composition (Table 2) challenge the use of a single 485 

microclimate variable (e.g., mean temperature) to predict community patterns and species 486 

distribution. Explicitly considering other microscale biophysical factors in a multivariate 487 

fashion (Pérez‐Navarro et al., 2021), the improvement of mechanistic modeling of 488 

microclimate (Maclean, 2020) could improve predictions of present and future community 489 

composition. 490 

The cold-adapted communities we observed in cold topoclimates are the result of an 491 

increase in relatively cold-adapted species occurrences rather than of a decrease in 492 

relatively warm-adapted species (Figure 3). This hints that the constraints on community 493 

assembly, in our study region, are a result of temperature becoming too warm for cold-494 

adapted species, rather than otherwise. This increase in occurrences explains the higher 495 

specific richness in cold topoclimates (Figure 3). Canopy cover has been identified as the 496 

driver of the diversity of many taxa in lowland forests due to its buffering of microclimate 497 

and light interception (Tinya et al., 2021; Zellweger et al., 2015). Its lower contribution to 498 

microclimate variation in mountain forests and the limitation in its measurement mentioned 499 

earlier may explain why we do not detect this pattern. Further to an understory cooling, 500 

colder topoclimates could also increase moisture, thus alleviating competition for water 501 
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during summer and allowing more species to co-occur (Raduła et al., 2018; Sanczuk et al., 502 

2022). 503 

How these local cooler and wetter conditions are decoupled from the climate 504 

warming trend is of utmost importance as they allow for the persistence of cold-adapted 505 

species (Greiser et al., 2020; Lenoir et al., 2017), or provide opportunities to facilitate 506 

colonization thus facilitating range shifts (Serra-Diaz et al., 2015). The thermal 507 

heterogeneity topoclimate produced in mountain ranges (Figure 2) should also be considered 508 

as a driver of landscape-scale diversity (Stein et al., 2014) and a potential source of 509 

community adaptation because species of diverging climatic adaptation coexist in a 510 

relatively small area (Hylander et al., 2022; Lenoir et al., 2013). More specifically, our 511 

results support the “identifying and protecting microrefugia” section highlighted by Hylander 512 

et al., (2022), as north-facing slopes and topographic depressions are easily identifiable from 513 

maps, and their cooling capacities and cold-adapted communities confirmed by visits to the 514 

field. Although we didn’t find a significant canopy variation contribution, canopy is essential 515 

to create the ultimate understory condition and should be preserved to take advantage of 516 

the topoclimate. This could be achieved through selective logging and continuous cover 517 

silviculture and the reduction of edge effects thanks to buffer zones around the 518 

microrefugia. Conservation targeting cold topoclimates is more robust because of the 519 

increase in redundancy and biodiversity those locations provide (Table S5). Additionally, 520 

maintaining a connected forest will foster the benefits of the thermal heterogeneity created 521 

by topography (Hylander et al., 2022). Indeed, warm topoclimates will serve as source 522 

populations of species adapted to the current climate, and cold topoclimates will maintain 523 

cold-adapted populations, resulting in a heterogenous landscape. 524 

In summary, we show that elevation, topography, and to a lesser extent, canopy 525 

closure determines growing season understory temperature in the Vosges mountains in 526 

France. Besides elevation, the contribution of topoclimate was the main predictor of 527 

community composition and diversity. Understory plant communities of cold topoclimates 528 

(north-facing slopes and valley bottoms) harbored a higher number of generalist and forest 529 

specialist cold-adapted species. Our results place topography as a prominent driver of forest 530 

temperature and a key factor to consider for protecting forest cold-adapted species in the 531 

context of accelerated global warming.  532 

5. Data availability  533 

The spatial, microclimatic, and floristic data used for this analysis can be found in 534 

the repository: https://github.com/Jeremy-borderieux/Article_microclim_vosges along 535 

with the R script that can be used to reproduce the analyses and the figures, under the DOI 536 

https://doi.org/10.5281/zenodo.12626861.  537 

https://github.com/Jeremy-borderieux/Article_microclim_vosges
https://doi.org/10.5281/zenodo.12626861
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