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Abstract

One of the most specific features of the human language faculty is its intrinsic spatio-
temporal dynamic, as reflected in languages’ characteristic mode of extra-genomic evolution.
Understanding what has emerged in the hominin lineage therefore requires capturing this
dynamic and the diversity of languages and structures that it generates. In this chapter, we
review the state of the art in probabilistic models designed for this task. Current approaches
tend to excel either in capturing temporal or spatial processes. We summarize these and
describe avenues for integrating them, illustrated by a case study on the evolution of sound
inventories over time and space.

1 Introduction

The study of language evolution is an ambiguous project, concerning itself with the biological
evolution of the language faculty as well as with the spatio-temporal dynamics of languages over
space and time, i.e., what is sometimes called more specifically “linguistic evolution” (Bickel et al.
2023). Attempts to connect these two foci propose that at least some aspects of the evolution
of the language faculty were driven by the same extra-genomic transmission processes that also
drive linguistic evolution (e.g. Kirby 2017). In other words, currently observable language change
to some extent recapitulates the evolution of the language faculty in the hominin lineage. The
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central methodological toolkit for this enterprise are experiments on social learning and micro-
evolutionary studies on how linguistic structures emerge in iterated populations of users.

Here we focus on an alternative bridge, with different methodological implications (Bickel
2015, Bickel et al. 2023). We probe linguistic evolution as a specific trait of the human phenotype,
an intrinsic property of the language faculty. Language change reveals some of the key mecha-
nisms that underlie this faculty, and it therefore points to what exactly must have come together
when the faculty emerged — specific social processes of convergence and divergence and specific
neural processes of learning, producing and comprehending, both conditioned on laws of math-
ematics (e.g. information theory) and (bio)physics (e.g. articulator movement). Examining these
mechanisms through evidence from language change expands the purview of language origins
research from the static possibilities (such as basic compositionality) to the dynamic probabilities
of the language faculty (such as the preference for minimizing dependencies during language
change, or the preference for accelerated divergence when languages split).

The methodological toolkit needed for this enterprise consists primarily of models that cap-
ture language change and diversification processes. Interest in questions of this sort directly
connects with a long history in the fields of historical linguistics and linguistic typology. In
past decades, the advent of probabilistic modeling of linguistic questions has made it possible
to formulate explicit testable hypotheses regarding language change. This chapter focuses on
Bayesian computational models designed for this purpose. Models of this sort aim to shed light
on the processes that give rise to extant linguistic data, taking into account neurobiological bi-
ases of learning and processing along with social and demographic phenomena such as language
contact, as well as interactions between these conditions on linguistic evolution.

In this chapter, we provide a review of statistical modeling of linguistic evolution, focusing on
two powerful families of Bayesian models adopted from computational biology that are suited to
complementary aims, explicitly characterizing on one hand evolutionary pressures in language
change and the stability of features, and on the other contact and admixture between languages.
While some attempts have been made to reconcile these two approaches and integrate them with
each other in models of vertical transmission and horizontal transfer, these models are beset by
a number of limitations.

We introduce the nascent framework of distributional phylogenetic modeling, a flexible fam-
ily of phylogenetic modeling that allows for the exploration of the effects of certain evolving
variables on the patterns of change in others. We outline some ways in which distributional
phylogenetic models can incorporate phylogeographic information in order to test hypotheses
regarding the relationship between population history and patterns of change. We present a case
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study that assesses the role of patterns of geographic dispersal in the evolution of phonological
inventories in the Austronesian languages.

We find decisive evidence that longer migrations from the Austronesian homeland coincide
with faster rates of linguistic change and decreases in inventory size, partly but not entirely in
line with predictions derived from the literature on sociolinguistic pressures in language change.
We discuss the broader implications of these results, highlighting some pitfalls of relying on
geospatial information alone as proxies for language contact and stable multilingualism. We
discuss ways in which this framework can be further enriched and expanded to shed light on the
joint evolution of linguistic and extralinguistic traits.

2 Background

Linguistic typology seeks an understanding of the processes giving rise to distributions of lin-
guistic features, with an eye to associations between linguistic features as well as associations
between extralinguistic and linguistic features (Bickel 2007). In recent decades, the availability
of large linguistic databases (see Ivani and Bickel 2024 for a review of syntactic databeses; ASJP
(Wichmann et al. 2018) for a lexical database, and PHOIBLE (Moran and McCloy 2019) or LAPsyd
(Maddieson et al. 2013) for phonological databases) has made it possible to conduct data-driven
investigations into the distribution of linguistic features, quantifying the effects of both historical
contingencies (“event-based” factors) and of general principles of language use, learning, produc-
tion and comprehension (“functional” factors), as well as the interaction of these (Bickel 2015).
Linking large linguistic databases with non-linguistic metadata pertaining to the languages in
them has facilitated investigations into a large number of associations between linguistic and
extra-linguistic features that bear on evolutionary patterns (Nettle 1999, Atkinson 2011, Everett
2013, Bickel et al. 2015, Everett et al. 2015, Blasi et al. 2019, Roberts 2018, Barbieri et al. 2022).

As in other fields, a challenge to modeling the relationship between linguistic features and
other linguistic or extralinguistic features is the presence of non-independence among the data
points observed due to phylogenetic relatedness, an issue known as Galton’s Problem (Narroll
1961). A group of related languages may display a correlation between two linguistic features
because there is some functional benefit to their cooccurrence, or because they have simply in-
herited both features from a common ancestor, in which the features came to cooccur by chance.
Properly addressing this issue is key to understanding the role of different pressures in language
change and explaining which constellations of features are due to functional pressures and which
are due to historical contingencies, or both.
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Galton’s Problem has been addressed in a variety of ways. The commonest strategy takes
relatedness as a nuisance factor in need or control. The classical implementation of this (Dryer
1989) was to restrict samples so as to minimize relatedness, e.g. by sampling only one language
per genus, a taxonomic level defined as groups roughly comparable to Indo-European subgroups.
This approach effectively enforces phylogenetic non-independence within a data set, but results
in massive under-use of available data, which can result in reduced statistical power. An more re-
cent alternative are hierarchical (alternatively “mixed-effects” or “multilevel”) regression models
(Jaeger et al. 2011). Models of this sort involve partial pooling, assessing the influence of effects
of interest on a response variable while accounting for variation at the group level (“random ef-
fects”) that should not be conflated with the population level effect of interest (“fixed effects””),
e.g., by capturing family- and area-specific biases that might influence fixed effects in models
with complete pooling (Gelman and Hill 2007).

A drawback of hierarchical models in which coefficients vary at the family level is that they
treat families as discrete units and relatedness among languages as a binary variable. French,
Italian, and Pashto are all Indo-European languages, but French and Italian are demonstrably
more closely related to each other than they are to Pashto, as they both descend from Latin.
This property of relatedness can be captured by hierarchical models in which the propensity
for a feature which a language displays due to its phylogenetic relatedness to other languages
is generated by a Gaussian process (Guzmán Naranjo and Becker 2022); language-level feature
biases are distributed according to a multivariate normal distribution with a mean of zero and a
covariance matrix based on the phylogenetic relatedness of languages in the sample. The same
process can be used to quantify the expected similarity among languages with respect to some
propensity for a feature due to their geographic proximity.

In short, models in this tradition ensure that all potential nuisance factors are controlled for
when investigating the relationship between two variables. The benefit is a control for false
positives. Controling for relatedness in hierarchical models guards against mistaking a pattern
for independent evidence when it exist just because languages descend from the same ancestor.
At the same time, however, these models risks false negatives. When related languages maintain
the same pattern since they split from each other, this could just as well point to some external
pressure (functional or event-based) that maintains the pattern despite the split (Bickel 2015).
Hierarchical models absorb any such signal as part of the group variance (random effects), not as
effects of interest at the population (fixed-effect) level. Therefore, we might miss signals, and the
probability of this increases with phylogenetic depth in the groups we control for.

An alternative approach that has gained considerable track over the past 20 years is that of
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phylogenetic linguistics (or “phylolinguistics”, Greenhill et al. 2021), which borrows phylogenetic
comparativemethods (PCMs) from computational biology to the study of linguistic evolution. For
themost part, these approaches explicitlymodel the transmission and diffusion processes thought
to give rise to the diversity we observe, rather than treating them as nuisance factors. Another
approach to analyzing linguistic diversity in this tradition is the use of models which explicitly
represent the role of areal admixture in shaping cross-linguistic distributions of features. We
describe these families of models in the following section.

3 Explicit models of linguistic evolution

3.1 Bayesian modeling

Recent years have seen the rise of Bayesian modeling in a number of subfields of linguistics.
Bayesian methodologies allow practitioners to create models characterizing stochastic processes
capable of generating observed data, expressed in the form of probability distributions (e.g., Nor-
mal, Binomial, etc.). This generative process usually results in a tractable likelihood (on models
with intractable likelihoods, see Sisson and Fan 2011) of the data under different values of model
parameters (unobserved quantities involved in the generative model), written P (data|θ). Model
likelihoods can be used to estimate parameter values. In a maximum likelihood framework, this
involves finding a single point estimate for θ which maximizes the model likelihood. Bayesian
modeling incorporates prior beliefs regarding parameter values to estimate posterior parameter
distributions, which peak around values with high posterior probabilities, according to Bayes’
theorem:

P (θ|data) = P (data|θ)P (θ)∫
P (data|θ)P (θ)dθ

Parameter estimation allocates credibility to different hypotheses regarding the data generation
process, as certain parameter values will be compatible with certain hypotheses but not others.

For some simple models, posterior parameter distributions have an analytic solution. In most
cases, however, posterior distributions involve an intractable integral and require some form of
estimation. Markov chainMonte Carlo (MCMC) is a popular family of sampling-based algorithms
for inference of posterior parameters. Parameters are initialized with random values, which are
stochastically updated according to different algorithms designed to steer values toward regions
of higher posterior probability (Geman and Geman 1984, Robert et al. 2010) for a large number
of iterations, until posterior samples are drawn from the stationary distribution of the chain. For
a more detailed introduction to Bayesian inference, see Gelman et al. 2013, Stone 2013, Kruschke
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2014, McElreath 2020.

3.2 Phylogenetic modeling

A prominent use of phylogenetic methods in linguistics has involved inferring phylogenies of
language families. While the traditional comparative method of historical linguistics is capable
of establishing secure subgroups within language families on the basis of shared innovations, it
cannot always resolve higher order subgrouping within families as well as questions regarding
the absolute chronology of divergences. Bayesian phylogenetic inference provides a means of
allocating credibility to different candidate tree topologies and estimating divergence dates while
incorporating a degree of uncertainty. In many cases, these methods have produced results that
dovetail with received wisdom regarding the dispersal of language families, but in other cases,
have produced conflicting results (Bouckaert et al. 2012, Chang et al. 2015, Heggarty et al. 2023).

Phylogenetic comparative methods (PCMs) are a family of methods that model the evolution-
ary dynamics of specific features instead of entire lineages. In general, these methods rely on an
existing phylogeny of the organisms or languages under study, on which dynamics of change
are conditioned. Likelihood-based PCMs have a number of applications. A popular set of meth-
ods quantify the phylogenetic stability of features (Blomberg et al. 2003, Abouheif 1999, Borges
et al. 2019) and compute phylogenetically corrected means. These have enjoyed a degree of use
in linguistics (Macklin-Cordes et al. 2021, Carling and Cathcart 2021a).

PCMs can be applied to categorical and continuous data types. Most applications in linguis-
tics have so far focused on categorical data because the relevant features are typically discrete,
or modelled as discrete (e.g., verb-object vs object-verb order, labiodental vs bilabial stops, or
descendents of *sem- vs *Hoy- as the label for ‘one’ in Indo-European). A popular model for
the evolution of this kind of data assumes that features undergo state changes over a phylogeny
according to a continuous-time Markov (CTM) process, a stochastic process under which transi-
tions between different states (or feature values) in a system occur according to transition rates,
representing the frequency of different changes. Estimated rate values can be used to address hy-
potheses regarding the dynamics of change of the features in question. The likelihood of a set of
rate values in a phylogenetic tree, P (data|rates, tree) can be efficiently computed by the pRuning
algoRithm (Felsenstein 1981, 2004), a dynamic program that exploits the independence structure
of directed acyclic graphs (see Figure 1 and Section 8.8 in Harmon (2019) for a full walk-through).
Posterior distributions for rates can be estimated via an MCMC algorithm. Following inference
of rates, character histories can be simulated over the phylogeny using a technique known as
stochastic character mapping (Huelsenbeck et al. 2003, Revell 2013, Bollback 2006). This allows
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Figure 1: Illustration of the computation of rate likelihoods under the pruning algorithm (Felsen-
stein 1981) for a binary character (lefthand figure) and a hypothetical history of a binary character,
visualized as a stochastic character map (righthand figure). Transitions between states occur ac-
cording to a gain rate q01 and loss rate q10 (a). The rate matrixQ (b) can be exponentiated in order
to generate a matrix of state transition probabilities P (t) over a given interval of time t (c). For
a given node in the tree n, the likelihood of a state s conditioned on the state values of all nodes
descending from node n (d) can be computed using these transition probabilities, along with like-
lihoods at descendant states — e.g. the likelihood of node 1 in state 1 (red), L1(1), is the product
of the probability of ending in state 1, Lc=tip 1(1), in the t1-branch, P1,1(t1), and the probability
of ending in state 0, Lc=tip 2(0), in the t2-branch, P1,0(t2), with Lc(i) normally evaluating to 0
or 1 at the tips (though see Jing et al. 2023 for generalization). These likelihoods are computed
recursively in post-order traversal, with parent nodes of lighter branches visited prior to parent
nodes of darker branches. The likelihood for the entire tree (e) is equal to the dot product of
state likelihoods at the root and π, the vector of prior root state probabilities, e.g., drawn from
a uniform or the stationary distribution (see Felsenstein 2004, FitzJohn et al. 2009, Beaulieu and
O’Meara 2014, Maddison et al. 2007).

graphical visualizations of how probabilities of states gradually change over time (Widmer et al.
2017, Blasi et al. 2019, Cathcart et al. 2020, Jing et al. 2023).

The CTMmodel can be used to address a wide range of questions regarding language change.
A CTM chain has a stationaRy distRibution, which represents the proportion of time that the
system is expected to be in a particular feature state as time approaches infinity. When the CTM
has reached stationarity, this means that there will always be the same proportion of languages in
different states even though individual languages keep changing between states. Accordingly, the
proportions are independent of any original or current state, i.e., they are in a sense “timeless”.
Assume there are 100 languages in state A and 100 in state B, and transition probabilities of
P(A→B) = .2 and P(B→A) = .8. A will gain 80 and lose 20; and B will gain 20 and lose 80,
resulting in 160 A and 40 B languages. The same result will be achieved when starting from, say,
150 A and 50 B languages (A: 150− .2×150+ .8×50; B: 50− .8×50+ .2×150), and in fact from
any distribution of frequencies. Accordingly, CTM models can be used to estimate long-term
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preferences for feature states that are independent of time (Maslova 2000, Cysouw 2011, Bickel
et al. 2015, Widmer et al. 2017, Jäger and Wahle 2021).

Another use of these models is to investigate evolutionary interdependence between features.
A popular model assesses whether changes in the state of one feature depend on values of a sec-
ond feature (Pagel 1994); this model has enjoyed wide use in linguistics in order explore the
dynamics of change between features that are synchronically highly correlated (Dunn et al. 2011,
Cathcart et al. 2020, Jäger and Wahle 2021). Models of this sort have been used to investigate
constrained pathways of change (Dunn et al. 2017, Shirtz et al. 2021). Additionally, the CTM
model of character evolution is capable of carrying out ancestral state reconstruction to inter-
nal nodes of a phylogeny representing unnattested proto-languages (Maurits and Griffiths 2014,
Carling and Cathcart 2021b, Widmer et al. 2017, Blasi et al. 2019, Zhou and Bowern 2015). While
these reconstuctions typically fit well with traditional qualitative reconstructions, they have the
advantage that they come with uncertainty estimates and can reach much deeper time depth than
qualitative methods that rely on the documentation of earlier stages (ancient languages).

Despite their productive use in linguistics, CTM models are not without their limitations, at
least in their most commonly used implementations. One drawback is that the transitions that
can be modeled involve only attested states; for practical purposes, a CTM model can only make
inferences regarding transitions between feature values observed at the tips of a phylogeny, and
therefore, would not be capable of reconstructing a presently unobserved value. Sometimes this
problem can be resolved by by re-coding features; for example a word order variable containing
values such as SOV, SVO, etc. can be recoded into orthogonal binary features with dynamics that
can be inferred independently (SV vs. VO). This provides the opportunities for a wider range of
feature combinations to be reconstructed.

Another issue is that fitting CTM models is generally restricted to large language families
with some branch length estimates in terms of calibrated calendar years or in terms of amounts
of change (substitutions). There have been only few attempts to generalize the approach to small
families and isolates, all seeking to combine information from small and large families in a single
model to the maximum extent possible. One uses stationary probabilities from large families
as priors for modeling the probability distributions in isolates and small families synchronically
(Bickel et al. 2015, Bickel 2015). Another approach assumes that an isolate is not only an extant
language but at the same time the root of a degenerate (zero time) phylogeny. Its likelihood
is then estimated together with the likelihoods at the root from larger language families (Step
(e) in Figure 1) (Jäger and Wahle 2021). Yet another approach might assume the time depth of
isolates to lie between 5000 years (after which one would detect phylogenetic relations) and a
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maximum based on major human migration events (before which lineages would stem from the
same population). These estimates could then be combined into a global supertree (Bouckaert
et al. 2022, Shcherbakova et al. 2023), or, alternatively, into a forest of trees on which a model is
fitted.

A further issue is that CTM models work best when targetting a single variable which takes
one value per language (and this is how typological databases tend to code languages, apart from
few exception; see Ivani and Bickel 2024 for a survey). But languages are complex systems with
rampant polymoRphism: languages are very often split in terms of word order (e.g. by clause
type or information structural condition), case systems (e.g. by tense or aspect, or person), mor-
phological syncretisms (e.g. by which cells they span, or by conjugation class) or even syntactic
possibilities (e.g. allowing recursive noun phrases with prepositions but not with adjectiviza-
tion). There have been various attempts of modelling such splits, tailored to specific data and
research questions. Some have treated sub-systems as uncertainties, or as if they descended from
a language like dialects (Bickel et al. 2015). A more explicit approach models sub-systems inde-
pendently, each on their own, and than captures interactions and dependencies by aggregating
posterior probabilities per time interval through stochastic character mapping (Widmer et al.
2017). An approach that models the dependencies between subsystems directly is to include split
states into the CTM, so that languages can transition from, say, general non-ergative to a split
ergative/accusative to a general accusative system, with or without additionally allowing direct
transitions (Hong et al. in prep.). Alternatively, one can treat the split condition as a predictor
variable for the presence of a sub-system (e.g. different cell collections that each predict the pres-
ence of syncretism), and then model the conditional presence in the CTM (cf. Cathcart et al. 2022
and Section 4 below).

Splits often come with probability distributions that shift between generations, and this rep-
resents yet another challenge for classical CTM approaches. From a micro-evolutionary perspec-
tive, a “gain” or “loss” of a linguistic feature represents the point in time when the inflection point
of the S-shaped growth curve that characterizes the rise of linguistic variants (Greenberg et al.
1954, Bailey 1973, Niyogi et al. 1997, Yang 2000) is surpassed. What is therefore needed is models
that go beyond discrete grammar features and tackle the probabilistic nature of language directly.
One recent approach treats variation in word order as the product of probabilistic grammars, and
then takes corpus-based probabilities for the likelihood estimation at the tip in the CTM model
(Figure 1) (Jing et al. 2023). Another approach replaces CTM models by models for continuous
measures, such as Brownian Motion or Ornstein-Uhlenbeck models (Witzlack-Makarevich et al.
2016, Hahn and Xu 2022).
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Finally, CTM models do not explicitly model contact dynamics; if under a CTM model a fea-
ture is likely to have arisen frequently within a phylogeny, a CTM model cannot distinguish
which births are due to functional pressures (e.g., adaptation to some processing principle) and
event-based triggers where the feature has entered a language due to social conformity. Post-hoc
analyses can give some insights, for example by comparing whether the evolutionary dynamics
is similar between families in the same contact area vs. those in different areas (Bickel et al. 2015,
Bickel 2019). Direct inference of contact effects is rare but there are promising developments
in the phylogenetic inference of language trees. Some models are succesful in inferring lateral
transfer between related languages based on patterns of cooccurrence (Kelly and Nicholls 2017,
Neureiter et al. 2022), but these do not (yet) generalize to PCMs and do not take geography or
proposed areal hypotheses into account.

3.3 Areal modeling

Other research explains variation in cross-linguistic patterns via models that explicitly represent
areal influence and admixture between languages. A significant portion of this work makes use
of mixture models. Mixture models partition data points in a sample into clusters depending
on the values for features exhibited by individual data points, with data points sharing similar
values belonging to similar clusters. As such, mixture models provide a means of dimensionality
reduction, the resulting representation of which may have an interpretation involving language
contact. Some, but not all of this work injects explicit spatial information into the probabilistic
model used.

For linguistic purposes, clustering can take place at a number of levels. Languages themselves
can be clustered on the basis of the features they display (Michael et al. 2014). Alternatively, the
features within languages can be partitioned among different clusters. This is the objective of
a subtype of mixture model known as admixture or mixed membership models. Mixed mem-
bership models allow for features within a language, words within a document (Blei et al. 2003),
or single-nucleotide polymorphisms within genomic data (Pritchard et al. 2000) to be generated
by one of a number of latent components. This methodology has been used to model admixture
within languages corresponding to different areal sources (Reesink et al. 2009, Bowern 2012, Syr-
jänen et al. 2016, Cathcart 2020, 2022). Mixed membership models have also been used to ask
which of a language’s features are due to genetic inheritance as opposed to contact or univer-
sal preferences (Chang and Michael 2014), and can thus be used to quantify the borrowability
and propensity for inheritance of different features. A recent approach, sBayes (Ranacher et al.
2021) infers the presence of geographical groupings across languages. Under the generative pro-
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cess for this model, a language can be assigned to a geographical group according to a spatially
informed prior distribution over group membership (the other models cited above do not pro-
vide any explicit geographic information to their models). Within a language, each feature is
assumed to come from three different sources: inheritance (depending on the distribution of the
feature in the family to which the language belongs), location (depending on the distribution of
the feature in the geographical group to which the language is assigned), and universal prefer-
ences (depending on the global distribution of the feature). Locations can reflect recent contact
or the residue of earlier distributions that deviate from current global patterns. The three dis-
tributions are multinomial probabilities expressing the preference for a given feature value in a
given linguistic taxonomy.

While mixture model-based approaches can explicitly model geography in a way that stan-
dard phylogenetic methods do not, they lack phylogenetic models’ explicit, fine-grained rep-
resention of time depth and diachrony. The standard admixture model strongly embodies the
Hardy-Weinberg principle in that is assumes that no mutations have taken place since the time
of admixture between populations. This assumption may not be valid for all linguistic features.
For instance, two languages could share a word order due to a relatively recent change, yet an
admixture model could potentially impute this resemblance to deeper contact. One way to al-
lay this concern is to work with features thought to be relatively stable or invariant, such as the
operation of sound changes demonstrated to have taken place at an early date (Cathcart 2020,
2022). At least one population genetic model, overlooked in the linguistics literature, allows for
a limited number of mutation events representing changes occurring between the time of admix-
ture and the present day (Shringarpure and Xing 2009). Even with this relaxation, these models’
representation of chronology is simplistic and not as expressive as that of timed trees. This tem-
poral invariance is also seen in the representation of phylogenetic featural propensities found in
sBayes. In sBayes, the distribution of variants of a feature (e.g., possible word orders) in a family
such as Indo-European is represented by a single multinomial probability distribution generated
by a Dirichlet prior distribution. This flat representation of family-level feature distributions has
no sensitivity to the fact that Welsh and Irish are more likely to share a word order given their
shared phylogenetic history thanWelsh and Pashto. The main benefit of this representation is its
contribution to the model’s computational tractability. While this can be accomodated to some
extent by varying the taxonmic level of family relations, the model still underuses phylogenetic
information such as branch length and mutation rates. An alternative would be to assume that
the log probabilities of different features evolve according to Brownian motion, and that feature
probabilities themselves follow the logistic normal distribution, for which there exists a conju-
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gate prior for the multinomial distribution which is however somewhat involved to implement
(Mimno et al. 2008).

A number of methods attempt to synthesize phylogenetic and areal models somewhat more
directly, although they do not necessarily capture the full evolutionary dynamics of transmission
and diffusion. Daumé III (2009) constructs a mixture model designed to tease apart the roles of
contact and descent in shaping typological distributions. Under this model, a feature in a lan-
guage is generated according to either the areal group to which the language is assigned, if it is
assigned to one, or via a coalescent process. The author shows that this model’s spatial awareness
results in the inference of more accurate phylogenies than a model without spatial awareness. At
the same time, this model would be difficult to adapt to questions regarding prehistoric contact,
etc. In a similar vein, Murawaki and Yamauchi (2018) employ an autologistic model to infer ver-
tical stability and horizontal transmissibility. While these models advance our understanding of
the interplay of different pressures in linguistic evolution, adapting and expanding these models
to take into account different sources of variation (and to accommodate different prior distribu-
tions) may be a challenge, given their reliance on certain inference algorithms. More critically,
information regarding geography tends to be based on present-day distributions, with no readily
available way of shedding light on sociolinguistic pressures active at a greater time depth.

3.4 Issues regarding implementation

This brings us to yet another point. Coding up inference algorithms for complex probabilistic
models from scratch is time consuming and error-prone, and may be beyond the remit of many
linguists. Fortunately, a number of accessible probabilistic programming languages on the mar-
ket make it possible for analysts to specify the data generating process, while the software does
the heavy lifting of posterior parameter inference. A popular language is Stan (Carpenter et al.
2017), which is well documented and has a large online community of users. A limitation of these
software packages, which generally make use of gradient-based methods to steer parameter esti-
mates toward regions of high posterior probability, is that they cannot estimate discrete posterior
distributions (as they are not differentiable), which must be marginalized out by summing.

This places constraints on the models that can be fitted using such programs, and in some
cases requires a bit of rethinking of such models from a standpoint of tractability. For instance,
it would not be possible to directly implement sBayes in Stan. sBayes samples a discrete variable
representing the membership for a language with index l in a geographical group, which we can
call zl ∈ {1, ..., K}, and for each feature with index d ∈ {1, ..., D} in the language, samples a
discrete variable indicating whether the feature in question is inherited, borrowed (or otherwise
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geographically preserved), or due to universal preferences, which we can call sl,d ∈ {I, B, U}.
The likelihood of a configuration for a single language could be written as follows, with simplified
notation (θ refers to all model parameters; P (yl,d|sl,d) is the probability of the observed value of
a feature in a language conditioned on its source):

P (zl|θ)
D∏

d=1

P (sl,d|θ)P (yl,d|sl,d)

In the context of Gibbs sampling with a conjugate prior, the different discrete variables (zl; sl,.)
can be sampled conditioned on the variables on which they depend, which include current values
for other discrete parameters. If configurations of discrete variables must be marginalized out,
we are faced with the following sum:

K∑
k=1

∑
x1∈{I,B,U}

...
∑

xD∈{I,B,U}

P (zl = k)P (sl,d = x1|θ)P (yl,d|sl,d = x1)...P (sl,d = xD|θ)P (yl,d|sl,d = xD)

This sum is intractable as it enumerates K3D different configurations of values for discrete pa-
rameters. The issue is that because sl,. depends on zl, all possible combinations of this collection
of discrete variables must be taken into account. This issue would be alleviated if individual fea-
tures in a language could belong to different linguistic areas zl,d : d ∈ {1, ..., D}, altering the
above likelihood as follows:

D∏
d=1

P (zl,d|θ)P (sl,d|θ)P (yl,d|sl,d)

Each term in this product represents the likelihood of a feature in a language, yl,d. Summing
out the discrete parameters for all of these likelihoods in a single language requires only 3DK

operations. Ultimately, whether or not they are justified, sacrifices like this one open the door
to greater ease of model fitting with more flexibility, including use of diverse, not necessarily
conjugate priors.

It is likely that in the near future the fieldwill see an explosion ofmodels designed in this spirit.
We believe that progress in this direction will be facilitated by easily adaptable and expandable
models cast in probabilistic programming languages that serve as lingue franche for analysts
in the field. In the following sections, we outline a program for flexible phylogenetic models
implemented in RStan, inspired by advances in hierarchical Bayesian modeling made by the brms
framework (Bürkner 2017).
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Figure 2: Binary continuous-time Markov process representing changes between presence and
absence of a feature. Transitions are annotated according to the gain rate (q01) and loss rate (q10)
of the feature, with alternative parameterizations according to speed of change (s) and stationary
probability of feature presence (p).

4 Distributional phylogenetic modeling

In this section, we present a flexible method for analyzing multifaceted aspects of linguistic evo-
lution in a nuanced manner. We term this program distRibutional phylogenetic modeling.
We take as our point of departure two unrelated families of statistical models. The first group
consists of phylogenetic models and phylogenetic comparative methods which model rate varia-
tion in the evolutionary histories of traits. The second group consists of distributional regression
models, an increasingly popular Bayesian modeling framework which allows both the location
and scale of a regression model to vary as a function of predictor variables (Bürkner 2017), thus
relaxing a number of assumptions found in classical regression, such as homoskedasticity. We
demonstrate a novel use of this modeling strategy, highlighting its ability to integrate spatial and
temporal aspects of linguistic evolution and shed light on poorly understood aspects of change.

PCMs for discrete features generally assume that a feature moves between different values or
states according to a continuous-time Markov process parameterized by transition rates (Figure
1). Under the standard view of a continuous-time Markov process for binary data, a feature
arises and is lost according to a gain rate and a loss rate. Assuming a speed of change s (loss
or gain) and stationary probability p, the gain rate and loss rate can be rewritten as ps and (1 −
p)s, respectively (Figure 2). This is the binary case of a general time-reversible model (Tavaré
1986), which parameterizes changes between multiple states in a continuous-time Markov chain
according to stationary probabilities of state presence and exchange rates or speeds of change
between each pair of states. Figure 3 shows simulated trajectories of change under binary CTM
processes with different speeds and stationary probabilities.

Classical CTMmodels make global estimates regarding the dynamics of evolution of a feature,
but they do not always deal with the impact of population history and the variation in dynamics
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Figure 3: Simulated CTM processes showing transitions between states of a binary feature under
different speeds (s ∈ {5, 10}) and stationary probabilities (p ∈ {0.1, 0.9}).

that external factors may bring about. Some linguistic work (Greenhill et al. 2017) has made
use of modeling techniques that allow transition rates to vary across features and branch levels
(Huelsenbeck and Suchard 2007), but this allows only post-hoc interpretations regarding which
branches in a phylogeny aremost affected by factors such as language contact, population density,
etc. We expand this variable-rates (or “heterotachy”) approach to allow for the regressing of
various predictors, extralinguistic and linguistic, on the evolutionary parameters of the CTM
process, profiting from advances made in biology and anthropology in assessing correlations
between evolving variables (see Lartillot and Poujol 2011, Lartillot 2013, Horvilleur and Lartillot
2014, Ross et al. 2016, Ringen et al. 2021 and Cathcart forthcoming for a review).

We furthemore extend the models to allow both the speed of change and the stationary prob-
ability of a feature to vary according to one or more predictors. We do this in analogy with
so-called distRibutional models, which allow both the predicted measure of central tendency
and the dispersion of a response in a regression model to vary as a function of predictor variables
(Rigby and Stasinopoulos 2005, Bürkner 2017).

A more refined understanding of whether certain predictors of change affect speed versus
stationary biases toward a particular feature is crucial for understanding linguistic evolution, in
particular if the goal is to characterize the intrinsic dynamic of the language faculty independently
of the vagaries of population history. For instance, it helps answer question on how complexity
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evolves, for example in morphology (“polysynthesis”). While the decrease of (some aspects of)
complexity has been succesfully linked to contact and admixture of second language learners
(Lupyan and Dale 2010, Bentz and Winter 2013, Widmer et al. 2021), the apparent increase of
complexity in regions of greater social isolation is unexplained. Is this increase driven by a sta-
tionary long-term preference in the language faculty, or is it a side effect from more rapid change
under isolation that lets grammaticalization accumulate in repeated waves?

Predictors can be either static or evolve together with the response, they can be discrete
or continuous, and, unlike classical models of correlated evolution (Pagel 1994), the design is
not limited to feature pairs. Cathcart et al. (2022) use this framework to investigate whether
the evolution of irregular stem alternation types in Romance verbs is a byproduct of a general
instability in lower-frequency verbs, or driven by a long-term preference for regular paradigms in
lower-frequency verbs and irregular ones in higher-frequency ones. This was tested by assessing
the effect of frequency on both speed of pattern change as well as stationary probability (i.e.,
long-term preference) for irregular patterns. Results indicated an effect of frequency on long-
term preference for irregular patterns, but not on speed of change, indicating that frequency
does not play a role in a verb’s stability of inflectional patterns, but instead impacts timeless
biases toward or against irregular patterns.

5 A case study

Here, we focus on the phylogenetic and geospatial dimensions of the development of sound sys-
tems, probing the extent to which dynamics of geographic dispersal can be taken as a proxy for
variation in sociolinguistic milieux that would have different impacts on linguistic evolution. We
chose as an example the Austronesian languages, a family exhibiting considerable variation in
terms of phonological inventories across vastly different language ecologies. Different regions of
the Austronesian-speaking world exhibit disparities in the number of contrastive segments that
the languages in them display, and underwent different processes of language change during
their history. The Western Pacific, in particular archipelagos like Vanuatu, has been character-
ized by small languages in stable multilingual environments in which there are strong language
ideologies and pressures toward schismogenesis and esoterogeny. Polynesia on the other hand is
characterized by greater linguistic homogeneity and less pronounced contact between speakers
of different languages.

Geographic dispersals have a number of potential impacts on linguistic change which are not
fully understood and partly at odds with each other. Rapid dispersals have the potential to bring
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speakers into contact with and absorb populations speaking a different language, which can lead
to rapid change; this may not have been the case in Austronesian, however, as rapid dispersals
brought Austronesian speakers to uninhabited areas, and the Western Pacific, a region of longer
settlement, bears witness to scenarios in which languages remaining closer to the Austronesian
homeland for longer periods of time work to make themselves maximally divergent, in particu-
lar in terms of lexical items and phonological characteristics (Wurm 1967, François 2010, 2011,
Rangelov et al. 2023). Similarly, language families often exhibit higher amounts of diversity (i.e.,
larger numbers of languages) closer to their homelands (Sapir 1916), reflecting greater degrees
of schismogenesis. By contrast, languages further from the homeland, spoken in the vicinty of
fewer closely related languages, may not exhibit as much schismogenetic effects.

Assuming that sound systems are prime indices of group identity in dense linguistic ecological
niches (Evans 2019), the question arises whether schismogenetic effects primarily affect speed
of segment replacement or the (stationary) probabilities of segment presence, or both together.
This question can only be addressed with a distributional phylogenetic model. Concretely, we
ask the following: (i) Do lineages closer to the homeland undergo faster speeds of change in
segmental inventories? (ii) Do they display a longer-term preference for more contrastive and
non-contrastive segments than lineages that migrated further away and are more isolated from
other languages. Or do we find both effects together?

In what follows we explore the direct impact of patterns of geographic dispersal on linguistic
evolution, jointly estimating the parameters of a phylogeographic model of language diffusion
and a CTM model of changes in phonological inventories.

5.1 Data

We use data from PHOIBLE v. 2.0 (Moran and McCloy 2019), a large cross-linguistic database of
segmental inventories which contains language-level metadata such as geographic coordinates at
which a language is spoken. The data in PHOIBLE generally follows the analytical decisionsmade
in the source from which it is extracted, and often contains more than one record of an inventory
for a single language. We randomly sampled a record for languages where more than one record
was available, and retained only segments found in the Cross-Linguistic Transcription Systems
database (CLTS; Anderson et al. 2018) that were found more than once across all languages, in
order to maximize cross-linguistic comparability.

We use the Austronesian phylogeny of Gray et al. (2009), which consists of a Bayesian tree
sample of several hundred languages, to conduct our phylogenetic comparative analyses. Branch
lengths were scaled to one time unit per millennium, so that a speed of, say, s = .5 means two
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(1/s) expected changes (gains or losses) per millenium. We discard languages in the tree not
found in PHOIBLE. For languages in PHOIBLE but not in the tree (such as Cocos Malay), we use
a semi-automated script in order to graft languages in PHOIBLE but not in the phylogeny onto
the most appropriate loci in each tree in the tree sample. In total, our data consist of 192 binary
segmental features in 110 languages.

5.2 Models

We build on the relaxed random walk model (RRW) of phylogeography, under which geospa-
tial diffusion takes place according to a process of Brownian motion, the scale of which exhibits
branch-level variation: on some branches of a phylogeny, geographic dispersal will take place at
faster rates than on others. This model and extensions serve as the standard for modeling linguis-
tic migration in continuous space (Lemey et al. 2010, Gill et al. 2017), and accurately recapitulate
language families’ spreads when dispersal involves expansion from a given point of origin, but
not necessarily when wholesale migration from the point of origin has taken place (Neureiter
et al. 2021); accordingly, the RRW and its extensions may not be appropriate for all of the world’s
language families. The basic RRW employed in this paper is not sensitive to environmental fea-
tures in the way that more sophisticated discrete-space models are (Bouckaert et al. 2012, 2018,
Koile et al. 2022). We choose this model to illustrate ease of implementabilty in standard statistical
programming languages.

Concretely, the latitude and longitude (written ℓ for brevity) at the tips of a phylogeny are
assume to follow a multivariate normal distribution (cf. O’Meara et al. 2006):

ℓt ∼ MultiNormal(ℓr,Σ),

where ℓt is the vector of observed values at the tips of the tree, and ℓr is a vector the same
length as ℓt which repeats the value at the root, which is unobserved; Σ represents the phyloge-
netic covariance between tips in the phylogeny. Under time-homogeneous Brownian motion, the
phylogenetic covariance between languages i and j, Σij , is equal to the sum of the lengths of the
branches leading from the root of phylogeny to the most recent common ancestor (MRCA) of the
two languages, multiplied by a parameter σ representing the scale of the diffusion process. Under
a RRW model, Σij is equal to σρ⊤ζMRCAij

, where σ is the global scale of the process’ diffusion, ρ
is a vector of scale multipliers for each branch in the phylogeny and ζMRCAij

is a vector that con-
tains the lengths of the branches that intervene between the root of the phylogeny and the most
recent common ancestor of nodes i and j, with zeroes corresponding to branches that do not in-
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tervene. We assume that for each phylogeny, lont and latt are distributed as above, with separate
scale parameters σlon, σlat and ρlon,ρlat across both dimensions of diffusion. For simplicity, we do
not model correlation between the two dimensions, and do not account for measurement error
in longitude and latitude values recorded for languages. We transform longitude and latitude
coordinates to an equal earth projection (Šavrič et al. 2019), which minimizes distortions in dis-
tance found at different latitude values and accounts for the fact that coordinates on either side of
the prime meridian are relatively close to each other (despite having highly disparate longitude
values).

Using the parameters lonr, latr, σlon, σlat,ρlon,ρlat, longitude and latitude values for internal
nodes of the tree can be sampled from a conditional multivariate normal distribution. For a given
sample, it is then possible to compute the great-circle distance between the root node of the
tree and and the descendant node of every branch in the tree, yielding values for branch-level
displacements, δb : b ∈ {1, ..., B}, i.e., the distance that the speech community represented by
the descendant node has migrated from the linguistic homeland.

We link the quantity δ to the CTM process of segmental inventory evolution. For simplicity
and tractability we assume that each segment in each language can be gained or lost indepen-
dently according to a binary CTM process. While this is not entirely justified given chain shifts
and other dependencies, it has served an approximation with reasonable performance in previous
work (e.g. Nikolaev and Grossman 2020, Guzmán Naranjo and Mertner 2022).

In line with our distributional modeling approach we parameterize change in segmental in-
ventories according to a speed of change and an expected stationary probability. On a given
branch b ∈ {1, ..., B}, a segment d ∈ {1, ..., D} evolves according to a binary CTM process with
speed sd,bτ (τ being the global speed of change in the tree) and stationary probability pd,b. We
force the speed multiplier sd,b and stationary probability pd,b into the interval (0, 1) by using a
logit transformation and assume the following form in a hierarchical (multilevel) model:

logit sd,b = αs
0 + αs

d + (βs
0 + βs

d) log δb + γs
b,0σ

s
0 + γs

b,dσ
s
d

logit pd,b = αp
0 + αp

d + (βp
0 + βp

d) log δb + γp
b,0σ

p
0 + γp

b,dσ
p
d

In plain terms, the logit of the speed multiplier for segment d on branch b of the phylogeny
is a function of an intercept-like baseline (αs

0); a deflection to this baseline for segment d (αs
d);

coefficients representing the effects of displacement in each branch b (δb) on speed (βs
0) and a

deflection to this coefficient for segment d (βs
d); as well as coefficients representing variation

in branch-level speeds not explained by fluctuations in dispersal values, globally (γs
b,0) and at the
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Figure 4: Austronesian languages in PHOIBLE. Color and transparency indicate the number of
segments in the inventory selected for the language.
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segment level (γs
b,d);σs represents scale parameters allowing these coefficients to capture as much

variance as is justified. The parameters pertaining to the stationary probability of segment d’s
presence for branch b have the same interpretation. The likelihood of the observed distributions
of each segment under the model parameters and a phylogeny can be computed via Felsenstein’s
pruning algorithm (Figure 1).

Themodel described above can be fitted in a variety of ways. One possibility is to jointly infer
all parameters, phylogeographic and phylogenetic, in one model, which can be computationally
costly. Another option is to first infer the phylogeographic parameters, most importantly δ,
separate from the phylogenetic parameters. Subsequently, posterior estimates of this quantity can
be used as an input to the phylogenetic model described above as a variable with measurement
error (Bürkner 2017, Driver et al. 2017, Bürkner et al. 2019). This is justified for models which
posit the directed influence of phylogeography on linguistic evolution and not vice versa. Here,
we infer all parameters jointly, and leave a comparison of the merits of different methods for
future work.

We place Normal(0, 1) priors on the parameters α,β, and γ, HalfNormal(0, 1) priors on the
parameters ρ and σ, and a Uniform(0, 20) prior on τ , which ensures that changes will not occur
more frequently than once per 50 years (1/20 per millenium), roughly over a small number of
generations. To incorporate phylogenetic uncertainty, we fit the model on 25 trees from the tree
sample and concatenate the resulting posterior samples. We use RStan (Carpenter et al. 2017) for
model fitting and make all data and code available at https://github.com/chundrac/
disp-phon).

5.3 Results

Figure 5 provides a visualization of dispersal trajectories inferred by our model; blue branches
are closer to the inferred homeland. Regarding the accuracy of the inferred homeland, there is
perhaps room for improvement: while Taiwan as a homeland is supported by this posterior distri-
bution, the northern Philippines are as well, and this latter homeland is not in line with received
wisdom. It is possible that the relatively small number of Austronesian taxa in PHOIBLE is re-
sponsible for this relatively high uncertainty, and that more precise results will be reached with
a greater number of languages. Our model allocates credibility to potential homeland locations
over water. This is behavior potentially displayed by the RRW and other Gaussian process-based
geospatial models. Implementing spatial constraints directly within programming languages like
Stan (i.e., assigning zero prior probability to homeland locations that do not overlap with land-
masses) is not straightforward, and at this point in time we are are not fully aware of the practical
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issues surrounding the implementation of discrete, feature-aware models of migration (in general
these involve massive transition matrices between points on the globe, and dynamic solutions for
storing pre-computed values). One post-hoc solution to this issue (which we do not employ here)
is to discard samples after inference for which the root location is over water, which effectively
produces results that would be obtained with a spatially informed prior.

Figure 6 shows the 95% and 85% posterior credible intervals (CIs) for βs
0 and βp

0 , model param-
eters representing the overall effect of dispersal on speed of change and long-term preference for
segments. A commonly used criterion holds that distributions where the 95% CI (i.e., the interval
spanning from the 2.5% to 97.5% percentiles) does not contain zero represent decisive evidence for
an effect of a predictor on a response (Kruschke 2021). The results answer question negatively (i):
We find a decisive positive effect of dispersal distance on speed of change, i.e. slower, rather than
faster change closer to the homeland. But they answer question (ii) in the affirmative: We find a
decisive negative effect of dispersal distance on stationary probability of segment presence, i.e.,
languages show more segments closer to the homeland This indicates that branches undergoing
more extensive migration undergo faster speeds of phonemic change, but display a long-term
trend towards having fewer consonants than branches closer to the point of origin of the family.

To further understand the reasons for this result, we inspect the branch-level phylogeographic
diffusion patterns for one of the 25 tree samples over which we run our model. Figure 7 colors
branches of the tree according to the distance between the root of the tree and the child nodes of
each branch. Blue branches have undergone less displacement. Polynesian languages (at the top
of the tree) are conspicuous in having smaller inventories and being geographically distant from
the Austronesian homeland. Larger inventories can be found in languages that are closer to the
homeland (e.g., in the bottom half of the tree). Our model may have inferred that these larger
inventories are at least partially the product of shared retentions preserved by lower speeds of
change, rather than brought on by rapid complexification of inventories due to extreme schismo-
genetic pressures.

Inspection of additional model parameters also allows us to assess the degree towhich dynam-
ics of change vary at the segment level. Figure 8 shows coefficients representing segment-level
deflections from the overall effect of diffusion rate on speed of change and stationary probability
of presence. The left-hand graphic shows 85% and 95% CIs for coefficients reflecting variation in
the effect of dispersal distance on speed of change. For visibility, we show only segments with
the 30 lowest and 30 highest median values. Here, all 95% CIs (and most 85% CIs) overlap with
zero, indicating that there are not many decisive segment-level deviations from the overall effect
of dispersal on speed of change. The right-hand graph arranges segments according to the degree
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Figure 5: Posterior samples of phylogeographic trajectories inferred by our model. Colors repre-
sent distances (in km) from root location of tree for child of each branch.

23



βp
0

βs
0

-1.0 -0.5 0.0 0.5 1.0

Figure 6: 95% and 85% posterior credible intervals (CIs) for βs
0 and βp

0 . Distributions where the
95% CI does not contain zero represent decisive evidence for an effect of a predictor on a response.

to which their long-term probability of presence is affected by dispersal distance (as above, with
only the 30 lowest and 30 highest median values). Here, we see a larger number of 85% and 95%
CIs that do not overlap with zero, indicating that segments vary considerably more in terms of
their resistance to the effects of dispersal. At the top of the graph, we see segments for which
we expect a decisively lower-than-baseline stationary probability of presence as distance from
the homeland increases; the segments /ü/, /q/, and /è/ are restricted to languages spoken on
Taiwan, close to the inferred homeland. At the other end of the spectrum is /m/, found in all lan-
guages; the stationary probability of /m/ will be higher than expected for increases in distance
from the homeland, as it is a segment that universally preferred. In general, segments making up
a core of most languages’ inventories appear to be less sensitive to the effects of dispersal. These
include nasals like /m/ as well as relatively basic segments like /k/, /b/, /d/, etc. In general,
the sounds most resistant to changes coinciding with dispersal tend to include consonants that
are thought to be more “primal” and basic in inventories (Bybee and Easterday 2022).

5.4 Discussion

The coefficients for speed and stationary probability provide a way of assessing the degree to
which a particular linguistic feature is resistant to the pressures of contact (if our model of phy-
logeographic dispersal can in fact be taken as a proxy for contact proneness). Some idiosyncrasies
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Figure 7: Median branch-level dispersals (great-circle distances in km between the inferred root
location and the inferred/observed locations of the child nodes of each branch) for a tree from the
tree sample, visualized using ggtree (Yu et al. 2018). Blue branches have undergone less dispersal
than yellow ones. Dot sizes at tips of the tree represent inventory sizes for each language.
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Figure 8: 95% and 85% posterior credible intervals for segment-level deflections to the global effect
of dispersal on speed of change (left) and stationary probability of presence (right). The relative
frequency of each segment in the data set is given in parentheses.
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seen here may be artifacts of using PHOIBLE’s segmental representations directly. An alternative
is to use features (e.g., labial, nasal, etc.), if care is taken to code the data such that interactions
of interest (e.g., velaR plosive) are taken into account.

Given the large amount of literature arguing for the effect of longstanding stable multilin-
gualism on patterns of schismogenesis, it is surprising to see that lineages that undergo more
geographic dispersal, rather than those with longer histories of local settlement, show higher
rates of phonemic change. Further inspection of these rates showed that branches exhibiting
greater dispersals tend to lead to languages varying considerably in the size of their inventories,
explaining why we see this effect at a large family-wide scale.

At the stage, we have only tentative explanations for this result. As mentioned previously, in
any other scenario, we might interpret rapid language change accompanying large-scale migra-
tion as a signature of contact-induced changes brought on by the absorption of other populations,
but this does not hold for Austronesian, as longer migrations largely brought speakers to unin-
habited locations. It is possible that the faster linguistic changes we detect coincided with a sort
of societal complexification (perhaps involving dialect leveling) that accompanied the develop-
ment of technological advances needed to carry out large-scale migrations. Padilla-Iglesias et al.
(2020) link geographic isolation of the sort found in the Eastern Pacific to acceleration of linguistic
change, in the form of word loss.

Our results, obtained based on a wide phylogenetic scale, do not invalidate the idea that stable
multilingualism fosters pressures to differentiate oneself from other social groups. It may be the
case that using phylogeographic variables as a proxy for the social pressures of interest is not
appropriate, and other variables need to be included. Recent attempts to characterize distributions
of languages and linguistic features purely according to geographic predictors have produced
mixed results (Urban 2021, Shcherbakova et al. 2023). In fact, a larger number of continuous
coevolving predictors representing demographic informationmay need to be integrated into such
models (cf. Ringen et al. 2021). It may also be the case that using segmental inventories as the
response variable of interest does not capture fine-grained patterns of schismogenesis. Finally, it
could be that the relationship between phylogeographic diffusion and linguistic change varies at
cladistic levels smaller than the family, such as within individual subgroups.

We are confident that the distributional phylogenetic approach will facilitate tackling such
questions with more specific and informative predictors, disentangling the various forces that
shape the evolutionary dynamics of language.
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6 Outlook

Bayesianmodels of linguistic evolution present a number of intriguing avenues for understanding
the intrinsic dynamics of the language faculty. Considerable challenges lay ahead in terms of the
integration of phylogenetic models, which incorporate flexible modeling of language change,
with areal models showing an explicit representation of geospatial neighborhoods. Here, we
discussed some potential rapprochements between these two families of models, and presented
the results of a case study assessing the effect of phylogeography on linguistic evolution, couched
in the nascent framework of distributional phylogenetic modeling. A benefit of this approach is
that it can help recover deep historical pressures that cannot be detected solely from synchronic
distributions of linguistic and extralinguistic features. A careful inspection of model parameters
shed light on why our result obtained, and we outline additional ways in which models of this
sort can be expanded and bring more linguistic insights into consideration. Model expansion in
this direction will be key to validating a number of hypotheses regarding linguistic evolution.
Many tasks remain in fully understanding the forces that shape linguistic evolution. We hope
that with an increase of flexible approaches like the one outlined here, accompanied by careful
model criticism, we will move closer to this goal.
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