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Abstract1

Sublinear density dependence has been reported in numerous empirical studies, and yet it is2

seemingly incompatible with most resource-explicit models of competition. Reconciling this3

disconnect will likely necessitate substantive revision of the assumptions of mechanistic models4

and/or empirical methods, but it also presents rich opportunities for original research with5

wide-ranging implications.6

∗Correspondence author. Email: a.letten@uq.edu.au

1



Main7

Density dependence as a central phenomenon8

Negative density dependent population growth emerges when individuals compete for finite9

resources. It ‘creates’ the conditions for natural selection to drive evolution and underpins10

species coexistence and the maintenance of diversity. Countless studies in every conceivable11

system have demonstrated negative relationships between population growth and population12

size [1, 2]. We might reasonably consider it the first law of ecology and evolution. And yet, for13

such an ostensibly well studied phenomenon, a puzzling disconnect persists between empirical14

observations and the predictions of mechanistic theory.15

A preponderant empirical pattern16

The default phenomenological model of density dependence is the logistic growth model (and by17

extension to multi-species interactions, Lotka-Volterra), where per capita growth rate declines18

linearly with density [3]. Except in the vicinity of equilibria, however, per capita growth rates19

rarely respond additively to changes in density. A wide variety of alternative models for density20

dependence have been fit to empirical data, but one general form appears to emerge with21

surprising frequency. Sublinear (or convex) density dependence arises when per capita growth22

rate declines more slowly with increasing density [3, 4]. It is an inherent feature of several23

models that are a mainstay of plant and animal population modelling (e.g., Beverton-Holt and24

the Ricker model) [5], and has been observed across a broad spectrum of macro-organisms; in a25

recent high profile paper, the apparent parsimony of a sublinear model fitted to time-series of26

mammals, birds, fish and insects was invoked to explain positive diversity-stability relationships27

[4]. Leaving aside the limitations of fitting population models to coarse time-series, what makes28

the empirical preponderance of sublinear density dependence perplexing is that it is seemingly29

incompatible with most resource-explicit (i.e. mechanistic) models of competition.30

Density dependence in consumer-resource models31

Density-dependence in phenomenological population models is almost always implemented as32

a proxy for some underlying mechanism of competition, the most canonical example of which is33

the shared consumption of a limiting resource (regardless of whether the resource is exploited by34

individuals of the same or different species) [3]. As such, if a phenomenological model of negative35

density dependence has a mechanistic underpinning, we should expect it to be consistent with36
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a wide spectrum of consumer-resource interactions. To a first approximation, the corollary of37

the density-dependent growth function in a consumer-resource model is the resource uptake38

function or functional response. Following Holling [6] and a vast body of empirical research39

[7], the resource uptake function in a consumer-resource model is typically drawn from one of40

three functional forms: type I (linear increasing), type II (monotonically saturating, including41

Michaelis-Menten or Monod function) or type III (sigmodial) (Fig 1A). Notwithstanding the42

relaxation of standard simplifying assumptions (see below), as demonstrated by Abrams [8, 9]43

and others [10–12], the emergent density-dependence in a consumer-resource model inherits44

the functional form of the consumer’s resource uptake function. A type I functional response45

translates to linear density dependence (i.e. logistic and Lotka-Volterra); type II translates46

to concave density-dependence (i.e. an accelerating decline in per-capita growth rate as a47

function of density); and type III gives rises to a density dependent function that is concave at48

low densities but then switches to convex at higher densities (Fig 1B).49

Evidently, none of ecology’s standard models of consumer resource dependence map to a purely50

sublinear model of density dependence. Instead, all else being equal, sublinear density depen-51

dence requires a resource uptake function that increases exponentially with resource availability52

(i.e., resource uptake, and therefore growth, never saturates). Such a functional response is con-53

sidered biologically unrealistic, hence why it has never been formalised with its own ‘type x’54

label [3].55

A mechanistic basis for sublinear density dependence?56

How then can we reconcile the apparent dissonance between theory and observation; does the57

empirical evidence for sublinear density dependence require closer scrutiny or do the basic as-58

sumption of mechanistic models need a radical rethink? Sublinear density dependence can in59

fact emerge in consumer-resource models provided additional conditions are met. A combi-60

nation of type I functional responses and continuous in flow and outflow of resources (as in61

a classic chemostat model) provides one route [8, 11, 12]. The latter requirement, however,62

seems improbable for the majority of natural systems, where resources are likely to undergo63

substantial fluctuations across multiple timescales.64

More plausibly, provided competitors have type III resource uptake functions and population65

dynamics never stray far from equilibrium (right side of Fig 1B), the emergence of sublinear66

density dependence is indeed possible. The key assumption here is that resources are held67
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sufficiently low that consumers never sample the concave-down portion of their uptake functions68

(left side of Fig 1B). Remarkably, given the importance of both conditions for a wide range69

of ecological processes and phenomena, robust evidence, both for or against, is sparse in the70

extreme (but see empirical support for unsaturated resource uptake rates in [13]).71

Another possibility is that the numerical response capturing the conversion of resources into72

individuals/biomass takes a nonlinear functional form that translates, in concert with the re-73

source uptake function, into sublinear density dependence. The convention is to treat the74

numerical response as directly proportional to the resource uptake function (see quota in the75

caption for Fig 1), but empirical evidence justifying this choice or an alternative nonlinear form76

is woefully limited [9].77

Finally, regardless of the functional response, an abrupt form of sublinear density dependence78

can emerge in consumer-resource models if densities are perturbed above equilibrium. Provided79

mortality is independent of resource availability (a common assumption in consumer-resource80

models), the per capita growth rate is bounded below by the mortality rate (i.e., the responses in81

Fig 1B will flat line along the x-axis extended to the right). This behaviour may well contribute82

to the pervasiveness of sublinear fits to experimentally-derived data, where the widely adhered83

to recommendation (for statistical but not necessarily ecological purposes) is to sample densities84

well above equilibrium [14].85

Bridging the gap86

From the diversity-stability debate to higher-order interactions, density dependence is integrally87

relevant to many long-standing and emerging research themes in ecology. Which makes it all the88

more remarkable that there remains such a gulf in understanding of this central phenomenon.89

Nevertheless, it also means there are a wealth of opportunities for original and impactful basic90

research aimed at bridging the gap between mechanistic predictions and phenomenological91

observations. Does the rate of resource uptake accelerate at low resource concentrations for92

most organisms? Do real systems genuinely hover around equilibrium? Or even commonly93

exceed them? Is mortality rate resource-dependent? Answers to these questions, and many94

others, will not only shed much needed light on the nature of density-dependence but also95

provide a stronger foundation from which to tackle more complex phenomena.96
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Figure 1: Direct comparison of explicit resource-dependent (A) and emergent density-dependent
(B) growth responses for consumer-resource models assuming logistic resource supply and type I
(orange), type II (blue) or type III (green) resource uptake functions. Consumer resource models
are of the form dN

dt = N(µ(R) −m); dR
dt = rR(1 − R

K ) − µ(R)QN , where N is the density of the
consumer, R is the concentration of the resource, µ(R) is the resource dependent per capita growth
rate, m is the density independent mortality rate, r is the intrinsic growth rate of the resource, K is
the carrying capacity of the resource, andQ is the resource quota (amount of resource per individual
consumer; an alternative formulation is use the reciprocal of Q in the consumer equations, which
then equates to the yield or numerical response described in the main text). µ(R) can take one of

three forms: µ(R) = aR (type I); µ(R) = aR
k+R (type II); or µ(R) = aR2

k2+R2 (type III). For type I, a is
the linear slope of the relationship between resource uptake / growth and resource availability. For
type II and III, a is the maximum resource uptake / per-capita growth rate, and k is the resource
concentration at which growth is half its maximum. Density-dependent growth functions obtained
by assuming a time-scale separation (resource dynamics much faster than consumer dynamics) and
substituting resource concentration at equilibrium into consumer equations. Grey dashed lines in
A and B denote the density independent mortality rate, m.
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