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Abstract 20 

The myriad interactions among individual plants, animals, microbes and their abiotic environment 21 

generate emergent phenomena that will determine the future of life on Earth. Here, we argue that 22 

holistic ecosystem models – incorporating key biological domains and feedbacks between biotic and 23 

abiotic processes –  capable of predicting emergent phenomena are required if we are to 24 

understand the functioning of complex, terrestrial ecosystems in a rapidly changing planet. We 25 

argue that holistic ecosystem models will provide a framework for integrating the many approaches 26 

used to study ecosystems, including biodiversity science, population and community ecology, soil 27 

science, biogeochemistry, hydrology and climatology. Holistic models will provide new insights into 28 

the nature and importance of feedbacks that cut across scales of space and time, and that connect 29 
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ecosystem domains such as microbes and animals or above and below ground. They will allow us to 30 

critically examine the origins and maintenance of ecosystem stability, resilience and sustainability 31 

through the lens of systems theory, and provide a much-needed boost for conservation and the 32 

management of natural environments. We outline our approach to developing a holistic ecosystem 33 

model – the Virtual Ecosystem – and argue that while the construction of such complex models is 34 

obviously ambitious, it is both feasible and necessary. 35 
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 40 

Introduction 41 

Terrestrial ecosystems are complex systems replete with emergent phenomena that challenge our 42 

understanding and defy prediction. Part of the problem is a mismatch between the goal of ecology, 43 

to understand ecosystems, and the approach of ecologists to that goal, which is largely reductionist. 44 

Fifteen years ago, Drew Purves made the bold statement that it’s “time to model all life on earth,” 45 

(Purves et al. 2013), and went on to lead a team that made a valid claim to having achieved this 46 

ground-breaking feat (Harfoot et al. 2014). Yet even this audacious project embedded compromises: 47 

it focussed on describing processes at global scales, used a highly representation of plant dynamics, 48 

and omitted microbes, and so necessarily did not simulate the local dynamics and cycles of a 49 

complete ecosystem. In the decade since these studies were published, the planet has been assailed 50 

by global catastrophes of drought, floods, epidemic and unprecedented levels of climate warming. 51 

There is an urgent need to develop process-based models that can predict ecosystem responses to 52 

these catastrophic phenomena. This is no easy task: ecosystems have been described as “more 53 

complex than the space station, and more connected than the internet” (Andrew Young, pers. 54 

comm.).  We need models that capture this complexity and connectivity, and rise to the challenge of 55 

predicting how ecosystems will fare in a rapidly changing world.  56 

Ecosystems arise through the interactions of plants, animals, microbes and the abiotic environment. 57 

The actions of individual organisms are driven by their physiology under the dictates of natural 58 

selection, and when connected through a web of interactions give rise to a complex system with 59 

self-regulating and self-maintaining properties. Describing this complexity through empirical 60 

observation is an unrealistic goal, as it would require simultaneous observations of all species, all 61 
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facets of the abiotic environment, and all biotic interactions. Even if such data were available, they 62 

would still be unable to give insight into emergent phenomena arising from non-linear feedbacks 63 

and multiple stable states. Simulation using models provides an alternative, and more tractable, 64 

route to examining these complex features of complex systems, and hence a better understanding 65 

of their consequences. 66 

Despite rapid advancements in the construction of detailed ecological models for terrestrial 67 

ecosystems (Clark et al. 2011, Harfoot et al. 2014, Fatichi et al. 2019, Geary et al. 2020), these are 68 

not yet fully holistic. Our definition of ‘holistic’ encompasses two key aspects: one is the breadth of 69 

processes being incorporated, and the other is the diversity of users that might benefit from such 70 

models. First, holistic ecosystem models should simultaneously encompass the domains of plants, 71 

animals and soil microbes, along with the abiotic drivers that impact those domains (such as 72 

temperature, hydrology and soil chemistry). The closest models that currently exist are the “end-to-73 

end” models that have been used to simulate marine environments for several decades (Christensen 74 

and Walters 2004, Fulton et al. 2011), and have more recently begun to emerge in freshwater 75 

environments (Janssen et al. 2015, Janssen et al. 2019). These models seek to capture the breadth of 76 

components and processes that an ecosystem encompasses (Fulton 2010, Geary et al. 2020), but 77 

they focus mainly on the biological components of the ecosystems and do not yet allow for 78 

feedbacks where the biotic world influences the abiotic. Such feedbacks are common in terrestrial 79 

environments (e.g. trees controlling microclimate (Hardwick et al. 2015) and microbes modifying soil 80 

chemistry (Philippot et al. 2024)), necessitating their inclusion in holistic ecosystem models for 81 

terrestrial environments. The end-to-end models for marine and freshwater environments have 82 

demonstrated a broad suite of powerful applications (Plagányi 2007, Geary et al. 2020), and have set 83 

a benchmark for terrestrial ecologists to emulate.  84 

The second feature of terrestrial holistic ecosystem models is the wide base of users whose 85 

demands can be satisfied from a single, unified framework (Box 1). Such models could 86 

simultaneously help systems ecologists to examine density- or frequency-dependent feedbacks, 87 

disturbance ecologists to predict ecosystem resilience to disturbance, and resource managers to 88 

optimise their management plans. They would have extraordinary potential to deliver new insights 89 

into the structure, function and emergent properties of natural ecosystems. For example, holistic 90 

ecosystem models may present the most viable route to exploring feedbacks across larger temporal 91 

and spatial scales and/or across ecosystem domains, and to test hypotheses about the origins of 92 

ecosystem stability, resilience and sustainability. These models could supercharge field research by 93 

directing attention towards key processes and data gaps, and would be an invaluable tool for guiding 94 

the management of natural environments. 95 
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Inspired by modelling approaches in the marine and freshwater environments, and building on 96 

existing knowledge of simple ecosystems and individual ecosystem domains, we are developing a 97 

terrestrial Virtual Ecosystem that replicates the many connections among individual organisms and 98 

their complex interactions with the abiotic environment. Here, we outline our approach to 99 

developing such a holistic ecosystem model, and illustrate the key ecosystem processes being 100 

simulated and the ecosystem states being predicted. We argue that such models need to be based 101 

on organismal physiology, with an emphasise on environmental temperature as a driving abiotic 102 

factor. We argue that holistic ecosystem models can reveal the emergent properties of ecosystems 103 

that data alone cannot, and highlight new insights that could emerge. Despite the apparent 104 

bewildering level of complexity required to develop such models, we make a positive case for 105 

achieving this ambitious goal. 106 

 107 

The Virtual Ecosystem 108 

We are developing a holistic ecosystem model that is designed explicitly to elucidate ecosystem-109 

level emergent phenomena from the perspectives of a wide variety of users and disciplines: the 110 

Virtual Ecosystem (Box 1; Virtual Ecosystem Project Team 2024). This model is designed to replicate 111 

the basic physiological processes that determine the birth, growth, reproduction and survival of 112 

microbes, plants and animals, and the physical processes that determine microclimate and 113 

hydrology, which in turn affect, and are affected by, the biotic domains (Figure 1). The Virtual 114 

Ecosystem attempts to simultaneously balance the budgets for energy, water, carbon, nitrogen and 115 

phosphorus, which will emerge from cycling of matter through plant, animal and microbial 116 

functional groups. Organismal physiology, including the dependence of vital rates (e.g. birth, death, 117 

metabolism) on temperature and body size (Gillooly et al. 2001, White et al. 2006), drives the biotic 118 

domains of the model, with stoichiometry – the balance of carbon, nitrogen and phosphorus within 119 

organisms (Sterner and Elser 2002, Agren 2008, Cherif and Loreau 2013) – also playing a central role. 120 

There is close coupling between the biotic and abiotic world, and abiotic processes like the 121 

movement of heat and water are based on first-principles physics (Maclean and Klinges 2021). 122 

Finally, we focus on replicating processes across the spatial and temporal scales defined by our set of 123 

user stories (Box 1). These mandate a spatial extent encompassing the typical area of natural area 124 

management that range from 1 to 40,000 ha (UNEP-WCMC and IUCN 2024), and time scales that run 125 

the gamut from short-term management windows (≥ 1 year) to the long-term data series of decades 126 

that are needed to adequately detect changes in ecosystem resilience (Boulton et al. 2022). 127 
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We represent the plant, animal and microbe domains as functional groups, as defined by trophic 128 

interactions, which provides a tractable means of capturing the myriad species interactions that 129 

characterise complex terrestrial ecosystems. We do so because what matters in terms of ecosystem 130 

dynamics and the resulting emergent phenomena is not the taxonomic identity of a species, but 131 

rather the role it plays in ecosystem dynamics be it a primary producer, a consumer or a 132 

decomposer.  Use of functional groups rather than individual species is routinely considered a 133 

necessary trade-off when integrating biodiversity into complex ecosystem models (Geary et al. 134 

2020). Ultimately, it will be computational constraints that limit the diversity of functional groups 135 

that can be incorporated into the model, as the number of among-group interactions that need to 136 

be replicated increase combinatorially with the number of groups. Where appropriate for a user 137 

(Box 1), one or more functional groups can be narrowed down to reflect a target species of interest 138 

(Rüger et al. 2020), allowing for species-specific questions to be addressed within the Virtual 139 

Ecosystem. Moreover, neutral models can be used to estimate the diversity and abundance 140 

distributions of species within functional groups (Fernandes et al. 2022), enabling the Virtual 141 

Ecosystem to address biodiversity questions from a species perspective.  142 

Our first Virtual Ecosystem model is based on the Stability of Altered Forest Ecosystems (SAFE) 143 

Project (Ewers et al. 2011), located in the tropical rainforests of Sabah, Malaysia. Researchers at 144 

SAFE have generated open-access data that encompasses large swathes of the ecosystem 145 

(https://zenodo.org/communities/safe), from the relative abundance and ecosystem energetics of 146 

plant (Both et al. 2019, Döbert et al. 2019), animal (Fayle and Ewers 2018, Sharp et al. 2018, Heon et 147 

al. 2020, Mitchell et al. 2020) and microbial taxa (Tin et al. 2017, Robinson et al. 2020, Elias 2021), to 148 

ecosystem processes (Ewers et al. 2015, Riutta et al. 2019, Mills et al. 2023) and the abiotic 149 

environment (Nainar et al. 2012, Hardwick et al. 2018, Riutta et al. 2020, Drewer et al. 2021).  150 

Our larger goal is to generalise the Virtual Ecosystem once it is tested and validated with the SAFE 151 

data. The basic set of ecosystem processes that drive tropical rainforests are shared in common with 152 

other complex ecosystems. The vital biological processes (e.g. growth, survival and reproduction) 153 

underly the trophic interactions that form the fundamental building blocks of all communities, the 154 

allometries that connect those processes to body size, and abiotic drivers such as temperature and 155 

hydrology, are all universally applicable to all terrestrial ecosystems (Fig. 1). Similarly, the basic 156 

functional groups in a tropical forest are no different to those of other ecosystems. We define 157 

functional groups in terms of trophic interactions (producers, primary consumers and secondary 158 

consumers) and shared organismal characteristics based on taxonomy (e.g. plant vs. invertebrate vs. 159 

vertebrate), physiology (ectothermic vs. endothermic) and morphology (small vs. large bodied). 160 

Theis equivalence of processes and functional groups ensures the basic structure of the Virtual 161 
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Ecosystem will apply across other ecosystems in different geographic locations. That basic structure 162 

would need expanding to encompass large environmental differences: by working in a lowland 163 

tropical forest we have no need to simulate processes related to snow, ice and frost tolerance, for 164 

example. For ecosystems whose dynamics are adequately encompassed by the set of processes 165 

modelled in the Virtual Ecosystem, parameterising them with location-specific biotic and abiotic data 166 

should capture the fundamental similarities and differences among different ecosystem types 167 

(Harfoot et al. 2014, Slevin et al. 2015). 168 

 169 

 170 

 171 
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Figure 1. The key processes incorporated into the Virtual Ecosystem. The model replicates the 172 

ecosystem dynamics in four ecological domains, each constructed as a separate module generating 173 

the dynamics of plants, animals, soil and the abiotic environment respectively. The key metabolic 174 

processes that operate at the scale of individual organisms – plants, animals and microbes – are 175 

incorporated into the plant, faunal, and soil modules respectively. Modules will be dynamically 176 

connected through the transfer of matter and energy. 177 

 178 

The Virtual Ecosystem implements a map of the key states and processes that both describe and 179 

drive complex ecosystems. Our understanding of ecosystem-level connections is an adaptive one, 180 

meaning this map is a continuously evolving thought experiment that is routinely updated in 181 

response to feedback we receive from colleagues and reviewers, and our own learning as we 182 

progress step-by-step through the process of converting the map into code. We use a pattern-183 

oriented modelling approach to ensure we incorporate the minimum number of processes required 184 

to adequately replicate the ecosystem-level patterns being investigated (Grimm et al. 2005, Grimm 185 

et al. 2017). Currently, we have identified roughly 100 state variables that can be measured and 186 

validated, and that are targets for the model to predict. These state variables encompass physical 187 

variables like soil temperature and light intensity, and biological variables like canopy height, the 188 

abundance of animal functional groups, and the ratio of bacteria to fungi in soil. Because the Virtual 189 

Ecosystem is a circular system, each state variable and functional group is both a dependent variable 190 

that responds to changes in downstream parameters and functional groups, and also an input for 191 

state variables and functional groups connected upstream. 192 

The Virtual Ecosystem has approximately 100 processes characterised by that many state variables 193 

(representing variables such as the abundance and biomass of functional groups, and resource pools 194 

such as the quantity of faeces in the soil), through which water, energy and nutrients are either 195 

converted in form or passed from one  functional group or resource pool to another. Example 196 

processes include denitrification, surface runoff, resource acquisition and animal dispersal. Finally, 197 

our thought experiment identifies more than 300 edges connecting the model states to processes. 198 

While daunting, this complexity is manageable for two reasons. First, there is a formidable body of 199 

knowledge that directly examines the large majority those state variables, processes and their 200 

connections, both individually and in combination, giving a theoretical basis to build from. Second, 201 

ecologists have discovered some universal, first-principle rules – such as the scaling of vital rates 202 

with body size and temperature (Brown et al. 2004) – that allow us to represent this complexity in a 203 

tractable way.  204 
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Our modelling framework has a modular structure that largely aligns with the four key domains of an 205 

ecosystem (plants, animals, soil microbes and the abiotic environment; Figure 1) in a spatially and 206 

temporally explicit framework. This modular structure allows users to substitute particular modules 207 

with alternative formulations geared towards a particular ecosystem of interest, should they wish. 208 

We have developed the Virtual Ecosystem using the Python programming environment (Van Rossum 209 

and Drake Jr 1995), an open-source software that is freely available and widely used within our 210 

anticipated user community, and is well-suited to rapid development and adaptation. We use 211 

industry-standard Python coding practices, including enforcing static-type checking (‘mypy’) and 212 

code quality (via ’ruff ’) using the ’pre-commit’ framework. We run comprehensive unit testing using 213 

’pytest ’ to ensure consistent behaviour of code updates. All new code is accepted through peer-214 

reviewed pull requests to the development branch that must pass quality checks. The code is 215 

publicly available from GitHub (https://github.com/ImperialCollegeLondon/virtual_ecosystem) to 216 

facilitate community engagement with model development. 217 

 218 

------------------------------------------------------------------------------------------------------------------------------------ 219 

Box 1 220 

User stories are a project management tool used to help define what would constitute success for a 221 

project. Here, we list eight example user stories of equal importance that would define success for a 222 

holistic ecosystem model. For the model to be considered fully successful, the requirements of all 223 

user stories would need to be met. 224 

1. As a systems ecologist, I will be able to identify any core components and sub-networks that 225 

exert strong control over the full system dynamics, so that I can understand the mechanisms 226 

underlying ecosystem stability. 227 

2. As a disturbance ecologist, I will be able to track the attenuation of external perturbations 228 

through the system, so that I can understand the mechanisms underlying ecosystem 229 

resilience. 230 

3. As a sustainability scientist, I will be able to calculate the rate at which ecosystem services 231 

are provided, so that I can make predictions about the long-term sustainability of the 232 

ecosystem. 233 

4. As a biogeochemist, I will be able to track the flow of carbon, nitrogen and phosphorus 234 

through the ecosystem, so that I can quantify elemental balances and residence times. 235 

5. As a hydrologist, I will be able to predict the frequency and magnitude of flood events, so 236 

that I can design downstream flood defences. 237 
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6. As a field ecologist, I will be able to identify knowledge gaps that significantly impair our 238 

ability to predict ecosystem dynamics, so that I can prioritise future data collection activities. 239 

7. As an applied ecologist, I will be able to examine the impact of climate change and extreme 240 

climatic events on ecosystem dynamics, so that I can predict the likely future state of the 241 

ecosystem. 242 

8. As a resource manager, I will be able to predict the outcomes of competing sets of 243 

management strategies, so that I can make informed decisions about implementing cost-244 

effective management actions. 245 

------------------------------------------------------------------------------------------------------------------------------------ 246 

 247 

First principles, organismal physiology and environmental temperature 248 

Our goal is to build a holistic ecosystem model based on first principles: replicating ecological 249 

processes to predict empirically observed patterns, and to predict how these patterns may change 250 

under ongoing anthropogenic perturbations (e.g. climate change, habitat destruction, and logging). 251 

This approach ensures the Virtual Ecosystem is rooted in ecological theory and provides a strong 252 

basis for predicting future outcomes under hitherto unobserved environmental conditions (Evans et 253 

al. 2012, Connolly et al. 2017). Moreover, a process-based modelling approach can help avoid the 254 

potential problems with overfitting  that can arise when models are parameterised using empirical 255 

data and subsequently validated with the same data (Schuwirth et al. 2019, Dittmer et al. 2023). 256 

Overfitting represents an extremely pervasive and difficult problem when dealing with large and 257 

complex systems (San Miguel et al. 2012, Dittmer et al. 2023), which terrestrial ecosystems 258 

undoubtedly are.  259 

We argue that a holistic ecosystem model building from first principles must start with the 260 

physiology of individual organisms – the “elementary particles of all ecological systems” (Evans et al. 261 

2012). A common set of processes – photosynthesis, respiration and metabolism – underlie all life, 262 

and it is these processes that we collectively refer to as “physiology.” The survival, growth and 263 

reproduction of any individual organism is ultimately driven by its ability to meet their metabolic, 264 

energetic and stoichiometric – i.e. their physiological – needs. These basic physiological processes 265 

therefore underpin all trophic (consumer-resource) interactions that take place in the ecosystem 266 

and can, in turn, become a dominant cause of mortality. Physiology, then, drives the interactions 267 

among organisms and functional groups, which in turn gives rise to population and community 268 

dynamics, and ultimately the emergent properties of ecosystems. These basic principles apply 269 

regardless of which life domain an organism belongs to.  270 
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The biochemical processes such as reaction kinetics and enzyme activation that underlie organismal 271 

physiology are all temperature-dependent. Endotherms regulate their body temperature to ensure 272 

their biochemical process rates are largely decoupled from the environmental temperature in which 273 

they exist. But ecosystems are dominated by ectotherms rather than endotherms (Bar-On et al. 274 

2018), and the biochemistry and physiology of ectotherms are strongly linked to environmental 275 

temperature (e.g. Kern et al. 2015), Moreover, endotherms are indirectly affected by temperature 276 

due to their interactions with ectothermic resources, mutualists and natural enemies. Temperature, 277 

therefore, must also play an integral role in a holistic ecosystem model. The single word 278 

“temperature,” however, hides a world of variation. Soil scientists focus on soil temperature, plant 279 

ecophysiologists on leaf temperature, and invertebrate ecologists on ground- or litter-layer air 280 

temperature. Moreover, to understand soil microbial respiration rates, what matters is the mean 281 

and distribution of soil temperatures (Liu et al. 2018), whereas invertebrate development rates are 282 

more commonly linked to cumulative temperatures and degree days (Quinn 2017), and mortality of 283 

larger organisms is more likely driven by extreme temperatures (Ratnayake et al. 2019). In the 284 

Virtual Ecosystem, then, we have chosen to model microclimate – temperature and humidity – from 285 

the top of the canopy to below the ground as part of the holistic ecosystem model, ensuring the 286 

model predicts all elements of environmental temperature that matter for organismal physiology. 287 

 288 

From general ecosystem models to holistic ecosystem models 289 

There have been a number of general ecosystem models developed since Odum’s (1957) 290 

groundbreaking effort to study the Silver Springs aquatic ecosystem – the first general ecosystem 291 

model. A number of general ecosystem models have since been developed (e.g. Fitz et al. 1996, 292 

Kimball et al. 1997, McKane et al. 1997, Clein et al. 2000, Childress et al. 2002, Harfoot et al. 2014). 293 

There is an even larger set of models have been developed to investigate ecosystem dynamics 294 

without claiming to be general ecosystem models (e.g. Dickinson and Henderson-Sellers 1988, Harris 295 

et al. 2004, Best et al. 2011, Clark et al. 2011, Fatichi et al. 2012, Maxwell and Condon 2016). The 296 

problem, however, is that all of these modelling attempts omit one or more of the key domains of 297 

terrestrial ecosystems: plants, animals, microbes and/or the abiotic environment. 298 

There are examples of ecosystem models that encompass each of the domains of plants, animals, 299 

soil microbes and the abiotic environment. For example, basic physiological principles have been 300 

used to replicate patterns of animal biomass and trophic structures (Harfoot et al. 2014), the 301 

enzymatic processes that generate soil microbial respiration have been modelled (Sihi et al. 2018, 302 

Fatichi et al. 2019), and there are multiple examples of microclimate (Kearney et al. 2014, Maclean 303 
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and Klinges 2021) and hydrological models (Paniconi and Putti 2015). The most recent crop of 304 

general ecosystem models have begun to connect these pieces.  These models focus on investigating 305 

tree dynamics while incorporating tree physiological, hydrological and biogeochemical processes 306 

(e.g. Best et al. 2011, Clark et al. 2011, Fatichi et al. 2012, Fyllas et al. 2014, Christoffersen et al. 307 

2016, Maréchaux and Chave 2017, Rödig et al. 2017), although they still mostly ignore the role of 308 

animals (Harfoot et al. 2014) and soil microbes (Crowther et al. 2019). This void exists despite newly 309 

emerging evidence that animals may consume as much as half of net primary productivity (Malhi et 310 

al. 2022), and that microbes may control rates of soil organic matter turnover (Crowther et al. 2019) 311 

and even plant species composition (Yan et al. 2022). Ecosystems are efficient nutrient recyclers and 312 

everything that lives must eventually decompose (Wardle 2002). However, even advanced 313 

ecosystem simulators routinely gloss over the decomposition half of the dynamics that drive an 314 

ecosystem.  315 

Encouragingly, progress is being made in connecting those domains, albeit largely in a pairwise 316 

fashion. Examples include the use of optimality theory (Prentice et al. 2014) to connect microclimate 317 

with plant ecophysiology (Joshi et al. 2022), linking evapotranspiration to hydrological regimes 318 

(Sandoval et al. 2023), connecting hydrological and biological dynamics above- and below-ground 319 

(Childress et al. 2002), and tying hydrometeorology to the carbon cycle (Paschalis et al. 2015). At the 320 

other extreme, heavily simplified ecosystem models have been generated that connect the domains 321 

of plant, animal and soil microbes to biogeochemical cycles (Zou et al. 2016, Rizzuto et al. 2024). To 322 

date, however, these provide only highly abstracted representations of real-world systems, 323 

investigating the connections among domains without considering processes occurring within those 324 

domains. If we are to understand the workings of complex ecosystems and predict their future in an 325 

ever-changing world, we need realistic depictions of the key biotic interactions and their feedbacks 326 

with abiotic drivers. 327 

We argue that holistic ecosystem models like the Virtual Ecosystem hold the promise for developing 328 

a more universal modelling framework above and beyond that provided by the current generation of 329 

general ecosystem models. Such a framework will focus on how physiological processes at the 330 

organismal level translate into higher level processes driven by the interactions among organisms 331 

and ecosystem domains. It will encompass a broader set of processes within each domain, building 332 

on basic physiological processes to connect them with the demographic processes of birth, growth, 333 

reproduction and mortality, and the interactions such as predation, competition and mutualism that 334 

drive population and community dynamics. The holistic approach will track the movement of matter 335 

within and among domains, balancing the budgets for energy, water and carbon, as well as key 336 

nutrients such as nitrogen and phosphorus. Moreover, those biogeochemical cycles will be directly 337 
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connected to the demography of the living organisms that consume, store and process those 338 

nutrients. By necessity, this will require the movement of matter among domains, such as the 339 

consumption of plants by animals, and the recycling of nutrients through the decomposition of dead 340 

organisms in the soil.  341 

 342 

Novel insights to be gained from holistic ecosystem models 343 

Unifying perspectives and getting the right answer for the right reason 344 

The questions that theoretical and applied ecologists ask are as varied as the systems they study. 345 

Ecologists are an extraordinarily diverse group of scientists, encompassing biodiversity scientists, 346 

population and community ecologists, soil scientists, biogeochemists, hydrologists, climate scientists 347 

and everything in between (see Box 1). Members from every corner of this diverse group of 348 

researchers could all descend on the same ecosystem at the same time, collect their data and, based 349 

on their understanding of their particular domain, generate defensible conclusions about how the 350 

system works and what the most important parts of the system are. A whole system understanding 351 

needs to unify their answers, and should make it impossible to get the “right” answer for the 352 

“wrong” reason. If we can accurately predict population dynamics of key species, for example, but 353 

doing so leads to a predicted nitrogen budget that is wildly imbalanced, then our system-level 354 

understanding is incomplete. We argue that all of these perspectives on an ecosystem should be 355 

reconcilable because they are, after all, describing exactly the same system at exactly the same time. 356 

A holistic ecosystem model should encompass the needs of the diverse group of scientists that wish 357 

to study a given ecosystem. Each of our different user groups (Box 1)may have different opinions as 358 

to what “matters” in an ecosystem, and all of these focal points are important: none are more right 359 

or more wrong than any other. What does matter, however, is that ecology delivers a framework 360 

that allows these diverse viewpoints on a single system to be reconciled within a common 361 

framework. Holistic ecosystem models like the Virtual Ecosystem constitute a key step towards 362 

achieving this goal. 363 

 364 

The role of cross-scale and cross-domain feedbacks 365 

Any ecosystem has thousands upon thousands of individual interactions among organisms and their 366 

environment operating simultaneously at any given time, and the web of connections among those 367 

interactions generates positive and negative feedback loops. Stable ecological systems typically arise 368 

when positive feedbacks are dampened (Coyte et al. 2015) and negative feedbacks are strengthened 369 
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(Landi et al. 2018), but exactly what are the feedbacks in complex ecosystems and how does the 370 

balance of negative and positive forces emerge?  371 

Feedbacks in complex ecosystems arise from biotic interactions within and between functional 372 

groups, which themselves occur within and between domains.  Abiotic factors cannot in themselves 373 

generate these density- and frequency-dependent feedbacks, but can alter their strength and 374 

magnitude.  For example, interactions between non-linear feedback loops and environmental 375 

variability at the scale of a functional group or domain can lead to the emergence of new 376 

phenomena. These new phenomena cannot be predicted solely by the lower scale functional group 377 

or domain dynamics in the absence of environmental variability at those lower scales.  This is the 378 

idea of scale transition (Chesson 2012) that underpins the cross-domain and cross-scale feedbacks 379 

that abound in complex ecosystems.  Complex ecosystems have myriad, non-linear feedback loops, 380 

the net outcome of which determines the overall system dynamics.  The advantage of holistic 381 

ecosystem models such as Virtual Ecosystem is that the focus on the key biotic interactions and 382 

abiotic drivers ensure that these feedbacks arise naturally and are resolved as they transition from 383 

one spatial and/or temporal scale to another.  As a result, these models can reliably characterize the 384 

overall ecosystem dynamics, as well as predict how these dynamics may change under altered 385 

environmental conditions.   386 

Indeed, examples of cross-scale and cross-domain feedbacks abound. Bacteria operate at temporal 387 

and spatial scales that are orders of magnitude smaller than those of elephants, which in turn are 388 

orders of magnitude smaller than those of long-lived tropical trees, and yet there are strong, 389 

pairwise feedbacks between these domains (Coyte et al. 2015, Beugnon et al. 2021, Li et al. 2022, 390 

Ong et al. 2023). Other closely coupled feedbacks occur at very high frequency, such as the 391 

connection between photosynthesis in the canopy domain and soil moisture in the soil domain 392 

(Joshi et al. 2022). Consumer-resource feedbacks can similarly operate in concert, despite clear 393 

biological differences between interacting functional groups. For example, the fractal scaling of body 394 

sizes ensures large animals can feed simultaneously with small animals (Holling 1992), causing high 395 

frequency resource competition among functional groups whose physiology varies over multiple 396 

orders of magnitude in body size. At larger spatial and temporal scales, low level resource flows 397 

across habitat compartments can increase the stability of food webs (Huxel and McCann 1998), 398 

suggesting functional groups that serve to connect ecosystem domains – such as those that forage 399 

both on the ground and in the canopy – might be key determinants of ecosystem stability. Finally, 400 

the connections of the nitrogen and phosphorus cycles among the domains of plants, soil and soil 401 

microbes are poorly described, yet the fact that those connections exist (Čapek et al. 2018) means 402 

the underlying cross-domain feedbacks must also exist. 403 



14 
 

There are often substantial knowledge gaps in how individuals, energy and matter interact across 404 

scales and between ecosystem domains, but these have potential to generate powerful feedbacks 405 

and emergent phenomena (e.g. Knight et al. 2005, Kamaru et al. 2024). If we are to understand 406 

emerging ecological patterns, we have to be able to elucidate the sign and magnitude of cross-scale 407 

and cross-domain feedback loops. This is because the characteristic signatures observed at larger 408 

scales invariably result from processes acting at smaller scales. For example, root-microbe 409 

interactions that operate belowground and at hourly time scales can determine aboveground carbon 410 

storage in trees over decadal time scales (Jevon and Lang 2022). The same scale transition is 411 

observed when non-random patterns of seedling mortality at ground level on the scale of days and 412 

months (Engelbrecht et al. 2007, Comita et al. 2010) might result in seemingly neutral coexistence of 413 

adult trees in a forest canopy on the scale of centuries (Hubbell 2001), because density-dependence 414 

has already operated on the seedling stage and is no longer apparent when adult trees are studied in 415 

isolation. These hidden feedbacks that cross scales and domains can represent powerful forces that 416 

determine the structure and dynamics of ecosystems, and models that replicate those processes 417 

across similarly diverse scales and domains will be required to gain insight into their actions. 418 

 419 

Mechanisms of stability, resilience and sustainability 420 

Natural environments generate ecosystem services through the combined actions of millions of 421 

interacting individual plants, animals and microbes all growing, respiring and reproducing 422 

simultaneously. This web of interactions in turn determines the stability (Tylianakis et al. 2006, Karp 423 

et al. 2011), resilience (Karp et al. 2011, Ewers et al. 2015) and sustainability (Fontaine et al. 2005, 424 

Wagg et al. 2014) of those ecosystem services. Yet exactly how the physiological processes 425 

underlying individual growth, survival and reproduction translate into ecosystem services, and 426 

whether this transition can continue to occur unimpeded in a changing world, are questions that 427 

defy easy answers (Wagg et al. 2014). 428 

Field experiments can reveal the dynamical outcomes of individual ecological processes within a 429 

habitat, but experiments to understand emergent system properties are seldom tractable (Fayle et 430 

al. 2015). Yet many of the desired traits for ecosystems are emergent phenomena such as stability, 431 

resilience and sustainability, all of which arise from the non-linear feedbacks that occur within and 432 

between different ecosystem components. Holistic ecosystem models like the Virtual Ecosystem 433 

provide a way to integrate behaviour from individual processes into a virtual environment, and 434 

thereby provide a more pragmatic tool for exploring what controls the emergent properties of 435 

complex ecosystems (Peck 2004). This will open the door for using systems theory to test explicit 436 
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hypotheses about the origins and maintenance of stability, resilience and sustainability (Figure 2). 437 

For example, systems theory suggests that highly connected actors within complex systems can form 438 

core networks that exert strong control over emergent system properties (Kitano 2002, Mariani et 439 

al. 2019), but are there any such core actors in ecosystems (Fig. 2b)? Moreover, how does this 440 

complex systems concept of core actors relate to ecological concepts such as ecosystem engineers 441 

(Jones et al. 1994), keystone species and keystone communities (Mouquet et al. 2013)? Similarly, do 442 

ecosystems buffer the impact of external perturbations by diffusing their impacts through the many 443 

actors and organisational layers that comprise the system (Mariani et al. 2019), and can this explain 444 

the origin of ecosystem resilience (Suweis et al. 2015) (Fig. 2c)? And finally, to what extent can 445 

ecosystems sustainably deliver ecosystem services in the face of external environmental pressure 446 

(Fig. 2d)? Questions of this nature cannot be answered through the collection of empirical data 447 

alone, or through models that cannot realistically capture the many feedbacks and cross-domain 448 

processes that connect real-world ecosystems. They can, however, be tackled with the tools 449 

provided by holistic ecosystem models. 450 

 451 

 452 

Figure 2. Three hypotheses about the emergent properties of rainforest ecosystems that can be 453 

tested using holistic ecosystem models. (a) A representation of a simplified ecosystem model adapted 454 

from Zou et al. (2016). Circles represent mineral nutrients (N), primary producers (P), herbivores (H), 455 

carnivores (C), detritus (D), decomposers (B) and the predators of decomposers (F). Black arrows 456 

indicate the flux of nutrients between system components. Red sunburst indicates a direct impact of 457 

an environmental perturbation on one component, illustrated here as an impact of climate change 458 

on primary producers. (b) Connected components – quantified by metrics such as closeness centrality 459 

(Jordán et al. 2007) – exert stronger control over system stability. (c) Components that are more 460 

distantly linked – quantified by metrics such as path length (Fath et al. 2019) – to environmental 461 

perturbations have increased resilience to that perturbation. (d) Stocks of ecosystem services are 462 

sustainable in a steady state system, but become unsustainable in perturbed ecosystems. 463 
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 464 

Better understanding is a prerequisite for better conservation 465 

Holistic ecosystem models have the potential to become a powerful tool for managing natural 466 

environments. Conservation may often focus on single species or single threats (Geary et al. 2020), 467 

but by ignoring the many interactions, feedback loops and dependencies among species and 468 

ecosystem domains, the resulting conservation actions can generate perverse ecological outcomes 469 

(e.g. Zavaleta et al. 2001, Buckley and Han 2014, Skern-Mauritzen et al. 2016, Geary et al. 2020). 470 

Holistic ecosystem models present the opportunity to implement whole ecosystem management 471 

through a priori adaptive management: running a virtual experiment on a set of feasible 472 

management strategies and choosing the most cost-effective one to implement, without waiting for 473 

years for field results before improving the existing management plan. Understanding the likely 474 

impact of a conservation intervention before committing to that intervention represents a 475 

bottleneck in conservation planning that empirical data is struggling to fill (Christie et al. 2020). 476 

Moreover, many experiments must run for years or even decades to get the results needed to 477 

inform decisions that must be made now (Cusser et al. 2020, Naidu et al. 2022). The fact that they 478 

can be experimented on makes a holistic ecosystem model a powerful tool in adaptive management 479 

(Geary et al. 2020). Simulation experiments, conducted in the virtual world rather than the real 480 

world, can get results faster and cheaper than matching field experiments, and without running into 481 

ethical concerns about experimenting with threatened landscapes or species (Crozier and Schulte-482 

Hostedde 2015).  483 

In silico experiments on system models have been used to great effect in aiding decision making in 484 

economics (Burgess et al. 2013) and healthcare (Marshall et al. 2016), including guiding responses to 485 

the COVID-19 pandemic (McBryde et al. 2020), and have long been a central component of public 486 

and policy discussions around climate change (Steffen et al. 2020). We anticipate similar benefits 487 

could be obtained from holistic ecosystem models. Examining model outcomes in response to 488 

potential conservation interventions can give insight into the likely effectiveness of those 489 

interventions, potentially saving time and money by identifying ineffective actions before 490 

implementing them. This approach will also empower adaptative management approaches 491 

(Westgate et al. 2013), particularly in time-sensitive situations involving highly threatened 492 

ecosystems where we lack time to implement and then learn from a set of conservation actions. 493 

Similarly, holistic ecosystem models are more likely to predict how indirect effects might cascade 494 

through an ecosystem (Kamaru et al. 2024), helping avoid unintended outcomes from conservation 495 

interventions (Zavaleta et al. 2001, Larrosa et al. 2016, Pearson et al. 2022), and thereby preventing 496 

the solution to one problem from becoming the origin of another. Finally, models could be used to 497 
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aid complex management decisions about how to optimise the value of an ecosystem when that 498 

ecosystem provides multiple values which might trade-off against each other (Rodríguez et al. 2006). 499 

Dynamic simulations using carefully parameterised, holistic ecosystem models provide a viable and 500 

tractable tool for predicting the optimal combinations of management actions to guide the 501 

behaviour of complex systems such as natural environments towards a desired, future state. 502 

 503 

History tells us holistic ecosystem models are feasible 504 

There is no doubt that constructing a holistic ecosystem model, like the Virtual Ecosystem, is an 505 

ambitious goal. But is it feasible? The history of modelling complex systems gives us cause to believe 506 

that it is. Across the breadth of the natural sciences, the trajectory has been clear: systems of ever-507 

increasing complexity have been tackled and successfully replicated in computer models, and 508 

complex models that were once considered impossible have been successfully constructed. For 509 

example, the modelling community that first attempted to construct global digital vegetation models 510 

(e.g. Prentice et al. 1992, Neilson and Marks 1994, Foley et al. 1996) endured numerous 511 

conversations in which they had to defend the feasibility of their goals (Colin Prentice, pers. comm.), 512 

and yet these are now a standard component of global climate models (e.g. Drüke et al. 2021, O'ishi 513 

et al. 2021). Similarly ambitious attempts have been made to construct the first models of soil 514 

microbial systems (Fatichi et al. 2019) and to replicate the basic patterns of animal life at planetary 515 

scale (Harfoot et al. 2014). And finally, the class of general ecosystem models that has emerged over 516 

the past decade has begun to successfully tie together multiple ecosystem domains, knitting plant 517 

ecophysiology with microclimate (Joshi et al. 2022), hydrology (Sandoval et al. 2023), 518 

biogeochemistry (Paschalis et al. 2015) and soil microbial processes (Sihi et al. 2018, Fatichi et al. 519 

2019). It remains now to tie all of these ecosystem domains together into a single, unified ecosystem 520 

model. We see holistic ecosystem models as a logical next step, and the history of pushing the limits 521 

of what can be done, and of having succeeded when pushing those limits, gives us confidence that 522 

this next step is achievable. 523 
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