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Abstract 1 

The growth rate of a microorganism is a simple yet profound way to quantify its impact 2 

on the world. Microbial fitness in the environment depends on the ability to reproduce quickly 3 

when conditions are favorable and adopt a survival physiology when conditions worsen, which 4 

cells coordinate by adjusting their growth rate. At the population level, per capita growth rate is a 5 

sensitive metric of fitness, linking survival and reproduction to the ecology and evolution of 6 

populations. The absolute growth rate of a microbial population reflects rates of resource 7 

assimilation, biomass production, and element transformation, some of the many ways that 8 

organisms affect Earth’s ecosystems and climate. For soil microorganisms, most of our 9 

understanding of growth is based on observations made in culture. This is a crucial limitation 10 

given that many soil microbes are not readily cultured and in vitro conditions are unlikely to 11 

reflect conditions in the wild. New approaches in ‘omics and stable isotope probing make it 12 

possible to sensitively measure growth rates of microbial assemblages and individual taxa in 13 

nature, and to couple these measurements to biogeochemical fluxes. Microbial ecologists can 14 

now explore how the growth rates of taxa with known traits and evolutionary histories respond to 15 

changes in resource availability, environmental conditions, and interactions with other 16 

organisms. We anticipate that quantitative and scalable data on the growth rates of soil 17 

microorganisms will allow scientists to test and refine ecological theory and advance process-18 

based models of carbon flux, nutrient uptake, and ecosystem productivity. Measurements of in 19 

situ microbial growth rates provide insights into the ecology of populations and can be used to 20 

quantitatively link microbial diversity to soil biogeochemistry. 21 

22 
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Introduction 23 

Achieving growth in the face of a changing environment is the most fundamental challenge 24 

for microorganisms living in soil. Microbial growth requires the coordination of a cell’s system-25 

level physiology, including the extraction of energy and substrates from the environment, 26 

synthesis of hundreds of molecules at appropriate concentrations, and the events of cell division. 27 

All of this coordination has to be done in such a way as to allow the cell to modify its activities 28 

depending on changes in its surrounding environment – often on a very short time scale. With 29 

millions of years of evolution, soil microorganisms have developed a range of strategies for 30 

growing in diverse environments; they grow in extreme cold and heat, in highly acidic and 31 

alkaline habitats, on the inside and outside of plant roots, and in the bedrock of soil. 32 

Microorganisms have wide-ranging metabolic capabilities and can capitalize on diverse redox 33 

pairs and reactions that occur not only within but also among cells representing multiple domains 34 

of life1.  35 

As soil microorganisms grow, they assimilate, transform, and redistribute key elements in 36 

their environment2, with far-reaching consequences for Earth’s ecosystems and climate. 37 

Microbial acquisition of phosphorus and sulfur for growth mobilizes these elements from their 38 

geological reservoirs, where they typically reside for thousands to millions of years, and transfers 39 

them into dynamic biotic pools with much shorter residence times, often on the scale of weeks to 40 

months3,4. Assimilation and retention of nutrients like nitrogen (N) and phosphorus in microbial 41 

biomass can constrain plant growth and limit the capacity of ecosystems to capture carbon (C) 42 

from the atmosphere5. When microorganisms transform substrates through redox reactions, they 43 

can amplify the radiative forcing of greenhouse gas molecules, intensifying the impacts that 44 

these molecules have on Earth’s climate6.  45 
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Growth rate quantifies these interactions with the world. At the cellular level, 46 

microorganisms grow by synthesizing the macromolecules that make up cells and growth rate is 47 

a powerful index of how microorganisms adjust their physiology in response to a changing 48 

environment. Since stress-resistant physiological configurations hinder the ability of cells to 49 

grow quickly7, many microbial species have developed distinct phenotypes for stressful versus 50 

growth-conducive environments. These phenotypes vary profoundly, not only in their rates of 51 

growth, but also in their central C metabolic networks8, cell sizes, and macromolecular 52 

compositions9. The evolution of distinct growth phenotypes is linked to genetic mutations that 53 

affect global gene regulation10, suggesting that growth rate may be evolutionarily related to a 54 

range of traits that impact how microbes survive in soils, including the synthesis of extracellular 55 

polymeric substances (EPS)11, motility12, nutrient uptake pathways13, and even mortality rate14. 56 

At the population level, growth occurs when reproduction outpaces mortality. Per capita 57 

growth rate (the change in abundance relative to the starting size of the population) measures 58 

how well microorganisms compete for resources and respond to challenges associated with 59 

stress, competition, and predation. Evolutionary fitness depends on the persistence of an 60 

organism’s genes in the population gene pool15, meaning that quantitative metrics of fitness 61 

should ideally reflect both reproduction and survival16. If high reproductive rates are offset by 62 

high rates of mortality, the long-term persistence of lineages carrying those genes (i.e. relative 63 

fitness) is lower than that of lineages with the same reproductive rate in a population with little 64 

mortality, differences that are captured by a microorganism’s per capita growth rate17. Per capita 65 

growth rates can also quantify the intensity of intraspecific interactions, such as density 66 

dependence resulting from competition18,19, and interspecific interactions, such as competition, 67 

predation, and mutualism20. 68 
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Absolute growth rate, or the actual change in mass or abundance per unit time, reflects rates 69 

of microbial element assimilation and use. Along with absolute mortality rate, absolute growth 70 

rate determines the standing stock of microbial biomass and the interactions with other 71 

microorganisms and the environment, ultimately driving changes in the taxonomic makeup of 72 

entire communities. Given that soil microorganisms can exist in a range of physiological states 73 

and exhibit rapid turnover, often with minimal changes in the standing stock of biomass, 74 

assessing microbial abundance alone is a poor predictor of element flux21–25. Rates of absolute 75 

growth and mortality are needed to quantify the turnover of elements through microorganisms 76 

per unit time. Such metrics provide a powerful means for mapping element flux through entire 77 

assemblages and testing the impacts of microbial biodiversity on C and nutrient cycling at the 78 

ecosystem scale22.  79 

While plant and animal growth in nature is routinely measured, microbial growth is typically 80 

studied in the laboratory under highly artificial conditions. Most often, the maximum growth 81 

rates of culturable organisms are assessed during exponential phase in resource-rich media. 82 

Although many recent developments in soil ecology invoke microbial growth rates26–38, growth 83 

rates of soil microorganisms in situ are difficult to measure and interpret. New approaches24,39–41 84 

leveraging ‘omics technologies and stable isotope probing (SIP) make it possible to measure 85 

microbial growth rates in situ, capturing the phylogenetic and metabolic diversity of actively 86 

growing populations in soil and making it possible to better understand the microbial 87 

contributions to soil biogeochemical processes. 88 

 89 

Measurements of microbial growth rates in soil 90 
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Current estimates of soil microbial generation times vary enormously, spanning at least four 91 

orders of magnitude from ~43 minutes to ~ 2 years (Figure 1). Such variation may be a product 92 

of SIP-based methods that target different biomolecules, such as DNA, proteins, or lipids with 93 

varying turnover rates, contingent on the cell’s physiological state. During exponential growth, 94 

cells synthesize macromolecules at near-constant differential rates and divide at a particular 95 

mass. Under these conditions of balanced growth, growth rate sets key cellular phenotypes like 96 

cell size and the mass fractions of nucleic acids, proteins, and lipids. In nature, where 97 

microorganisms exist in a range of states from exponential growth to dormancy, relationships 98 

between replicative growth and rates of macromolecular synthesis may not always be so tightly 99 

coupled.  Applying multiple methods that measure synthesis rates of various macromolecules 100 

would be an excellent way to explore the physiological adjustments that allow microorganisms 101 

to strike a balance between survival and proliferation in soil. For example, in response to 102 

extreme C limitation, microorganisms may undergo reductive division42, simultaneously 103 

catabolizing lipids for energy43 and replicating other cellular constituents in order to divide into 104 

smaller and more stress resistant cells, which could be explored using SIP approaches targeting 105 

lipid24 and DNA39,44 synthesis. Entirely different networks of regulatory molecules are 106 

responsible for coordinating cell growth and division during different phases of growth, 107 

demonstrating that the strategies microorganisms employ to grow and survive in nature may 108 

differ profoundly from those used during exponential growth in culture.  109 

 Most measurements quantify relative growth rate, useful for understanding how 110 

microorganisms respond to challenges in the environment. However, measurements of absolute 111 

growth rate – which quantify the actual change in mass or abundance of microorganisms over 112 

time – are needed to understand how microorganisms transform and redistribute elements 113 
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through ecosystems. New approaches that convert rates of tracer uptake to growth in terms of C 114 

units are major advances22,45, but it is still a major challenge to accurately estimate absolute 115 

changes in mass and abundance using these approaches. Adopting and developing protocols that 116 

quantify the efficiency of DNA46, protein, and lipid47 extractions would advance these efforts. 117 

Most measurements of soil microbial growth quantify the growth rates of whole 118 

microbial assemblages, which result in a single estimate for a soil sample, an aggregate of 119 

thousands of microbial populations. A single population of plants can suppress N availability48, 120 

and a single population of animals can modify soil disturbance49. The tremendous biodiversity of 121 

soil microorganisms means that individual microbial populations should also have profound 122 

influence on ecosystems 50,51. New methods that quantify the growth rates of individual 123 

microbial taxa24,39–41 are promising avenues for developing quantitative links between specific 124 

microbial taxa and soil processes. Estimates of growth from over 46,000 measurements of rates 125 

of DNA synthesis show tremendous variation in growth rates among bacterial groups in soil and 126 

indicate that most microorganisms exhibit low to intermediate growth rates (Figure 2). The 127 

growth rate of an individual taxon is not clearly related to its abundance, a finding that aligns 128 

with previous observations from LH-SIP24 demonstrating that faster growing taxa are not 129 

necessarily more abundant in soil since population growth can be matched or outpaced by 130 

mortality19.  131 

Measurements of growth rate in soil indicate that bacterial groups also vary in their rates 132 

of resource use and responses to changes in nutrient availability52–54, temperature55–58, 133 

disturbance18,59,60, mineralogy61, and climate gradients62,63. Microbial contributions to C 134 

assimilation and respiration22 and N assimilation64 appear to be highly taxon-specific, and this 135 

variation appears to be meaningful when scaled to the ecosystem level22. Such measurements 136 
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offer a new set of data for testing and developing representations of C and N cycling that include 137 

representations of microbial diversity. Measurements of growth rate have also shown how 138 

interactions among soil microorganisms – including competition65, mutualism23, and 139 

predation66,67 – can influence element flux through the soil microbiome too, just as interactions 140 

between plants and animals influence ecosystem processes.  141 

Measurements of growth rate have a clear place in testing the role of ecological theory in 142 

soil microbial ecology, too. Like macroscopic organisms, microbial phenotypes in soil are 143 

constrained by their evolutionary histories68–71. Phenomena such as negative density dependence 144 

and r/K selection theory are key for understanding population growth of larger organisms, but 145 

these concepts have failed to explain patterns in the growth of microbes in situ 19,72. As such 146 

there is a great need for evidence-based ecological frameworks that are built on direct 147 

observations of soil microbiomes73. Moving forward, quantitative data on soil microbial growth 148 

rates should be integrated into tests of microbial ecological theory and used to refine process-149 

based models of element flux and ecosystem productivity.  150 

 151 

Relevance to soil ecology 152 

The diversity, physiology, and ecology of microorganisms influence biogeochemical 153 

cycling, soil organic matter (SOM) formation and loss, and plant productivity, with implications 154 

for pollution, food supply, and climate. Soil biogeochemical process rates are rarely measured 155 

simultaneously with microbial growth, but doing so could offer powerful insight into how 156 

microbes contribute to these processes and could help discover new tools for managing the soil 157 

microbiome. 158 

  159 
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Microbial physiology and soil organic C cycling 160 

The physiological properties of microorganisms play a key role in governing the 161 

formation and loss of SOM stocks74,75 that are vital for mitigating C emissions and enhancing the 162 

sustainability of agricultural systems76. Measurements of in situ soil microbial growth could be 163 

used to inform and test emerging hypotheses on soil organic C (SOC) cycling. For example, low 164 

molecular weight C substrates are hypothesized to increase the accrual of mineral-associated 165 

organic matter derived from microbial necromass, a large and slowly-cycling C reservoir, by 166 

promoting fast and efficient microbial growth and turnover at the assemblage level77–80. 167 

However, the relationships between substrate quality, microbial growth rate, and physiological 168 

traits are complex. The growth rates of soil microbes have been both positively81,82 and 169 

negatively77,83 linked to growth efficiency, and taxa are known to vary in their rates of growth on 170 

low versus high molecular weight C substrates70,84. Establishing quantitative relationships 171 

between the taxonomic composition, growth rate, and growth efficiency of microbial 172 

assemblages is needed to advance our conceptual understanding of SOC cycling. 173 

Microbial processes affecting soil C accrual and persistence, including growth rate, are 174 

represented in some numerical models of SOC cycling26–30,33. These microbially explicit 175 

biogeochemical models can be used to integrate measurements of microbial growth with 176 

mechanistic understanding of SOC responses to environmental changes. For example, 177 

formulations of microbial dormancy29 and density dependent growth85 can improve predictions 178 

of SOC dynamics at the ecosystem scale. At the global scale, modeling growth efficiency in soil 179 

is key to predicting soil C stocks86, suggesting growth rate may be an important factor to 180 

consider in these large-scale geochemical models. Additional measurements of soil microbial 181 

growth rates in nature will provide the data needed to test conceptual and quantitative models of 182 
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how microbes influence the soil C cycle. There is a clear need for direct measurements of in situ 183 

growth rates to better understand the roles of the microbial community – and of individual 184 

microbial genes, metabolic pathways, and taxa – as conduits of energy and element cycling 185 

through soils.  186 

  187 

Microbial diversity and ecological strategies concepts 188 

Amidst a wealth of archived genomic, transcriptomic, and proteomic data, frameworks 189 

categorizing the ecological strategies of soil microorganisms have emerged to integrate these 190 

data with biogeochemical concepts and mechanistic models87–89. Such frameworks are valuable 191 

given that they can effectively reduce complex microbial assemblages into a manageable number 192 

of functional groups and provide a basis for generating effective, hypothesis-driven insights into 193 

soil microbial ecology90. Collectively, these frameworks represent diverse hypotheses about 194 

interactions between microbial community structure and soil processes.  195 

Many microbial frameworks have been derived from classic ecological theory (i.e., 196 

theory primarily developed from conceptual models of plant life history strategies) and these 197 

microbial frameworks often lack experimental validation. For example, ecological strategies are 198 

commonly assigned based on taxonomy88 but tests of whether microorganisms use their assigned 199 

strategies in nature are rare72. Alternatively, broad ecological strategies can be identified based 200 

on genomic features87 and gene expression91, but our ability to translate microbial genes to 201 

function is nascent.  202 

Evidence-based tests of ecological frameworks are now possible. As an essential property 203 

of an organism’s life history and metric of competitive ability, in situ growth rate has a direct 204 

role in validating frameworks that build on classical ecological theory. As a metric of fitness, 205 
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growth rate could be assayed in multiple environments to determine whether evolutionary 206 

adaptation to a selective environment has been accompanied by a loss of reproductive potential 207 

in nonselective environments – in other words, whether a tradeoff has occurred. Quantifying the 208 

growth of organisms where they actually live and grow also provides access to a broader suite of 209 

trait dimensions than can be extrapolated from pure culture studies. Direct, in situ growth rate 210 

measurements could thus provide powerful, empirical means to develop alternative ways of 211 

organizing soil microbial diversity into ecologically meaningful units. Coupling these with 212 

measures of nutrient and energy fluxes will help test links between community composition and 213 

ecosystem dynamics. 214 

 215 

Ecological interactions and soil food webs 216 

Microorganisms influence energy flow and alter rates of nutrient cycling through their 217 

interactions with other microorganisms92. For example, predation in the rhizosphere changes the 218 

taxonomic structure of prokaryotic communities and alters rates of N mineralization, influencing 219 

productivity93. Mutualistic interactions between microbial taxa can drive depolymerization of 220 

complex C compounds94 and antagonistic interactions can influence growth and mortality rates 221 

through negative density dependence18, altering rates of C turnover from microbial biomass85. 222 

Taxon specific growth rates are a valuable tool for assessing microbial interactions in which one 223 

soil microorganism influences another by altering its growth, reproduction, or any trait impacting 224 

fitness. 225 

Growth rates of microbial taxa could help construct accurate food webs, as opposed to 226 

static measurements of microbial biomass95 which are a poor surrogate for growth (Figure 3b). 227 

Food webs are an excellent tool for modelling the connectivity of microorganisms and 228 
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quantifying how energy and elements are transferred between microbial taxa96. Consistent with 229 

observations that top-down control of food webs increases with productivity, obligate microbial 230 

predators respond to shifts in prey resource availability by disproportionately increasing their 231 

rates of growth (compared to non-predator taxa) when C substrates, a common source of energy 232 

for their heterotrophic prey, are added to soil66. Food web structure is widely recognized to be a 233 

major determinant of productivity and element flux in marine and freshwater ecosystems, and 234 

may play an equally important role in soil ecosystems too. In particular, the CUE of microbial 235 

assemblages is important for modelling SOC cycling at the global scale86 and microbial turnover 236 

may be significant sources of variation in this parameter97. Measurements of growth, along with 237 

mortality, can be used to quantify turnover and taxon-specific measurements of growth can 238 

identify factors, like predation and density-dependent effects, that contribute to its variation. 239 

 240 

Conclusion 241 

There is an urgent need to improve our quantitative understanding of how microorganisms 242 

contribute to soil processes, given their central role in ecosystem C storage, nutrient cycling, and 243 

productivity. Growth rate integrates the many ways that microbes affect soil processes, and is a 244 

sensitive metric for studying cell and population-level responses to challenges that 245 

microorganisms encounter in nature, including challenges from changes in environmental 246 

conditions and biotic interactions. New approaches for measuring in situ microbial growth are 247 

important for accurately estimating the full range of growth rates in soils and offer a promising 248 

avenue to advance soil ecology. Understanding how microbial growth rates vary in the 249 

environment will enable greater cohesion between emerging ecological concepts and 250 

microbiological data. As soil ecological concepts and models are developed, it is critical that 251 
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quantitative and sensitive measurements of in situ microbial growth be used alongside 252 

measurements of biogeochemical fluxes to understand how individual microbial taxa and 253 

aggregate microbial communities influence soil processes. 254 

 255 

Methods 256 

Relative growth rates of soil microbial assemblages 257 

 We compiled published estimates of relative growth rates of soil microbial assemblages, 258 

measured using seven common techniques: H2
18O SIP with IRMS, H2

18O qSIP, thymidine 259 

incorporation, leucine incorporation, acetate incorporation, lipidomic hydrogen SIP, and soil C 260 

mass balance modelling. We obtained estimates of relative growth rate from secondary 261 

sources24,40 for the thymidine incorporation, leucine incorporation, acetate incorporation, 262 

lipidomic hydrogen SIP, and mass balance modelling methods. For H2
18O SIP with IRMS 263 

method, we searched papers citing Spohn et al. 2016 (the study that developed the method) and 264 

included measurements from papers that clearly reported growth rate or turnover time, sample 265 

preparation techniques, and mean and errors values. For the H2
18O qSIP method, we computed 266 

estimates of relative growth rate as the average of population relative growth rates across taxa. 267 

For all methods, we did not include soils that were contaminated with metals or soils that 268 

received additions of fertilizer, glucose, biochar, or microbial growth inhibitors in our dataset. In 269 

total we collected data from 30 studies and 287 measurements of relative growth rate of 270 

microbial assemblages (Supplementary Table 1). 271 

 272 

Relative growth rates of soil microbial amplicon sequence variants  273 
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We extracted values of excess atom fraction (EAF) 18O from qSIP measurements 274 

compiled across 15 different sites (Supplementary Table 2) and estimated bacterial growth rates 275 

based on the rate 18O assimilation from 18O-labeled water. All qSIP measurements involved 276 

parallel incubations, with samples receiving either isotopically labeled (e.g., 97 atom % 18O-277 

H2O) or unlabeled substrates (e.g., water with natural abundance 18O). The incubations lasted for 278 

7.4 ± 1.8 days (average ± SD). After each incubation, DNA was extracted and subjected to 279 

density separation via isopycnic centrifugation. Density fractions were collected, the 16S rRNA 280 

gene was sequenced, and the total abundance of 16S rRNA gene copies in each fraction was 281 

quantified using qPCR. Quantitative stable isotope probing calculations were then applied to 282 

estimate EAF 18O39,40.  283 

Values of EAF 18O that were negative or above the theoretical maximum enrichment of 284 

microbial DNA (EAFmax) are physically impossible and were considered outliers if variation 285 

among technical replicates was high (defined here as SD > 0.15) or the estimate was more than 286 

1.5 standard deviations away from that taxon’s average EAF 18O across all replicates in all 287 

experiments. EAFmax is computed as the product of the isotopic composition of soil water in each 288 

incubation (determined as a function of the amount of 97 atom % 18O water added and total soil 289 

water content) and the fraction of oxygen atoms in newly synthesized DNA that are derived from 290 

environmental water, which was set to 0.640. Out of 47,580 observations of EAF 18O, 492 291 

observations were identified as outliers and removed. A density correction was performed to 292 

account for slight differences in the preparation of the CsCl density gradient solution of each 293 

replicate69 and any remaining negative estimates of EAF 18O (a total of 4,358) were corrected to 294 

zero. A total of 3,719 estimates of EAF 18O remained above EAFmax, likely reflecting rapid 295 
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microbial growth and assimilation of 18O from additional sources like organic matter or prey 296 

biomass. These values were corrected to EAFmax-0.00298.  297 

The relative growth rate (RGR) for each taxon was estimated according to using the EAF 298 

18O of individual bacterial taxa (EAF) and the duration of the incubation (t) in days as: 299 

RGR (day
-1)= 

EAF 18O

EAFmax 18O
 × 

1

t
 300 

We applied a lower threshold of 0.002 EAF 18O when computing relative growth rates98 meaning 301 

that if an ASV was enriched less than 0.002 EAF 18O it was considered to have an EAF 18O 302 

value of 0. Multiple qSIP measurements were conducted across the 15 sites, including 303 

experiments within some sites (Supplementary Table 2).  304 

 305 

Statistical analyses 306 

We analyzed our database of growth rates of microbial assemblages to assess the 307 

influence of different ecosystems and methodological characteristics. To understand the extent 308 

that growth rate may not be independent from each other within studies, we compared a linear 309 

model against a mixed effects model, where study (i.e., paper) was coded as a random effect, 310 

using log-likelihood ratio testing and Akaike Information Criterion corrected for finite sample 311 

size (AICc) and Bayesian Information Criterion (BIC). Study was coded as a random effect 312 

(allowing for independent intercepts) in the mixed model (lme4 R package99). In both models, all 313 

methodological details (ecosystem, method, depth, incubation length in days, and whether soils 314 

were prepared as slurries) were included as fixed effects. Comparing the difference in model fit 315 

between the linear model and mixed model, we found a slight increase in model performance due 316 

to adding the random term (X2 = 4.88, p = 0.027;  AICc = -10.66) but BIC suggested that the 317 

increase in model complexity may not be justified (BIC = 14.32). For this analysis we chose to 318 
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prioritize model simplicity and therefore report on linear model outputs. To determine the most 319 

important methodological variables driving relative growth rates, we use AICc and BIC to select 320 

the best, most parsimonious, statistical model from a set of candidate models (Supplementary 321 

Table 3). We considered all combinations of main effects as well as the interaction between 322 

ecosystem and method. The best model included ecosystem, method, and depth as significant 323 

predictors of microbial assemblage relative growth rates (R2 = 0.24, ecosystem: F3, 273 = 2.94 324 

p=0.03, method: F4, 273 = 22.13, p < 0.001, depth: F2, 273 = 12.39 p < 0.001).  325 

Lastly, we used linear regression to test the relationship between an ASV’s growth rate measured 326 

with H2
18O qSIP and its abundance in soil. The output of the linear model was y=1.5e-7+3.6e-2 (p 327 

= <0.001, r2= 0.06). All statistical analyses were performed in R version 4.2.2.   328 
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Table 1. Descriptions, characteristics, published estimates of average generation times of soil microbial assemblages, and challenges associated with 565 

methods for measuring growth rate in soil. References are provided in Supplementary Table 3. “NA” indicates average generation time is not 566 

calculable. 567 

 568 

Microbial biomass carbon production rate 

Approach Description Generation times Characteristics Challenges 

H2
18O SIP with 

IRMS 

Growth rates of soil microbial assemblages are 

estimated by incubating soil with 18O-labelled water 

or water vapor for several days. The rate of 18O 

incorporation into microbial DNA is quantified 

using a thermochemical elemental analyzer 

(TC/EA) coupled to an Isotope Ratio Mass 

Spectrometer (IRMS) which approximates 

microbial DNA biomass synthesis1,2. 

2.67-761 days3,4 Captures the gross growth of microbial 

assemblages through biosynthesis over 

relatively short (days) periods of time 

before significant biomass turnover. 

Valuable for measuring gross growth of 

microbial assemblages. 

Soil environment may interfere 

with microbial biomass and DNA 

extractions5,6. Assumption that 

water is the only source of 

oxygen for growth may 

underestimate growth rate6. 

Approaches that use additions of 
18O-water may overestimate 

growth due to rewetting effects2.  

DNA synthesis rate 

Approach Description Generation times Characteristics Challenges 

H2
18O 

quantitative SIP 

(qSIP) 

Growth rates of soil microbial taxa are estimated by 

incubating soil with 18O-labelled water or water 

vapor for several days. The rate of 18O incorporation 

into taxon-specific DNA is quantified using a 

combination DNA density fractionation via 

isopycnic centrifugation, DNA sequencing, and 

modeling of isotope substitution in DNA. 18O 

incorporation rate approximates microbial DNA 

biomass synthesis and is used to model population 

growth and mortality rates7,8,9. 

2.99-34.7 days10,11 Measures the gross growth of microbial 

populations through biosynthesis over 

relatively short (days) periods of time 

before significant biomass turnover. 

Valuable for measuring gross growth 

and mortality rates of individual 

microbial amplicon sequence variants 

(ASVs) or metagenome-assembled 

genomes (MAGs). 

Soil environment may interfere 

with DNA extractions. 

Approaches that use additions of 
18O-water may overestimate 

growth due to rewetting effects2. 



   

 

   

 

Thymidine 

incorporation 

Growth rates of soil bacterial assemblages are 

estimated by incubating bacterial cell extracts with 

radiolabeled thymidine, a precursor for DNA 

synthesis, for several hours. Incorporation rate of 

thymidine into cells is quantified using liquid 

scintillation which approximates bacterial DNA 

biomass synthesis12. 

0.75 – 168 days13,14 Captures the gross growth of bacterial 

assemblages through biosynthesis over 

short (hours) periods of time before 

significant biomass turnover. Valuable 

for measuring gross growth of bacterial 

assemblages. 

Not all bacteria are able to 

incorporate extracellular 

thymidine into DNA15. Growth 

rates in bacterial suspension may 

not reflect growth rates of the 

assemblage in the original soil 

environment13. Amending soil 

with carbon sources and nutrients 

may stimulate microbial growth. 

Peak to trough 

ratio (iREP, 

GRiD, DEMIC) 

Relative growth rates of bacterial taxa are estimated 

based on patterns of read coverage in metagenomic 

sequence data. Read coverage reflects the growth 

rate of bacterial since more genome copies 

accumulate at the origin of replication compared to 

the terminus in circular bacterial genomes during 

growth16-19. 

NA Infers the relative growth rates of 

bacterial taxa through genome 

replication. Estimates represent an 

inference of instantaneous growth rate 

at the time of sample collection before 

DNA extraction. Valuable for 

interpreting the growth status of 

bacteria in a wide range of 

metagenomic datasets. 

There has been limited validation 

of this approach in naturally 

occurring soil microbial 

assemblages. Current PTR 

methods may not reliably predict 

in situ growth rates in naturally 

occurring bacterial assemblages20. 

BrdU uptake Relative growth rates of soil bacterial taxa are 

estimated by incubating bacterial cell extracts with 

5-bromo-2′-deoxyuridine (BrdU), an analog of the 

DNA precursor thymidine, for a few days. Cell that 

are synthesizing new DNA and incorporate BrdU 

are isolated by immunocapture and can be 

characterized using amplicon or metagenomic 

sequencing21,22. 

NA Measures the relative growth rates of 

soil microbial taxa through biosynthesis 

over relatively short (days) periods of 

time before significant biomass 

turnover. Valuable for identifying 

growing microbial taxa and their 

responses to environmental 

perturbations. 

Many microbial taxa do not 

incorporate exogenous thymidine 

analogs into their DNA23 and 

there can be up to 10-fold 

variation among taxa in BrdU 

incorporation rates leading to 

skewed or incomplete 

representations of active 

populations24. Approaches that 

use additions of water may 

overestimate growth due to 

rewetting effects2. 

Lipid synthesis rate 

Approach Description Generation times Characteristics Challenges 



   

 

   

 

Lipidomic 

hydrogen stable 

isotope probing 

(LH-SIP) 

Growth rates of soil microbial taxa are estimated by 

incubating soil with 2H-labelled water for several 

days. The rate of 2H incorporation into compound-

specific membrane lipids is quantified using gas 

chromatography/pyrolysis/isotope ratio mass 

spectrometry (GC/P/IRMS). 2H incorporation rate 

approximates lipid membrane biomass synthesis 

and growth rate of broad taxonomic groups25. 

20-64 days25 Captures the growth of microorganisms 

over relatively short (days) periods of 

time before significant biomass 

turnover. Valuable for sensitively 

measuring gross growth of microbial 

assemblages, especially those 

exhibiting slow growth, as IRMS 

captures minute levels of 2H 

incorporation.  Growth rates can be 

distinguished at the phylum level as 

well as by functional groups (e.g., 

methanotrophs, methanogens, fungi, 

AMF, anaerobes, cyanobacteria, etc.). 

Approaches that use additions of 

water may overestimate growth 

due to rewetting effects2,26. Lipid 

biomarkers are only 

taxonomically resolved at the 

phylum level or among various 

functional groups27. 

Acetate 

incorporation 

Growth rates of soil fungal assemblages are 

estimated by incubating soil slurries with 

radiolabeled acetate for several hours and 

measuring the incorporation of acetate into the 

fungal-specific lipid ergosterol. Incorporation rate 

of acetate into ergosterol is quantified using liquid 

scintillation which approximates fungal lipid 

biomass synthesis28. 

0.94-468 days29,30 Captures the gross growth of fungal 

assemblages through biosynthesis over 

short (hours) periods of time before 

significant biomass turnover. Valuable 

for measuring gross growth of fungal 

assemblages. 

Growth rates in soil slurries may 

not reflect growth rates of the 

assemblage in the original soil 

environment26. Amending soil 

with carbon sources and nutrients 

may stimulate microbial growth. 

Protein synthesis rate 

Approach Description Generation times Characteristics Challenges 

Leucine 

incorporation 

Growth rates of soil bacterial assemblages are 

estimated by incubating bacterial cell extracts with 

radiolabeled leucine, a precursor for protein 

synthesis, for several hours. Incorporation rate of 

leucine into cells is quantified using liquid 

scintillation approximates bacterial protein biomass 

synthesis31,32. 

0.70-142 days13,33 Captures the gross growth of bacterial 

assemblages through biosynthesis over 

short (hours) periods of time before 

significant biomass turnover. Valuable 

for measuring gross growth of bacterial 

assemblages. 

Growth rates in bacterial 

suspension may not reflect 

growth rates of the assemblage in 

the original soil environment13. 

Amending soil with carbon 

sources and nutrients may 

stimulate microbial growth. 

Maximum potential growth rate 



   

 

   

 

Approach Description Generation times Characteristics Challenges 

Codon usage 

bias 

Maximum potential growth rates of soil microbial 

taxa are estimated from genomes based on the 

degree to which a genome or MAG favors one set 

of codons to encode an amino acid. Codon usage 

bias and growth are correlated due to selection 

pressure for highly expressed genes to use the 

optimal codons for translation, resulting in some 

codons being used more than others34. 

0.03-0.19 days34,35 Infers the maximum potential growth 

rate of microbial taxa. In contrast to in 

situ growth rate, maximum potential 

growth rate is an inferred physiological 

strategy rather than a field observation. 

The value in this approach is as a 

starting point for modeling population 

dynamics and evaluating the growth 

potential of organisms represented by 

MAGs in sequencing datasets. 

There has been limited validation 

of this approach in naturally 

occurring microbial assemblages. 

CUB appears to works reasonably 

well for fast growing  prokaryotes 

that can be binned into a high-

quality MAG34. 

Carbon flux through microbial biomass rate 

Approach Description Generation times Characteristics Challenges 

Soil C mass 

balance 

modeling 

Growth rates of soil microbial assemblages are 

modelled from soil microbial biomass and annual 

litter input rates as:    

u = [Y/x * dL/Dt - a]/(1-y) 
 

where u is growth rate, dL/dt is the rate of litter 

inputs, x is microbial biomass, Y is the yield 

coefficient, and a is the specific maintenance 

rate36,37. 

3.3-632 days37,38 Integrates drivers from population and 

assemblage scales as well as time-

dependent factors such as biomass 

turnover and the recycling of 

necromass in estimates of growth rate. 

Provides a measure of assemblage-level 

growth via biosynthesis plus mortality 

and necromass recycling across 

generations of cells. Valuable as an 

ecosystem-level measure of microbial 

biomass turnover over longer time 

scales. 

Parameters for maintenance and 

growth yields are challenging to 

quantify for soil microbial 

assemblages. 
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Figure 1: Published estimates of growth rates of soil microbial assemblages in agricultural, 570 

forest, grassland, and tundra ecosystems. Estimates span four orders of magnitude (0.0009-571 

1.98 day-1) in studies using H2
18O SIP with IRMS, H2

18O qSIP, thymidine incorporation, leucine 572 

incorporation, acetate incorporation, lipidomic hydrogen SIP (LH-SIP), and soil C mass balance 573 

modelling. The y-axis is log10 transformed. Additional study information is shown in 574 

Supplementary Table 1. 575 

  



   

 

   

 

Figure 2: Relative growth rates of soil bacterial and archaeal taxa measured by H2
18O qSIP 

across 13 sites and five ecosystems: tropical forest, temperate grassland, temperate conifer 

forest, boreal forest, and moist acidic tundra. a) Distribution of in situ relative growth rates of 

amplicon sequence variants (ASVs). Most ASVs exhibit low to intermediate rates of growth. b) 

Average relative growth rates of bacterial and archaeal ASVs against their abundances (linear 

model; p < 0.001, r2 = 0.0001). ASV sequencing abundances were converted to absolute abundance 

based on the number of 16S rRNA gene copies per gram of dry soil. C) Distribution of relative 

growth rates of bacterial and archaeal phyla. The middle line corresponds to the median, lower and 

upper edges correspond to the first and third quartiles, and whiskers extend to the highest and 

lowest point within 150% of the interquartile range. All estimates from growth were measured at 

approximately room temperature. Additional study information shown in Supplementary Table 2.

 


