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Abstract 25 

The assessment of thermal tolerance holds significant importance in predicting the 26 

physiological responses of ectotherms, particularly in elucidating their capacity for 27 

evolutionary adaptation in the context of global warming. Current approaches to assessing 28 

thermal tolerance have limitations that can lead to misleading results, especially with regard 29 

to the heritability of thermal limits. In this study, we examined twenty isogenic lines of 30 

Drosophila melanogaster from the DGRP panel to characterize their thermal death time (TDT) 31 

curves, which account for the duration and intensity of heat stress. Furthermore, we examined 32 

the extent of genetic variation in the two parameters that characterize TDT curves, namely 33 

CTmax and thermal sensitivity z. Our analysis revealed evidence of genetic (co)variation for 34 

both parameters. Results from simulations of the evolutionary consequences of selection on 35 

CTmax and z suggest that directional selection to increase CTmax will also increase z as a 36 

correlated response. However, directional selection to increase z may have the opposite 37 

effect. We conclude that the evolution of thermosensitive or thermotolerant strategies is better 38 

achieved by directional selection to decrease or increase CTmax, which may aid in mitigating 39 

the effects of global warming on ectotherms. 40 

 41 

Keywords: global warming, heritability, isogenic lines, thermal death time curves 42 

  43 



1. Introduction 44 

There is substantial evidence pointing to an unprecedented rise in the temperature of our 45 

planet. According to climate models, if the present warming trends persist, the surface 46 

temperature of the Earth's surface will surpass the average at the end of the 19th century by 47 

1.5ºC [1]. It is not surprising that this rise will have repercussions on the biota present on our 48 

planet, particularly for animals such as ectotherms, whose physiological processes are closely 49 

linked to ambient temperature [2,3]. Climate change is already having an impact at the 50 

demographic level. Many species are shifting their ranges, often towards cooler regions [4], 51 

while others are threatened with extinction [5]. There is ample evidence that some species 52 

might be able to adapt to rising temperatures through the evolution of heritable stress-tolerant 53 

phenotypes [6]. Some lineages are already able to withstand high temperatures [7], while 54 

others show phenotypic plasticity [8], and some species may evolve in response to warming 55 

[6,9]. Assessing the adaptive capacity and heritability of heat tolerance is challenging, as 56 

inaccuracies in models can lead to either under- or overestimation of vulnerability to climate 57 

change [10,11]. 58 

The current debate about the evolutionary potential of heat tolerance in ectotherms 59 

can be summarized in two main points. First, there is the notion that ectotherms possess 60 

limited plasticity for heat tolerance, suggesting that heat tolerance is both evolutionary and 61 

physiologically fixed. Natural selection appears to affect physiological responses to lower 62 

temperatures more than to higher temperatures [12]. Interspecific studies - i.e., among species 63 

- have failed to detect genetic variability in heat tolerance, variation between species and 64 

populations, and a lack of latitudinal diversity [13,14]. Likewise, selection and heritability 65 

experiments on single species suggest limited increases in upper thermal limits. Second, a 66 

complicating factor in understanding the genetic basis of upper thermal limits is that these are 67 

to some extent affected by methodological issues [for a review, see 12]. Heat tolerance is 68 

often estimated using ramping assays to assess upper critical thermal limits (CTmax), which 69 

are the maximum ambient temperatures that an ectotherm can tolerate under a given 70 

experimental condition before succumbing to heat [15]. However, this approach is difficult to 71 

replicate at the individual level, especially when mortality is the measured endpoint [11]. The 72 

conclusion of these studies is clear and suggests a limited evolutionary potential for 73 

ectotherms to increase their ability to tolerate high temperatures. Despite the possibility of 74 

methodological issues underestimating the actual evolutionary potential to withstand 75 

increasing temperatures [10], it is imperative to acknowledge that CTmax is merely a 76 

component of the more intricate trait "thermal tolerance" [16]. 77 

An increasing number of studies have employed thermal death time (TDT) curves to 78 

measure heat tolerance [17–22]. However, the extent to which TDT curves reflect evolutionary 79 

changes within a species remains unclear. TDT curves imply that an individual's survival 80 

probability is influenced by both temperature and exposure time [23], and may provide a more 81 

nuanced view of the two reasons mentioned above for the ongoing debate. In this context, we 82 

take advantage of recent research using the Drosophila Genetic Reference Panel (DGRP) 83 

[16,24] to investigate the genetic variation  of heat tolerance in Drosophila melanogaster using 84 

TDT curves. The wild-type DGRP lines of this panel are derived from a single natural 85 

population and have been inbred to homozygosity, providing extensive information on genetic 86 

variation at multiple levels [25] and offering unique opportunities to quantify the genetic basis 87 

of physiological traits such as heat tolerance. 88 



2. Material and methods 89 

(a) Experimental flies and rearing conditions 90 

Twenty inbred, isogenic wild-type Drosophila melanogaster (Meigen 1830) lines from the 91 

Drosophila Genetic Reference Panel (DGRP) were used as the study model. These lines were 92 

previously employed in a study with a different objective [19], and we assume that this subset 93 

represents an approximately random collection with respect to the focus of interest described 94 

here.  95 

 All twenty selected lines were obtained from the Bloomington Drosophila Stock Center 96 

in March 2018. They were maintained in quarantine on standard cornmeal-agar-yeast media 97 

at room temperature (approximately 22°C) for four generations until May 2018. The rearing 98 

conditions were identical to those detailed in Leiva et al. [19]. 99 

(b) Thermal death time (TDT) curves 100 

We measured the heat tolerance of individual female and male flies using a similar 101 

experimental protocol as outlined in Verspagen et al. [22]. This involved using a heating 102 

circulating bath and a wireless thermometer to measure temperature consistently throughout 103 

each trial. Individual virgin flies were placed in sealed 4-mL glass vials, arranged on a 104 

Plexiglas™ rack, and submerged in a 9.5-L glass aquarium filled with water set to a constant 105 

temperature of 36, 37, 38, or 39°C. During each trial, a Nikon D5300 with the time-lapse 106 

feature captured images at 10-second intervals. Subsequently, the compiled images were 107 

transformed into reversed videos using the open-source software Blender. Before initiating 108 

the thermal tolerance experiments, the flies were allowed approximately 30 minutes in the 109 

vials at room temperature for recovery following light CO2 anaesthesia. This recovery period 110 

proved effective, as the flies exhibited active flying or walking inside the vial. 111 

 A total of 1,686 flies underwent survival time measurements, and the parameters of 112 

the thermal death time (TDT) curves (CTmax and z) were calculated for each DGRP line and 113 

sex. The calculation utilized the equation outlined in Rezende et al. [23]: 114 

𝑙𝑜𝑔10 𝑡 =
CTmax − 𝑇

𝑧
      (1) 115 

where t represents the survival time in minutes, CTmax is the temperature (°C) where the 116 

survival time is log10 t = 0 after 1 min of exposure to assay temperature, T is the assay 117 

temperature (°C), and the thermal sensitivity z is the temperature change (°C) required for a 118 

ten-fold difference in survival time. We maintained control over assay temperature (T) and 119 

measured time (t) as the dependent variable. The estimation of CTmax and z for each DGRP 120 

line and sex involved regression analysis of log10-transformed survival times against the four 121 

temperature treatments. 122 

(c) Estimation of variance components and broad-sense heritability of CTmax and z 123 

For each DGRP genotype, we first assessed the effect of stressful temperatures (covariate) 124 

on survival time (in 𝑙𝑜𝑔10 𝑚𝑖𝑛) by using for each sex the following general mixed ANCOVA 125 

model that allows separating slopes and intercepts: 126 



𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 =  𝛽0 +  𝛽1 ∙ 𝑠𝑡𝑟𝑒𝑠𝑠 𝑇𝑎 +  𝜇0𝑍 + 𝜇1𝑍 ∙ 𝑠𝑡𝑟𝑒𝑠𝑠 𝑇𝑎 + 𝜀  (2) 127 

where 128 

β0 and β1: intercept and slope of the fixed effect of stress temperature stressTa,  129 

μ0~N(0,G1,1): vector of random coefficients representing the effect of each genotype on β0, 130 

μ1~N(0,G2,2): vector of random coefficients representing the effect of each genotype on β1, 131 

Z: Design matrix (array of dummy variables) representing the genotypes, 132 

G: variance-covariance matrix for the random effects, 133 

ε: vector of random errors 134 

We fitted linear mixed-effects models [26] and obtained various estimates of the 135 

variance components �̂��̂�0𝑖

2
 (𝑖 = 1, ⋯ ,20), �̂��̂�1𝑖

2
 and �̂�𝜀

2
 (caret denotes “estimate”) that refer, 136 

respectively, to the variation in the intercepts and slopes of the TDT curves for the DGRP 137 

genotypes, and the residual variation. Model coefficients and variance components were then 138 

used to estimate CTmax = β1/β0 and z = -1/β1, whose Taylor expanded variances [27, p. 240], 139 

became, 140 
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We then estimated broad-sense heritability as: 144 
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    (5) 150 

is the appropriate mean value of the number of flies from each sex and DGRP line used at 152 

each stressful temperature to estimate the TDT curves [28, p. 212] The reason we divided the 153 

residual variance by 𝑛0 is because we are using line means [29].  In our case 𝑛0 = 10.2480 154 

for females and 𝑛0 = 10.8055 for males.  155 

 Delete-one-DRGP genotype at a time data resampling was also carried out to estimate 156 

the genetic components of variance and their standard errors [30]. A total of 20 pseudovalues 157 

for each sex were obtained by dropping, in turn, each DGRP line and calculating: 158 

𝜙ì = 𝑁�̂�𝑁 − (𝑁 − 1)�̂�𝑁−1,𝑖, 160 

    (6) 159 

where 𝜙ì is the ith pseudovalue, �̂�𝑁 is the corresponding variance estimate using all 𝑁 = 20 161 

DGRP genotypes, and  �̂�𝑁−1,𝑖 is that estimate by dropping the ith DGRP genotype alone. The 162 

jackknife estimate is the average of 𝜙ì , and its standard error is given by 163 

SE =√
∑ (𝜙𝑖 − �̄�)2𝑖=𝑁

𝑖=1

𝑁(𝑁 − 1)
. 165 

     (7) 164 

 Approximate 95% jackknife confidence intervals were obtained as �̄� ± 2 SE. Initially, 166 

the analyses for computing variance components and heritability were implemented by MS in 167 

MATLAB. To enhance reproducibility, FPL and EJN replicated the analyses and implemented 168 

them in R version 4.3.2 [31]. The data used in these analyses were based on a recently 169 

reported study [19,32]. 170 

(d) Hypothetical selection on the TDT curves 171 

 172 
Appropriate estimates of the additive-genetic G and phenotypic P (co)variance matrices in an 173 

outbred Drosophila population are needed to explore the hypothetical evolutionary 174 

consequences of selection on CTmax and z from the multivariate breeder’s equation 𝛥𝜇 =175 

𝐺𝛽 = GP−1𝑠. Here, the term 𝛥𝜇 is the vector of changes in trait means, 𝛽 is the vector of 176 

selection gradients, and 𝑠 is the vector of selection differentials [33,34]. 177 

 178 

 The estimates of genetic variance-covariance components and broad-sense 179 

heritability in the highly inbred DGRP lines yield only the relative contributions of CTmax and 180 

z to the total genetic variance in the TDT curves [see 29]. To our knowledge, there are no 181 

estimates of the narrow-sense heritability of TDT curves. Current evidence suggests that 182 

CTmax (estimated by different methodologies) is moderately heritable, and it seems 183 

reasonable to assume that its narrow-sense heritability is ℎCTmax
2 ≈ 0.25 [35–37]. Based on 184 



this information and the relative contribution of CTmax and z to the total genetic variance of 185 

TDT curves, we approached the hypothetical consequences of several selective scenarios on 186 

the evolution of thermal tolerance (represented by these two parameters in the TDT curves) 187 

in an outbred population. Note that this will be “what-if” scenarios and more accurate estimates 188 

of G and P would be needed for a more satisfactory answer.  189 

3. Results 190 

(a) Determination of TDT curves and variance components  191 

 192 

We observed substantial variation in thermal death time (TDT) curves across genetic lines for 193 

both females and males (Figure 1). At 36°C, the average survival times (± SD) were 150 ± 47 194 

minutes for females and 111 ± 41.6 minutes for males. These durations decreased 195 

significantly at 39°C, with females surviving for 12.7 ± 5.13 minutes and males for 14.7 ± 5.6 196 

minutes on average. Notably, this variation in thermal tolerance across genetic lines was 197 

consistently observed for both sexes (Figure 1). 198 

 199 

Table 1 provides estimates of the variance-covariance components and broad-sense 200 

heritability using different methods for estimating parameters in the linear mixed-effects model. 201 

These estimates were highly consistent across the various methods of estimation. As 202 

indicated by the jackknife 95% confidence intervals, all variance components were 203 

significantly different from zero. Furthermore, the genetic covariance between 𝛽0and 𝛽1 was 204 

negative. Broad-sense heritability was around 0.75 for CTmax and around 0.25 for z. In other 205 

words, CTmax accounts for approximately 75% and z accounts for approximately 25% of the 206 

total genetic variance in the TDT curves. 207 

 208 

 209 
Figure 1. Thermal death time (y-axis in log10-scale) curves for females (left) and males (top). Dots 210 

represent the individual survival time for females (green, left plot) and males (brown, right plot). 211 

 212 

 213 
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Table 1. Estimates of variance-covariance components and broad-sense heritability using various 215 

methods for estimating parameters in the linear mixed-effects model. 216 
Method Component Females Males 

  Estimate Jackknife Lower 

95% CI 

Upper 

95% CI 

Estimate Jackknife Lower 

95% CI 

Upper 95% 

CI 

ANOVA �̂�
�̂�0𝑖

2  4.611517 4.611517 1.497235 7.725798 8.513706 8.513706 2.164972 14.862439 

 �̂��̂�1𝑖

2  0.003349 0.003349 0.001044 0.005654 0.006193 0.006193 0.001611 0.010775 

 𝐶𝑜𝑣(�̂�0, �̂�1)  -0.124158 -0.124158 -0.208805 -0.039511 -0.229524 -0.229524 -0.400045 -0.059003 

 𝜎𝜀
2 0.025323 0.025350 0.017416 0.033283 0.022589 0.022626 0.016258 0.028993 

 𝜎CT̂𝑚𝑎𝑥

2  0.627648 0.636561 0.168601 1.104520 2.291032 2.295229 0.810871 3.779587 

 𝜎�̂�
2 0.177251 0.178170 0.061913 0.294427 0.741910 0.733917 0.182960 1.284875 

 𝐻CT̂𝑚𝑎𝑥

2  0.777398 0.785244 0.713835 0.856653 0.754862 0.753906 0.707689 0.800124 

 𝐻�̂�
2 0.219542 0.212210 0.142225 0.282195 0.244449 0.245497 0.198955 0.292039 

          

ML �̂�
�̂�0𝑖

2  3.632183 3.814144 0.871781 6.756507 7.511015 7.925969 1.961018 13.890921 

 �̂�
�̂�1𝑖

2  0.002667 0.002805 0.000612 0.004998 0.005478 0.005781 0.001472 0.010091 

 𝐶𝑜𝑣(�̂�0, �̂�1)  -0.098333 -0.103146 -0.183387 -0.022905 -0.202835 -0.214073 -0.374373 -0.053773 

 𝜎𝜀
2 0.025342 0.025379 0.017435 0.033323 0.022591 0.022629 0.016262 0.028995 

 𝜎CT̂𝑚𝑎𝑥

2  0.544844 0.699675 0.213560 1.185790 1.984050 2.096104 0.709432 3.482775 

 𝜎�̂�
2 0.142061 0.150940 0.039450 0.262430 0.657861 0.687462 0.171167 1.203756 

 𝐻CT̂𝑚𝑎𝑥

2  0.790341 0.837934 0.747598 0.928270 0.750397 0.749330 0.698801 0.799859 

 𝐻�̂�
2 0.206072 0.160207 0.071933 0.248481 0.248813 0.250045 0.199158 0.300933 

          

REML �̂�
�̂�0𝑖

2  3.860733 3.812656 0.707172 6.918140 7.936582 7.926299 1.627602 14.224995 

 �̂��̂�1𝑖

2  0.002833 0.002803 0.000489 0.005117 0.005787 0.005782 0.001232 0.010332 

 𝐶𝑜𝑣(�̂�0, �̂�1)  -0.104485 -0.103195 -0.187844 -0.018545 -0.214315 -0.214085 -0.383354 -0.044816 

 𝜎𝜀
2 0.025341 0.025378 0.017435 0.033321 0.022591 0.022629 0.016262 0.028995 

 𝜎CT̂𝑚𝑎𝑥

2  0.576073 0.642215 0.134858 1.149572 2.094327 2.096591 0.632687 3.560495 

 𝜎�̂�
2 0.150863 0.150927 0.033324 0.268531 0.694961 0.687087 0.141802 1.232372 

 𝐻CT̂𝑚𝑎𝑥

2  0.789781 0.817682 0.741656 0.893708 0.750284 0.749375 0.699061 0.799689 

 𝐻�̂�
2 0.206829 0.180052 0.106313 0.253791 0.248967 0.249991 0.199340 0.300642 

 217 
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(b) Hypothetical selection on the TDT curves 219 

 220 

We can employ the raw phenotypic (co)variance matrix of the females from the DGRP lines 221 

as a representative of the P matrix in an outbred population, omitting any changes in 222 

phenotypic variance caused by inbreeding for the sake of simplicity [38]. Assuming absence 223 

of epistasis, the genetic variation in the DGRP lines for CTmax and z (REML estimates for 224 

females in Table 1) has been rescaled so that ℎCTmax
2 ≈ 0.25  and  ℎ𝑧

2 ≈ 0.07. Hence, we 225 

presume the subsequent (co)variance genetic, environmental, and phenotypic matrices for 226 

CTmax and z in the hypothetical outbred base population: 227 

 228 

𝐺 = [
0.1489 0.0423
0.0423 0.0133

] ;  E = [
0.4466 0.2618
0.2618 0.1691

] ;   P = [
0.5955 0.3041
0.3041 0.1823

] 229 

 230 

 The vector of phenotypic means in this base population is �̄�  = [41.9924 2.7592]𝑇 231 

(T stands for transpose), where the first value is for CTmax and the second for z (female 232 

means from the DGRP lines). We assume that these values are representative of the outbred 233 

population, which is strictly true if allelic effects are additive [39]. 234 

 We simulated three scenarios for increasing thermoresistance (Figure 2): directional 235 

selection for CTmax (𝑠 = [1 0]𝑇), directional selection for both CTmax and z 236 

(𝑠 = [1 0.5]𝑇), and directional selection for z (𝑠 = [0 0.5]𝑇). These selection differentials 237 

correspond to intensities of selection 𝑖CTmax = 1.3  and  𝑖𝑧 = 1.2. The hypothetical selection 238 

regimes used to illustrate the effects of selection are much stronger than we would expect in 239 

nature because directional selection tends to be weak and rarely shifts mean by more than 240 

half of a phenotypic standard deviation [40,41]. However, under extreme climatic events, such 241 

as heat waves, which are considered to be major triggers of evolution [42], these intensities 242 

of selection may not be unrealistic [43].  243 

  244 



 245 
Figure 2. The thermal death time (TDT) curve linearly describes the relationship between test 246 

temperature (T) and survival time (t, log10 scale) under heat stress conditions in D. melanogaster. 247 

Thermal sensitivity (z) is the reciprocal of the slope (β1), representing the increase in temperature 248 

required to reduce survival time by one order of magnitude (10-fold). CTmax is the intersection at log10 249 

= 0, corresponding to the knockdown or death temperature after 1 minute of exposure. The blue line 250 

represents a thermosensitive genotype, which exhibits improved tolerance to acute, intense heat stress 251 

but reduced tolerance to chronic, less intense heat. Conversely, the red line depicts a thermoresistant 252 

genotype, exhibiting better tolerance to chronic stress but lower tolerance to acute stress. 253 

 254 

 The simulated scenarios are shown in Figure 3. It is striking that a directional selection 255 

gradient always has a different sign than its selection differential, and the evolutionary 256 

response can be against the selection differential (Figure 3C). The inference from these 257 

hypothetical selection regimes is that directional selection to increase thermal sensitivity z 258 

seems to hinder evolutionary responses to increasing CTmax. In other words, directional 259 

selection to increase CTmax also increases z as a correlated response (Figure 3A) and, as 260 

expected, drives the population towards a more thermoresistant state (Figure 2). However, 261 

directional selection to increase z results in a decrease of CTmax as a correlated response, 262 

which, in turn, also decreases z, and seemingly paradoxically drives the population towards 263 

increasing thermosensitivity (Figure 2). 264 



 265 
Figure 3. Hypothetical strong directional selection for increased thermoresistance. In blue the 95% 266 

confidence ellipses of a simulated population of 𝑁 = 10,000 flies from a bivariate normal distribution 267 

whose phenotypes for CTmax and z are the sum of genetic effects with mean �̄�  = [41.9924 2.7592]𝑇 268 

and additive-genetic (co)variance 𝐺, plus environmental effects with mean 0 and (co)variance 𝐸 (see 269 

text). The arrows centred on the bivariate means represent the directions in which the data vary the 270 

most (i.e., the eigenvectors of the covariance matrix of the data). In black are the 95% confidence 271 

ellipses after an evolutionary shift in the means (we ignore changes in variance and covariance). Panel 272 

A plots directional selection for increasing CTmax; the vector of selection gradients is 𝛽 =273 

[11.3294 −18.8959]𝑇. Panel B plots directional selection for increasing both CTmax and z, where 𝛽 =274 

[1.8814  −0.3958]𝑇. Panel C plots directional selection for increasing z, where 𝛽 =275 

[−9.4480  18.5002]𝑇. 276 



4. Discussion 277 

Heat tolerance has traditionally been examined from a physiological perspective, with a focus 278 

on the mechanisms that cause animals to succumb to heat stress, such as oxygen limitation 279 

or excessive water loss [see 44 for a review]. In this study, we present a novel viewpoint by 280 

examining the genetic components of heat tolerance through the lens of thermal death time 281 

(TDT) curves. This allows partitioning the relative contribution of CTmax and z to the more 282 

complex trait “thermotolerance” (Figure 2). Our approach has relied on inbred Drosophila 283 

melanogaster lines from the DGRP panel, and it would be highly desirable to extend these 284 

analyses to outbred populations. 285 

 286 

The limited number of previous studies that have assessed the thermal tolerance of 287 

DGRP lines focused primarily on measuring critical thermal limits [45,46]. These, along with 288 

other studies [12,47], suggest that heat tolerance is somewhat evolutionary constrained, an 289 

idea often invoked to explain the absence of strong latitudinal clines in heat tolerance [13].  290 

Typically, assessments of organisms’ vulnerability to global warming usually compare 291 

experimentally derived thermal limits using ramping trials, in which animals are exposed to 292 

increasingly higher temperatures [15,48]. During these trials, the intensity and duration of 293 

stress increase concurrently. As a result, animals often succumb to heat stress in rapid 294 

succession, leading to small variances and small standard deviations in the measurements, 295 

making CTmax an attractive endpoint to use in treatment comparisons. However, CTmax is a 296 

single point, whereas the trait of interest, namely the ability of an organism to deal with heat 297 

stress, is a linear function describing how stress intensity and stress duration impact survival 298 

[23]. Thus, ramping trials approach overlooks the cumulative nature of heat injury and the 299 

time-dependent effects of thermal tolerance [49–51], potentially underestimating organisms’ 300 

vulnerability to global warming [52]. We contend that utilizing TDT curves to evaluate both 301 

CTmax and z parameters, as well as their underlying genetic basis, would provide more 302 

accurate predictions. Here, we have developed a methodological approach to estimate the 303 

variance components and heritability of the relevant parameters in the TDT curves. 304 

The hypothetical selection scenarios allow us to understand how thermosensitive and 305 

thermotolerant strategies (Figure 2) can evolve. These scenarios suggest that thermosensitive 306 

or thermotolerant strategies are better achieved by directional selection to decrease or 307 

increase CTmax. This conclusion holds in more realistic scenarios, where the intensity of 308 

selection on CTmax and/or z might be relatively weak. We acknowledge that our approach is 309 

only a rough estimate of the problem and that several caveats could be raised. For instance, 310 

although there is a high positive correlation across species for parameters CTmax and z (𝑟 =311 

0.92; [23]), the G matrix used to simulate the hypothetical scenarios could overestimate the 312 

additive genetic covariance in an outbred Drosophila population due to higher linkage 313 

disequilibria in the DGRP lines [29]. However, for the time being, we believe that the present 314 

conclusions may be broadly applicable. 315 

 316 

In summary, our findings suggest that the genetic correlation between CTmax and z 317 

impose constraints on thermal tolerance strategies. The simulations performed here highlight 318 

the importance of considering the multivariate nature of thermal tolerance traits and their 319 

genetic correlations when predicting evolutionary responses to climate change. Ultimately, 320 

this can be achieved by utilizing approaches that measure thermal tolerances considering both 321 

the duration and intensity of heat stress and its potential for evolution. Adopting such 322 



integrative approaches will enable more accurate predictions of how species might respond 323 

to increasing temperatures in a rapidly changing planet. 324 

 325 
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