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 Abstract 
 Genetic diversity within and among populations is essential for species persistence, yet 
 its assessment across many species, at national and regional scales, remains 
 challenging. Conservationists, ecosystem managers, and Parties to the Convention on 
 Biological Diversity (CBD) still require accessible tools for reliable and efficient 
 monitoring at the multiple scales relevant for policy and decision-making. We describe 
 how Earth Observation (EO) makes essential contributions to enable, accelerate, and 
 improve genetic diversity monitoring. We introduce a stepwise workflow for integrating 
 EO into existing genetic diversity monitoring strategies. We describe how available EO 
 data can be made accessible in innovative ways to support calculation of the genetic 
 diversity indicators for the GBF monitoring framework and to inform management and 
 monitoring decisions. We then provide an outlook for integrating the forthcoming 
 generation of EO data: Upcoming capabilities that will provide unprecedented detail to 
 and thereby support more direct assessments of genetic diversity from Space. 

 Keywords 
 remote  sensing  (RS)  —  Kunming-Montreal  Global  Biodiversity  Framework  (GBF)  — 
 effective  population  size  (N  e  )  >  500  Headline  Indicator  —  populations  maintained  (PM) 
 Complementary Indicator — essential biodiversity variables (EBVs) 
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 Graphical abstract 

 Publicly  available  Earth  Observation  (EO)  data  improve  the  establishment  of  baselines, 
 effective  regular  monitoring,  and  targeted  re-assessment  and  intervention  to  conserve 
 the  genetic  diversity  of  natural  populations.  Examples  are  shown  for  three  imaginary 
 populations  of  the  same  species,  P1,  P2,  and  P3.  P1  drifts  below  the  threshold  value 
 (N  e  ~  200)  for  the  genetically  effective  population  size  (N  e  ),  as  defined  within  the  N  e  >500 
 Global  Biodiversity  Framework’s  Headline  Indicator  for  genetic  diversity  monitoring.  P2 
 is  maintained  to  be  above  this  threshold  (N  e  ~  1000)  while  P3  drops  close  to  the 
 threshold  (N  e  ~  500).  By  the  time  of  the  second  periodic  assessment,  the  N  e  >500 
 indicator  value  for  this  example  would  be  ⅔  and,  without  intervention,  is  likely  to  drop  to 
 ⅓. Frequent EO-based assessments could support timely intervention. 
 Here,  N  c  is  the  census  number  of  reproductively  mature  adults  in  a  population  and  can 
 be  used  to  estimate  N  e  either  with  prior  knowledge  of  typical  N  e  :N  c  ratios  for  a  species, 
 or  the  default  assumption,  based  on  decades  of  population  genetics  studies,  that  N  e  :N  c 
 ~  0.1  (Frankham,  1995,  2021;  Hoban,  da  Silva,  et  al.,  2024;  Laikre  et  al.,  2020,  2021; 
 Mastretta-Yanes, da Silva, et al., 2024)  . 
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 Introduction 

 Genetic diversity is an essential aspect of biodiversity protection 
 Genetic diversity is a foundational level of biodiversity below the species level, within 
 and between populations, defined here as genetically distinct groups of spatially 
 aggregated, interbreeding individuals of a species  (Allendorf, 2017; Waples & Gaggiotti, 
 2006)  . Genetic diversity underlies adaptive potential, which is material to the fitness of 
 individuals and allows species to persist in the face of change (  i.e.  , resilience and 
 resistance). Loss of genetic diversity leads to maladaptation, population decline, 
 inbreeding and, eventually, extinction. Therefore, genetic diversity needs to be 
 monitored as part of biodiversity assessments, conservation and restoration actions, 
 and safeguarding nature’s contributions to people – also called ecosystem services 
 (Hoban et al., 2020; Hoban, Bruford, et al., 2021)  . Studies of multi-species genetic 
 diversity trends have only recently become possible and indicate a net loss over time as 
 a result of human activities  (Exposito-Alonso et al., 2022; Leigh et al., 2019; Millette et 
 al., 2020; Shaw et al., 2025)  . Revealing the specific, ongoing, local and global drivers of 
 this trend – while doing so in a timely and constructive manner that supports mitigation 
 – remains a grand and unmet challenge. 

 Yet, efforts to monitor and conserve genetic diversity as a fundamental component of 
 biodiversity build on a substantial body of policy. International treaties and national 
 programs for the protection of biodiversity have required assessments of the state of 
 nature since the 1970s, including the 1971 Ramsar Convention on Wetlands; the US 
 1973 Endangered Species Act; the 1992 Convention on Biological Diversity (CBD); the 
 2010 Aichi Biodiversity Targets  (Conference of the Parties to the CBD, 2010)  ; and the 
 2015 Sustainable Development Goals  1  . The 2022 Kunming-Montreal Global Biodiversity 
 Framework (GBF) is distinct from these previous efforts in that it incorporates specific 
 indicators for genetic diversity including all species (wild and domestic). These 
 indicators are aimed at measuring progress towards the GBF goal and target for genetic 
 diversity  (Conference of the Parties to the CBD, 2022a)  , and include a Headline 
 Indicator for genetic diversity. Importantly, the goal of the CBD is to decelerate 
 biodiversity loss by 2030 and initiate restoration. Target 4 aims to “halt species 
 extinction, protect genetic diversity, and manage human-wildlife conflicts”, so a decline 
 in the genetic diversity indicator values should trigger management action (  e.g.  , further 
 data collection and conservation or restoration). 

 Measuring genetic diversity usually involves analyzing sequences of DNA extracted out 
 of tissues sampled from individuals of a species  (Hoban et al., 2022; Junker et al., 

 1  https://sdgs.un.org/ 
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 2023)  . Despite technological advances, this approach remains laborious and expensive 
 and thus difficult to repeat across many species at national and global scales. Costs are 
 in the range of 10-1000 USD / sample depending on technique, genome size, and 
 coverage – not including the cost to obtain the tissue samples or personnel and 
 computing time to analyze and interpret data  (see  e.g.  Lou et al., 2021)  . To overcome 
 this challenge, indicators for genetic diversity that can be assessed with or without 
 DNA-based data have been developed for country- and global-scale genetic diversity 
 assessments and monitoring (  Box 1  )  (Hoban et al., 2020; Laikre et al., 2020; 
 Mastretta-Yanes, da Silva, et al., 2024; Mastretta-Yanes, Suárez, et al., 2024; Thurfjell 
 et al., 2022)  . 

 The Headline Indicator A.4, which Parties to the CBD are required to report, focuses on 
 genetic diversity within populations. A.4 is defined as the proportion of populations 
 within species having an effective population size (N  e  )>500, hereafter the “N  e  >500 
 indicator” (  Box 1  ). N  e  is the size of a theoretical population that has the same rate of 
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 genetic drift as a real population and thus loses genetic diversity at the same rate. An 
 N  e  >500 is an approximate threshold to avoid the loss of genetic variation and adaptive 
 potential over time that is accepted in literature  (Crow & Kimura, 2009; Frankham, 1995, 
 2022; Franklin, 1980; Hoban et al., 2020, 2023; Hoban, da Silva, et al., 2024; Jamieson 
 & Allendorf, 2012; Laikre et al., 2020)  . Nevertheless, some studies indicate that an even 
 larger N  e  of 1000 is required to retain adaptive potential  (Frankham et al., 2014)  . For 
 several reasons, the census size N  c  of a real population – the number of reproductively 
 mature individuals – is usually much larger than its genetically effective size N  e  . This is 
 because real populations include related individuals and migrants, and their mature 
 members have different numbers of offspring, or do not reproduce at all, for example. 
 Importantly, N  e  can be estimated based on DNA data, or it can be approximated as 10% 
 of N  c  , or using another phyla-specific N  e  :N  c  ratio  (Frankham, 2021; Frankham et al., 
 2017; Hoban, Paz-Vinas, et al., 2021)  . We note that the N  e  >500 indicator reported for a 
 country will be an average of the indicator’s value per species for multiple monitored 
 species, and that a decline in the N  e  >500 indicator should trigger targeted restoration. 

 The second, Complementary Indicator – which is not required for reporting, but supports 
 calculation of the Headline Indicator – focuses on genetic diversity between populations. 
 The Complementary Indicator to A.4 is the proportion of populations within species that 
 are maintained over time in comparison to a baseline value, hereafter the “PM indicator” 
 (  Box 1  )  (Hoban et al., 2020, 2023; Hoban, da Silva, et al., 2024; Laikre et al., 2020; 
 Mastretta-Yanes, da Silva, et al., 2024)  . The aim of the PM indicator is to monitor the 
 maintenance of unique genetic diversity found in separate populations  (Andersson et 
 al., 2022; Meek et al., 2023)  . Here again, the value of the PM indicator reported for a 
 country will be an average of the indicator’s value per species for multiple monitored 
 species, and its decline should trigger targeted restoration. 

 DNA-based studies remain vital for quantifying genetic diversity and understanding how 
 to conserve it; however, because the N  e  >500 and PM indicators can also be calculated 
 in the absence of DNA data, they represent a pragmatic compromise that is urgently 
 needed to improve the affordability and accessibility of genetic diversity monitoring, 
 thereby facilitating immediate action  (Hoban, Paz-Vinas, et al., 2024; Hunter et al., 
 2024; Mastretta-Yanes, da Silva, et al., 2024)  . Yet, substantial information is still 
 required to calculate these indicators, such as counts of numbers of individuals and 
 evidence of population survival or loss. The two indicators were adopted by the United 
 Nations Parties to the CBD at the fifteenth Conference of the Parties (COP15) in 2022, 
 in the monitoring framework of the GBF (GBF, CBD/COP/DEC/15/5,  2022b)  . Concretely, 
 this means that signing Parties must monitor genetic diversity to prevent its loss and 
 provide reports in 2026 and 2029. Thus it is urgent to implement existing genetic 
 monitoring approaches for indicator assessments  (Andersson et al., 2022; Hoban et al., 
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 2023; Mastretta-Yanes, da Silva, et al., 2024; Mastretta-Yanes, Suárez, et al., 2024; 
 Thurfjell et al., 2022)  and to further develop scalable, globally accessible, and affordable 
 methods to calculate and monitor genetic diversity. 

 To facilitate reporting on the genetic diversity indicators, researchers and practitioners 
 recently assessed these indicators in nine countries combining existing DNA studies, 
 population census sizes, expert and local consultation, and georeferenced occurrence 
 data  (Mastretta-Yanes, da Silva, et al., 2024)  . Critical challenges identified in this 
 assessment were the lack of any – even rough N  c  – data for particular taxonomic groups 
 located in inaccessible regions (  e.g.,  areas that are politically or geographically 
 challenging to access); or existing historical data that had not been updated in several 
 years. Overall, the assessment highlighted the need for capacity-building and the 
 development of ready-to-use tools to expedite and scale up monitoring  (Hoban, da 
 Silva, et al., 2024)  . 

 Contributions of Earth Observation satellites to biodiversity assessment 
 Earth Observation (EO) has become indispensable for understanding and monitoring 
 global change. EO is used for environmental assessments and disaster risk 
 management; to assess land and sea use and atmospheric and climate change; and to 
 study changes in biodiversity  (Mairota et al., 2015)  . While other technologies based on 
 airborne and field-mobile platforms exist, here we focus on Space-based EO from 
 satellites such as the Copernicus Sentinels and the NASA Earth Observing System 
 (  Table 1  ), which make (global) data publicly available regularly,  i.e.  , every few days to 
 weeks, and free of charge  (Malenovský et al., 2012)  . Within this article, we use EO to 
 refer to satellite-based observation systems unless explicitly stated otherwise. 

 EO data have unique attributes such as covering large geographic areas and providing 
 non-intrusive global coverage and uniform data sets over multiple decades (  e.g.  , 
 Landsat data since the 1970s  2  ). These data are used to obtain information for 
 environmental analyses and biodiversity assessment, often at the ecosystem level. 
 Examples are land use and land cover (LULC) change; vegetation biochemical 
 properties and conditions, or traits (see  Glossary  ) that are assessed using indices like 
 the Normalized difference vegetation index (NDVI) as well as structural information such 
 as green leaf area index (LAI) and vegetation height; land surface phenology; and 
 photosynthetically active radiation (PAR), important for vegetation health and 
 productivity  (Verrelst et al., 2015)  . This information is then often used in models to infer 
 species composition, functional diversity, and other properties of ecosystems at the 
 landscape scale  (Mayor et al., 2024, 2025; Pasetto et al., 2018)  . 

 2  https://landsat.gsfc.nasa.gov/ 
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 Table 1  . Selection of EO platforms that lower or eliminate technical and financial 
 barriers to applications for genetic diversity monitoring and other uses by EO 
 non-experts. For more technical details, see a recent comprehensive overview  (Ustin & 
 Middleton, 2021)  . 

 EO Tool  Access  Brief description 

 Copernicus 
 browser 

 https://dataspace.coper 
 nicus.eu/browser/ 

 Easy visualization browser for Copernicus 
 Sentinel data and products and download portal 
 for archived Sentinel data 

 Earth Data  https://search.earthdata. 
 nasa.gov/search 

 Discover and download NASA EO data; many 
 different sensors available 

 Earth Explorer  https://earthexplorer.usg 
 s.gov/ 

 Discover and download NASA (and Copernicus 
 Sentinel) EO data; many different sensors 
 available 

 ESA third-party 
 missions 

 https://earth.esa.int/eog 
 ateway/missions/third-p 
 arty-missions 

 Information on satellite data from commercial and 
 other third-party sources shared with the public via 
 ESA 

 Google Earth 
 Pro 

 https://www.google.com/ 
 intl/en/earth/about/versi 
 ons/#earth-pro 

 Easy-to-use Earth software including (historical) 
 high-resolution commercial images made freely 
 available for visual inspection (RGB, irregularly) 

 Google Earth 
 Engine 

 https://earthengine.goog 
 le.com/ 

 Satellite EO data repository, cloud computing 
 platform and API; free for academics & research 

 Microsoft 
 Planetary 
 Computer 

 https://planetarycomput 
 er.microsoft.com/ 

 Global environmental data catalogue, cloud 
 computing platform, and API 

 Global Forest 
 Watch 

 https://www.globalforest 
 watch.org/ 

 Browse metrics of forest and biodiversity change 
 from national and sub-national to global scales 

 Global 
 Mangrove Watch 

 https://www.globalmang 
 rovewatch.org/ 

 Remote sensing data and tools with near-real-time 
 information for monitoring mangroves at global 
 scale 

 Sentinel Hub 
 custom scripts 

 https://custom-scripts.se 
 ntinel-hub.com/ 

 Scripts to calculate products from Sentinel data 

 Earth Observing 
 Dashboard 

 https://eodashboard.org/ 
 explore 

 Tri-agency dashboard by NASA, ESA and JAXA 
 for browsing EO data and products, with 
 interactive features and simple analytics by 
 drawing an area of interest 

 Earth Online  https://earth.esa.int/eog 
 ateway/catalog 

 Catalog of data from ESA’s EO missions 

 Landsat Science  https://landsat.gsfc.nasa 
 .gov/data/data-access/ 

 Overview of access to NASA data products from 
 Landsat and many other platforms 

 SentiWiki  https://sentinels.coperni 
 cus.eu/web/sentinel/mis 
 sions 

 Overview of the Copernicus Sentinel missions 
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 Uniquely and importantly, EO typically provides repeated measurements of the same 
 area on a time scale of days to weeks, globally. For example, the Copernicus Sentinel-2 
 satellite monitors the entire globe in five days, with more frequent observations for some 
 locations on Earth depending on the geographical latitude  3  ,  4  , but less frequent usable 
 observations depending on cloud cover (  Box 2  ). The Sentinel family of satellites have 
 observed the Earth’s surface with different instruments continuously starting in 2014, 
 detecting reflected radiation in the visible, infrared, and microwave regions of the 

 4  https://esamultimedia.esa.int/docs/S2-Data_Sheet.pdf 
 3  https://sentiwiki.copernicus.eu/web/s2-applications 
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 spectrum, at up to 10 m spatial resolution depending on the sensor and satellite 
 (Malenovský et al., 2012)  . Sentinel-2 provides multispectral images that can be used to 
 assess, for example, vegetation structural properties such as LAI  (Sebastiani et al., 
 2023)  or vegetation conditions such as water content  (Helfenstein et al., 2022; Sims & 
 Gamon, 2003; Sturm et al., 2022)  . The European Copernicus Sentinel satellites and 
 observations are complemented by long-term records obtained by the NASA Landsat 
 and Earth observing satellites since the 1970’s. All ESA and NASA data are available 
 openly and freely to all users, and are ideal for biodiversity assessment and monitoring 
 from local to global scales, and annual to multi-decadal time frames (see available tools 
 in  Table 1  ). 

 For example, data from the Copernicus Sentinels can be browsed via the Copernicus 
 Browser. This cloud-based platform is easy to navigate for reviewing and visualizing the 
 results from,  e.g.  , various combinations of different spectral bands of Sentinel-2 (see 
 Glossary  ) and observation times without the time-consuming, inefficient, and 
 sometimes infeasible process of downloading a very large amount of data to a local 
 computer for analysis (  Table 1  ). Alternatives include Google Earth Engine’s web 
 interface or Python API and Microsoft’s Planetary Computer. This facilitates 
 much-needed access to the resulting information, especially for areas with limited 
 observations or that are difficult to access on the ground. 

 In a few cases, EO data have already been used to obtain information about species at 
 the same (population) level at which genetic diversity is measured. An outstanding 
 application is the identification and monitoring of emperor penguin (  Aptenodytes forsteri  ) 
 colonies in Antarctica. These penguins are upper-level predators and are considered a 
 biomonitor of ecosystem change in the Southern Ocean  (Barber‐Meyer et al., 2007; 
 Bargagli, 2005; Fretwell et al., 2012, 2023; Fretwell & Trathan, 2009, 2021; Kato et al., 
 2004; Kooyman & Mullins, 1990)  . As their reproductive cycle is intimately linked to the 
 integrity of the sea-ice coastline, they are sensitive to dynamic processes in the wider 
 Antarctic ecosystem. Under current warming trends, over 80% of colonies are predicted 
 to be almost extinct by the end of the century  (Fretwell & Trathan, 2021)  . These 
 colonies can be assigned to one of at least four metapopulations based on genetic data 
 and corresponding to geographic regions  (Younger et al., 2017)  . One of the major 
 limitations on studying these populations is accessibility, given the remote and extreme 
 conditions in which they live (  e.g.  -60 °C). Recently, researchers have applied machine 
 learning approaches to publicly available Sentinel-2 satellite imagery to achieve a global 
 census of this keystone species – approximately 600,000 individuals across 66 colonies 
 (Fretwell et al., 2023)  . EO has thus become useful for monitoring penguin colonies and 
 their habitat, taking advantage of the sharp contrast between penguins or, more often, 
 their dark guano deposits, and the background ice. Collectively, the emperor penguin 
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 studies indicate how EO provides cost-effective data to monitor species in an 
 inaccessible location, providing access to fundamental information like changes in 
 estimated population size and dramatic habitat modifications. The identification and 
 monitoring of emperor penguin colonies in Antarctica by EO suggests that it is feasible 
 to use EO to estimate the N  e  >500 and PM indicators based on signatures of population 
 presence and habitat change. 

 Despite demonstrations of such potential  (Barber‐Meyer et al., 2007; Fernández, 2013; 
 Fretwell & Trathan, 2009; Schuman, Roeoesli et al., 2023)  , EO data still have not been 
 used for genetic diversity monitoring and assessment  (Skidmore et al., 2021; 
 Timmermans & Kissling, 2023)  – although some recent initiatives connect landscape 
 features to the conservation of populations  (Cousins et al., 2022)  . Here, we describe 
 how the current capacities of EO can be used together with the CBD genetic diversity 
 indicators (  Box 1  ) to facilitate the monitoring, assessment, and conservation or 
 restoration of genetic diversity in support of the GBF goals and targets, and how 
 forthcoming advances in EO capabilities, such as improved spectral resolution, will 
 open new opportunities to monitor genetic diversity. 

 EO contributions to genetic diversity monitoring: A proposal 
 We propose an overarching workflow with descriptive steps to enable and accelerate 
 genetic diversity monitoring using EO, and demonstrate the advantages of integrating 
 EO in a set of examples with high priority for biodiversity assessment, monitoring and 
 conservation: The Emperor penguins discussed above, crop wild relatives, and 
 forest-forming trees. By discussing these examples, each with distinct challenges and 
 opportunities, we show how available EO data can be embedded in innovative ways to 
 support the calculation of the CBD genetic diversity indicators toward conservation and 
 restoration, especially in areas with limited research infrastructure or access, and why 
 we can look forward to applications of EO for assessing genetic diversity more directly. 

 The CBD genetic diversity indicators focus on populations, defined as groups of 
 spatially aggregated, interbreeding individuals, genetically distinct from other similar 
 groups  (Mastretta-Yanes, Suárez, et al., 2024; Waples & Gaggiotti, 2006)  . Spatially, 
 populations occupy a subsection of the range that the species inhabits. Whether a 
 population still exists, and whether it has grown, shrunk, migrated, or maintained its 
 size, is often linked to changes in its habitat extent  (Mace et al., 2010)  . Habitat extent 
 can change due to land use and land cover (LULC) change, which can in turn be 
 quantified and monitored with EO. 

 Thus, EO can be used for observing and monitoring changes in habitat extent where 
 populations occur, or in changing boundary conditions of habitats, such as long-term 
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 changes in land surface phenology  (Garonna et al., 2018)  , and can thus contribute to 
 estimating and monitoring change in GBF genetic diversity indicators (  Fig. 1  ). This can 
 be done in at least two ways: First, by assessing the likelihood of a given population’s 
 continued existence for the PM indicator; and second, using a known or expected 
 relationship between habitat size and the number of mature individuals of a species 
 living in this habitat (density) to estimate N  c  . In some cases (for large and relatively 
 immobile individuals such as trees), N  c  may be even more directly estimated from EO 
 data (see  Outlook  ). In either case, EO data supports the assessment of the N  e  >500 
 indicator by providing an estimate for N  c  , from which N  e  can be estimated in turn using 
 an N  e  :N  c  ratio (  Fig. 1  ,  Box 3  ). 

 Figure 1  . Overview of the proposed workflow for integrating EO data with genetic 
 diversity monitoring including estimation of the GBF indicators for genetic diversity: The 
 Headline Indicator N  e  >500 and Complementary Indicator PM (see  Box 1  and  Box 3  ). 
 Thumbnail images (A - E) show contributions of EO for obtaining information on the 
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 three examples discussed here. We propose that the complete workflow should be run 
 for individual species, as elaborated in the following sections. 

 Our proposed workflow relies on the following assumptions: 
 ●  That a habitat of a particular size does support a species population; 
 ●  That habitat extent can be assessed sufficiently well by EO; 
 ●  That the relevant threats to populations are visible at the habitat scale (  e.g.  , 

 land-use change, but not poaching); 
 ●  That it is possible to define populations biogeographically (but see  Outlook  ). 
 ●  The workflow furthermore requires expert knowledge about the location and 

 isolation of populations, population density (N  c  per area), and N  e  :N  c  ratio. An 
 estimation of gene flow probability (  e.g.  , via flow of pollen or migration) could 
 potentially be added. 

 In sum, the proposed approach would work for species where habitat changes such as 
 LULC change, or landscape modification and fragmentation, can be detected and 
 quantified using EO (  Fig. 1  ,  Box 3  ). 

 We propose that this approach will be most useful for cases in which data are not yet 
 sufficient to calculate the GBF genetic diversity indicators, but information is available 
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 regarding the location of species populations, habitat, approximate density, and 
 dispersal distances (distance that individuals of a species or their germinative cells, like 
 seeds, are able to move from an existing population) (  Fig. 2  ). We furthermore expect 
 that this approach can facilitate and accelerate indicator calculation even in cases 
 where N  c  estimates are available, by making regular remote observation and 
 assessment possible (  Box 3  ). In a few cases, N  c  estimates will even be possible directly 
 from EO data (  Outlook  ). Critically, we expect this approach to enable more frequent 
 change monitoring in all cases (  Figs. 1  and  2  ,  Box 3  ). 

 The major challenge is to ensure the useability and accessibility of EO data for specific 
 applications, such as biodiversity monitoring, as it requires expert knowledge to extract 
 the needed information (  Box 2  )  (Pahlevan et al., 2021; Silva et al., 2008)  . The 
 integration of EO data into biodiversity monitoring and protection as an additional 
 source of indirect information (habitat extent, fragmentation,  etc  .) or direct information 
 about genetic diversity indicators (N  c  estimates, and see  Outlook  ) requires the 
 co-development and co-production of such information. This can be achieved through 
 collaboration among experts in population and conservation genetics and genomics; 
 remote sensing, geography and geospatial information; ecology and conservation; and 
 practitioners who will ultimately use this information routinely. 

 Figure 2.  EO enables estimation of key GBF genetic diversity indicators in cases where 
 other data that could be used to calculate the indicators are unavailable (right side, 
 large arrow). Furthermore, EO can complement assessments where ground data and 
 expert knowledge are available (left side, smaller arrows) – especially by facilitating 
 regular repeated assessments and prioritization of other actions, such as site visits or 
 conservation and restoration measures. Made with data from Mastretta-Yanes, da Silva 
 et al (2024). 
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 Example: Monitoring habitat change to estimate the N  e  >500 and PM 
 indicators in wild relatives of domesticated crops 
 The wild relatives of modern-day crops (  e.g.  , crop wild relatives) harbor an important 
 proportion of crops’ genetic diversity  (Maxted et al., 2006)  . In Mexico, crop wild relatives 
 are threatened mainly by LULC change and several species (spp.) are endangered, or 
 critically endangered  (Goettsch et al., 2021)  . Wild avocados (  Persea  spp.) and teosintes 
 (  Zea  spp.,  related to maize) inhabit locations that are often dangerous or difficult to visit. 
 Populations of these species cannot be directly observed with EO due to the typical size 
 of individuals and their habit of living under forest canopies, but critical aspects of their 
 native habitat, such as proximity to and association with nearby forests, can be 
 observed. In particular, tree-cover loss (an aspect of LULC change that here represents 
 habitat loss) can be quantified to infer which populations may be experiencing greater 
 decline. In terms of its impact on genetic diversity, habitat loss could mean population 
 extinction (habitat annihilation in a given region, PM decline) or reduction of the effective 
 population size (smaller habitat space, fewer individuals, N  e  decline and thus loss of 
 genetic diversity through genetic drift; see  Glossary  ). 

 EO is not yet used to monitor indicators of genetic diversity for crop wild relatives, but 
 this could be achieved using publicly available EO data in a few straightforward steps 
 (  Fig. 1  ). The first step is to define population boundaries based on occurrence points 
 (combined with a rule for aggregating points to populations); or species distribution 
 models on the level of populations, using methods including, for instance, geographic 
 features (  e.g.  , different mountains harbor different populations) or eco-biogeographic 
 differences (  e.g.  , different environmental zones harbor different populations)  (Hoban et 
 al., 2023; Tobón-Niedfeldt et al., 2022)  . The second step is to assess whether 
 populations have been maintained since the last observation (PM indicator). In classical 
 monitoring approaches, this would imply traveling to the locations on a regular basis. 
 However, doing this for several species in megadiverse or large countries is challenging 
 to impossible in terms of time and cost – for example, teosintes populations in Mexico 
 are distributed across an area the size of Western Europe. EO data can be used in such 
 situations to detect habitat loss using either visual inspection of satellite images or by 
 analyzing satellite-derived time series of LULC change, such as tree-cover loss, which 
 are publicly available free-of-charge from repositories such as the Copernicus Browser 
 or Global Forest Watch (  Table 1  ). The third step is to estimate genetic diversity 
 indicators from habitat size information. For the PM indicator, the procedure is 
 straightforward: Populations that have lost most or all of their habitat over time are 
 expected to be lost, and the fraction of populations with remaining habitat above some 
 minimal threshold is taken to correspond to the PM indicator. For the N  e  >500 indicator, 
 we must then estimate the population's census size N  c  from habitat size and a 
 species-appropriate density per area of reproductively mature individuals, and calculate 
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 N  e  from a species-appropriate N  e  :N  c  ratio. Once N  e  is estimated for every population, we 
 can calculate what proportion of populations are estimated to remain above the 
 threshold value of N  e  >500. 

 Two crop wild relative species provide examples in which EO supports assessment of 
 PM and in one case, the N  e  >500 indicator; in the other case, all remaining populations 
 occur at low densities and could already be considered candidates for genetic 
 restoration. The first case is  Persea  (  P.  )  cinerascens  , a wild avocado growing among 
 the tree species composing cloud forests, Mexico's most biodiverse terrestrial 
 ecosystem type per unit area  (Conabio, 2023; Rojas-Soto et al., 2012)  .  P. cinerascens 
 occupies less than 500 km  2  in a total of five populations separated by ca. 50-200 km in 
 three geographic locations  5  . The species' presence was confirmed during the last visit to 
 the known field localities in 2017, but no population size measurement was conducted. 
 The second case is the teosinte species  Zea  (  Z  .)  perennis  . This species has only been 
 recorded to be present in two locations in Western Mexico  (González et al., 2018)  , 
 although species distribution models suggest it may occur in other localities within the 
 region, where genetic differentiation is expected due to environmental and historical 
 differences  (Tobón-Niedfeldt et al., 2022)  . The two known locations were last visited and 
 populations observed in 2008, when conducting sampling for genetic studies 
 (Rivera-Rodríguez et al., 2023)  . Based on genetic data, the N  e  of both documented  Z  . 
 perennis  populations is below 500, so the N  e  >500 indicator value for the species is zero 
 according to the first multinational assessment of genetic diversity indicators 
 (Mastretta-Yanes et al., 2023)  . Unfortunately, although populations of both species were 
 observed in the field relatively recently (2017 and 2008, respectively), their habitat is 
 suspected to have decreased or disappeared due to rapid land use change. 

 EO data enable direct assessment of this suspected habitat change and thereby 
 support monitoring genetic diversity for these two species: Either of the specific 
 locations that were visited, or areas derived from species distribution models, thus 
 informing the PM indicator regularly without the need for costly or dangerous field 
 assessments. Direct inspection of true-color satellite images (  Fig. 3A  and  3C  ) allows a 
 rapid assessment of vegetation and LULC change by comparing satellite images taken 
 before the last ground sampling (2016 for  P. cinerascens  and 2006 for  Z. perennis  ) with 
 more recent images. This method showed that for  P. cinerascens,  a controlled forest fire 
 likely occurred in 2020 to clear land for agriculture, indicating a threat to the 
 maintenance of this population. Conversely, for  Z. perennis  , the boundary of the 
 avocado farm adjacent to the sampling location remained unchanged between 2007 
 and 2023. 

 5  https://www.iucnredlist.org/species/110067105/129767329 
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 Figure 3  . Examples of habitat monitoring using EO for A-B) a wild avocado  (P. 
 cinerascens)  and C-D) a teosinte  (Z. perennis)  . Shown in A) are the comparisons of 
 imagery available from either Google Earth Pro (better than 5 m spatial resolution) or 
 Sentinel-2 (10 m spatial resolution) showing habitat change for a wild avocado 
 population, and the evaluation of tree cover change from Global Forest Watch. In B), 
 the combination of Global Forest Watch data with ground observations from 2017 
 indicates that change took place between 2017 and 2020 (circles represent a potential 
 habitat area of 10 km around the exact location where the species was sampled). The 
 PM indicator is estimated assuming that habitat maintenance indicates population 
 maintenance, and the N  e  >500 indicator is estimated assuming a low population density 
 of N  c  = 100 individuals / km  2  and N  e  :N  c  = 0.1. In C), data from Google Earth Pro and 
 Sentinel-2 for a different time frame indicate there has been no change in forest cover in 
 one of the teosinte’s known populations, which was last observed on the ground in 
 2008. In D), analysis of percentage tree cover change since 2001 and total tree cover 
 are used as an indicator for habitat change within the teosintes species distribution 
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 model. In this example, the species distribution was previously subdivided in six 
 subregions where genetic differentiation is expected based on ecological and 
 biogeographic data (Tobon et al 2022). In this case, N  e  is not estimated due to the very 
 low number of observations, but it is possible to estimate the percentage of habitat loss 
 within each region where the species potentially occurs in differentiated populations, for 
 conservation purposes (PM indicator). 

 Using the history function of Google Earth, either the free Pro application or the web 
 version, often provides access to high-spatial-resolution satellite images free of charge, 
 but the user does not control image availability (  i.e.  , different years and seasons), and 
 automated processing is not possible with this platform. These limitations can be 
 overcome using time-series analysis of publicly available EO data, such as Sentinel-2 
 images (10 m spatial resolution, 5-day temporal resolution since 2016), which can be 
 combined with Landsat images (30 m spatial resolution, available since the 1970s). As 
 a simple starting point, significant habitat changes can already be detected visually by 
 selecting one cloud-free image per year from the same season (  e.g.  , dry season, as 
 opposed to the rainy season) and examining such an annual time series. Additionally, 
 products derived from EO data describing habitat and biodiversity change are already 
 accessible for non-EO-experts through platforms like Global Forest Watch, which 
 provides assessments of tree cover loss (defined as removal or mortality of vegetation 
 taller than 5 m) and tree cover gain derived through automated interpretation of 30 x 30 
 m EO data  (Hansen et al., 2013; Potapov et al., 2022)  . This platform enables rapid 
 assessments of tree cover loss over time (2001-2022) and might serve as an effective 
 early alert system for habitat change detection  (Schneider & Olman, 2020)  . 

 For species with few occurrences – such as  P. cinerascens  – buffer zones around the 
 specific areas can be used to assess whether the surrounding habitats crucial for their 
 survival are adequately considered and protected. For more widely distributed species, 
 such as  Z. perennis  , species distribution models (SDMs) can be used to define species 
 distribution ranges as commonly employed in systematic conservation planning and 
 management  (Villero et al., 2017)  . SDMs can be leveraged for genetic diversity 
 monitoring by subdividing them into areas where some level of genetic differentiation is 
 expected, for instance, due to environmental differences or historical isolation 
 (Tobón-Niedfeldt et al., 2022; Villero et al., 2017)  . Once buffer zones around occurrence 
 records, or SDMs, have been delimited and subdivided into populations, they can be 
 regarded as different populations for monitoring purposes. Subsequently, land use and 
 cover change can be quantified and assessed in terms of habitat loss trends. For 
 instance, in the case of  P. cinerascens  (  Fig. 3B  ), the habitat surrounding the “purple 
 population” (see colored circle) had a high percentage of tree-cover loss during the last 
 two decades but remained large in absolute terms. In contrast, the “green” population 
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 already had minimal remaining natural vegetation, making subsequent losses more 
 threatening to its survival. Similarly, in the  Z. perennis  example (  Fig. 3D  ), the “red” 
 population exhibited the most significant decline and is the second smallest, while the 
 “yellow” population appears not to have lost habitat. Note that the individual population 
 trends differ from the species mean (dark black line), highlighting the importance of 
 separately evaluating populations within a given species. 

 In both species, despite the clear decline in habitat size observed in some populations, 
 no population experienced a complete loss of habitat. Therefore, the PM indicator for 
 both species is estimated to be 1. For  P. cinerascens  , assuming a population density of 
 100 mature trees per km² and a conservative N  e  :N  c  ratio of 0.1, all populations remain 
 above the critical effective population size threshold of 500. Therefore, the N  e  >500 is 
 estimated to be 1. Notice that the assumed density is a critical parameter that can 
 significantly affect the value of the indicator. For example, the N  e  >500 indicator value 
 would drop to zero if a density of 10 individuals per km  2  were assumed. In the  Z. 
 perennis  example, habitat size is derived from an SDM, which represents areas where 
 the species is likely to occur but does not necessarily reflect true occurrences. 
 Estimating the densities and sizes of individual populations is infeasible for this very 
 rare species. However, it is notable that habitat size declined by an average of 7%, with 
 two populations experiencing even steeper declines of up to 15%. This example shows 
 how integrating habitat monitoring using EO within a population genetics framework can 
 inform the assessment of the GBF indicators and the prioritization of  in situ  observations 
 and interventions. Importantly, the example furthermore indicates that EO-based 
 assessments enable the identification, characterization, and ranking of threats to 
 populations prior to indicator decline. 

 Outlook: Genetic diversity assessments using EO 
 The examples presented so far show how available EO data and information, combined 
 with ground-based methods and expert knowledge, can inform the PM and N  e  >500 
 indicators in several ways (  Box 3  ,  Table 2  ): (1) Informing the PM indicator if habitat 
 integrity or species vitality descends below a certain threshold, below which a 
 population can be assumed to be lost; (2) informing the N  e  >500 indicator either (i) 
 directly, if species density per unit area is known or presumably if groups of mature 
 individuals can be directly observed, or (ii) indirectly, where a baseline N  e  value is 
 known for a given population, and so the expected decline could be estimated as a 
 function of habitat loss; and (3) supporting prioritization of  in situ  monitoring, 
 conservation or restoration actions, or an early alert system, so that resources are 
 directed to the regions where more change is occurring and ground-based observations 
 are most needed. The cost-effectiveness of such an EO-based approach is noteworthy, 
 as many biodiversity hotspots are located in economic resource-limited regions. 
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 Furthermore, it can help managers prioritize interventions and target them in space and 
 time to areas where rapid changes are taking place, hence mitigating damage and 
 maintaining or enhancing resilience and protecting biodiversity  (Langhammer et al., 
 2024)  . 

 Table 2  . Proposed uses of EO data for genetic diversity monitoring. 

 Uses of EO data  Implementation for genetic 
 diversity monitoring 

 Current limitations 
 of this use 

 Species range and habitat 
 mapping 
 Accuracy increases with prior 
 knowledge and in terrestrial 
 habitats 

 Inference of census size N  e  from 
 dispersal distance data, occupation 
 density data, or occasionally counts 
 of dominant individuals; supports 
 assessment of N  e  >500 

 Cannot directly measure 
 effective or census 
 population sizes (N  e  or N  c  ) 

 Estimate population size and 
 number 
 Accuracy increases when 
 combined with observational 
 data 

 Inferred population locations can be 
 combined with other data (  e.g.  , 
 biogeographical, traditional 
 knowledge) to  infer population 
 boundaries  or support the design of 
 comprehensive DNA studies for 
 confirmation 

 Cannot independently 
 identify genetically distinct 
 populations and does not yet 
 account for gene flow 

 Detect habitat and ecosystem 
 change 
 Requires a baseline and 
 continued monitoring 

 Develop EO-based alert systems to 
 support genetic diversity  protection 
 in real time  and to  monitor 
 inferred PM or N  e  >500 over time 

 Cannot detect all 
 on-the-ground threats to 
 individuals (  e.g.  , poaching) 

 Map variation or change in 
 species visible from Space 
 e.g.  , trait variation, settlements, 
 migration, breeding activities, 
 species interactions 

 Currently still a focus of research: 
 see  Outlook 

 Use to directly estimate 
 genetic diversity is not yet 
 established 

 Currently, this approach is largely theoretical, but the examples we discuss indicate its 
 utility and potential importance. To realize this potential, the approach must be 
 co-developed with experts in EO and conservation genetics who can assess its use and 
 limitations (  i.e.  , considering the capabilities of both EO and available ground-based 
 data). EO provides valuable global information, especially where no other data are 
 available; where local  in situ  monitoring, citizen science and other sources of ground 
 data are, or become, available, EO data will be better complemented (  Fig. 2  ). 

 Even where ground-based data are available, EO offers complementary measurements 
 at the landscape level that are repeated in space and time. These observations are 
 captured in wavelengths beyond the human-visible range of the electromagnetic 
 spectrum and yield detailed and traceable information about processes that affect the 
 composition and distribution of species at landscape scales. This information can also 
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 be used more directly to monitor and assess changes in habitats and estimate change 
 in genetic diversity within and between populations. 

 Example: mapping genetic diversity of an entire tree species using EO 
 EO is increasingly used to directly map features of forests from Space, a focus of 
 current research (  Table 2  ). EO is used not only to estimate changes in tree cover as 
 implemented in Global Forest Watch, but also to assess important aspects of tree 
 canopy structure, phenology and functions including height and density, greening and 
 browning, pigment concentration and water content; or to characterize tree species and 
 even within-species variation. Here, we discuss how EO technologies can support the 
 assessment of genetic diversity in terms of the GBF indicators (  Box 1  ) for a dominant 
 forest-forming tree. 

 To illustrate the current state of research and development, we use the European beech 
 Fagus  (  F.  )  sylvatica  , a dominant forest tree with high economic importance in forests 
 across Europe.  F. sylvatica  is now threatened by increasingly severe droughts across 
 much of its natural range, and the future of Europe’s widespread beech forests is 
 uncertain  (  e.g.  , Arend et al., 2022; Eisenring et al., 2024; González de Andrés et al., 
 2021; Martinez del Castillo et al., 2022, 2022; Neycken et al., 2022; Pfenninger et al., 
 2021)  .  F. sylvatica  is closely related to, and likely able to hybridize with, three other 
 Fagus  species found from the Balkans into the Arabian peninsula that have been 
 considered as possible sources to introduce new genetic diversity and perhaps mitigate 
 beech forest decline  (  e.g.  D’Odorico et al., 2023)  ; in fact, these species were, until 
 recently, considered to be a genetically diverse subspecies of  F. sylvatica  (Denk et al., 
 2024)  . We have overlaid distribution maps  (Caudullo et al., 2017)  with satellite imagery 
 at continental scales: A Sentinel-2 mosaic produced with Google Earth Engine  (Gorelick 
 et al., 2017)  (  Fig. 4  ). 

 Fagus  species pollen is spread both by insects and wind, and  F. sylvatica  has relatively 
 low genetic differentiation among different forest stands, so that divisions into 
 populations are challenging  (Milesi et al., 2024)  . The weak, yet discernible genetic 
 structure of  F. sylvatica  – moderate isolation of populations by distance  (Lazic et al., 
 2024; Milesi et al., 2024)  – reveals its post-glacial migration history but also depends on 
 management and planting decisions in forestry. Genetic analysis of a stand in France 
 with 167 individuals yielded N  e  estimates ranging from 2 to 25 depending on the 
 calculation method used, corresponding to an N  e  :N  c  ratio ranging from 0.01 to 0.15 
 (central value 0.08)  (Gargiulo et al., 2024)  . 
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 Figure 4  . Layers of geospatial information on the distribution of Eurasian beech,  Fagus 
 (  F.  )  species. Sentinel-2 mosaic from Google Earth Engine  (Gorelick et al., 2017)  for 
 visualization purposes, overlaid with species distribution and isolated localities (dots) 
 (Caudullo et al., 2017)  :  F. sylvatica  (blue) and the distributions of three closely related 
 Fagus  species (red)  (Denk et al., 2024)  . 

 It is possible to infer the number of dominant (canopy-forming)  F. sylvatica  trees in 
 high-resolution (<10 m)  EO images to estimate N  c  . Tree species classification using EO 
 data has been demonstrated in beech habitats with machine learning using 
 high-spatial-resolution data  (Kaplan et al., 2024; Yao et al., 2021)  , or a combination of 
 active and passive EO data from Sentinel-1 and Sentinel-2 in annual time series, 
 combined with forest inventory data  (Blickensdörfer et al., 2024)  . Generally, binary 
 classification (  e.g.  , beech or not-beech) is more accurate than multiple classification of 
 pixels depicting one of several species. For example, using data with both high spatial 
 (2-3 m) and spectral resolution (ca. 10 nm) from aerial imaging spectroscopy (see 
 Glossary  ), Torabzadeh and colleagues achieved high binary classification accuracy of 
 F. sylvatica  versus all other trees in a beech-dominated stand based on pixels – in other 
 words, without needing to define tree crowns (82% producer’s accuracy / 92% user’s 
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 accuracy)  (Torabzadeh et al., 2019)  . At another well-documented test site in Allenwiller, 
 France, where the closely related caucasian beech  F. hohenackeriana  Palibin (among 
 the Eurasian beeches,  Fig. 4  ) was co-planted with  F. sylvatica  , Kaplan and colleagues 
 (2024) used a similar pixel-wise approach to distinguish these species with better than 
 90% accuracy (F1 score) using high-resolution (3 m) commercial multispectral EO 
 satellite data provided free of charge for research purposes by PlanetScope. Both of 
 these approaches used signal characteristics overlapping with the detection ranges of 
 current and upcoming public EO instruments but with higher spatial resolution. 
 Transferring these approaches to public data requires scaling from 3 m spatial 
 resolution to ca. 10 to 20 m spatial resolution (see  Fig. 5  ). These approaches are 
 simpler and computationally more efficient if forest cover and forest inventory data are 
 first used to select areas of interest. 

 For  F. sylvatica  , N  c  could thus be locally estimated directly from beech canopy pixels 
 discernible from EO data via species classification, especially if the primary task is to 
 distinguish beech from non-beech pixels. N  c  can then be approximated by dividing the 
 total pixel number by a number of average pixels per crown. For higher precision, 
 automated crown delineation can be achieved using complementary approaches like 
 laser scanning or dense photogrammetry data from drones or airplanes. The derived N  c 

 could then be used to approximate the N  e  >500 indicator. This approach would likely 
 yield an underestimate because N  c  from EO would count dominant (canopy-forming) 
 reproductively mature trees that are the easiest to detect from above, while 
 reproductively mature but co-dominant, intermediate, and suppressed trees are difficult 
 to assess. Inventory or other  in situ  data could support the estimation of N  c  via tree 
 density and be used to upscale to larger areas. 

 To support conservation and restoration, EO-based techniques can be used to assess 
 change in canopy vitality prior to tree loss via changes in trait values  (Asner & Martin, 
 2016; Helfenstein et al., 2022)  . Differences in such remotely observed canopy traits and 
 their local diversity are related to the response of forest canopies to drought, as shown 
 using aerial imaging spectroscopy as well as public EO data at 20 m spatial resolution 
 (Helfenstein et al., 2022, 2024; Sturm et al., 2022)  (  Fig. 5  ). European beech forests are 
 increasingly threatened by drought, and individual trees vary in their susceptibility, in 
 part due to genetic differences  (Bolte et al., 2016; Braun et al., 2021; Pfenninger et al., 
 2021)  . Such trait maps suggest the possibility of more directly measuring genetic 
 variation using EO. 
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 Figure 5  . Mapping the diversity of forest canopy characteristics using EO. A) Impact of 
 spatial resolution on the derived canopy traits chlorophyll, estimated using spectral 
 indices from Sentinel-2 bands: Chlorophyll content, estimated using the red-edge 
 chlorophyll index CIre (green); carotenoid:chlorophyll ratio, estimated using the 
 chlorophyll carotenoid index CCI (red); and water content, estimated using the 
 normalized differential infrared index NDII (blue)  (Helfenstein et al., 2022)  . These were 
 assessed using 2 m aerial imaging spectroscopy data (left), or 20 m EO data (right). B) 
 20 m Sentinel-2 pixels compared to the crown sizes at Laegern forest. For 20 m pixels, 
 multiple individuals contribute to the signal per pixel. C) EO data for monitoring: Canopy 
 traits mapped for the area of interest for four consecutive years using Sentinel-2 data. 

 Toward “Genes from Space” 
 So far, this paper has discussed using EO data to assess genetic change primarily via 
 assessing habitat change or estimating N  c  change. However, the capabilities of EO, and 
 our ability to interpret EO data in terms of biological variation, are advancing toward  an 
 ultimate aim of truly measuring genetic diversity from space. To understand these 
 advances and how they relate to monitoring genetic diversity, it is important to have an 
 overview of the essential biodiversity variables (EBVs) for genetic composition, which 
 provide an agreed-upon language for defining and measuring genetic diversity. In  Box 
 4  , we briefly explain the genetic EBVs and how they relate to the GBF indicators of 
 genetic diversity. 
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 EBVs for genetic composition (  Box 4  ) are commonly measured, but are not necessarily 
 defined, in terms of DNA sequence variation. Importantly, DNA-based measures are not 
 uniform. Taking  F. sylvatica  as an example, decades of population genetics studies have 
 produced hundreds of datasets on genetic EBVs using different molecular methods over 
 time;  older marker-based studies remain valuable and are complemented, but not 
 replaced, by a newer generation of genomic approaches using single nucleotide 
 polymorphisms (SNPs)  (Stefanini et al., 2023)  . SNP-based studies may in turn be 
 overtaken by newer genomic approaches such as kmers and structural variants 
 (Roberts et al., 2024)  . The situation is similar for other species where DNA-based 
 population genetic data are available: There is no agreed-upon single way to measure 
 EBVs for genetic composition using DNA data. Furthermore, genetic differences are not 
 solely measured by DNA sequence variation but also as differences among individuals 
 that are not explained by environmental factors. 

 Czyż and colleagues asked under what environmental conditions genetic differences 
 might be detected by remote sensing. They used imaging spectroscopy data with high 
 spatial resolution (2 m) to generate a time series of differences among spectra from 
 center-of-canopy pixels for 69 dominant beech trees out of 260 dominant trees in a 
 canopy (see  Fig. 6A  ). They correlated these spectral differences – quantified as a 
 conceptual Euclidian distance, with less similar spectra being more distant than more 
 similar spectra – with the trees’ genetic distance: A measure of how related the trees 
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 are, as determined by five nuclear microsatellite markers from DNA sequencing (see 
 Glossary  ). The correlation strength between spectral distance and genetic distance 
 reached a maximum of 60% across several parts of the spectrum at time points when 
 trees were subject to drier conditions, and later in the growing season  (Czyż et al., 
 2023)  (  Fig. 6B  ). Interestingly, in humans, it is well known that microsatellite sequences 
 fine-tune individuals’ genetically encoded responses to environmental pressures 
 (Horton et al., 2023; Wright & Todd, 2023)  ; these sequences evolve rapidly, which is 
 why they are also useful to measure the relatedness of even very closely related 
 individuals  (Provatas et al., 2024)  . The study by Czyż and colleagues indicates that 
 environmentally contingent differences among individuals that can be observed using 
 EO may be predictive of genetic differences. Several other studies indicate that 
 high-resolution spectroscopy (field and imaging spectroscopy) can reveal quantitative 
 genetic differences and could thus help to scale up measurements of genetic 
 differentiation  (Cavender-Bares et al., 2016; Li et al., 2023; Meireles et al., 2020; 
 Seeley, Stacy, et al., 2023; Stasinski et al., 2021)  . These approaches are currently 
 developed for “best-case scenarios” where aerial imaging spectroscopy, or even 
 individual leaf-level measurements, provide high certainty for assigning spectral data to 
 individual trees  (Petibon et al., 2021)  . To use public EO data from Space, such analyses 
 and their interpretation must be scaled spatially from 2 m to 10-20 m pixels, thus 
 potentially representing genetic composition on a patch-wise rather than an 
 individual-by-individual basis. 

 Thus, when accounting for environmental variation, imaging spectroscopy observations 
 with higher spectral resolution than current multispectral EO (  i.e.  , Landsat, Sentinel-2) 
 could support the estimation of genetic distances across forest canopies. The improved 
 spectral and radiometric capabilities of new EO imaging spectroscopy missions to be 
 launched before the end of this decade by ESA (CHIME: Copernicus Hyperspectral 
 Imaging Mission  6  ) and NASA (SBG: Surface Biology and Geology  7  ) will enhance the 
 information content of EO measurements by two orders of magnitude compared with 
 currently operating multispectral instruments, such as those described so far in our 
 examples. This opens up the possibility of using spectral fingerprints to better 
 distinguish species using EO and even to estimate other components of genetic and 
 trait variation beyond the genetic diversity indicators. 

 7  https://sbg.jpl.nasa.gov/ 
 6  https://www.esa.int/ESA_Multimedia/Images/2020/11/CHIME 
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 Figure 6  . Imaging spectroscopy can help to distinguish species and assess genetic 
 variation. A) Dominant tree crowns assigned to species by aligning forest inventory data 
 with a 3D model of tree crowns and trunks made using LiDAR and photogrammetry; 
 reproduced from  (Guillén-Escribà et al., 2021)  ,  CC BY  . B) Upper panel: Spectral 
 similarity is correlated with a genetic relatedness measure (Nei’s genetic distance) for 
 69 large dominant beech canopies in (A), with correlation strength related to 
 environmental factors. Lower panel: Estimated relative uncertainties of correlations. 
 White lines: mean canopy reflectance measured for focal trees (0-60% of incident 
 sunlight). Environmental factors: temperature on day of acquisition [°C] (TMP), Vapor 
 Pressure Deficit on day of acquisition [%] (VPD), Aggregated Temperature over 11 
 consecutive days [°C] (11TMP), Aggregated Vapor Pressure Deficit over 11 consecutive 
 days [%] (11VPD), Cumulative Growing Degree Days [°C] (CGDD), Cumulative Growing 
 Vapor Pressure Deficit Days [%] (CGVPDD), Day of Last Spring Frost (DLSF), or Last 
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 Year Climatic Water Balance (LYCWB). Pearson correlations are shown from -0.6 (dark 
 blue) to 0.6 (dark red). Reproduced from  (Czyż et al., 2023)  ,  CC BY  . 

 In summary, for dominant  F. sylvatica  trees, EO from current multispectral missions can 
 be used to map the variation of specific traits across canopies (  Fig. 5  ) and, given 
 sufficient spatial resolution, to distinguish (stands of)  F. sylvatica  trees from surrounding 
 forest species. Data with higher spectral resolution from forthcoming imaging 
 spectrometer sensors may support the assessment of genetic variation by providing 
 information about forest canopy traits and spectral signatures using time series 
 observations (  Fig. 6  ). Combined with a large and growing database of single-time-point 
 genetic data for beech across its range, it may be feasible to develop models to predict 
 EBVs for genetic composition directly from EO data for  F. sylvatica  , and likely for other 
 dominant forest tree species, such as oaks and ‘Ōhi’a  (Cavender-Bares et al., 2020; 
 Czyż et al., 2023; Seeley, Stacy, et al., 2023; Seeley, Vaughn, et al., 2023)  . 

 Conclusion 
 The incorporation of EO into assessments of genetic diversity represents a fundamental 
 change in our ability to monitor, assess, and protect biodiversity at the national, 
 regional, and global scales, especially in areas with limited resources or accessibility. 
 Our proposed workflow (  Figs. 1  -  2  ,  Box 3  ) could be developed from public EO and 
 geolocation data as well as optional user-input data on platforms such as GEO BON’s 
 “BON-in-a-Box”  (Griffith et al., 2024)  to make it widely available and facilitate its use for 
 biodiversity monitoring. To better understand and describe this proposed approach, we 
 discussed three examples that each raise key considerations for the application of EO 
 to monitor habitat change and study genetic diversity (  Tables 1  -  3  ,  Box 2  ). We consider 
 the immediate goals of assessing genetic diversity indicators for biodiversity monitoring 
 and providing early warning signs to support the protection of genetic diversity (  Figs. 
 3  -  4  ,  Box 1  ), as well as an outlook on approaches that may enable the assessment of 
 further essential biodiversity variables (EBVs) for genetic diversity from Space (  Figs. 
 5  -  6  ,  Box 4  ). We acknowledge many current limitations that are illustrated and discussed 
 in the presented examples and summarized in  Tables 2  and  3  . 

 Table 3  . A reflection on the applications of EO to monitor and study genetic diversity 
 based on the examples discussed in this article. 

 Case  Aims  EO contributions  Challenges  Information for action 

 Emperor 
 penguins 
 in the 
 Antarctic 

 Infer PM 
 and N  e 

 Inference from 
 evidence of colony 
 occurrence (guano) 
 and patterns of ice 
 cover 

 ●  Colonies are not 
 themselves 
 genetically distinct 
 populations, but can 
 be assigned to 

 1.  Temporal coverage 
 → know when 
 shelves break off 
 (timing of major 
 habitat change) 
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 Provides data for one 
 of the least accessible 
 locations on Earth for 
 in situ  assessment 

 populations 
 ●  Estimation of colony 

 change from Space- 
 based images of 
 guano deposits 
 instead of penguin 
 counts when using 
 public EO data 

 2.  Spatial and 
 temporal coverage 
 → assessment of 
 colony relocation 
 versus loss 

 Crop wild 
 relatives in 
 Mexico 

 Infer PM 
 and 
 sometimes 
 N  e 

 Establish a 
 warning 
 trend 

 Inference based on 
 habitat maintenance 
 or change 

 Provides data for 
 locations that are too 
 dangerous to visit  in 
 situ  due  e.g.  to social 
 conflicts or 
 remoteness 

 ●  Habitat may persist 
 although 
 populations are lost 

 ●  How does habitat 
 change relate to 
 changes in N  e  ? 

 ●  Density estimate 
 challenging for very 
 low N  e 

 1.  Rate, extent, and 
 timing of habitat 
 change → timely 
 intervention (alert) 

 2.  Confluence of 
 degree of habitat 
 change with total 
 habitat available for 
 different ecotypes 
 → prioritization 

 European 
 beech 
 forests 

 Infer PM 
 and N  e 

 Infer genetic 
 composition 
 EBVs 

 Inference based on 
 forest coverage and 
 biochemical and 
 structural differences 
 mapped across tree 
 canopies for a 
 dominant temperate 
 forest tree 

 ●  Weak geographic 
 separation of 
 genotypes 

 ●  Only dominant trees 
 are visible from 
 above and 
 accessible 

 ●  Low accuracy for 
 distinguishing 
 multiple species 
 (high accuracy for 
 binary categories) 

 ●  Statistical 
 accounting for 
 environmental 
 effects 

 1.  Combine 
 information on 
 stand-level vitality 
 with genetic and 
 trait variation across 
 the species range 
 → prioritize 
 interventions 

 2.  Information to 
 support decisions 
 about assisted 
 migration or 
 assisted gene flow 
 interventions (see 
 Glossary  ) 

 As EO data become increasingly available and accessible for non-experts, especially 
 for use in genetic diversity monitoring and assessment, their use and interpretation still 
 require some technical expertise (  Box 2  ). This need for greater technical expertise 
 becomes even more acute with the anticipated advances in EO such as the upcoming 
 imaging spectroscopy Space missions this decade (see  Glossary  ;  e.g.  , CHIME, and 
 SBG). In combination with the needs of practitioners and the impetus provided by 
 biodiversity monitoring mandates, this means that useful access requires the 
 development of portals equipped with tools and interfaces that make key information 
 provided by EO more widely and easily accessible. This implies co-development, 
 incorporating the needs, workflows, and on-the-ground context of practitioners to ensure 
 that the tools and resulting information are fit for purpose, thus building capacity for 
 non-traditional users of EO  (Jacobi et al., 2022; Speaker et al., 2022; Tabor & Holland, 
 2021)  . Such an approach provides motivation and opportunity for EO developers to 
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 understand the needs of practitioners and explore new methods and techniques for 
 evaluating and validating the efficacy of EO products for genetic diversity monitoring. 
 Thus, such toolboxes for genetic diversity monitoring and assessment will not only help 
 democratize access to EO data, but also increasingly enable the archiving and 
 distribution of detailed and well-documented information resulting from a combination of 
 EO with other types of data for new and innovative applications. 

 Glossary 

 Population genetics and related terms 
 ●  Assisted Migration  refers to the human-assisted relocation of individuals within 

 a species to different areas within the species range or new frontiers of a shifting 
 range. 

 ●  Assisted Gene Flow  refers to the introduction of individuals with novel genetic 
 backgrounds (  e.g.  , different provenances or subspecies) into existing populations 
 by humans to increase genetic diversity or otherwise alter population genetic 
 properties. 

 ●  Dispersal distance  is the distance that individuals of a species or their 
 germinative cells, like seeds, are able to move from an existing population. 

 ●  Genetic diversity  (or genetic variation) comprises within-species differences in 
 DNA sequences, as well as variation in the distribution of these differences within 
 and among populations. 

 ●  Genetic drift  refers to changes in allele frequencies within populations due to 
 stochastic processes, specifically because some individuals reproduce more than 
 others and some do not reproduce at all, leading to changes in genetic 
 composition in the next generation. In small populations, the process of genetic 
 drift can decrease genetic diversity rapidly. 

 ●  Genetics  is the study of heritable variation. 
 ●  Genomics  (related to high-throughput sequencing or next-generation / 

 third-generation sequencing) refers to the study of DNA sequences and 
 associated molecular features across large parts of genomes, using, for 
 example, thousands to millions of single-nucleotide polymorphisms (SNPs) per 
 genome. 

 ●  Habitat  is the geographical, environmental, and biotic space that a species can 
 inhabit. 

 ●  N  c  (census size) is  the number of reproductively mature individuals in a 
 population. 

 ●  N  e  (effective population size) is the size of an idealized population that has the 
 same rate of genetic drift as an actual, “real-life” population. Several 
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 demographic factors affect the size of N  e  , including number of reproducing 
 individuals and the sex ratio among them, variation in offspring number, 
 non-random mating, and overlapping generations. N  e  is typically much lower than 
 N  c  , with the ratio of N  e  :N  c  around 0.1. 

 ●  N  e  >500 Headline Indicator  is the proportion of populations of a species that are 
 assessed as having a genetic effective population size N  e  >500. The value of this 
 indicator ranges from zero (none) to one (all). 

 ●  Nuclear microsatellites  are rapidly mutating, short tandem repeat sequences in 
 the nuclear genome, often used to measure relatedness within populations. 
 These are also called short sequential repeats (SSRs) or short tandem repeats 
 (STRs). Microsatellites are also found in organellar genomes (  i.e.  , genomes of 
 mitochondria and plastids), and so the modifier “nuclear” is used to indicate the 
 genome in the cell nucleus. 

 ●  PM Complementary Indicator  measures the proportion of biogeographically 
 distinct populations of a species that are maintained in comparison to a baseline 
 value, and ranges from zero (none) to one (all). 

 ●  Population  ,  in genetics, is a group of spatially aggregated, interbreeding 
 individuals, genetically distinct from other similar groups. Populations occupy a 
 geographical space,  i.e.  , a subsection of the species distribution range. 

 ●  Population genetics  is a field of research focused on the theoretical and 
 molecular study of genetic diversity within and among populations over space 
 and time. 

 ●  Species range  is the geographical area that encompasses all the remaining 
 extant (  i.e.  , non-extinct) populations of a species. 

 ●  SNPs  (Single Nucleotide Polymorphisms) are single base pair differences in a 
 DNA sequence. SNPs are often used to study genetic diversity within and among 
 populations. 

 ●  Traits  are observable, heritable differences among organisms. In other words, 
 these are differences that result from the interaction of genetic and environmental 
 factors and that can be observed. 

 Earth Observation and related terms 
 ●  Earth Observation EO  is the gathering of information about the physical, 

 chemical, and biological processes of the Earth without direct contact. In Europe, 
 EO is often used with focus on satellite-based observations, however, EO often 
 also includes airborne or  in situ  observations. 

 ●  Remote Sensing RS  is often used (e.g., in the US) to refer to satellite 
 observation; however, like EO, RS can be used for any measurement techniques 
 without direct contact to the object. 
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 ●  Atmospheric correction  of an image is the reduction of scattering and 
 absorption effects from the atmosphere - making an image look hazy - to obtain 
 the surface properties of an observed area. 

 ●  Change detection  refers to analysis of a sequence of EO data to observe and 
 detect change for an observed area over time. 

 ●  Hyperspectra  l is a term often used to describe sensors covering a range of the 
 electromagnetic spectrum in discrete, adjacent, narrow-wavelength bands (  e.g.  , 
 10 nm for CHIME), which is finer than current multispectral sensors onboard the 
 Sentinel-2 satellites and other Earth observation satellites. The use of such 
 sensors to generate pixel-based images is also referred to as  imaging 
 spectroscopy  . 

 ●  Imaging spectroscopy  is used to mean the imaging of light reflected from the 
 Earth surface with discrete, adjacent, narrow-wavelength spectral bands. 

 ●  LiDAR  is an active sensor that uses light pulses to probe the vertical structure of 
 a target (  e.g.  , trees in forests and other features of and on the Earth’s surface), 
 either from an aircraft or satellite. 

 ●  LULC  refers to land use (  i.e.  , how land is being used and for what purpose) and 
 land cover (  i.e.  , what type of ecosystem covers the land surface), which is a 
 product derived from various EO instruments. A common variation is LULCC, 
 which refers to land use and land cover change. 

 ●  Multispectral  sensors use a defined number of bands (more than two) to sample 
 parts of the electromagnetic spectrum and may comprise differently sized 
 portions of the spectrum. Each band represents a contiguous part of the 
 spectrum, but the bands may not be adjacent along the spectrum. 

 ●  Spatial resolution  of an image is defined as the area on the ground represented 
 in one pixel (ground sampling distance, GSD). Sentinel-2 imagery, for instance, 
 provides four bands available at 10 m, six bands at 20 m, and three bands at 60 
 m spatial resolution. 

 ●  Spatial extent  defines the area that is imaged by the satellite during one 
 overflight and depends on the field of view of the satellite (  i.e.  , swath width). 
 Often, this corresponds to the size of a delivered image; however, data platforms 
 might provide images from multiple acquisitions that are stitched together. 

 ●  Spectral bands  describe ranges of wavelengths within the electromagnetic 
 spectrum in which reflected light is measured for imaging and analysis of an 
 observed area in remote sensing.The position of these bands in the spectrum 
 and the width of their range are defined by the spectral resolution. 

 ●  Spectral resolution  is defined as the spectral bandwidth and the number of 
 individual bands used to aggregate the reflected light from the observed area. 

 ●  Temporal resolution  is defined by the revisit time of a satellite/sensor to observe 
 the same area on Earth’s surface. Depending on the satellite configuration, 
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 revisit time varies from hours to several days. The temporal resolution 
 determines the potential for monitoring, as it enables the temporal analysis of 
 changes. 

 ●  Time series  are multitemporal datasets, acquired in a sequence of observations 
 obtained over a certain period of time. This can be several images within a short 
 time frame to observe fast processes (  e.g.  , volcanic eruption) or within a long 
 time frame (  e.g.  , one image per year to observe glacier retreat). In addition to 
 change detection, time series are used to study the type, speed, and duration of 
 observed changes. In contrast,  multitemporal data  consists of at least two 
 images acquired at two different times, typically used for change detection and 
 analysis. 

 Data and Code Availability 
 Code for this study are provided with the input data necessary to analyze the examples: 
 https://gitlab.issibern.ch/meredithchristine.schuman/eo4geneticdiversity-examples 
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