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Abstract 40 

Genetic diversity within and among populations is essential for species persistence. While 41 

targets and indicators for genetic diversity are captured in the Kunming-Montreal Global 42 

Biodiversity Framework, assessing genetic diversity across many species at national and 43 

regional scales remains challenging. Parties to the Convention on Biological Diversity (CBD) 44 

need accessible tools for reliable and efficient monitoring at relevant scales. Here, we describe 45 

how Earth Observation satellites (EO) make essential contributions to enable, accelerate, and 46 

improve genetic diversity monitoring and preservation. Specifically, we introduce a workflow 47 

integrating EO into existing genetic diversity monitoring strategies and present a set of 48 

examples where EO data is or can be integrated to improve assessment, monitoring, and 49 

conservation. We describe how available EO data can be integrated in innovative ways to 50 

support calculation of the genetic diversity indicators of the GBF monitoring framework and to 51 

inform management and monitoring decisions, especially in areas with limited research 52 

infrastructure or access. We also describe novel, integrative approaches to improve the 53 

indicators that can be implemented with the coming generation of EO data, and new capabilities 54 

that will provide unprecedented detail to characterize the changes to Earth’s surface and their 55 

implications for biodiversity, on a global scale. 56 
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 63 

Earth observation satellites (EO) support and improve the establishment of baseline data, effective regular 64 
monitoring, and targeted re-assessment and interventions to conserve the genetic diversity of natural 65 
populations. Top: Example trajectories are shown for two imaginary populations, P1 and P2: P1 drifts below 66 
the threshold for the effective population size (Ne) > 500 headline indicator for genetic diversity monitoring, 67 
and P2 is maintained above this threshold close to an Ne of ca. 1 000 (Ne ~ 0.1 * Nc, where Nc is the census 68 
number of reproductively mature adults and  Ne is the genetically effective population size). Bottom: 69 
Overview of general workflow and contributions of EO. 70 

71 



 

 

 

Introduction 72 

Genetic diversity is an essential aspect of biodiversity protection 73 

International treaties and national programs for the protection of biodiversity have required 74 

assessments of the state of nature since the 1970s, for example the 1971 Ramsar Convention 75 

on Wetlands (Director, Office of International Standards and Legal Affairs & United Nations 76 

Educational, Scientific and Cultural Organization (UNESCO), 1994), the 1992 Convention on 77 

Biological Diversity (Secretariat of the Convention on Biological Diversity, 2011), the 2010 Aichi 78 

Biodiversity Targets (Conference of the Parties to the Convention on Biological Diversity, 2010), 79 

the 2015 Sustainable Development Goals1, and the 2022 Kunming-Montreal Global Biodiversity 80 

Framework, which for the first time includes specific indicators to measure progress 81 

(Conference of the Parties to the Convention on Biological Diversity, 2022a). Genetic diversity is 82 

a foundational level of biodiversity that occurs below the species level, within and between 83 

populations (Allendorf, 2017). Genetic diversity underpins the adaptive potential which allows 84 

species to persist in the face of change (i.e., resilience and resistance) and is central to fitness 85 

of individuals. Genetic diversity loss eventually leads to inbreeding, maladaptation, population 86 

decline, and eventually extinction. Therefore, genetic diversity needs to be monitored as part of 87 

biodiversity assessments, conservation and restoration actions, and for safeguarding nature’s 88 

contributions to people (Hoban, Bruford, et al., 2021; Hoban et al., 2020). Studies of multi-89 

species genetic diversity trends have only recently become possible, and indicate loss over time 90 

as a result of human activities (Exposito-Alonso et al., 2022; Leigh et al., 2019; Millette et al., 91 

2020). 92 

 93 

Measuring genetic diversity usually involves DNA-based data collected from a comprehensive 94 

sample of a species, as when assessing genetic Essential Biodiversity Variables (EBVs) (Box 95 

1) (Hoban et al., 2022; Junker et al., 2023; Navarro et al., 2017; Pereira et al., 2013). Despite 96 

technological advances, sequencing DNA from individuals remains laborious, expensive – in the 97 

range of 10-1000 USD / sample depending on technique, genome size, and coverage, not 98 

including the cost to obtain the DNA samples in the first place, e.g. (Lou et al., 2021) – and thus 99 

difficult to repeat across many species at national and global scales. To overcome this 100 

challenge, indicators for genetic diversity have been developed for country- and global-scale 101 

genetic diversity assessments and monitoring, which can be assessed with or without DNA-102 

based data (Hoban et al., 2020; Laikre et al., 2020; Mastretta-Yanes et al., 2023) (Box 2). 103 

 104 

The first indicator focuses on genetic diversity within populations and comprises the proportion 105 

of populations within a species having an effective population size (Ne) > 500, which is an 106 

approximate, yet efficient, threshold to avoid the loss of quantitative genetic variation and 107 

adaptive potential over time (Crow & Kimura, 2009; Frankham, 1995, 2022; Franklin, 1980; 108 

Hoban et al., 2020, 2023, 2024; Jamieson & Allendorf, 2012; Laikre et al., 2020) but see 109 

(Frankham et al., 2014); hereafter the “Ne > 500 indicator”. Importantly, the Ne can be estimated 110 

based on DNA data, or it can be approximated as 10% of the number of mature individuals 111 

 
1 https://sdgs.un.org/ 



 

 

 

(census size, Nc), or another species-specific Ne:Nc ratio (Frankham, 2021; Frankham et al., 112 

2017; Hoban, Paz-Vinas, et al., 2021). A second indicator focuses on conserving genetic 113 

diversity between populations, and it is estimated as the proportion of populations within species 114 

that are maintained over time, hereafter the “PM indicator” (Hoban et al., 2020, 2023, 2024; 115 

Laikre et al., 2020; Mastretta-Yanes et al., 2023). This is to avoid the loss of unique genetic 116 

diversity found in separate populations (Andersson et al., 2022; Meek et al., 2023). While DNA-117 

based studies remain the gold standard for quantifying genetic diversity locally, these indicators 118 

offer a globally affordable and accessible metrics to facilitate immediate monitoring (Hunter et 119 

al., 2024). 120 

 121 

 122 
 123 

The indicators were adopted by the United Nations Parties to the Convention on Biological 124 

Diversity (CBD) at the fifteenth meeting of the Conference of the Parties (COP15) in 2022, by 125 

the monitoring framework of the Kunming-Montreal Global Biodiversity Framework (GBF, 126 

CBD/COP/DEC/15/5) (Conference of the Parties to the Convention on Biological Diversity, 127 

2022b), and are expected to be reported by CBD Parties. Concretely, this means that signing 128 

Parties must monitor genetic diversity to prevent its loss, and provide reports every five years. 129 

The first reports are expected in 2026, and thus it is urgent to implement existing genetic 130 

monitoring approaches for indicator assessments (Andersson et al., 2022; Genetic Diversity 131 

Indicator Guidelines, 2024/2024; Hoban et al., 2023; Mastretta-Yanes et al., 2023; Thurfjell et 132 

al., 2022) and to further develop scalable, globally accessible and affordable methods for 133 

genetic diversity indicator calculation. 134 

 135 

To facilitate the implementation of reporting for the genetic diversity indicators, researchers and 136 

practitioners recently assessed these indicators in nine countries utilizing existing DNA studies, 137 

Box 1: Essential Biodiversity Variables (EBVs) 
 
Essential variables have been developed to understand and measure climate, biodiversity, and other 
components of the Earth system (e.g. Essential Climate Variables, Essential Ocean Variables). The 
concept of Essential Biodiversity Variables (EBVs) was introduced to advance the collection, sharing, 
and use of biodiversity information (Pereira et al. 2013; Navarro et al. 2017), providing a way to 
integrate the many biodiversity observations collected through different methods such as in situ 
measurements or remote sensing (https://geobon.org/ebvs/what-are-ebvs/). EBVs are scalable, 
meaning the underlying observations can be used to represent different spatial or temporal 
resolutions required for the analysis of trends. 
 
The EBVs for genetic composition include (Hoban et al. 2022; Junker et al. 2023): 
1. Effective population size: size of an ideal population that loses genetic variation at the same rate 

as the focal population. Related to the Ne > 500 indicator (see Box 2). 
2. Inbreeding: degree of relatedness between pairs of individuals, mating among relatives, or 

identity by descent. Not assessed by either the Ne > 500 indicator or the PM indicator (see Box 
2). 

3. Allelic richness and heterozygosity: count of the number of alleles in a population or expected 
proportion of heterozygotes in a population at equilibrium. Not assessed by the Ne > 500 and PM 
indicators. 

4. Genetic differentiation: degree of genetic differentiation among populations or units. Related to 
the PM indicator. 



 

 

 

census population sizes, and georeferenced occurrence data (Mastretta-Yanes et al., 2023). 138 

Challenges identified in this assessment were the lack of data for particular taxonomic groups 139 

located in inaccessible regions (e.g., areas that are politically or geographically challenging to 140 

access) and a lack of historical data. Overall, the assessment highlighted the need for capacity-141 

building and the development of ready-to-use tools to expedite and scale up monitoring. 142 

 143 

 144 

Earth Observation satellites as a method for biodiversity 145 

assessment 146 

Earth Observation satellites (EO), equipped with passive instruments (that measure reflected 147 

and emitted radiation from Earth’s atmosphere and surface) or active instruments (with their 148 

own source of energy to illuminate the atmosphere or Earth’s surface), have become 149 

indispensable for understanding and monitoring global change. They are used for environmental 150 

assessments, disaster risk management, land and sea use, atmospheric and climate change, 151 

and to study and assess changes in biodiversity (Mairota et al., 2015). While Earth observation 152 

is also conducted with airborne and field-mobile platforms, here we focus on space-based EO 153 

such as the Copernicus Sentinel satellites and the NASA Earth Observing System (EOS) (Table 154 

1), which make (global) data publicly available and free of charge (Malenovský et al., 2012).  155 

Box 2: CBD genetic diversity indicators 
 
The Ne > 500 indicator. This is headline indicator A.4 in the KMGBF monitoring framework. Effective 
population size (Ne) is a key parameter in population genetics that is used to quantify the rate at 
which quantitative genetic variation is expected to be lost (Crow & Kimura 2009). A widely accepted 
rule-of-thumb is that populations require an Ne > 500 to avoid genetic erosion (Jamieson & Allendorf 
2012). Effective population size can be assessed using detailed genetic and/or demographic data. 
However, population census size Nc (the number of mature individuals in a population) can be used to 
obtain a proxy for Ne. Scientific studies that have assessed both Ne and Nc have shown that the 
relationship between Ne and Nc is typically around 0.1 (Frankham 1995, 2021). That is, to obtain an 
Ne > 500, a census size of Nc > 5000 mature individuals are needed. Therefore the census size can 
be used in the absence of other Ne assessments. Identifying populations and determining whether or 
not they comprise at least 5000 reproductively mature individuals is a simplified way to assess and 
monitor the maintenance of genetic diversity within populations (Laikre et al. 2020, Hoban et al. 2020, 
2023, 2024). 
 
The populations maintained (PM) indicator. This is a complimentary indicator to Ne > 500 in the 
KMGBF monitoring framework. In order to calculate the proportion of populations above the Ne 
threshold, it is first necessary to know how many populations there are. However, the number of 
biogeographically distinct populations that are maintained within a species is already an important 
indicator of its genetic diversity. This is because species populations can become differentiated and 
even locally adapted to environmental conditions as a result of genetic processes (selection, drift, 
migration, and mutation; Meek et al. 2023). Thus, populations can harbor unique genetic diversity that 
can be detected with DNA-based methods (Andersson et al. 2022). If a population is lost, the genetic 
diversity within this population is also lost, and this can include unique genotypes. Thus, it is 
important to track the number of species populations maintained over time, and to prioritize the 
maintenance of distinct populations in order to preserve genetic diversity throughout a species’ range 
(Hoban et al. 2020, 2023, 2024). 



 

 

 

Table 1. EO platforms that lower or eliminate technical and financial barriers to using EO for genetic 156 
diversity monitoring and other applications by non-EO experts. 157 

 EO Tool Access Brief description 

 Copernicus 
browser 

https://dataspace.cope
rnicus.eu/browser/  

Easy visualization browser for Copernicus 
Sentinel data, download portal for archive of 
Sentinel data and products 

Earth Data https://search.earthdat
a.nasa.gov/search  

Discover and download NASA EO data; many 
different sensors available 

Earth Explorer https://earthexplorer.us
gs.gov/  

Discover and download NASA (and Copernicus 
Sentinel) EO data; many different sensors 
available 

Sentinel Hub 
EO browser 

https://www.sentinel-
hub.com/  

Browser for satellite data including options to 
display thematic topics and indices 

Google Earth 
Pro Desktop 

https://www.google.co
m/intl/en/earth/about/v
ersions/#earth-pro  

Easy-to-use Earth software including (historical) 
high-resolution commercial images made freely 
available for visual inspection (irregularly) 

 Global Forest 
Watch 

https://www.globalfore
stwatch.org/  

Browse metrics of forest and biodiversity change 
from national and sub-national to global scales 

Global 
Mangrove 
Watch 

https://www.globalman
grovewatch.org/ 

Remote sensing data and tools with near-real-
time information for monitoring mangroves at 
global scale 

Sentinel Hub 
custom scripts 

https://custom-

scripts.sentinel-

hub.com/ 

Scripts to calculate products from Sentinel data 

 Earth 
Observing 
Dashboard 

https://eodashboard.or
g/explore 

Tri-agency dashboard by NASA, ESA and JAXA 
for browsing EO data, with interactive features 
and simple analytics by drawing an area of 
interest  

Earth Online https://earth.esa.int/eo
gateway/catalog 

Catalog of data from ESA’s EO missions 

Landsat 
Science 

https://landsat.gsfc.nas
a.gov/data/data-
access/ 

Overview of access to NASA data products from 
Landsat and many other platforms 

SentiWiki https://sentinels.copern
icus.eu/web/sentinel/m
issions 

Overview of the Copernicus Sentinel missions 

 158 

EO data have unique attributes such as covering large geographical areas, providing non-159 

intrusive global coverage, and providing uniform data sets over multiple decades (e.g., Landsat 160 
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data since the 1970s2). These data are used to obtain various information for environmental 161 

analyses and biodiversity monitoring often at the ecosystem level. Examples are land use and 162 

land cover (LULC) change, vegetation biochemical properties and conditions, structural 163 

information such as green leaf area index (LAI), vegetation height, land surface phenology, and 164 

photosynthetically active radiation (PAR) that determine vegetation health and productivity 165 

(Verrelst et al., 2015). This information is then often used in models to determine species 166 

composition and other properties of ecosystems at the landscape level (Mayor et al., 2024; 167 

Pasetto et al., 2018). However, EO data is not widely considered to be useful for genetic 168 

diversity monitoring and assessment (Skidmore et al., 2021; Timmermans & Kissling, 2023), 169 

although there are some demonstrations of its potential for this purpose (Fernández, 2013; 170 

Schuman et al., 2023). Here, we describe how the current and forthcoming advances in EO 171 

capabilities, such as improved spatial and spectral resolution, can be used together with novel 172 

CBD genetic diversity indicators (Box 2) to facilitate the monitoring, assessment and 173 

conservation of genetic diversity in support of the GBF. 174 

EO contributions to genetic diversity monitoring: an overview 175 

Whether a population still exists, and whether it has grown, shrunk, or maintained its size, is 176 

often linked to changes in its habitat (Mace et al., 2010). EO can support monitoring of changes 177 

in habitat area and conditions and the composition and size of populations, including the 178 

likelihood of their continued existence, thus supporting estimations of the PM indicator. This 179 

relies on the assumptions that a habitat patch of a particular size can support a species 180 

population; that habitat quality can be sufficiently well assessed by EO; and that the considered 181 

threats to populations are visible at the habitat scale (e.g., land-use change, but not poaching). 182 

Thus, some evidence of species occupation or activity (Example 1: Emperor Penguins), habitat 183 

changes such as land cover or land use change (Example 2: Crop Wild Relatives), or landscape 184 

modification and fragmentation can be detected and quantified using EO for the assessment of 185 

PM (Figure 1).  186 

 187 

Similarly, the size of particular habitat patches can be monitored using EO. By estimating a 188 

relationship between habitat size and the number of mature individuals of a species living in this 189 

habitat, EO can be used to estimate changes in Nc and, in some cases (for large and immobile 190 

individuals such as trees), Nc may be more directly estimated from EO (Example 3: Common 191 

Beech forests). In either case, EO data supports the assessment of the Ne > 500 indicator, by 192 

providing a proxy for Nc data from which Ne can be estimated using the Ne:Nc ratio (Figure 1).  193 

 
2 https://landsat.gsfc.nasa.gov/ 



 

 

 

Figure 1. Overview of the proposed workflow for integrating EO data into genetic diversity monitoring in 194 
the GBF (see also Box 3). 195 

 196 

Uniquely and importantly, EO typically provide repeat measurements on a time scale of days to 197 

weeks, globally. For example, the Copernicus Sentinel-2 mission monitors the entire globe in 198 

five days with multi-spectral images, with more frequent observations for some locations on 199 

Earth depending on the satellite orbit3,4. The Sentinel family of satellites have observed the 200 

Earth surface with different instruments continuously starting in 2014, detecting radiation in the 201 

visible, infrared, microwave, and other ranges with maximum 10 spatial resolution, depending 202 

on the satellite, continuously (Malenovský et al., 2012). Sentinel-2 as one out of the currently 203 

five different sensor types in orbit images the reflected sunlight from the Earth in differentl 204 

spectral bands. It can be used to assess, for example, vegetation properties such as LAI from 205 

 
3 https://sentiwiki.copernicus.eu/web/s2-applications 

4 https://esamultimedia.esa.int/docs/S2-Data_Sheet.pdf 



 

 

 

visible and near-infrared measurements (Sebastiani et al., 2023) or vegetation conditions such 206 

as water content from short-wave infrared measurements (Helfenstein et al., 2024). The open-207 

access Copernicus Sentinel data are complemented by long-term records obtained by the 208 

NASA Landsat and Earth observing satellites since the 1970’s. All ESA and NASA data are 209 

available openly and freely to all users, and are in this way ideal for biodiversity assessment and 210 

monitoring from local to global scales, and annual to multi-decadal time frames (see available 211 

tools in Table 1). For example, freely available data from the Copernicus Sentinel-2 can be 212 

browsed via the Copernicus Browser. This cloud-based platform is easy to navigate for 213 

reviewing and visualizing the results from various combinations of different spectral bands 214 

without the time-consuming, inefficient, and sometimes infeasible process of downloading a 215 

very large amount of data to a local computer for analysis, and supports simple analysis of large 216 

numbers of observations. This facilitates much-needed access to the resulting information by 217 

researchers and other stakeholders, especially for areas with limited observations or that are 218 

difficult to access. 219 

 220 

 221 
 222 

The major challenge is to ensure the useability and accessibility of EO data for specific 223 

applications such as biodiversity monitoring, as it requires expert knowledge to extract the 224 

needed information5 (Box 4) (Pahlevan et al., 2021; Silva et al., 2008). The integration of EO 225 

data as an additional source of information in genetic indicator assessments and monitoring 226 

requires the co-development and production of such information through collaboration among 227 

experts in population and conservation genetics and genomics, remote sensing, geography and 228 

 
5 And see https://www.ucgis.org/gis-t-body-of-knowledge 

Box 3: A workflow to support genetic diversity monitoring with EO 
 
We propose the following steps to include EO data for monitoring genetic diversity of species’ 
populations. We note that not all steps are feasible for all species. 

1. Define population boundaries. 
a. Define populations that can be related to habitat area and size, where the area and 

size can be identified with support of EO. 
b. Pinpoint the contribution of EO (e.g. systematic land cover mapping or habitat 

assessment, systematic identification of population presence or activity) and identify 
what other information is needed. 

2. Calculate the number of populations maintained (PM). 
a. Leverage current and historical EO data to assess recent trends in population 

presence and distribution. 
b. Use EO to support mapping population distribution, which can later help to guide in 

situ monitoring and conservation efforts. 
3. Calculate the number of populations with Ne > 500. 

a. Define the relationship between area size and census size of each population to be 
monitored (e.g., validate Nc estimates from ground data).  

b. Use Nc estimates from EO area size or direct observations (e.g. for trees) to infer Ne 
with the ratio Ne : Nc ~ 1 : 10 for each population, and estimate the number which are 
above the Ne > 500 threshold. 

4. Monitor the population areas for maintenance and size over time. 



 

 

 

geospatial information, ecology, conservation, and practitioners who will ultimately use this 229 

information routinely. 230 

 231 

 232 

EO contributions to genetic diversity monitoring: 233 

three examples 234 

Here, we describe how EO can be used to facilitate genetic diversity monitoring according to the 235 

GBF and support the further implementation of genetic diversity indicators. Three examples: 236 

emperor penguins in Antarctica, crop wild relatives in Mexico, and common beech forests in 237 

Europe (Table 2), demonstrate what is possible today, and where additional development is 238 

needed. The third example also illustrates how advances in EO capabilities (e.g., spectral and 239 

spatial resolution) can provide additional information towards more precise assessments of the 240 

indicators or even assessing genetic EBVs, beyond what is available and possible to do today. 241 

 242 

Box 4: What to know when using EO 
Key references are given in the main text referring to Box 4. 

1. The smallest area observed by EO sensors – a pixel – always comprises a mixture of elements 

(different species, underlying ground cover, etc.) and there are techniques for “unmixing pixels”. 

Uncertainties will be greater at transitions between different types of Earth surfaces (e.g., at the 

edges of ice floes or forests) due to pixel mixing. 

2. Uncertainties are generally greater at the edges than at the centers of images – although well-

established georectification algorithms are used to account for edge, terrain, and other possible 

distortions when mapping pixels to the Earth’s surface. Water strongly absorbs many wavelengths 

of electromagnetic radiation (signals measured by EO), and EO capabilities for aquatic species 

are best developed for species living at or near the water’s surface. 

3. Data are continuously available but not continuously usable: cloud cover can obstruct optical 

images, posing challenges especially for tropical regions. Active sensors like synthetic aperture 

radar (SAR), e.g. on Sentinel-1, provide information even in the presence of cloud cover. There 

are well-established procedures to correct for atmospheric effects of aerosols, water vapor, etc. 

For public data, these corrections are normally documented and attached to each dataset. 

4. Generally, public data providers (e.g., space agencies like ESA and NASA) publish their algorithms 

so that the path from the acquisition of a signal to geophysical and biophysical products is 

transparent and traceable. 

5. Public data products improve over time with improving knowledge and technology, and thus have 

a defined lifetime that is documented by different versions of products.  

6. Commercial EO data, which usually have the advantage of higher spatial resolution and can be 

“tasked” to acquire frequent observations for a given target area, may not have such detailed 

traceability and continuity as public EO data.  

7. In situ calibration data is crucial for calibrating satellite data and essential for uncertainty and 

quality assessment and interpreting the signal in terms of Earth surface (target) properties. It is 

also important for training of classification algorithms using artificial intelligence (AI).  

8. Assessment of uncertainty may not be possible for datasets leveraging AI or interpolation to 

improve spatial resolution or image aesthetics.  



 

 

 

 243 
 244 
Table 2. Overview of examples. 245 

Case Aims EO contributions Challenges Information for action 

Emperor 
penguins in 
the 
Antarctic 

Infer PM 
and Ne 

Inference from 
evidence of colony 
occurrence (guano) 
and patterns of ice 
cover 
 
Provides data for one 
of the least accessible 
locations on Earth for 
in situ assessment 

● Colonies are not 
themselves 
genetically distinct 
populations, but can 
be assigned to 
populations 

● Difficult to estimate 
colony size from 
space images of 
guano deposits 

1. Temporal coverage 
→ know when 
shelves break off 
(timing of major 
habitat change) 

2. Spatial and temporal 
coverage  → 
assessment of 
colony relocation 
versus loss 

Crop wild 
relatives in 
Mexico 

Infer PM 
 
Establish a 
warning 
trend 

Inference based on 
habitat maintenance 
or change 
 
Provides data for  
locations that are too 
dangerous to visit in 
situ due to social 
conflicts or 
remoteness 

● Habitat may persist 
although 
populations are lost  

● How does habitat 
change relate to 
changes in Ne? 

1. Rate, extent, and 
timing of habitat 
change → timely 
intervention (alert) 

2. Confluence of 
degree of habitat 
change with total 
habitat available for 
different ecotypes →  
prioritization 

Common 
beech in 
European 
forests 

Infer PM 
and Ne 
 
Infer genetic 
EBVs 

Inference based on 
forest coverage and 
biochemical and 
structural differences 
mapped across tree 
canopies 

● Geographic isolation 
≠ genetic isolation 
due to wind 
pollination 

● Only dominant trees 
are accessible 

● Low accuracy for 
distinguishing 
multiple species 
(high accuracy for 
binary categories) 

● Statistical 
accounting for 
environmental 
effects 

1. Combine 
information on 
stand-level vitality 
with genetic and trait 
variation across the 
species range → 
prioritize 
interventions 

2. Information to 
support decisions 
about assisted 
migration or 
assisted gene flow 
interventions (see 
Glossary) 

Example 1: Finding penguins by their poo 246 

Key points 247 

The identification and monitoring of emperor penguin (Aptenodytes forsteri) colonies in 248 

Antarctica by EO is only a step away from using EO to estimate the Ne > 500 and PM indicators. 249 

Emperor penguins are considered a biomonitor of ecosystem change in the Southern Ocean, as 250 

they occur throughout the seasonal pack-ice areas, tend to stably occupy specific sites, and are 251 

long-lived upper-trophic-level predators (Bargagli, 2005; Kato et al., 2004; Kooyman & Mullins, 252 



 

 

 

1990). Not only do these birds live in one of the most inaccessible and inhospitable areas on 253 

Earth, but their habitat is under increasing threat from global and regional climate change, in 254 

particular changes in sea-ice distribution, marine food webs, and storm frequency and intensity. 255 

EO have become useful for monitoring penguin colonies, taking advantage of the sharp contrast 256 

between penguins, their dark guano, and the background ice. 257 

Detailed description 258 

Barber-Meyer and colleagues (Barber‐Meyer et al., 2007) characterized two new penguin 259 

colonies using a combination of multispectral and panchromatic images retrieved from the 260 

QuickBird satellite from September–November 2005 and 2006 (Figure 2). Data from five other 261 

known colonies, with abundance data obtained from ground counts or aerial photography, was 262 

then used to develop a regression equation to estimate relative abundances (< 3 000 or > 5 000 263 

adult birds) from panchromatic satellite image classifications for the two inaccessible colonies. 264 

This study demonstrated how to leverage EO with other observations to obtain unique data on 265 

colony occurrence and size while offering a feasible approach to monitor changes in colonies. 266 

This was possible even given limitations such as the need to collect images during a short time 267 

window months with minimal shadows in Antarctica (e.g., November with highest solar angle) 268 

and to combine multispectral (superior differentiation of penguins, guano, and ice but low spatial 269 

resolution) with panchromatic (higher resolution) images (Figure 2). Genetic data show that 270 

colonies interact and are genetically mixed (Younger et al., 2017). There are at least four 271 

geographically distinct emperor penguin metapopulations, each comprising several colonies. 272 

Thus, for the PM and Ne > 500 indicators to be assessed and tracked, these Earth Observation-273 

detected colonies must be assigned to the four genetically detected metapopulations. 274 

 275 

Fretwell & Trathan used Landsat ETM (Enhanced Thematic Mapper) images from the Landsat 276 

Image Mosaic of Antarctica (LIMA6) to detect fecal staining of ice to indicate colony locations (P. 277 

T. Fretwell & Trathan, 2009). Thanks to an estimated 85-95 % coverage of the entire coastline 278 

due to the Landsat multi-decadal archive, this study identified 10 new sites of colony 279 

occupation, relocated or corrected positions for six other breeding sites, and confirmed the 280 

positions of 17 previously identified sites. This pan-Antarctic delineation of emperor penguin 281 

distribution set the benchmark for colony trajectory assessments. A subsequent satellite-based 282 

study confirmed 37 out of the 38 colonies found (P. T. Fretwell et al., 2012). The 2012 study 283 

was based on satellite imagery from QuickBird, WorldView-2 and Ikonos satellites with 10 m 284 

spatial resolution to complement the Landsat ETM 30 m images (or 15 m panchromatic 285 

images). The relationship between the colony area (m2) and the number of adult birds present at 286 

a colony was estimated using linear regression with data from seven colonies where both 287 

estimates from satellites and direct counts were available. This allowed an estimation of total 288 

population size in 2009 notwithstanding uncertainties, in particular due to methodological errors 289 

and natural variability. This study demonstrated the use of EO to monitor emperor penguin 290 

population size and population persistence in consecutive breeding seasons and on regional to 291 

global scales.  292 

 293 

 
6 https://lima.usgs.gov/ 



 

 

 

With the launch of Copernicus Sentinel-2 satellites, Fretwell and Trathan used optical imagery 294 

from 2016, 2018 and 2019 to locate emperor penguin colonies across the entire continent of 295 

Antarctica (P. T. Fretwell & Trathan, 2021). Eleven additional new colonies were identified, and 296 

a first-order assessment of colony size was attempted using the comparative sizes of previously 297 

known colonies. These preliminary assessments allowed the authors to conclude that the new 298 

colonies may increase the total global population size estimated by Jenouvrier and colleagues 299 

by 5–10% (Jenouvrier et al., 2020).  300 

 301 

Taking a combined Earth Observation approach that leveraged the broader coverage of 302 

Copernicus Sentinel-2 imagery with the Very High-Resolution WorldView-3 imagery (spatial 303 

resolution down to 0.3 m) enabled the investigation of seasonal effects of breeding. The first 304 

recorded incident of widespread breeding failure linked to large-scale sea ice loss was reported 305 

by Fretwell and colleagues, with four out of five colonies experiencing total or near-total 306 

breeding failure in 2022 (P. T. Fretwell et al., 2023). The study was prompted by a climate-307 

related event: in early December 2022, the sea ice extent across Antarctica reached an all-time 308 

low, with the greatest regional negative anomaly recorded in the Bellingshausen Sea region, 309 

west of the Antarctic Peninsula where, during November, some regions lost 100% of sea ice 310 

extent. Emperor penguins breed on landfast sea ice: compact sea ice held in place by ice 311 

shelves and grounded icebergs. For successful breeding, this ice must remain stable from April 312 

to January. Four sites with visible colonies in late October 2022 or early November 2022 did not 313 

present any visible sign of a colony (i.e., brown indicative pixels on sea ice) by the start of the 314 

fledgling season in early December 2022.  315 

 316 

Collectively, these studies indicate how EO can provide complementary and cost-effective data 317 

for genetic indicator assessments for a biomonitor species in an inaccessible location. Colony 318 

size estimation via EO opens the way for continuous estimation of the Ne > 500 indicator as well 319 

as the PM indicator, although these calculations must be evaluated in terms of the four 320 

genetically detected metapopulations (Younger et al., 2017). This may be achieved by 321 

leveraging additional EO information on habitat. Labrousse and colleagues investigated how 322 

different habitats are associated with the presence of emperor penguins around Antarctica 323 

based on landfast sea ice extent and variability data, intra- and interspecific trophic competition 324 

factors, and geography (Labrousse et al., 2023). They calculated landfast sea ice extent from 325 

March 2000 to March 2018 at 1 km and 15-day resolution from NASA MODIS data. The team 326 

combined a principal component analysis of the environmental variables and a model-based 327 

Bayesian clustering approach, identifying five geographically distinct habitat clusters, with the 328 

fifth cluster in a restricted geographic extent where three colonies live. Interestingly, four of 329 

these clusters corresponded to the four metapopulations identified by DNA-based analyses 330 

(Younger et al., 2017). This suggests that the identified genetic structure may be associated 331 

with adaptation to specific habitat conditions, and thus each metapopulation likely houses 332 

unique genetic variation. Accordingly, the identified breeding populations and habitats should be 333 

considered separate units for genetic monitoring, management, and population projections. 334 

These habitat clusters show differences in extent and projected future persistence of landfast 335 

sea ice, and thus may have very different future success rates. As extreme climate-related 336 

events are expected to occur more frequently and with greater severity, the temporal resolution 337 



 

 

 

provided by EO data is vital to signal harmful biodiversity loss and guide conservation 338 

intervention. Such information can be used to project expected trends in genetic indicators and 339 

help guide species management. Similar models of habitat suitability can be built for other 340 

species and will be particularly relevant for the PM indicator. This example with emperor 341 

penguins can pave the way for developing new methods and analytical procedures applicable to 342 

other organisms and habitats, as already demonstrated for some other seabirds (P. T. Fretwell 343 

et al., 2015). 344 

Figure 2. Sentinel-2 images of the four new sites taken at consistent scale. Arrows show locations of 345 
emperor penguin colonies. Image and caption from Figure 2 of (P. Fretwell, 2024), CC BY. 346 

Example 2: Monitoring habitat and population maintenance in wild 347 

relatives of domesticated crops 348 

Key points 349 

EO are not yet used to monitor crop wild relatives (wild plant species closely related to modern-350 

day crops), but this could be achieved using publicly available EO data in a few straightforward 351 

steps. The wild relatives of modern-day crops harbor an important proportion of crops’ genetic 352 

diversity (Maxted et al., 2006). In Mexico, crop wild relatives are threatened mainly by land use 353 

and land cover change (Goettsch et al., 2021). Several species (spp.) of wild avocados (Persea 354 

spp.) and teosintes (Zea spp., related to maize or corn) inhabit locations that are often 355 

dangerous or difficult to visit. Within these genera, several wild species are endangered or 356 

critically endangered (Goettsch et al., 2021). Populations or individuals of these species cannot 357 

be directly observed from EO due to limited size or number, but critical aspects of their native 358 

habitat, such as proximity to and association with nearby forests, can be observed. In particular, 359 

tree-cover loss (land use or land cover change, and thus habitat loss) can be quantified and 360 

assessed using EO to infer which populations may be experiencing greater decline. 361 



 

 

 

Biogeographical information and species distribution models can be employed to assess the 362 

risks to PM and Ne posed by spatial patterns of habitat loss. Initial data on population locations 363 

and size are needed as a baseline, and EO can effectively be used to monitor habitat change 364 

and prioritize field visits, management and conservation actions. 365 

Detailed description  366 

Habitat loss due to logging and conversion to agriculture or urban development is a global threat 367 

to biodiversity (Tilman et al., 2017). For instance, most Mesoamerican crop wild relatives are 368 

affected by agriculture and urban development (65% and 25% of assessed species, 369 

respectively) (Goettsch et al., 2021). In terms of its impact on genetic diversity, habitat loss 370 

could mean population extinction (habitat annihilation in a given region, PM decline) or 371 

shrinkage of the effective population size (smaller habitat space, fewer individuals, Ne decline 372 

and thus elevated loss of genetic diversity through genetic drift). The first step in assessing 373 

whether habitat loss affects populations of  species is to define population boundaries (Figure 374 

1) based on occurrence points or species distribution models, using methods including, for 375 

instance, geographic features (e.g., different mountains harbor different populations) or eco-376 

biogeographic differences (e.g., different environmental zones harbor different populations) 377 

(Hoban et al., 2023; Tobón-Niedfeldt et al., 2022).  378 

 379 

The second step is to assess whether populations have been maintained since the last 380 

observation (PM indicator). In classical monitoring approaches, this would imply traveling to the 381 

locations on a regular basis. However, doing this for several species in megadiverse or large 382 

countries is challenging in terms of time and cost. Importantly, access to the locations may also 383 

be restricted or unsafe due to geopolitical conflicts and security issues (Malthaner, 2014). EO 384 

data can be used in such situations to detect habitat loss using either visual inspection of 385 

satellite images or a variety of spatial and temporal data analysis methods based on time series 386 

of land use or land cover change, such as tree-cover loss, derived from EO data. In the 387 

following examples, we describe how freely available and accessible data and online platforms 388 

could be used for monitoring habitat and population maintenance to support the assessment of 389 

the PM and Ne > 500 indicators. We focus on Sentinel Hub, Google Earth, and Global Forest 390 

Watch (Table 1) as examples of easily accessible and widely used data archive and analysis 391 

hubs. 392 

 393 

Wild avocados (Persea spp.) grow among the tree species composing cloud forests, Mexico's 394 

most biodiverse terrestrial ecosystem type per unit area (Conabio, 2023; Rojas-Soto et al., 395 

2012). Persea (P.) cinerascens, as an example, occupies less than 500 km2 in a total of five 396 

populations separated by ca. 50-200 km in three geographic locations (Persea cinerascens, 397 

n.d.). The species' presence was confirmed during the last visit to the known field localities in 398 

2017, although no population size measurement was conducted. Similarly, the location of a 399 

teosinte species (Zea [Z.] perennis) is only known from two areas, encompassing two 400 

genetically differentiated populations (Rivera-Rodríguez et al., 2023). These locations were last 401 

visited and populations observed in 2008, when conducting sampling for genetic studies 402 

(Rivera-Rodríguez et al., 2023). Based on that data, the Ne of both teosinte populations is below 403 



 

 

 

500, so the Ne > 500 indicator value for the species is zero according to the first multinational 404 

assessment of genetic diversity indicators (Mastretta-Yanes et al., 2023). 405 

 406 

Unfortunately, although populations of both species were observed in the field relatively recently 407 

(2017 and 2008, respectively), their habitat is expected to have decreased or even disappeared 408 

entirely due to rapid land use change. Cloud forests (wild avocado habitat) face particularly 409 

alarming deforestation rates, with half of them already lost in the last few decades, and 55% of 410 

the remaining habitat degraded (Conabio, 2023; Rojas-Soto et al., 2012). Visiting the wild 411 

avocado locations is not cost-effective because they are in remote mountain areas. In the 412 

teosinte case, it was hypothesized that the teosinte populations might have disappeared as a 413 

result of land use change – ironically, due to domesticated avocado farming. Avocado farms 414 

have been expanding in the region at very high rates (Ramírez-Mejía et al., 2022), and are 415 

expected to further increase 117% by 2050 relative to 2011 (Denvir, 2023). Visiting the teosinte 416 

habitat has also become prohibitively dangerous since 2008, due to organized crime and 417 

associated personnel safety risks.  418 

 419 

EO data enable the monitoring of genetic diversity for these two species by assessing the 420 

persistence of their habitats in the locations where the species were last observed or sampled in 421 

situ, directly informing the PM indicator without the need for costly and dangerous field 422 

assessments. Direct inspection of true-color satellite images (Figure 3A and 3C) allows a rapid 423 

assessment of vegetation, land use and land cover changes. By comparing satellite images 424 

taken before the last ground sampling (2016 for P. cinerascens and 2006 for Z. perennis) with 425 

more recent images, habitat change can be examined. For instance, this method showed that 426 

for P. cinerascens, a controlled forest fire occurred in 2020 to clear land for agriculture, 427 

indicating likely population loss (PM decline). Conversely, for Z. perennis, the boundary of the 428 

avocado farm adjacent to the sampling location remained unchanged between 2007 and 2023, 429 

suggesting maintenance of the population in that area (PM stable).  430 

 431 

Using the history function of Google Earth Pro often provides free access to high-resolution 432 

satellite images, although availability is by chance (i.e., different years and seasons), and 433 

automated processing is not possible with this platform. These limitations can be overcome 434 

using time-series analysis of publicly available EO data, such as Sentinel-2 images (10 m 435 

spatial resolution, 5-day temporal resolution since 2016), which can be combined with Landsat 436 

images (30 m spatial resolution, available since the 1970s). However, as a simple starting point, 437 

significant habitat changes can already be detected visually by selecting one high-quality image 438 

per year from the same season (e.g., drought season) and examining such an annual time 439 

series. 440 

 441 

Additionally, derived products from EO data describing habitat and biodiversity changes are 442 

already accessible for non-EO-experts through platforms like Global Forest Watch, which 443 

provides assessments of tree cover loss (defined as removal or mortality of vegetation taller 444 

than 5 m) and gain derived through automated interpretation of 30 x 30 m EO data (Hansen et 445 

al., 2013; Potapov et al., 2022). Although each dataset comes with its own caveats, such as the 446 

potential misidentification of oil palm plantations as “tree cover”, their accuracy is generally high 447 



 

 

 

and documented. Thus, this platform enables rapid assessments of tree cover loss over time 448 

(2001-2022) and might serve as an effective early alert system for habitat change detection 449 

(Schneider & Olman, 2020) (Figure 3B and D). Given sufficient expert knowledge, automated 450 

and statistical analysis of EO data can also be tailored to specific needs using freely available 451 

datasets and platforms like Google Earth Engine7. A combination of these EO data enabled us 452 

to identify land use and cover changes, such as the gradual encroachment of agricultural 453 

activities into previously undisturbed habitats, thus providing valuable insights into the dynamics 454 

of habitat degradation and its implications for population monitoring, particularly for populations 455 

of P. cinerascens and Z. perennis in Mexico. 456 

Figure 3. Examples of habitat monitoring using EO for A-B) a wild avocado (P. cinerascens) and C-D) a 457 
teosinte (Z. perennis). Shown in A) are the comparisons of imagery available from either Google Earth 458 
Pro (high spatial resolution) or Sentinel-2 showing habitat change for a wild avocado population, and the 459 
evaluation of tree cover change from Global Forest Watch. In B), the combination of Global Forest Watch 460 
data  with ground data from 2017 (circles) indicates that the change took place between 2017 and 2020. 461 
In C), data from Google Earth Pro and Sentinel-2 for a different time frame indicate there has been no 462 

 
7 https://earthengine.google.com/ 



 

 

 

change in forest cover for the teosintes population which was last observed from the ground in 2008. In 463 
D), analysis of percentage tree cover change since 2001 and total tree cover used as an indicator for 464 
habitat change and size for distinct ecoregions (individual colors) of teosinte, and the black line shows the 465 
average over all populations. 466 
 467 

These different tools and datasets can be applied to crop wild relatives, either for assessment of 468 

low-dispersal species or for landscape-scale assessments incorporating species distribution 469 

models (SDM), as commonly employed in systematic conservation planning and management, 470 

e.g., (Tobón-Niedfeldt et al., 2022). For species with few occurrences – which is often the case 471 

for crop wild relatives – buffer zones around the specific areas can be used to assess whether 472 

the surrounding habitats crucial for their survival are adequately considered and protected. For 473 

more widely distributed species, SDMs serve as a proxy for species distribution ranges (Villero 474 

et al., 2017).  SDMs can be leveraged for genetic diversity monitoring by subdividing them into 475 

areas where some level of genetic differentiation is expected, for instance, due to environmental 476 

differences or historical isolation (Tobón-Niedfeldt et al., 2022; Villero et al., 2017). Once buffer 477 

zones around occurrence records, or SDMs, have been delimited and subdivided with proxies of 478 

genetic differentiation, they can be regarded as different populations for monitoring purposes. 479 

Subsequently, land use or cover change can be quantified and assessed in terms of habitat loss 480 

trends. For instance, in the case of wild avocado (Figure 3B), the habitat surrounding the 481 

“purple population” (see colored circle) had a high percentage of tree-cover loss during the last 482 

two decades but remained large in absolute terms. Contrastingly, the “green” population already 483 

had minimal remaining natural vegetation, making subsequent losses more threatening to its 484 

survival. Similarly, in the teosinte example (Figure 3D), the “red” population exhibited the most 485 

significant decline and is the second smallest, while it appears that the protection of the “yellow” 486 

population was successful. Note that the individual population trends differ from the species 487 

mean (dark black line), highlighting the importance of separately evaluating populations. This 488 

example shows how habitat monitoring by EO can inform the assessment of the GBF indicators 489 

and the prioritization of in situ observations. 490 

Example 3: A window into the future – assessing genetic diversity 491 

and resilience of beech forests using EO 492 

Key points 493 

EO can be used to assess important aspects of forest canopy structure, phenology and 494 

functions such as their height and density, greening and browning, pigment concentration and 495 

water content, or to characterize tree species and even within-species variation. These 496 

attributes of forests are the subject of active research and, with evolving EO technology and 497 

knowledge, have the potential to help improve indicators of genetic diversity for monitoring. 498 

Especially for dominant tree species that tend to form large portions of temperate forest 499 

canopies, it is possible to build on these developments to estimate and monitor change in the 500 

PM and Ne > 500 indicators from repeated EO data over forests. To illustrate the current state of 501 

research and development, we use the common beech, Fagus sylvatica, a keystone tree 502 

species forming forests across Europe into Eurasia, where it is also economically important. 503 



 

 

 

This wind-pollinated species has relatively low genetic differentiation among different forest 504 

stands (Stefanini et al., 2023), making divisions into populations challenging. Ne estimates are 505 

likewise challenging: for example, genetic analysis of a stand in France with 167 individuals 506 

yielded in Ne estimates ranging from 2-25 depending on the calculation method used (Gargiulo 507 

et al., 2024). We describe how the current and new developments in EO technologies can 508 

support the assessment of beech genetic diversity, and illustrate the potential for upscaling 509 

these approaches to EO to develop and calculate genetic diversity indicators. 510 

Detailed description 511 

Common beech is normally considered to form two subspecies: the European beech F. 512 

sylvatica sylvatica and the Oriental beech F. sylvatica orientalis (Hrivnák et al., 2022). We have 513 

overlaid detailed distribution maps (Caudullo et al., 2017) with satellite imagery at continental 514 

scales: a Sentinel-2 mosaic produced with Google Earth Engine (Gorelick et al., 2017) (Figure 515 

4). The weak, yet discernible genetic structure of beech reveals its post-glacial migration history 516 

but also depends on management and planting decisions in forestry. Decades of population 517 

genetics studies have produced hundreds of datasets on its genetic diversity and differentiation 518 

(Stefanini et al., 2023). However, these studies have used different molecular methods over 519 

time. Due to the difficulties in comparing results from these different methods, only subsets of 520 

these data can be combined to estimate patterns of genetic diversity across the species range 521 

(Stefanini et al., 2023) and to support the definition of populations or meta-populations as input 522 

to our proposed monitoring workflow (Figure 1). For common beech, as for many forest trees, it 523 

is more straightforward to monitor the condition of forest stands than to monitor populations, 524 

similar to monitoring the condition of penguin colonies that form meta-populations (Example 1). 525 

 526 

To estimate the potential occurrence and coverage of F. sylvatica, distribution data over the 527 

species range (e.g., Figure 4) can be divided into forested and non-forested areas (e.g., with 528 

LULC) and, within these, into forests with known locations, percentages, or densities of beech 529 

trees using maps of land use, forest communities or inventories, ideally combined with local and 530 

specialist knowledge. As a further option, tree species classification using EO data has been 531 

demonstrated in beech habitats with simple machine learning approaches (Grabska-Szwagrzyk 532 

et al., 2020), neural networks (deep learning) on high spatial resolution data (Yao et al., 2021), 533 

or a combination of active and passive EO data from Sentinel-1 and Sentinel-2 in annual time 534 

series combined with forest inventory data (Blickensdörfer et al., 2024). In-field or aerial 535 

datasets with high resolution and accuracy are important for further developing such Earth 536 

Observation-based species classification (Fassnacht et al., 2016). 537 

 538 

Such data are available from the Laegern forest in Switzerland, a temperate mixed forest with a 539 

high proportion of F. sylvatica sylvatica. Laegern is the subject of over a decade of remote 540 

sensing data collection by imaging spectroscopy (continuous measurements covering most of 541 

the solar radiation spectrum with high resolution, i.e., 3-10 nm) several times per year, and 542 

complementary fieldwork has been conducted on the south-facing slope (Morsdorf et al., 2020) 543 

and in portions of the forest across a compositional gradient. Torabzadeh and colleagues 544 

achieved high binary classification accuracy of F. sylvatica sylvatica versus all other trees in a 545 

beech-dominated stand at Laegern (Figures 5 and 6A) based on pixels – in other words, 546 



 

 

 

without needing to define tree crowns (82% producer’s accuracy / 92% user’s accuracy) 547 

(Torabzadeh et al., 2019). It is important to note that binary classification of pixels as depicting 548 

beech vs. non-beech was more accurate than multiple classification of pixels as depicting one of 549 

several species present (Torabzadeh et al., 2019). At another well-documented test site in 550 

Allenwiller, France, where both subspecies of beech are co-planted, D’Odorico and colleagues 551 

distinguished the subspecies with somewhat lower accuracy (kappa accuracy of 67-72%) using 552 

in-field spectroscopy for leaves from the top of tree canopies, with a similar spectral range and 553 

resolution as imaging spectroscopy (D’Odorico et al., 2023). They used either leaf traits 554 

(nitrogen, lignin, cellulose, leaf mass per area, water, wax, and pigmentation) estimated from 555 

the spectroscopy data), or else a set of specific (short-wave infrared) wavelengths. Both of 556 

these approaches used signal characteristics overlapping with the detection ranges of current 557 

EO instruments, indicating that current EO could already be used to distinguish and quantify the 558 

relative abundance of beech subspecies. 559 

Figure 4. Layers of geospatial information on the distribution of Fagus sylvatica: Sentinel-2 mosaic from 560 
Google Earth Engine (Gorelick et al., 2017) for visualization purposes, overlaid with species distribution 561 
and isolated localities (dots) (Caudullo et al., 2017): F. sylvatica sylvatica (blue) and F. sylvatica orientalis 562 
(red). 563 

 564 

Thus, a census number (Nc) of reproductively mature beech trees could be locally estimated 565 

directly from beech canopy pixels discernible from EO data, e.g. using images with 1-10 m 566 



 

 

 

spatial resolution as introduced in Example 1, via species (and subspecies) classification. This 567 

could then be used to approximate the Ne > 500 indicator. This would likely yield an 568 

underestimate because Nc from EO would count reproductively mature, dominant trees that are 569 

the easiest to detect from above, while reproductively mature but co-dominant, intermediate, 570 

and suppressed trees are difficult to assess. Inventory data, or data from in situ sources, can 571 

support the estimation of Nc via tree density and be used to upscale to larger areas. Changes in 572 

PM and Ne > 500 for known, monodominant populations of F. sylvatica can also be assessed by 573 

forest cover loss, similarly to Example 2, and predicted by assessing changes in canopy vitality 574 

via changes in trait values (Helfenstein et al., 2024; Sturm et al., 2022) (Figure 5). 575 

Figure 5. Components of change monitoring over forest canopies using EO. A) Spatial scaling of the 576 
canopy traits chlorophyll (green), carotenoids (red) and water content (blue) assessed using 2-m aerial 577 
imaging spectroscopy data (left), or 20-m EO data (right). B) 20-m Sentinel-2 pixels compared to the 578 
crown sizes at the Laegern forest. At 20-m pixels, multiple individuals contribute to the signal obtained for 579 
one pixel. C) Physiological traits mapped for the area of interest for four consecutive years using Sentinel-580 
2 data to detect changes in canopy traits. 581 

 582 

Czyż and colleagues used time series data from imaging spectroscopy with high spatial 583 

resolution (2 m) to generate a time series of differences among spectra from center-of-canopy 584 

pixels for 69 dominant beech trees out of 260 dominant trees in a canopy (see Figure 6A), and 585 

correlated these differences with the trees’ genetic distance (a measure of how related the trees 586 

are), as determined by five nuclear microsatellite sequences (DNA sequences often used to 587 

quantify relatedness). The correlation strength between spectral distance and genetic distance 588 

reached a maximum of 60% for some parts of the spectrum at time points when trees were 589 

subject to drier conditions, and later in the growing season (Czyż et al., 2023) (Figure 6B). This 590 



 

 

 

illustrates that features that can be used to predict genetic variation based on EO are also 591 

affected by environmental factors. Interestingly, while European beech forests are increasingly 592 

threatened by drought, individual trees vary in their susceptibility, in part due to genetic 593 

differences (Bolte et al., 2016; Braun et al., 2021; Pfenninger et al., 2021). Such studies help to 594 

investigate how predictable these effects may be, and can inform models to predict genetic 595 

variation using EO.  596 

 597 

For beech trees, EO from current multispectral and forthcoming imaging spectrometer sensors 598 

can thus support the assessment of genetic variation by providing information about forest 599 

canopy traits and spectral signatures using time series (Figures 5 and 6). Combined with a 600 

large and growing database of single-time-point genetic data for beech across its range, it is 601 

also feasible to develop models to predict genetic variation directly from EO data for F. 602 

sylvatica, and likely for other dominant forest tree species. Such predictors of genetic variation 603 

could improve genetic diversity indicators beyond population maintenance and size, towards 604 

assessing genetic EBVs (Box 1). For example, several studies indicate that high-resolution 605 

spectroscopy (field and imaging spectroscopy) can reveal quantitative genetic differences and 606 

could thus help to scale up measurements of genetic differentiation (Cavender-Bares et al., 607 

2016; Li et al., 2023; Meireles et al., 2020; Seeley et al., 2023; Stasinski et al., 2021). 608 

 609 

These approaches are currently developed for “best-case scenarios” where aerial imaging 610 

spectroscopy or even individual leaf-level measurements provide high spatial and spectral 611 

resolution and thus relatively high certainty in assigning spectral data to individual trees (Czyż et 612 

al., 2023; D’Odorico et al., 2023; Petibon et al., 2021). Scaling approaches are currently being 613 

established, starting with trait estimates such as canopy pigmentation and water content that 614 

are already possible with space-based EO multispectral sensors (Helfenstein et al., 2022) 615 

(Figure 5). 616 

 617 

When accounting for environmental variation, imaging spectroscopy observations with higher 618 

spectral resolution than current multispectral EO (Landsat, Sentinel-2) could even support the 619 

estimation of genetic distances across forest canopies. The improved spectral and radiometric 620 

capabilities of new EO imaging spectroscopy missions to be launched before the end of this 621 

decade by ESA (CHIME: Copernicus Hyperspectral Imaging Mission8) and NASA (SBG: 622 

Surface Biology and Geology9) will enhance the information content of EO measurements by 623 

two orders of magnitude compared with currently operating multispectral instruments such as 624 

those described so far in our examples. This opens up the possibility of using spectral 625 

fingerprints to better distinguish species using EO and even to estimate other components of 626 

genetic and trait variation (Czyż et al., 2023; D’Odorico et al., 2023; Fassnacht et al., 2016; 627 

Helfenstein et al., 2022; Li et al., 2023; Petibon et al., 2021; Torabzadeh et al., 2019). 628 

 
8 https://www.esa.int/ESA_Multimedia/Images/2020/11/CHIME 
9 https://sbg.jpl.nasa.gov/ 



 

 

 

Figure 6. Spectroscopy can help to distinguish species and assess genetic variation. A) Dominant tree 629 
crowns assigned to species by aligning forest inventory data with a 3D model of tree crowns and trunks 630 
made using LiDAR and photogrammetry; reproduced with permission from (Guillén-Escribà et al., 2021), 631 
CC BY. B) Spectral similarity is correlated with a relatedness measure for beech canopies in (A), with 632 
correlation strength related to environmental factors: temperature on day of acquisition [°C] (TMP), Vapor 633 
Pressure Deficit on day of acquisition [%] (VPD), Aggregated Temperature over 11 consecutive days [°C] 634 
(11TMP), Aggregated Vapor Pressure Deficit over 11 consecutive days [%] (11VPD), Cumulative 635 
Growing Degree Days [°C] (CGDD), Cumulative Growing Vapor Pressure Deficit Days [%] (CGVPDD), 636 
Day of Last Spring Frost (DLSF), or Last Year Climatic Water Balance (LYCWB). Pearson correlations 637 
are shown from -0.6 (dark blue) to 0.6 (dark red). Lower panel: estimated relative uncertainties of 638 
correlations. White lines: mean canopy reflectance measured for focal trees (0-60% of incident sunlight). 639 

Reproduced with permission from (Czyż et al., 2023), CC BY. 640 
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Ways forward for using EO in genetic diversity 641 

assessments 642 

EO offer repeated measurements in space and time and in wavelengths beyond what we 643 

humans can see with our eyes. These observations, and the landscape-level information they 644 

capture and provide, along with the multidimensional information about Earth’s surface that can 645 

be derived from their spectral properties, yield detailed and traceable information about 646 

processes that affect the composition and distribution of species at landscape scales. This 647 

information can be used directly to monitor and assess changes in habitats and genetic 648 

diversity, as illustrated in the examples above and summarized in Table 3. This information can 649 

furthermore help managers prioritize interventions and target them to the areas where rapid 650 

changes are taking place, towards mitigating damage, maintaining or enhancing their resilience 651 

and biodiversity. 652 

 653 

Available EO data and information, combined with traditional methods, can be used for 654 

assessing and monitoring the quantity and quality of locally available habitat for geolocated 655 

populations, and can inform the PM and Ne > 500 indicators in several ways: (1) informing the 656 

PM indicator if habitat loss or species vitality surpasses a certain threshold, below which a 657 

species can be assumed to be locally lost; (2) informing the Ne > 500 indicator directly if species 658 

density per unit area is known or if groups of mature individuals can be directly observed, or 659 

indirectly by indicating if populations expected to be declining in size: where a baseline Ne value 660 

is known for a given population, the expected decline could be estimated as a function of habitat 661 

loss; (3) supporting prioritization of in situ monitoring or conservation actions, or an early alert 662 

system, so that resources are directed to the regions where more change is occurring and 663 

ground-based observations are most needed. 664 

 665 

Table 3. Proposed uses of EO data for genetic diversity monitoring. 666 

Uses of EO data Implementation for genetic 
diversity monitoring  

Current limitations 

Species range and habitat 
mapping  
Accuracy increases with prior 
knowledge and in terrestrial 
habitats 

Inference of census size from 
dispersal distance data, occupation 
density data, or occasionally counts 
of dominant individuals; supports 
assessment of Ne >500 

Cannot directly measure 
effective or census 
population sizes (Ne or Nc)  

Estimate population size and 
number 
Accuracy increases when 
combined with observational 
data  

Inferred population locations can be 
combined with other data (e.g. 
biogeographical, traditional 
knowledge) to infer population 
distinctiveness or support the 
design of comprehensive DNA 
studies to confirm this 

Cannot independently 
identify genetically distinct 
populations  

Detect habitat and ecosystem 
change  

Develop EO-based alert systems to 
support genetic diversity protection 

Cannot detect all on-the-
ground threats to individuals 



 

 

 

Requires a baseline and 
continued monitoring  

in real time and to monitor 
inferred PM or Ne>500 over time  

(e.g., poaching)  

Map variation or change in 
species visible from space  
e.g., trait variation, settlements, 
migration, breeding activities, 
species interactions 

Currently still a focus of research Cannot directly estimate 
genetic diversity 

 667 

This information should ideally be complemented with ground data, although performing the 668 

necessary fieldwork is generally only possible “pointwise” for large countries and regions and 669 

may be restricted by limited operational resources. Thus, EO provides valuable global 670 

information, especially where no other data are available. Where local in situ monitoring, citizen 671 

science and other sources of ground data are, or become, available, EO data will be better 672 

complemented. EO will nevertheless continue to provide independently valuable information. 673 

 674 

As EO data become increasingly available and accessible for non-experts, especially for use in 675 

genetic diversity monitoring and assessment, their use and interpretation still require some 676 

technical expertise. This need for greater technical expertise becomes even more acute with the 677 

anticipated advances in EO such as the CHIME and SBG missions before the end of this 678 

decade. In combination with the needs of practitioners and the impetus provided by biodiversity 679 

monitoring mandates, this means that useful access requires the development of portals 680 

equipped with tools and interfaces that make key information provided by EO more widely and 681 

easily accessible. On one hand, this implies co-developing the tools to incorporate the needs, 682 

workflows and on-the-ground context of practitioners and ensuring the tools and resulting 683 

information are fit for purpose, hence contributing to development of capacity for non-traditional 684 

users of EO (Jacobi et al., 2022; Speaker et al., 2022; Tabor & Holland, 2021). On the other, 685 

this also provides motivation and opportunity for EO developers to understand the needs of 686 

practitioners and explore new methods and techniques for evaluating and validating the efficacy 687 

of EO products for genetic diversity monitoring. Thus, such toolboxes for genetic diversity 688 

monitoring and assessment will not only help democratize access to EO data, but also 689 

increasingly enable the archival and distribution of detailed and well-documented information 690 

resulting from a combination of EO with other types of data for new and innovative applications. 691 

 692 

In summary, we demonstrate in three distinct and complementary examples how currently 693 

available and accessible EO data can support assessment of the genetic diversity indicators for 694 

the monitoring framework of the Kunming-Montreal GBF. We propose an overarching workflow 695 

to enable and accelerate genetic diversity monitoring using EO, and demonstrate the 696 

advantages of integrating EO in a set of examples with high priority for biodiversity assessment, 697 

monitoring and conservation. By discussing these examples, each with its distinct challenges 698 

and opportunities, we show how available EO data can be embedded in innovative ways to 699 

support the calculation of genetic diversity indicators, especially in areas with limited research 700 

infrastructure or access; and why we can look forward to applications of EO for assessing 701 

genetic EBVs. This represents a surprisingly simple, yet fundamental change in our ability to 702 

monitor, assess, preserve and protect  biodiversity at the national, regional, and global scales, 703 



 

 

 

especially in areas with limited accessibility. The proposed workflow, combining EO with other 704 

biodiversity data, could be developed on current and future platforms such as GEO BON’s 705 

“BON-in-a-Box” to make it widely available and facilitate its use for biodiversity monitoring. 706 

Glossary 707 

Population genetics and related terms 708 

● Assisted Migration refers to the relocation of individuals within a species to different 709 

areas within the species range or new frontiers of a shifting range. 710 

● Assisted Gene Flow refers to the introduction of individuals with novel genetic 711 

backgrounds (e.g., different provenances or subspecies) into existing populations to 712 

increase genetic diversity or otherwise alter population genetic properties. 713 

● Genetic diversity (or genetic variation) comprises within-species differences in DNA 714 

sequences, as well as variation in the distribution of these differences within and among 715 

populations.  716 

● Genetics is the study of heritable differences. This can be achieved using a variety of 717 

approaches. Molecular genetics is a collective term for the study of DNA-based genetic 718 

variation, typically referring to lower-resolution methods (e.g. analysis of single genes, 719 

microsatellite markers, etc.) where only small portions of genomes are characterized.  720 

● Genomics (related to high-throughput sequencing, next-generation sequencing) refers 721 

to methods that study the diversity of DNA sequences and associated molecular 722 

features across the majority, ideally entirety, of genomes, using for example thousands 723 

to millions of single-nucleotide polymorphisms (SNPs) per genome. 724 

● Habitat is the geographical, environmental, and biotic space that a species can inhabit.  725 

● Nc (census size) is an estimate of the number of sexually mature individuals in a 726 

population. Note: adult and reproductively mature individuals usually cannot be 727 

distinguished. 728 

● Ne (effective population size) is the size of an idealized population that has the same rate 729 

of genetic diversity loss as an actual, “real-life” population. Several demographic factors 730 

affect the size of Ne, including number of reproducing individuals and the sex ratio 731 

among them, variation in offspring number, non-random mating, and overlapping 732 

generations. Ne is typically much lower than Nc, with the ratio of Ne/Nc around 0.1. 733 

● Nuclear microsatellites: rapidly mutating, short tandem repeat sequences in the 734 

nuclear genome, often used to measure relatedness within populations. Also called short 735 

sequential repeats (SSRs) or short tandem repeats (STRs). Microsatellites are also 736 

found in organellar genomes and so the modifier “nuclear” is used to indicate the nuclear 737 

genome. 738 

● Population: a group of spatially aggregated, interbreeding individuals, genetically 739 

distinct from other similar groups. Note: population is rather flexibly used within 740 

population genetics and often incorrectly refers to distinct sampling localities. 741 

● Population genetics is a field of research referring to theoretical and molecular study of 742 

genetic diversity within and among populations. 743 



 

 

 

● Species range is the geographical space that encompasses all the remaining extant 744 

(i.e. not-extinct) populations of a species.   745 

● SNPs (Single Nucleotide Polymorphisms) are single base pair differences in a DNA 746 

sequence. SNPs are often used to study genetic diversity within and among populations. 747 

● Traits are heritable differences among organisms, meaning differences that result from 748 

the interaction of genetic and environmental factors, which can be observed. 749 

Earth Observation and related terms 750 

● Atmospheric correction of an image is the removal of scattering and absorption effects 751 

from the atmosphere - making an image look hazy - to obtain the surface properties of 752 

an observed area. 753 

● Change detection refers to a sequence of EO data used to observe and detect change 754 

for an observed area over time. 755 

● Hyperspectral: refers to sensors covering continuously, in high-resolution the 756 
electromagnetic spectrum (often referred to imaging spectroscopy). 757 

● Imaging spectroscopy: imaging light reflected from the Earth surface with continuous, 758 
narrow high-resolution spectral bands (often also referred to as hyperspectral imaging). 759 

● LiDAR is an active sensor that uses light pulses to probe the vertical structure of trees 760 
and forests, either from an aircraft or satellite. Similar observations from LiDARs are 761 
used to make topographic maps of the surface. 762 

● LULC refers to land use (i.e., how land is being used and for what purpose) and land 763 

cover (i.e., what type of vegetation/ecosystem covers the land surface), which is a 764 

product derived from various EO instruments. A common variation is LULCC which 765 

examines land use and land cover change. 766 

● Spatial resolution of an image is defined as the area on the ground represented in one 767 

pixel. Sentinel-2 imagery is, for instance, available in 10x10 m pixel resolution. 768 

● Spatial extent defines the area that is imaged by the satellite during one overflight and 769 

depends on the field of view of the satellite (i.e., swath width). Often, this corresponds to 770 

the size of a delivered image; however, data platforms might provide images from 771 

multiple acquisitions that are stitched together. 772 

● Spectral resolution is defined as the spectral bandwidth and the number of individual 773 

bands used to aggregate the reflected light from the observed area. 774 

● Temporal resolution is defined as revisit time for a satellite to observe the same area 775 

on Earth’s surface. Depending on the satellite configuration, revisit time varies from 776 

hours to days. 777 

● Time series: a sequence of observations obtained over a certain period of time (aka, 778 

multitemporal datasets). This can be several images within a short time frame to observe 779 

fast processes (e.g., volcanic eruption) or within a long time frame (one image per year 780 

to observe glacier retreat). 781 



 

 

 

Data and Code Availability 782 

Code for this study are provided with the input data necessary to analyze the examples: 783 

https://gitlab.issibern.ch/meredithchristine.schuman/eo4geneticdiversity-examples   784 
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