1	Hydrological fluctuations determine predator-prey interactions in a semi-arid non-perennial river
2	^{1,3*} Milena Gonçalves-Silva, ² Elvira D'Bastiani, ³ Thibault Datry, ¹ Carla Ferreira Rezende
3	
4	¹ Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal do Ceará, Brasil.
5	² Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
6	³ INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France.
7	
8	*Corresponding author: Milena Gonçalves-Silva, e-mail: milenagoncalves.bio@gmail.com
9	
10	Orcid
11	Milena Gonçalves-Silva: https://orcid.org/0000-0003-1626-1216
12	Elvira D'Bastiani: https://orcid.org/0000-0002-8615-2763
13	Thibault Datry: <u>https://orcid.org/0000-0003-1390-6736</u>
14	Carla Ferreira Rezende: https://orcid.org/0000-0002-2319-6558
15	
16	Acknowledgements
17	This study was part of MGS' PhD thesis from Ecology and Natural Resources Program from Federal
18	University of Ceará, we would like to thank the professors of the program and the Brazilian funding agencies Capes
19	(Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento
20	Científico e Tecnológico). We would also like to thank Dr. Thibault Datry for his supervision on MGS sandwich
21	doctorate at the Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) in Lyon,
22	France, and for his support in the conceptualization of the present paper. We are also grateful for the financial support
23	provided by CAPES for the doctoral scholarship and by FUNBIO (Fundo Brasileiro para a Biodiversidade) for the
24	funding of field collections. Special thanks to Dr. Paulo Guimarães Jr. for connecting Dr. Elvira with Dr. Carla
25	Rezende's team, and to Dr. Sabrina Araujo for her review and suggestions at MGS thesis document. Finally, we
26	appreciate the help of Elisa Cravo and Jessica Araújo during the field collections.
27	
28	
29	
30	
31	

34 Statements and Declarations

35	All data are available in the manuscript and supplemental files. The R scripts and interactions used in this
36	study are available in the repository at: <u>https://anonymous.4open.science/r/IntermittentDynamicsNetworks_2024-0E5E/</u>
37	MGS received two scholarships grants, one from Coordenação de Aperfeiçoamento de Pessoal de Nível
38	Superior - Brasil (CAPES) - Finance Code 001, and another from CNPq - Conselho Nacional de Desenvolvimento
39	Científico e Tecnológico (Sandwich Doctorate 402800/2022-2, 200471/2022-8), field sampling and supplies were
40	funded by FUNBIO (2019) - Fundo Brasileiro para a Biodiversidade.
41	This study is in strict accordance with recommendations of the Ethical committee of Federal University of
42	Ceará (UFC) (CEUA 2651260819). All the sampling complied with current Brazilian law on access to genetic heritage
43	(SISGEN nº A23C0B0), and IBAMA SISBIO through license 61,143-7 issued to CFR.
44	The authors declare that they have no conflict of interest.
45	
46	ABSTRACT
47	We investigated predator-prey interactions in the River Tabocas, a non-perennial river (NPR) in Brazil's semi-arid
48	region, analysing variations between flowing and dry hydrological phases. We analysed predator-prey interactions using
49	fish food items along 1 km of the NPR during flowing (23 sections) and dry (22 isolated pools) phases, identifying 18
50	predator species and 11 ecological categories of prey. Our results indicate that predators (fish) composition, abundance
51	and environmental variables shift between flowing and dry phases. Despite similar richness, significant differences in
52	fish species composition underscore the importance of temporal fluctuations in predator community dynamics. During
53	the flowing, predator-prey interaction network exhibited a nested pattern. In contrast, the dry phase we observed diverse
54	patterns of predator-prey interaction networks in isolated pools, including nested, modular, specialised, and random
55	structures. Stochastic factors during the dry phase contribute more to the structure of predator-prey network
56	interactions. Predator-prey interactions networks with random structure correspond to isolated pools with fewer
57	predator-prey links and high specialisation rates. Our findings show the importance of identifying priority aquatic
58	refuges to sustain freshwater biodiversity in NPRs. Conservation strategies must account for hydrological variability
59	and stochastic factors to mitigate climate change impacts on the biota of tropical semi-arid NPR.
60	
61	Keywords: climate changes; drying rivers networks; intermittent streams; fish.

64 INTRODUCTION

65 Predator-prey relationships are among the most widespread forms of interspecific interactions, occurring 66 across terrestrial and aquatic ecosystems. These interactions play a fundamental role in shaping community ecological 67 dynamics, influencing species persistence, community composition, and ecosystem functioning (Begon & Townsend, 68 2021). The dynamics of predator-prev interactions are inherently linked to temporal and spatial changes in species 69 composition and interaction strengths, driven by environmental variability and other factors (Guimarães Jr., 2020). 70 Early research highlighted predation's role in population dynamics and ecosystem regulation, while recent studies 71 emphasise its importance in structuring communities, driving competition, rewiring interactions, and interacting with 72 spatial processes, particularly in fragmented habitats (Thompson, 1960; Poisot et al., 2012; Guimarães Jr., 2020; Suzuki 73 et al., 2023). Additionally, there is growing interest in understanding how environmental changes, such as habitat loss. 74 alter predator-prey dynamics (Tylianakis et al., 2008). However, the consequences of these changes for predator-prey 75 interactions remain poorly understood.

76 In aquatic systems, predator-prey interactions are shaped by a wide range of environmental conditions that 77 influence community assembly (Wasserman et al., 2016). Factors such as temperature (Wasserman et al., 2016) and 78 habitat complexity can drive shifts in these dynamics as environmental conditions change (Brose et al., 2012). For 79 example, reductions in water volume can concentrate organisms, leading to higher prey densities and changes in 80 predator and prey behaviours, collectively impacting trophic interactions (McHugh et al., 2015; Costa et al., 2022). 81 Non-perennial rivers and streams (hereafter, NPR) provide an ideal context to study trophic interactions, as they exhibit 82 natural cycles of alternating flowing and dry phases that lead to significant shifts in environmental conditions (Datry et 83 al., 2017; Allen et al., 2020).

84 The hydrological regimes of NPR are influenced by climate, topography, soil composition, vegetation cover, 85 and surface-groundwater interactions (Messager et al., 2021; Price et al., 2021). During flowing phases or after heavy 86 rainfall events, water flows across the channel, connecting pools and depressions along the riverbed that were 87 previously dry (Datry et al., 2017). This phase facilitates the downstream transport of suspended sediments and organic 88 matter, altering the dynamics of the stream ecosystem (Corti & Datry, 2012). The connection of water leads to the 89 homogenization of physical and chemical variables (Gómez et al., 2017), and increases trophic and spatial resource 90 availability, thus generating food webs with larger food chain length (McHugh et al., 2015). Consequently, aquatic 91 organisms, such as fish, benefit from structured habitats and increased resource availability, leading to various foraging 92 opportunities for predators and more complex trophic interactions (Fallon et al., 2022). During dry phases, habitats 93 contract as well as resource availability shift (McHugh et al., 2015; Bonada et al., 2020), leading to changes in trophic 94 interactions (Closs & Lake, 1994). Habitat contraction results in the formation of isolated pools, associated with drastic 95 changes in biotic communities towards lentic-type communities (Bonada et al., 2020; Oliveira et al., 2024). These pools 96 become heterogeneous in structure, with reduced resource availability and fewer prey to forage upon, potentially

97 limiting trophic interactions (Fallon et al., 2022). Such environmental changes often disrupt predator-prey interactions,
98 altering the structure within aquatic communities.

99 Despite extensive knowledge of community structure in NPR (Davey & Kelly, 2007; Pusey et al., 2018; 100 Rogosch & Olden, 2019; Hedden & Gido, 2020, Crabot et al., 2021), our understanding of predator-prev interactions in 101 NPR remains limited. Most food webs studies in NPR focus on food chain length and trophic niche using isotopes 102 analysis (e.g. McHugh et al., 2015; Sabo et al., 2010; Medeiros & Arthington, 2011; Beesley et al., 2020). Only a few 103 studies describe food webs by analysing predator gut content to determine predation (Closs & Lake, 1994; Williams et 104 al., 2003), which allows for the investigation of the structure of predator-prey interactions. The loss of predators in NPR 105 during the dry phase reduces the dimensions of food webs, drastically decreasing S nodes in the food web (Closs & 106 Lake, 1994). This process is driven by habitat size reduction and the deterioration of habitat conditions, leading to a 107 disassembly of the food web (McIntosh et al., 2017). However, while some trophic dimensions of food webs, such as 108 reduction in food chain length, respond to dry events (McHugh et al. 2015), others structural properties can be 109 maintained even under extreme conditions (McIntosh et al., 2017). Furthermore, in Brazilian semi-arid, the dry phase 110 can be very long, up to nine months per year, and the low thermal amplitude, with temperatures >25°C, sets this region 111 apart from other arid and semi-arid areas in the tropics (Barbosa et al., 2012).

112 In this context, several questions remain unanswered regarding predator-prey interactions within food webs of 113 NPR. To address this, we investigated predator-prey interactions in the River Tabocas, a non-perennial river located in 114 the Brazilian semiarid region, exploring how these interactions vary between flowing and dry hydrological phases. We 115 predicted that predator-prey interactions in the flowing phase would exhibit higher levels of nestedness and 116 specialisation, driven by increased water, resource, habitat, richness and abundance of predators (fish). Conversely, 117 during the dry phase, we predicted predator-prey interactions would exhibit greater modularity due to formation of 118 isolated pools which reduce water, resource, habitat, richness and abundance of predators (fish). We discuss the results 119 in the context of improving management strategies to conserving NPRs in semi-arid regions and mitigate the impact of 120 climate change on biodiversity.

121

122 MATERIAL AND METHODS

123 Study area

The Tabocas' NPR (3°26'18.0" S 39°43'52.0" W) is a stream, tributary of the Cruxati River (Fig. 1a), which, in turn, is a tributary of the Mundaú River in the Brazilian semi-arid region. The Mundaú is one of the main rivers of the Litoral Basin, which flows into the Atlantic Ocean. All rivers and streams of the Litoral Basin are intermittent. The region has a predominantly hot tropical semi-arid climate (Aw, according to the Köppen climate classification; IPECE,

- 128 2007), with an annual precipitation of 954 mm and average temperatures ranging between 24.2°C and 35.3°C. The
- 129 Tabocas' NPR is a naturally intermittent drainage that flows for four months a year (from March to June flowing

130 phase). When the flow ceases, the stream splits into isolated pools of different sizes distributed along the dry headwater

- 131 (Fig. 1a; Supplementary information Fig. S1). These pools remain filled with water throughout the year and reconnect
- 132 during subsequent rainy seasons after rainy events.
- 133
- 134 Predator-prey sampling

We conducted two fish and environmental data sampling, one sampling occasion in each phase (August 2021 and June 2022) in a stretch of approximately 1 km of Tabocas' NPR. The sampling included physical and chemical analysis, substratum assessment, and site structure evaluation. Our study encompassed both the flowing and dry phase, characterised by 23 sections, and 22 isolated pools respectively (Fig. 1b).

During the flowing phase, we delimited 23 sections every 50 metres along the stream, where fish were sampled three times (sub-samples) using seine nets $(3.5 \times 2.5 \text{ metres}, \text{mesh size 5 mm})$. In the dry phase, we conducted the same sampling effort in each of the 22 pools found along the same 1 km stretch, excluding pools without fish. Additionally, during this phase, we measured the length, average width, average depth, and distance among pools.

143 In each section or pool, we conducted three measurements of the following physical and chemical parameters: 144 temperature, dissolved oxygen, pH, and salinity using the YSI 7000 multiparameter probe (Table S3). Subsequently, we 145 calculated the average value for each physical and chemical parameter. Additionally, we obtained data on substrate 146 composition percentage (including bedrock, large boulder, small boulder, gravel, fine gravel, sand, and mud) and site 147 structure (macrophyte, tree branch, dead wood, root, shading, and marginal vegetation) (Goncalves-Silva et al., 2022). 148 To avoid observation bias, the same researcher visually determined the percentage of area occupied by these variables 149 of substrate composition and site structure. Moreover, we measured the distance between pools and estimated water 150 volume using average depth, average width, and length of each pool or section (Table S4; Fig. S1).

We randomly selected up to 30 adult individuals of each species from each section and isolated pool for the analysis of fish stomachs to collect the food items. The fish were dissected to remove the digestive tract, and the contents were examined using a stereoscopic microscope. Food items were identified to the lowest possible taxonomic level (Domínguez & Fernández, 2009; Mugnai et al., 2010; Hamada et al., 2014 - see details Table S1) according to the degree of digestion and quantified using the volumetric method (Hyslop, 1980). We calculated the frequency of

- 156 occurrence (FO%) and relative volume (VO%) of food item categories separately for each individual and phase.
- 157

158 Data analysis

159 *Composition, abundance and richness of predator (fish)*

160 To compare environmental variables between the flowing and dry phases, we conducted Principal Component 161 Analysis (PCA) using the 'PCAshiny' function. Additionally, to assess differences in fish species composition in 162 flowing and dry phases, we employed non-metric multidimensional scaling (NMDS) (Kruskal, 1964) with the 163 'metaMDS' function, based on Bray-Curtis distance matrices. The significance of the influence of the dry and flowing 164 phases on environmental variables and fish abundance was assessed through Permutational Multivariate Analysis of 165 Variance (PERMANOVA) using the 'adonis2' function, based on Bray-Curtis dissimilarities with 1000 permutations. 166 The sampling sufficiency for flowing and dry phases was assessed through rarefaction analysis using the 'iNEXT' 167 package in R (Hsieh & Chao, 2024), with 95% confidence intervals. This method allows for the standardisation of 168 sample size and ensures comparability across phases by adjusting for abundance variations (Chao et al., 2014). 169 To compare the assemblage of predators among the pools, we calculated total and partitioned beta diversity (β) 170 using the 'beta.multi' function (Baselga 2010; 2012; 2013; 2017; Baselga & Orme, 2012). The total beta diversity is 171 calculated by using the Sorensen dissimilarity measure (β SOR), whereas the Simpson dissimilarity measure (β TUR) 172 calculates the turnover component; nestedness (β NES) is calculated by subtracting total beta diversity and turnover. We 173 used a resampling procedure, computing 1000 random samples, and calculated the average, standard deviation and P-174 values (Baselga, 2017). Additionally, to assess differences among the environmental conditions in the 22 pools during 175 the dry phase, we integrated them into the analysis using the Partial Mantel test with the 'mantel' function (Legendre & 176 Legendre, 2012). Subsequently, to examine the relationship between environmental variables and predator richness and 177 abundance we conducted the Pearson correlation analysis (Benesty et al., 2009). 178 To determine the relationship between the number of interactions (number links >0) and predator richness, 179 abundance, or the extension of the pools (distance to the nearest pool), we used generalised linear models (GLM) with a 180 Poisson distribution (Zuur et al., 2009). The number of interactions was the response variable, and predator richness, 181 abundance, and the extension (metres) were the explanatory variables. We ensured that the underlying model 182 assumptions were met by examining collinearity of fixed effects, random effects distribution, homoscedasticity, 183 independence, and normality of residuals (Zuur et al., 2009). Before analyses, we did not find collinearity using a 184 variance inflation factor test (VIF < 3). We chose the best model using the Akaike Information Criterion (AIC). All 185 analyses were performed in R 4.2.2 (R Core Team, 2023) using the "vegan" (Oksanen et al., 2019), "FactoShiny" 186 (Vaissie et al., 2020), "betapart" (Baselga & Orme, 2012), "DHARMa" (Hartig & Hartig, 2017), "performance" 187 (Lüdecke et al., 2020), and "stats" (R Core Team, 2023) packages. Data and analysis code can be found at 188 https://anonymous.4open.science/r/IntermittentDynamicsNetworks 2024-0E5E/. 189

190

Structure of predator-prey interactions during flowing and dry phases

To understand changes in predator-prey interactions within an Tabocas' NPR, we described the resource (prey) used by fish using the relative volume of the food items consumed by the fish of an interaction matrix to represent a bipartite network. This network comprised two sets of nodes: one representing fish species and the other representing food resource types (food items). The links within the network described interactions among fish species and food resource types. A total of 41 food resources identified were categorised into nine ecological groups (Table S1) based on the functional food group approach (Cummins et al., 2005).

197 We used the metrics nestedness, modularity, and specialisation to describe the structure of the predator-prey 198 interaction networks. Nestedness refers to a pattern where specialist fish species (those that feed on only a few types of 199 prey) tend to feed on prey that are also consumed by generalist fish species (those that feed on many types of prey). In 200 other words, this creates an overlapping, hierarchical interaction structure in the food web, where the interactions of 201 specialists are often nested within the interactions of generalists. To describe the nestedness we used the 'nested' 202 function with the NODF2 method in the bipartite R package (Almeida-Neto et al., 2008). Higher values of nestedness 203 indicate that the food items consumed by specialist species are included in the diet of generalist species (Almeida-Neto 204 et al., 2008). Modularity refers to the division of the network into distinct modules or subgroups, where species within 205 the same module interact more frequently with each other than with species in other modules. This creates a structure 206 where certain groups of predators (fish) and prey form tightly connected clusters with relatively fewer interactions 207 between species from different clusters. To quantify the modularity, we used the 'cluster louvain' and 'modularity' 208 functions (Blondel et al., 2008). Higher modularity values indicate stronger separation into groups, suggesting that the 209 nodes within each group are more densely connected to each other than to nodes in other groups (Blondel et al., 2008). 210 Specialisation refers to the adaptations that enable certain fish species to become highly efficient at exploiting specific 211 types of prey. This can involve morphological, behavioural, and ecological adaptations that allow these fish to thrive in 212 particular niches within their aquatic environments. To describe the specialisation, we used the 'h2' function (Blüthgen 213 et al., 2006). We also employed the 'null.model' function with the 'vaznull' method to generate randomised predator-214 prey networks for flowing and dry phases. We utilised the *vaznull* method to randomise interactions keeping the 215 connectance (proportion of interactions performed among all possible interactions between species in the network) of 216 the observed network (Vázquez et al., 2007), we refer to it as a null model. For flowing and dry phases of the Tabocas' 217 NPR (Fig. 1b) we simulated 999 networks and then compared the observed and simulated network structures using the 218 Z-score (see details below). We also created a theoretical model to simulate network interactions for the dry phase, 219 using as a basis for creating the simulated networks the actual richness of predators that occurred during the flow 220 period. We refer to it as a theoretical model based on observed predator richness. Our theoretical model was adapted 221 from D'Bastiani et al. (2020) and randomly samples the same number of predator species observed in each pool of the 222 dry phase (Table S2). In this model the number of predator species remains constant, while the number of prey can vary among simulated networks. Creating the simulated networks using the observed richness of predators ensures the persistence of the actual interactions observed during the flowing phase. During the dry phase, for each pool observed (Table S2), we simulated 999 networks and then compared the observed and simulated network structures using the Zscore.

227 To compare network structures during both the flowing and dry phases, as well as among pools (only during 228 the dry phase), we used the Z-score method, as described below: $Z = [x - \mu]/\sigma$ - where, x represents the measure 229 observed in the network, μ denotes the mean, and σ represents the standard deviation of the measure obtained from 999 230 random networks generated by the null and theoretical models. We compared the observed and simulated network 231 structures using the Z-score to assess the significance or deviation of the observed network from what would be 232 expected under a null hypothesis. In our case, the simulated networks are generated first from a null model with the 233 'vaznull' method and then from a theoretical model based on observed predator richness separately. This method 234 allows for comparison of network structure patterns observed versus simulated to control for the effects of network size 235 at different sites, in our case the site is phase or pool (Almeida-Neto et al. 2008; Vanbergen et al., 2017). The Z-score 236 method serves as a baseline for comparison to assess whether the observed patterns in the real network are significant 237 according to the predator richness or if it is merely due to random factors. All analyses were performed in R 4.2.2 (R 238 Core Team, 2023) using the "bipartite" (Dormann et al., 2009) and "igraph" (Csardi & Nepusz, 2006).

239

240 RESULTS

241 Composition, abundance and richness of predator (fish)

We collected a total of 3,917 specimens across 18 species of predator fish, with 16 species found in each phase (flowing or dry). The sampling effort was considered sufficient based on the resulting rarefaction curves (Fig. S2). *Hemigrammus* sp. and *Crenicichla menezesi* were exclusively found during the flowing phase, while *Trachelyopterus* galeatus and *Prochilodus brevis* were exclusively found during the dry phase (Table 1). However, during the flowing phase the most abundant species was *Phenacogaster calverti* (28.9%), and during the dry phase *Astyanax bimaculatus* exhibited the highest abundance (27.5%).

- 248 We observed significant differences in environmental variables between the flowing and dry phases (F = 249 83.26; p < 0.001). The first two axes of principal components (PC) in the PCA explained 49.58% of the total variation
- in environmental variables across the two phases (Table S3; Fig. 2). Substrate diversity, vegetation density, and shading
- 251 predominated in flowing conditions (see Fig. 2b). In contrast, physical and chemical variables exhibited greater
- variation in isolated pools during dry conditions (Table S4).

Although predator richness did not vary between flowing and dry phases, we found a significant difference in predator composition (F = 5.72; p < 0.001) (Fig. 3). The dry phase occupied a large space on the multidimensional scale

- 255 (Fig. 3). Isolated pools in the dry phase exhibited significant dissimilarity in predators composition (fish species)
- (Sorensen 81%: Turnover 67% and Nestedness 14%; Fig. S3). Additionally, we observed a positive correlation of 45%
 between fish composition and the distance separating pools, which was influenced by physical and chemical variables
- 258 (Partial Mantel = 0.45; p = 0.008).

The extent of the pools was positively correlated with the richness of predators (cor: 0.58, p = <0.05), high vegetation density (cor: 0.63, p = <0.05), and shading (cor: 0.51, p = <0.05) (Fig. S4a). Additionally, isolated pools characterised by dense vegetation exhibited a negative correlation with the physical and chemical variables such as temperature (cor: -0.43, p = <0.05), salinity (cor: -0.47, p = <0.05) and pH (cor: -0.66, p = <0.05).

- 263
- 264 Structure of predator-prey interactions during flowing and dry phases

265 During flowing phase, the structure of predator-prev interactions exhibited a nested pattern (when compared 266 to the null I model with the vaznull method), characterised by predator subsets with fewer interactions included in areas 267 where predator species have greater number of interactions (Fig. 4). Among these species, A. bimaculatus displayed the 268 highest generalisation, consuming all categories of available food items, whereas P. vivipara exclusively fed on organic 269 detritus (Fig. 4). Notably, organic detritus emerged as a food resource occurring in all predators, followed by 270 invertebrate collectors, consumed by 93.8% of the predators, and plant material, which was consumed by 87.5% of the 271 species (Fig. 4). The frequency of occurrence of food item categories observed during the flowing was slightly similar 272 to that in the dry phase (Fig. S5). We observed that organic detritus and collector invertebrate resources were the main 273 food resources in flowing and dry phases (Fig. S5), across all sections and isolated pools, followed by filtering 274 invertebrates and plant material.

275 During the dry phase, the interaction network in each isolated pool (22 networks) when compared with the null 276 model, exhibited the different patterns and structures. Among these, 19 displayed a pattern with high specialisation (P1-277 P8, P10, P12-P20, and P22), 12 exhibited random structure (P1-P3, P5-P11, P13, and P15), seven showed nested 278 patterns (P14, P16-P17, and P19-22), two (P12 and P18) demonstrated modular patterns, and one displayed both nested 279 and modular structures (P4) (Fig. 5 and 6; Table S2). We didn't include the Z-score of specialisation in Fig. 5 because 280 the standardised deviation is so low, resulting in high values (Table S2). We observed a nested pattern in isolated pools 281 located towards the final portion of the 1 km stretch, where at least 78% of the analyzed food item categories were 282 consumed. The frequency of occurrence of items in networks with this nested pattern was higher compared to random 283 networks (Fig. S6). Furthermore, we found a positive correlation between the number of interactions and the predator 284 richness (cor: 0.831, p = <0.0001; GLM: $\beta 1=0.153$, SE = 0.015, df = 21, z = 10.10, p = <0.0001; Fig. S4.1), as well as 285 with nestedness (cor: 0.51, $p = \langle 0.05 \rangle$), while there was a negative correlation with specialisation (cor: -0.51, $p = \langle 0.05 \rangle$) 286 and modularity (cor: -0.64, $p = \langle 0.05 \rangle$) (Fig. S4b). In the modular networks (P12 and P18), only three predators (P12: H.

287 malabaricus, O. niloticus and A. bimaculatus; P18: P. vivipara, A. bimaculatus and O. niloticus) exhibit predominantly 288 distinct prey consumption patterns (Fig. 6). Each species forms a separate module, contributing to a high level of 289 general specialisation within the network (h2' = 0.95 and 0.88, respectively). In the nested and modular network (P04), 290 we also observed a high level of specialisation (h2'=0.92) due to the formation of connection modules similar to those 291 observed in the flowing condition (e.g., H. malabaricus mainly consuming fish and S. notonota predominantly ingesting 292 organic detritus). The nested pattern was evident in this network as well, with A. bimaculatus engaging in all possible 293 connections, while the other predators (S. piaba and C. orientale) consumed only two specific items. 294 During the dry phase, large part of the interactions networks in isolated pools (P1, P3, P11, P12, P13, P15, 295 P20, and P22), exhibited a random structure when compared with the theoretical model based on predator richness (Fig. 296 S8-S10) (Fig. 7). These networks corresponded to the isolated pools characterised by the lowest number of predator-297 prey links and a more equitable frequency of occurrence of food items, up to 54% (Fig. S6), indicating an absence of 298 dominance by any specific item. In contrast, other isolated pools (P2, P4, P5, P6, P7, P8, P9, P10, P14, P18 and P19) 299 exhibiting high values for modularity (above 1.65 Z-score range; Fig. 7), indicating a higher number of specialist 300 predators consuming up to two prey, thus forming distinct modules. Additionally, isolated pools with higher values of 301 general specialisation (h2') for each pool suggested a tendency for the corresponding network to exhibit a random 302 structure (Fig. S7).

303

304 DISCUSSION

305 We corroborated the prediction that predator-prev interactions during the flowing phase would exhibit nested 306 patterns driven by the increased water volume in the river, resources, habitat availability, and predator abundance. 307 However, specialisation was more pronounced during the dry phase due to the reduced availability of resources and, 308 consequently, the lower number of predator-prey links within each isolated pool. Furthermore, the predator-prey 309 interaction networks were predominantly random and stochastic due to the unpredictable formation of isolated pools, 310 which differed from our expectation of a modular pattern for the dry phase. The flowing and dry phases in Tabocas' 311 NPR modify predators composition and environmental conditions, which shape predator-prey interactions. Our findings 312 reveal that the dynamics between prey and predator communities adaptively can respond to these natural habitat 313 fluctuations. During the flowing phase, network structure exhibits a nested pattern, suggesting a hierarchical 314 organisation, which species with broader niches coexist alongside more specialised species. However, in the dry phase, 315 as the habitat fragments into isolated pools, structure of predator-prev interaction becomes more variable. Many isolated 316 pools exhibit a high degree of specialisation in species interactions, with some showing a random structure. Others 317 maintain a nested or modular pattern to a lesser extent, reflecting a diversity of community organisations shaped by the

constraints and opportunities presented by habitat isolation. This phase-specific variation underscores the importance of
 hydrological cycles in driving ecological interactions within NPR ecosystems.

320 Flowing and dry phases have major differences between environmental variables, showing two contrast 321 habitats for fish assemblages which change from a lotic (river) to a lentic environment (isolated pools) where 322 microhabitats are completely modified. In the flowing phase substrate diversity, vegetation density (macrophytes and 323 marginal vegetation), and shading predominate, increasing the availability of microhabitat for the fish community. In 324 contrast, in isolated pools (dry phase), drying increases habitat heterogeneity, and variable environmental conditions 325 become limiting for the survival of species (Rodrigues-Filho et al., 2020; Gonçalves-Silva et al., 2022). Environmental 326 variations among isolated pools are also linked to recent local events (such as time elapsed since the last rain, duration 327 and quantity of rainfall, and time since flow ceased) as well as pool morphology (Queiroz & Terra, 2020). Regarding 328 predators, flowing and dry phases exhibited differences in abundance and composition, particularly during the dry 329 phase, where isolated pools showed high dissimilarity, whereas more distant pools were more dissimilar than those 330 closer together. Each pool's community comprises a unique combination of species (Rodrigues-Filho et al., 2020; 331 Ramos et al., 2022). This dissimilarity is also supported by dispersal limitations associated with several factors, such as 332 the spatial arrangement of isolated pools (Queiroz & Terra, 2020); and changes in water quality (Pusey et al., 2018); 333 and landscape characteristics and resident biota (Marshall et al., 2016). In this sense, the heterogeneity observed among 334 isolated pools indicates that each individual pool functions as a distinct aquatic ecosystem inside the riverbed (e.g. 335 Larned et al., 2010; Bonada et al., 2020; Banegas-Medina et al., 2021). This underscores the need for the conservation 336 of isolated pools, as the dry phase has been largely disregarded (Bonada et al., 2020).

337 Structure of predator-prey interactions reflects how predator and prey communities organize in response to 338 fluctuating environmental conditions and habitat alterations in Tabocas' NPR. During the flowing phase, we observed a 339 nested pattern in the predator-prey interactions, which represent a hierarchical structure to the connectivity rules of the 340 networked system, resulting in variations in the number of interactions among its components. The consumption of 341 organic detritus, collector invertebrates, and plant material determined the variation in connectivity on the flowing 342 phase. Usually, aquatic invertebrates are the most consumed prey by neotropical fish species (e.g., Rezende et al., 2013; 343 Manna et al., 2019), while organic detritus is not a common trophic resource for neotropical fish species (e.g. Dary et 344 al., 2017; Reis et al., 2020; Neves et al., 2021). However, organic detritus was consumed by all species in high 345 proportions probably due to accumulation of organic detritus in Tabocas. Non-perennial rivers have high concentration 346 of organic detritus (von Schiller et al., 2017; Bonada et al., 2020), which are a primary source of dissolved organic 347 matter (DOM) mainly in the isolated pools (Casas-Ruiz et al., 2016), and it can be a crucial basal resource in food webs 348 (Closs & Lake, 1994; Fallon et al., 2022). Organic detritus can lead to higher species diversity and a greater number of

350 topology can minimize competition loads by varying interactions and maximize species' fitness (Mariani et al., 2019). 351 The food resources consumed by predators were similar between the flowing and dry phases, except for the 352 increase in the occurrence of filter feeders (zooplankton: cladocera and copepoda) on predators' diet during the dry 353 phase. The higher ingestion of filter feeders (zooplankton) on dry phase is related to the higher abundance of 354 zooplankton on isolated pools due to their lentic conditions. The contraction of Tabocas' NPR into isolated pools 355 resulted in two distinct interaction patterns: nested or modular, as well as random (no specific pattern), which were 356 influenced by the higher specialisation of predators. Nested interactions (nested networks) were described for seven 357 pools that were located closely, those pools had more links due to higher richness in resource and predator. Interactions 358 among different predator species can lead to a more interconnected network, where the presence of multiple predators 359 allows for a wider range of prey species to be utilised (Pinto-Coelho et al., 2021). Modular interactions (modular 360 networks) occurred in only two pools (P12 and P18), driven by high predator dietary specialisation. One pool displayed 361 both modular and nested interaction patterns, influenced by high specialisation and the presence of A. bimaculatus 362 consuming all food items, as also observed in the flowing phase. Fish with flexible foraging strategies under varying 363 seasonal conditions can enhance resilience to hydrological disturbances and contribute to food web stability (McMeans 364 et al., 2019). This underscores the importance of A. bimaculatus as a generalist predator, connecting all the components 365 of the predator-prey interaction network.

weak interactions in food webs, contributing to overall stability (Rooney & McCann, 2012). In this sense, the nested

349

366 Most predator-prey interactions from isolated pools were random, reflecting an unstable and disassembled state 367 during the dry phase, driven by the highly dynamic environment of the NPR. Random-pattern networks are 368 characterized by fewer links and higher specialisation, as indicated by the negative correlation between the number of 369 interactions and specialisation (h2'). This suggests that the greater the specialisation, the greater the tendency of the 370 network to be random. Food webs dominated by specialist predators are expected to exhibit less stable and oscillatory 371 dynamics than those dominated by generalists (McCann et al., 1998). In this sense, the presence of various predator-372 prey interaction patterns in the dry phase reflects randomness in species composition and interactions among isolated 373 pools. The theoretical model based on predator richness also indicated randomness, suggesting that predators do not 374 significantly influence the structuring of predator-prey interactions networks in isolated pools during the dry phase. This 375 pattern likely results from high variation in species composition across isolated pools, emphasizing the role of stochastic 376 processes.

The predominance of stochasticity in structuring most predator-prey interaction networks within isolated pools reveals a significant vulnerability of species during the dry phase. The high specialisation of predators makes them sensitive to resource availability in the face of environmental changes, such as alterations in water availability. Furthermore, environmental stochasticity in predator-prey models can directly affect population stability and persistence (Jana, 2014). Therefore, stochasticity should be considered in predator-prey models to better represent the dynamics of natural ecosystems like non-perennial rivers, where ecological interactions are frequently influenced by unpredictable variations. Isolated pools in the dry phase of NPR have often been overlooked, despite evidence pointing to their conservation importance (Bonada et al., 2020). The findings of our results underscore the critical need to conserve these heterogeneous habitats, where predator-prey networks are structured in a stochastic manner, highlighting their unique role in supporting biodiversity and ecological resilience within NPR systems.

387 Non-perennial rivers with prolonged dry periods, such as those in the Brazilian semi-arid, face escalating 388 threats from climate change. Communities exposed to fluctuating environmental conditions are more susceptible to 389 climate change impacts than those adapted to stable environments (Walther et al., 2002). Multiple environmental 390 stressors, including water flow and temperature fluctuations, significantly impact predator behaviour, thereby shaping 391 predator-prey interactions in tropical freshwater systems (Gvoždík & Boukal, 2020; Zanghi, 2024). Climate change is 392 expected to further reduce the extent of remaining waterways, intensifying species interactions and resource scarcity, 393 which compromises these habitats' ability to support native fish (Jaeger et al., 2014). Isolated pools provide essential 394 refuges that enable species to persist under harsh conditions (Stubbington et al., 2017; Hill & Milner, 2018; Bonada et 395 al., 2020). Despite weakened policy protections for NPR, these habitats are crucial for local species survival and 396 regional biodiversity (Rogosch & Olden, 2019), underscoring the need to identify priority aquatic refuges to sustain 397 freshwater biodiversity in non-perennial rivers (Yu et al., 2022).

398 While our findings provide valuable insights into predator-prey interactions in Tabocas' NPR, we 399 acknowledge certain limitations that future studies should address. Long-term studies with more frequent sampling are 400 essential to understand how the timing and duration of stream drying affect prey resources available to fish, which plays 401 a critical role in shaping the structure and function of food webs. Additionally, further studies combining stomach 402 content analysis with stable isotope analysis are needed to obtain a more comprehensive view of predator diets in NPR, 403 especially since stable isotope analysis provides a broader timescale of dietary patterns critical for understanding these 404 dynamic ecosystems. For example, applying an energy flow approach to infer network stability (Saito et al., 2024) is 405 essential for gaining deeper insight into predator-prey interactions within the dynamic non-perennial rivers systems. 406 Together, these approaches not only enhance our ecological understanding but also offer valuable guidance for the 407 conservation and management of these unique and variable habitats.

408

409 CONCLUSION

410 Our study highlights the role of hydrological phase shifts in structuring predator-prey interaction networks 411 within non-perennial rivers, demonstrating how the assembly and disassembly processes of these networks respond 412 dynamically to changing environmental conditions. Our insights underscore the need for conservation strategies that 413 recognize and preserve the natural hydrological variability in these ecosystems. In particular, maintaining the natural 414 flow regimes that foster habitat connectivity during flowing phases, while allowing for the isolation effects of the dry 415 phase, may help sustain diverse community structures and trophic dynamics essential to ecosystem functioning. Our 416 findings suggest that conservation plans for NPR freshwater habitats should prioritise maintaining hydrological integrity 417 to support ecological processes that promote biodiversity. Given that climate change and human activities increasingly 418 alter water availability and flow patterns, our research underscores the vulnerability of these habitats to hydrological 419 disruption. By conserving non-perennial rivers and their unique phase-dependent communities, we can protect the 420 species that depend on these systems.

- 421
- 422 REFERENCES
- 423 Allen, D. C., T. Datry, K. S. Boersma, M. T. Bogan, A. J. Boulton, D. Bruno, ... & M. Zimmer, 2020. River
- 424 ecosystem conceptual models and non-perennial rivers: A critical review. Wiley Interdisciplinary Reviews Water 7:
- 425 e1473. https://doi.org/10.1002/wat2.1473.
- 426 Almeida-Neto, M., P. Guimarães, P. R. Guimarães Jr., R. D. Loyola, & W. Ulrich, 2008. A consistent metric
- 427 for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117: 1227–1239.
- 428 https://doi.org/10.1111/j.0030-1299.2008.16644.x.
- 429 Banegas-Medina, A., I. Y. Montes, O. Tzoraki, L. Brendonck, T. Pinceel, G. Diaz, ... & R. Figueroa, 2021.
- 430 Hydrological, environmental and taxonomical heterogeneity during the transition from drying to flowing conditions in a

431 Mediterranean intermittent river. Biology 10: 316. https://doi.org/10.3390/biology10040316.

- 432 Barbosa, J. E. D. L., E. S. F. Medeiros, J. Brasil, R. D. S. Cordeiro, M. C. B. Crispim & G. H. G. D. Silva,
- 433 2012. Aquatic systems in semi-arid Brazil: limnology and management. Acta Limnologica Brasiliensia 24: 103-118.
- 434 https://doi.org/10.1590/S2179-975X2012005000030.
- 435 Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global ecology and
- 436 biogeography 19: 134-143. https://doi.org/10.1111/j.1466-8238.2009.00490.x.
- 437 Baselga, A., 2012. The relationship between species replacement, dissimilarity derived from nestedness, and
- 438 nestedness. Global Ecology and Biogeography 21: 1223-1232. https://doi.org/10.1111/j.1466-8238.2011.00756.x.
- 439 Baselga, A., 2013. Multiple site dissimilarity quantifies compositional heterogeneity among several sites, while
- 440 average pairwise dissimilarity may be misleading. Ecography 36: 124-128. https://doi.org/10.1111/j.1600-
- 441 0587.2012.00124.x.
- 442 Baselga, A., 2017. Partitioning abundance-based multiple-site dissimilarity into components: Balanced
- 443 variation in abundance and abundance gradients. Methods in Ecology and Evolution 8: 799-808.
- 444 https://doi.org/10.1111/2041-210X.12693.

- 445 Baselga, A., & C. D. L. Orme, 2012. betapart: an R package for the study of beta diversity. Methods in ecology
- 446 and evolution 3: 808-812. https://doi.org/10.1111/j.2041-210X.2012.00224.x.
- 447 Beesley L.S., B.J. Pusey, M.M. Douglas, D.C. Gwinn, C.A. Canham, C.S. Keogh, ... & S. A. Setterfield, 2020.
- 448 New insights into the food web of an Australian tropical river to inform water resource management. Scientific Reports
- 449 10: 14294. https://doi.org/10.1038/s41598-020-71331-0.
- 450 Begon, M., & C. R. Townsend, 2021. Ecology: from individuals to ecosystems. John Wiley & Sons.
- 451 Benesty, J., J. Chen, Y. Huang, & I. Cohen, 2009. Noise reduction in speech processing, 1st ed. Springer.
- 452 https://doi.org/10.1007/978-3-642-00296-0.
- 453 Blondel, V. D., J. L. Guillaume, R. Lambiotte & E. Lefebvre, 2008. Fast unfolding of communities in large
- 454 networks. Journal of statistical mechanics: theory and experiment 2008: P10008. https://doi.org/10.1088/1742-
- 455 5468/2008/10/P10008.
- Blüthgen, N., F. Menzel & N. Blüthgen, 2006. Measuring specialization in species interaction networks. BMC
 Ecology 6: 9. https://doi.org/10.1186/1472-6785-6-9.
- 458 Bonada, N., M. Cañedo-Argüelles, F. Gallart, D. von Schiller, P. Fortuño, J. Latron, ... & N. Cid, 2020.
- 459 Conservation and management of isolated pools in temporary rivers. Water 12: 2870.
- 460 https://doi.org/10.3390/w12102870.
- 461 Brose, U., J. A. Dunne, J. M. Montoya, O. L. Petchey, F. D. Schneider & U. Jacob, 2012. Climate change in
- 462 size-structured ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 2903-2912.
- 463 https://doi.org/10.1098/rstb.2012.0232
- 464 Casas-Ruiz, J. P., J. Tittel, D. von Schiller, N. Catalán, B. Obrador, L. Gómez-Gener, ... & R. Marcé, 2016.
- 465 Drought-induced discontinuities in the source and degradation of dissolved organic matter in a Mediterranean river.
- 466 Biogeochemistry 127: 125-139. https://doi.org/10.1007/s10533-015-0173-5.
- 467 Chao, A., N. J. Gotelli, T. C. Hsieh, E. L. Sander, K. H. Ma, R. K. Colwell & A. M. Ellison, 2014. Rarefaction
- 468 and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological
- 469 monographs 84: 45-67. https://doi.org/10.1890/13-0133.1.
- 470 Closs, G. P., & P. S. Lake, 1994. Spatial and temporal variation in the structure of an intermittent-stream food
 471 web. Ecological monographs 64: 1-21. https://doi.org/10.2307/2937053.
- 472 Corti, R. & T. Datry, 2012. Invertebrates and sestonic matter in an advancing wetted front travelling down a
- dry river bed (Albarine, France). Freshwater Science 31: 1187-1201. https://doi.org/10.1899/12-017.1.
- 474 Costa, R. M., J. L. Ferro & V. F. Farjalla, 2022. Disentangling the mechanisms related to the reduction of
- 475 aquatic habitat size on predator-prey interactions. Hydrobiologia 849: 1207-1219. https://doi.org/10.1007/s10750-021-
- 476 04781-w.

477

478 A global perspective on the functional responses of stream communities to flow intermittence. Ecography 44: 1511-

479 1523. https://doi.org/10.1111/ecog.05697.

480 Csardi, G. & T. Nepusz, 2006. The igraph software package for complex network research. InterJournal,

481 Complex Systems 1695. https://igraph.org.

- 482 Cummins, K. W., R. W. Merritt & P. C. Andrade, 2005. The use of invertebrate functional groups to
- 483 characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and
- 484 Environment 40: 69-89. https://doi.org/10.1080/01650520400025720.
- 485 Dary, E. P., E. Ferreira, J. Zuanon & C. P. Röpke, 2017. Diet and trophic structure of the fish assemblage in
- 486 the mid-course of the Teles Pires River, Tapajós River basin, Brazil. Neotropical Ichthyology 15: e160173.
- 487 https://doi.org/10.1590/1982-0224-20160173.
- 488 Datry, T., N. Bonada & A. Boulton, 2017. Intermittent rivers and ephemeral streams: Ecology and
- 489 management. London: Academic Press. https://www.sciencedirect.com/book/9780128038352/intermittent-rivers-and-
- 490 ephemeral-streams
- 491 Davey, A. J. & D. J. Kelly, 2007. Fish community responses to drying disturbances in an intermittent stream: a
 492 landscape perspective. Freshwater Biology 52: 1719-1733. https://doi.org/10.1111/j.1365-2427.2007.01800.x.
- 493 D'Bastiani, E., K. M. Campião, W. A. Boeger & S. B. Araújo, 2020. The role of ecological opportunity in
- 494 shaping host-parasite networks. Parasitology 147: 1452-1460. https://doi.org/10.1017/S003118202000133X.
- 495 Domínguez, E. & H. R. Fernández, 2009. Macroinvertebrados bentónicos sudamericanos Sistemática y
- 496 biología. Tucumán, Argentina: Fundación Miguel Lillo.
- 497 Dormann, C. F., j. Fründ, N. Blüthgen, & B. Gruber, 2009. Indices, graphs and null models: analyzing bipartite
 498 ecological networks. The Open Ecology Journal 2: 7-24.
- 499 Fallon, C. E., K. A. Capps, M. C. Freeman, C. R. Smith & S. W. Golladay, 2022. Effects of stream
- 500 intermittency on minnow (Leuciscidae) and darter (Percidae) trophic dynamics in an agricultural watershed. Ecology of
- 501 Freshwater Fish 31: 544-558. https://doi.org/10.1111/eff.12649.
- 502 Gómez, R., M. I. Arce, D. S. Baldwin & C. N. Dahm, 2017. Water physicochemistry in intermittent rivers and
- 503 ephemeral streams. In Datry, T., N. Bonada & A. Boulton, 2017. Intermittent rivers and ephemeral streams: Ecology
- and management. London: Academic Press. https://doi.org/10.1016/B978-0-12-803835-2.00005-X.
- 505 Gonçalves-Silva, M., L. R. Manna, C. A. S. Rodrigues-Filho, F. K. Teixeira & C. F. Rezende 2022. Effect of
- 506 drying dynamics on the functional structure of a fish assemblage from an intermittent river network. Frontiers in
- 507 Environmental Science 1398. https://doi.org/10.3389/fenvs.2022.903974

- 508 Guimaraes Jr., P. R., 2020. The structure of ecological networks across levels of organization. Annual Review
- 509 of Ecology, Evolution, and Systematics 51: 433-460. https://doi.org/10.1146/annurev-ecolsys-012220-120819.
- 510 Gvoždík, L. & D. S. Boukal, 2021. Impacts of predator-induced behavioural plasticity on the temperature
- 511 dependence of predator–prey activity and population dynamics. Journal of Animal Ecology 90: 503-514.
- 512 https://doi.org/10.1111/1365-2656.13383.
- 513 Hamada, N., J. L. Nessimian & R. B. Querino, 2014. Insetos aquáticos na Amazônia brasileira: taxonomia,
- 514 biologia e ecologia. Manaus: Editora do INPA.
- 515 Hartig, F. & M. F. Hartig, 2017. Package 'DHARMa'. R package.
- 516 Hedden, S. C. & K. B. Gido, 2020. Dispersal drives changes in fish community abundance in intermittent
- 517 stream networks. River Research and Applications 36: 797-806. https://doi.org/10.1002/rra.3599.
- 518 Hill, M. J. & V. S. Milner, 2018. Ponding in intermittent streams: A refuge for lotic taxa and a habitat for
- newly colonising taxa?. Science of the Total Environment 628: 1308-1316.
- 520 https://doi.org/10.1016/j.scitotenv.2018.02.162.
- 521 Hsieh T., K. Ma & A. Chao, 2024. iNEXT: Interpolation and Extrapolation for Species Diversity. R package
- 522 version 3.0.1, http://chao.stat.nthu.edu.tw/wordpress/software_download/.
- 523 Hyslop, E. J., 1980. Stomach contents analysis—a review of methods and their application. Journal of fish
- 524 biology 17: 411-429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x.
- 525 Instituto de Pesquisa e Estratégia Econômica do Ceará (IPECE)., (2007). Retrieved from
- 526 http:/www.ipece.ce.gov.br.
- 527 Jaeger, K. L., J. D. Olden & N. A. Pelland, 2014. Climate change poised to threaten hydrologic connectivity
- 528 and endemic fishes in dryland streams. Proceedings of the National Academy of Sciences 111: 13894-13899.
- 529 https://doi.org/10.1073/pnas.132089011.
- 530 Jana, D., 2014. Influence of Gestation Delay and Predator's Interference in Predator-Prey Interaction under
- 531 Stochastic Environment. International Journal of Stochastic Analysis 2014: 501836.
- 532 https://doi.org/10.1155/2014/501836.
- 533 Kruskal, J. B., 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115-129.
- 534 https://doi.org/10.1007/BF02289694.
- 535 Larned, S. T., T. Datry, D. B. Arscott & K. Tockner, 2010. Emerging concepts in temporary-river ecology.
- 536 Freshwater Biology 55: 717–738. https://doi.org/10.1111/j.1365-2427.2009.02322.x.

537 Legendre, P. & L. Legendre, 2012. Numerical Ecology, 3rd ed. Elsevier.

- 538 Lüdecke, D., D. Makowski, P. Waggoner & I. Patil, 2020. Performance: assessment of regression models
- 539 performance. R package version 0.4, 4.

540 Manna, L. R., S. Villéger, C. F. Rezende & R. Mazzoni, 2019. High intraspecific variability in morphology 541 and diet in tropical stream fish communities. Ecology of Freshwater Fish 28: 41-52. https://doi.org/10.1111/eff.12425. 542 Mariani, M. S., Z. M. Ren, J. Bascompte & C. J. Tessone, 2019. Nestedness in complex networks: observation, 543 emergence, and implications. Physics Reports 813: 1-90. https://doi.org/10.1016/j.physrep.2019.04.001. 544 Marshall, J. C., N. Menke, D. A. Crook, J. S. Lobegeiger, S. R. Balcombe, J. A. Huey, ... & A. H. Arthington, 545 2016. Go with the flow: the movement behaviour of fish from isolated waterhole refugia during connecting flow events 546 in an intermittent dryland river. Freshwater Biology 61: 1242-1258. https://doi.org/10.1111/fwb.12707. 547 McCann, K., A. Hastings & G. R. Huxel, 1998. Weak trophic interactions and the balance of nature. Nature 548 395: 794-798. https://doi.org/10.1038/27427. 549 McHugh, P. A., R. M. Thompson, H. S. Greig, H. J. Warburton & A. R. McIntosh, 2015. Habitat size 550 influences food web structure in drying streams. Ecography 38: 700-712. https://doi.org/10.1111/ecog.01193. 551 McIntosh, A. R., C. Leigh, K. S. Boersma, P. A. McHugh, C. Febria & E. García-Berthou, 2017. Food webs 552 and trophic interactions in intermittent rivers and ephemeral streams. In Datry, T., N. Bonada & A. Boulton, 2017. 553 Intermittent rivers and ephemeral streams: Ecology and management. London: Academic Press. 554 https://doi.org/10.1016/B978-0-12-803835-2.00012-7. 555 McMeans, B. C., T. Kadoya, T. K. Pool, G. W. Holtgrieve, S. Lek, H. Kong, ... & K. S. McCann, 2019. 556 Consumer trophic positions respond variably to seasonally fluctuating environments. Ecology 100: e02570. 557 https://doi.org/10.1002/ecy.2570. 558 Medeiros, E. S. & A. H. Arthington, 2011. Allochthonous and autochthonous carbon sources for fish in 559 floodplain lagoons of an Australian dryland river. Environmental Biology of Fishes 90: 1-17. 560 https://doi.org/10.1007/s10641-010-9706-x. 561 Messager, M. L., B. Lehner, C. Cockburn, N. Lamouroux, H. Pella, T. Snelder, ... & T. Datry, 2021. Global 562 prevalence of non-perennial rivers and streams. Nature 594: 391-397. https://doi.org/10.1038/s41586-021-03565-5. 563 Mugnai, R., L. J. Nessimian & D. F. Baptista, 2010. Manual de identificação de macroinvertebrados aquáticos 564 do estado Rio de Janeiro, 1a ed., Rio de Janeiro: Technical Books Editora. 565 Neves, M. P., P. Kratina, R. L. Delariva, J. I. Jones & C. B. Fialho, 2021. Seasonal feeding plasticity can 566 facilitate coexistence of dominant omnivores in Neotropical streams. Reviews in Fish Biology and Fisheries 31: 417-567 432. https://doi.org/10.1007/s11160-021-09648-w. 568 Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, ... & M. A. S. S. Imports, 2019. 569 Package 'vegan'. Community ecology package, version, 2(9). 570 Oliveira, J. S., R. M. Hughes & B. D. F. Terra, 2024. Fish and macroinvertebrates respond differently to 571 seasonal drying in tropical non-perennial streams. Austral Ecology 49: e13558. https://doi.org/10.1111/aec.13558.

- 572 Pinto-Coelho, D., M. Martins & P. R. Guimaraes Jr., 2021. Network analyses reveal the role of large snakes in
- 573 connecting feeding guilds in a species-rich Amazonian snake community. Ecology and Evolution 11: 6558-6568.
- 574 https://doi.org/10.1002/ece3.7508.
- 575 Poisot, T., E. Canard, D. Mouillot, N. Mouquet & D. Gravel, 2012. The dissimilarity of species interaction 576 networks. Ecology letters 15: 1353-1361. https://doi.org/10.1111/ele.12002.
- 577 Price, A. N., C. N. Jones, J. C. Hammond, M. A. Zimmer & S. C. Zipper, 2021. The drying regimes of non-
- 578 perennial rivers and streams. Geophysical Research Letters 48: e2021GL093298.
- 579 https://doi.org/10.1029/2021GL09329.
- 580 Pusey, B. J., M. J. Kennard, M. Douglas & Q. Allsop, 2018. Fish assemblage dynamics in an intermittent river
- 581 of the northern Australian wet-dry tropics. Ecology of Freshwater Fish 27: 78-88. https://doi.org/10.1111/eff.12325.
- 582 Queiroz, A. C. F. & B. D. F. Terra, 2020. Ecological drivers of fish metacommunities: Environmental and
- 583 spatial factors surpass predation in structuring metacommunities of intermittent rivers. Ecology of freshwater fish 29:
- 584 145-155. https://doi.org/10.1111/eff.12502.
- 585 Ramos, E. A., C. S. Morais-Junior, C. A. Rodrigues-Filho, J. I. Sánchez-Botero, M. Melo Júnior & J. L.
- 586 Novaes, 2022. Influence of spatial and environmental factors on the structure of a zooplankton metacommunity in an
- 587 intermittent river. Aquatic Ecology 56: 239-349. https://doi.org/10.1007/s10452-021-09912-y.
- 588 R Core Team, 2023. R: A language and environment for statistical computing. R Foundation for Statistical 589 Computing, Vienna.
- 590 Reis, A. D. S., M. P. Albrecht & S. E. Bunn, 2020. Food web pathways for fish communities in small tropical 591
- streams. Freshwater Biology 65: 893-907. https://doi.org/10.1111/fwb.13471.
- 592 Rezende, C. F., J. Lobón-Cerviá, E. P. Caramaschi & R. Mazzoni, 2013. Trophic ecology of two benthivorous
- 593 fishes in relation to drift and benthos composition in a pristine Serra do Mar stream (Rio de Janeiro, Brazil).
- 594 Fundamental and Applied Limnology/Archiv fur Hydrobiologie 183: 163-175. https://doi.org/10.1127/1863-
- 595 9135/2013/0430.
- 596 Rodrigues-Filho, C. A., R. C. Gurgel-Lourenço, E. A. Ramos, J. L. Novaes, D. S. Garcez, R. S. Costa & J. I.
- 597 Sanchez-Botero, 2020. Metacommunity organization in an intermittent river in Brazil: the importance of riverine
- 598 networks for regional biodiversity. Aquatic Ecology 54: 145-161. https://doi.org/10.1007/s10452-019-09732-1.
- 599 Rogosch, J. S. & J. D. Olden, 2019. Dynamic contributions of intermittent and perennial streams to fish beta
- 600 diversity in dryland rivers. Journal of Biogeography 46: 2311-2322. https://doi.org/10.1111/jbi.13673.
- 601 Rooney, N. & K. S. McCann, 2012. Integrating food web diversity, structure and stability. Trends in ecology
- 602 & evolution 27: 40-46. https://doi.org/10.1016/j.tree.2011.09.001.

- 603 Sabo, J. L., J. C. Finlay, T. Kennedy & D. M. Post, 2010. The role of discharge variation in scaling of drainage
- area and food chain length in rivers. Science 330: 965-967. https://doi.org/10.1126/science.1196005.
- 605 Saito, V. S., P. Kratina, G. Barbosa, F. C. Ferreira, J. B. Leal, G. Zemelka, ... & D. M. Perkins, 2024.
- 606 Untangling the complex food webs of tropical rainforest streams. Journal of Animal Ecology 93: 1022-1035.
- 607 https://doi.org/10.1111/1365-2656.14121.
- 608 Stubbington, R., M. T. Bogan, N. Bonada, A. J. Boulton, T. Datry, C. Leigh & R. Vander Vorste, 2017. The
- biota of intermittent rivers and ephemeral streams: aquatic invertebrates. In Datry, T., N. Bonada & A. Boulton, 2017.
- 610 Intermittent rivers and ephemeral streams: Ecology and management. London: Academic Press.
- 611 https://doi.org/10.1016/B978-0-12-803835-2.00007-3.
- 612 Suzuki, S. S., Y. G. Baba & H. Toju, 2023. Dynamics of species-rich predator–prey networks and seasonal
- 613 alternations of core species. Nature Ecology & Evolution 7: 1432-1443. https://doi.org/10.1038/s41559-023-02130-9.
- Thompson, W., 1960. Notes on the volterra equations. The Canadian Entomologist 92: 582-594.
- 615 https://doi.org/10.4039/ent92582-8.
- 616 Tylianakis, J. M., R. K. Didham, J. Bascompte & D. A. Wardle, 2008. Global change and species interactions
- 617 in terrestrial ecosystems. Ecology letters 11: 1351-1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x.
- 618 Vaissie, P., A. Monge & F. Husson, 2020. Factoshiny package for R.
- 619 Vanbergen, A. J., B. A. Woodcock, M. S. Heard & D. S. Chapman, 2017. Network size, structure and
- 620 mutualism dependence affect the propensity for plant–pollinator extinction cascades. Functional ecology 31: 1285-
- 621 1293. https://doi.org/10.1111/1365-2435.12823.
- 622 Vázquez, D. P., C. J. Melián, N. M. Williams, N. Blüthgen, B. R. Krasnov & R. Poulin, 2007. Species
- 623 abundance and asymmetric interaction strength in ecological networks. Oikos 116: 1120-1127.
- 624 https://doi.org/10.1111/j.0030-1299.2007.15828.x.
- 625 von Schiller, D. V., S. Bernal, C. N. Dahm & E. Martí, 2017. Nutrient and organic matter dynamics in
- 626 intermittent rivers and ephemeral streams. In Datry, T., N. Bonada & A. Boulton, 2017. Intermittent rivers and
- 627 ephemeral streams: Ecology and management. London: Academic Press. https://doi.org/10.1016/B978-0-12-803835-
- 628 2.00006-1.
- Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. Beebee, ... & F. Bairlein, 2002. Ecological
 responses to recent climate change. Nature 416: 389-395. https://doi.org/10.1038/416389a.
- 631 Wasserman, R. J., M. E. Alexander, O. L. Weyl, D. Barrios-O'Neill, P. W. Froneman & T. Dalu, 2016.
- 632 Emergent effects of structural complexity and temperature on predator–prey interactions. Ecosphere 7: e01239.
- 633 https://doi.org/10.1002/ecs2.1239.

634	Williams, L. R., C. M. Taylor & M. L. Warren Jr, 2003. Influence of fish predation on assemblage structure of
635	macroinvertebrates in an intermittent stream. Transactions of the American Fisheries Society 132: 120-130.
636	https://doi.org/10.1577/1548-8659(2003)132<0120:IOFPOA>2.0.CO;2.
637	Yu, S., P. M. Rose, N. R. Bond, S. E. Bunn & M. J. Kennard, 2022. Identifying priority aquatic refuges to
638	sustain freshwater biodiversity in intermittent streams in eastern Australia. Aquatic Conservation: Marine and
639	Freshwater Ecosystems 32: 1584-1595. https://doi.org/10.1002/aqc.387.
640	Zanghi, C., I. L. Penry-Williams, M. J. Genner, A. E. Deacon & C. C. Ioannou, 2024. Multiple environmental
641	stressors affect predation pressure in a tropical freshwater system. Communications Biology 7: 663.
642	https://doi.org/10.1038/s42003-024-06364-6.
643	Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and
644	extensions in ecology with R (Vol. 574, p. 574). New York: Springer.
645	
646	TABLES
647	
648	Table 1. Richness and abundance of fish predator species across flowing and dry phases of the Tabocas' NPR, Ceará,
649	Brazil. In abundance columns the values in parentheses represent the number of specimens that had their stomachs

analysed to collect prey information.

Family of any data as	Creation of any dataset	Hydrologic	Hydrological phases		
Family of predators	Species of predators	Flowing	Dry		
Anostomidae	(Lp) Leporinus piau Fowler 1941	10 (10)	2 (2)		
Auchenipteridae	(Tg) Trachelyopterus galeatus (Linnaeus 1766)	0	1 (1)		
Characidae	(Ab) Astyanax bimaculatus (Linnaeus 1758)	272 (30)	486 (357)		
	(Ch) Compsura heterura Eigenmann 1915	120 (30)	60 (60)		
	(He) Hemigrammus sp.	14 (14)	0		
	(Pc) Phenacogaster calverti (Fowler 1941)	625 (30)	128 (110)		
	(Pf) Psalidodon fasciatus (Cuvier 1819)	234 (30)	29 (29)		
	(Sh) Serrapinnus heterodon (Eigenmann 1915)	467 (30)	182 (160)		
	(Sp) Serrapinnus piaba (Lütken 1875)	134 (30)	174 (158)		
Cichlidae	(Co) Cichlasoma orientale Kullander 1983	40 (30)	48 (48)		
	(Cm) Crenicichla menezesi Ploeg 1991	1(1)	0		
	(On) Oreochromis niloticus (Linnaeus 1758)	58 (30)	244 (162)		
Crenuchidae	(Cb) Characidium bimaculatum Fowler 1941	39 (30)	7 (7)		
Curimatidae	(Sn) Steindachnerina notonota (Miranda Ribeiro 1937)	86 (30)	251 (144)		
Erythrinidae	(Hm) Hoplias malabaricus (Bloch 1794)	47 (30)	71 (71)		
Loricariidae	(Hy) Hypostomus sp.	14 (14)	6 (6)		
Poeciliidae	(Pv) Poecilia vivipara Bloch and Schneider 1801	2 (2)	57 (57)		
Prochilodontidae	(Pb) Prochilodus brevis Steindachner 1875	0	8 (8)		
Species richness		16	16		
Total abundance:		2163	1754		

Fig. 1 a Schematic representation of the study area highlighting the different sizes of isolated pools. b the sampling design for each phase and the hypothetical predator-prey network structure. In fig. b, we illustrated how samplings were conducted over a distance of 1 km during both flowing and dry phases. During the flowing phase, we predicted a food web assembly and during the dry phase we predicted a food web disassembly

<image>

Fig. 2 Principal component analysis of environmental variables during dry and flowing phases of Tabocas' NPR, Ceará, Brazil. a Scatter plot of the observed points for the dry phase (isolated pools) and flowing phase (sections). b Plot of the environmental variables. The legend abbreviations are as follows: TEMP = Temperature; SATU = Oxygen %; DO = Dissolved oxygen; SALI = Salinity; PH = pH; BEDR = Bedrock; LBOU = Large boulder; SBOU = Small boulder; GRAV = Gravel; FINE = Fine gravel; SAND = Sand; MUD = Mud; VOLU = Water volume; MACR = Macrophyte; TREE = Tree branch; DEAD = Dead wood; ROOT = Root; SHAD = Shading; MVEG = Marginal vegetation.

Fig. 3 Non-metric multidimensional scaling (NMDS) plot of predator composition captured during dry and flowing
phases of Tabocas' NPR, Ceará, Brazil (Axes 1 and 2)

675 Fig. 4 Bipartite predator-prey interaction network showing a nested pattern during the flowing phase of Tabocas' NPR,

- 677 plant material; Pre = predators invertebrate; Shr = shredder invertebrate; Fil = filtering invertebrate; Scr = scrapers
- 678 invertebrate; Fis = fish; Ter = terrestrial invertebrate. Predator Lp: *Leporinus piau*, Ab: *Astyanax bimaculatus*, Ch:
- 679 Compsura heterura, He: Hemigrammus sp., Pc: Phenacogaster calverti, Pf: Psalidodon fasciatus, Sh: Serrapinnus
- 680 heterodon, Sp: Serrapinnus piaba, Co: Cichlasoma orientale, On: Oreochromis niloticus, Cb: Characidium
- 681 bimaculatum, Sn: Steindachnerina notonota, Hm: Hoplias malabaricus, Hy: Hypostomus sp., Pv: Poecilia vivipara

Fig .5 Z-score values for nestedness (light salmon) and modularity (green) for the network structure during flowing (F) and dry phases (each pool is analysed separately: P1 - P22) of Tabocas' NPR, Ceará, Brazil. The grey shaded area represents the interval expected by chance, ranging from -1.65 to +1.65 of Z-score (random). Data points located outside this range indicate networks that exhibit higher levels of modularity or nestedness compared to what is expected by the null model (with the *vaznull* method)

697

Networks

698 Fig.7 Z-score values for nestedness (light salmon), modularity (green) and specialisation (light purple) network

- 699 structures for all isolated pools separately (P1-P22) were obtained when compared to what is expected by the theoretical
- model based on predator richness. The grey colour range represents the interval expected by chance (-1.65 to +1.65),
- 701 while data points outside this range indicate networks with higher or lower levels of nestedness, modularity, or
- specialisation (h2'). Due to the high correlation between the variables of isolated pools P16 and P17, it was not possible
- to calculate the Z-score

Hydrological fluctuations determine predator-prey interactions in a semi-arid non-perennial river

^{1,3*}Milena Gonçalves-Silva, ²Elvira D'Bastiani, ³Thibault Datry, ¹Carla Ferreira Rezende

¹Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal do Ceará, Brasil.

²Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.

³INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France.

*Corresponding author: Milena Gonçalves-Silva, e-mail: milenagoncalves.bio@gmail.com

HYDROBIOLOGIA

Supplementary Information

Graphical abstract According to the transition of flowing to dry phase in the Tabocas' NPR, the structure of predator-prey interaction networks shifts from being nested and consistent to being random in most pools. The low number of predator-prey links in these random networks shows a decrease in the use of the trophic resource by fish (predators) as an adjustment to the survival in these limiting environments.

Taxonomic group	Food items	Ecological categories	Code
KINGDOM ANIMALIA			
Phylum Arthropoda			
Class Arachnida			
Order Araneae	Araneae	Terrestrial invertebrates	Ter
Suborder Oribatida	Oribatida	Collectors invertebrates	Col
Order Trombidiformes			
Family Hydrachnidae	Hydrachnidae	Predators invertebrates	Pre
Class Branchiopoda			
Order Cladocera	Cladocera	Filtering invertebrates	Fil
Class Insecta			
Order Isoptera	Isoptera	Terrestrial invertebrates	Ter
Order Coleoptera	Coleoptera terrestrial	Terrestrial invertebrates	Ter
	Coleoptera larvae	Shredders invertebrates	Shr
	Coleoptera adult	Predators invertebrates	Pre
Order Diptera	Diptera adult	Terrestrial invertebrates	Ter
	Diptera larvae	Collectors invertebrates	Col
	Diptera pupa	Collectors invertebrates	Col
Order Ephemeroptera	Ephemeroptera nymph	Collectors invertebrates	Col
Order Hemiptera	Hemiptera adult	Scrapers invertebrates	Scr
	Hemiptera nymph	Scrapers invertebrates	Scr
Order Hymenoptera			
Family Formicidae	Formicidae	Terrestrial invertebrates	Ter
Order Lepidoptera	Lepidoptera adult	Terrestrial invertebrates	Ter
	Lepidoptera larvae	Scrapers invertebrates	Scr
Order Odonata	Odonata nymph	Predators invertebrates	Pre
Order Orthoptera	Orthoptera nymph	Collectors invertebrates	Col
Order Trichoptera	Trichoptera cocoon	Shredders invertebrates	Shr
	Trichoptera_larvae	Shredders invertebrates	Shr
Class Malacostraca			
Order Amphipoda	Amphipoda	Shredders invertebrates	Shr
Class Maxillopoda			
Order Copepoda	Copepoda	Filtering invertebrates	Fil
Class Ostracoda	Ostracoda	Collectors invertebrates	Col

Table S1 Ecological categories used in the analysis and the food items included in each one of Tabocas' NPR,

 Ceará, Brazil. The classification based on the functional feeding group was obtained from Cummins et al. (2005).

Phylum Chordata

Class Actinopterygii	Scales	Fish	Fish
	Fish	Fish	Fish
Phylum Mollusca			
Class Bivalvia	Bivalvia	Filtering invertebrates	Fil
Class Gastropoda	Gastropoda	Scrapers invertebrates	Scr
KINGDOM PROTISTA	Fitoplancton	Plant material	Plant
	Filamentous algae	Plant material	Plant
Class Rhizopoda	Amoeba	Collectors invertebrates	Col
KINGDOM PLANTAE	Plant material	Plant material	Plant
	Seed	Plant material	Plant
	Organic detritos	Organic detritos	Det

Table S2 Values of prey/predator richness and network metrics (nestedness, modularity and specialisation h2') withtheir respective Z-scores for the flowing phase and for each isolated pool in the dry phase of Tabocas' NPR, Ceará,Brazil. Nes = Nestedness; Mod = Modularity; Spe = Specialisation; Z = Z-score.

	Preys	Predators	Interactions	Nes	Ζ	Mod	Ζ	Spe	Ζ
Flow	9	16	93	0.86	2.91	0.11	0.63	0.77	91.99
P01	3	4	7	0.89	1.16	0.22	0.81	0.92	10.31
P02	8	10	35	0.73	1.61	0.22	1.09	0.75	17.76
P03	6	4	13	0.67	0.66	0.22	-0.9	0.88	12.12
P04	8	6	23	0.79	2.65	0.28	2.06	0.92	15.43
P05	7	9	26	0.62	0.96	0.24	-0.57	0.83	10.86
P06	7	8	26	0.54	-0.08	0.22	-0.88	0.81	13.42
P07	6	6	13	0.29	-0.33	0.38	0.02	0.86	7.25
P08	5	3	7	0.50	1.03	0.36	-0.3	0.99	2.29
P09	4	7	22	0.59	-0.42	0.13	-1.24	0.58	7.79
P10	7	8	22	0.60	1.03	0.28	-0.33	0.98	13.07
P11	9	4	27	0.70	1.02	0.09	-0.53	0.52	55.65
P12	7	3	13	0.47	-1.87	0.26	3.38	0.95	12.39
P13	9	7	37	0.74	0.84	0.16	1.35	0.84	41.41
P14	8	6	23	0.83	3.04	0.23	-0.17	0.85	15.2
P15	9	7	45	0.80	1.26	0.09	-0.8	0.80	111.1 9
P16	9	11	62	0.86	3.23	0.13	-1.1	0.64	31.3
P17	9	12	51	0.81	3.21	0.18	-0.34	0.71	19.22
P18	9	3	15	0.51	-0.6	0.30	5.41	0.88	16.04
P19	9	7	29	0.89	4.45	0.20	-1.3	0.72	15.41
P20	8	6	27	0.87	2.78	0.14	-1.87	0.68	14.83
P21	8	8	38	0.89	2.81	0.11	-1.75	0.46	18.04
P22	7	5	19	0.81	2.14	0.20	-0.45	0.61	8.28

VARIABLE	Abbreviation	PC1	PC2
Physical and chemical			
Temperature	TEMP	-0.68	-0.02
Oxygen %	SATU	-0.66	0.32
Dissolved oxygen	DO	-0.58	0.36
Salinity	SALI	-0.84	-0.14
pH	PH	-0.83	-0.13
Substratum			
Bedrock (particles > 100 cm)	BEDR	-0.39	-0.14
Large boulder (particles 30 cm to 100 cm)	LBOU	-0.45	0.12
Small boulder (particles 15 to 30 cm)	SBOU	0.05	0.85
Gravel (particles 3 to 15 cm)	GRAV	0.15	0.86
Fine gravel (particles 1 to 3 cm)	FINE	0.19	0.92
Sand (particles 0.2 to 1 cm)	SAND	-0.03	0.29
Mud (particles < 0.2 cm and subject to suspension)	MUD	0.002	-0.26
Site structure			
Water volume	VOLU	0.46	-0.03
Macrophyte	MACR	0.55	0.39
Tree branch	TREE	0.67	-0.32
Dead wood	DEAD	0.63	-0.24
Root	ROOT	0.77	-0.23
Shading	SHAD	0.70	0.05
Marginal vegetation	MVEG	0.88	0.17
Variance explained by components		32.94%	16.64%
Percentage of total variance explained		32.94%	49.58%

Table S3 Principal component analysis (PCA) loadings of environmental variables of Tabocas' NPR, Ceará, Brazil.

Table S4 Distance (m) between pools/sections and physical-chemical variables (temperature °C, oxygen saturation, dissolved oxygen mg/l, salinity ppm and pH) and volume (m³) corresponding to each isolated pool (Dry) and sections (Flowing) sampled in the Tabocas' NPR, Ceará, Brazil.

Samples	Distance	Volume	Temperature	Sat_O2	DO	Salinity	pН
Pools - Dry	,						
P01	0	14.94	26.9	74.8	5.39	0.32	9.28
P02	12.46	117.17	26.7	72.6	5.29	0.30	9.56
P03	64.68	8.98	27.6	52.9	3.43	0.33	8.38
P04	28.6	22.03	25.8	19.3	1.19	0.25	7.86
P05	35.7	36.22	29.1	94.8	7.05	0.22	8.29
P06	17.62	131.85	27.7	67.5	5.06	0.23	8.11
P07	24.56	8.37	33.4	124.2	8.39	0.26	8.90
P08	23.62	9.75	33.8	141	9.94	0.36	9.11

P09	64.96	7.34	32.3	24.1	1.51	0.31	8.50
P10	63.45	78.70	31.9	132.4	9.39	0.24	9.23
P11	44.95	28.19	32.8	125.6	8.72	0.28	9.13
P12	88.57	6.75	24.5	131.1	10.52	0.35	7.42
P13	49.3	5.14	26.2	98.4	7.93	0.32	7.68
P14	48.2	9.02	28	105.4	7.47	0.35	8.66
P15	97.25	1560.9	27.8	96	7.27	0.23	8.13
P16	27.9	174.16	28.3	106	8.28	0.23	8.45
P17	72.7	182.23	27.2	72.3	5	0.21	7.11
P18	79.7	15.41	31.8	156.1	11.37	0.30	8.95
P19	46.7	4.56	31.8	109.1	7.39	0.28	8.62
P20	13.55	11.53	30.6	123.7	9.79	0.26	8.84
P21	53.6	58.78	31	135.1	9.84	0.28	9.04
P22	136.5	2.42	36	207.9	14.53	0.54	10.21
Sections -	Flowing						
T01	50	8339.9	25.2	91.8	7.3	0.12	7.6
T02	50	5207.7	25.5	94.1	7.4	0.12	7.6
T03	50	18076.3	26.6	89.5	6.9	0.12	7.6
T04	50	14594.1	28.3	87.2	6.6	0.12	7.5
T05	50	5879.6	27.7	86.5	6.5	0.12	7.5
T06	50	12547.5	28.3	83.1	6.3	0.12	7.5
T07	50	5979.6	24.2	103.5	8.4	0.12	7.8
T08	50	4151.1	25.4	77.9	6.3	0.12	7.3
T09	50	11881.9	25.6	73.4	6	0.12	7.7
T10	50	10285.5	27.1	82.6	6.4	0.12	8.6
T11	50	59251.2	28.5	85.8	6.6	0.12	8.6
T12	50	8589.2	28.7	88.3	6.6	0.12	8.5
T13	50	25779.2	28.1	84.4	6.39	0.12	8.3
T14	50	33888.7	27.3	92.5	7	0.12	7.9
T15	50	9583.5	27.8	82.6	6.4	0.12	7.9
T16	50	30176.6	27.6	74.4	5.8	0.12	7.9
T17	50	12056.7	29.5	85.6	6.3	0.12	8.2
T18	50	44307.2	30.4	81.4	6.1	0.12	8.4
T19	50	26682.2	30	76.8	5.7	0.12	8.1
T20	50	16380.3	30.1	78	5.7	0.12	8.1
T21	50	14455.2	27.1	103.2	8.1	0.13	7.9
T22	50	4023.9	27.1	89.5	7	0.13	8
T23	50	8972.8	27	83.2	6.5	0.13	8.1

Fig. S1 Representation of the 22 isolated pools from the dry phase sampled in the Tabocas' NPR, Ceará, Brazil. The colours of the circles represent the network structure for each pool (grey = random; green = modular; and light salmon= nested)

Fig. S2 Rarefaction curves with 95% confidence intervals for each phase of Tabocas' NPR, Ceará, Brazil

Fig. S3 Observed and simulated values of total and partitioned beta-diversity (β) calculated for species composition among the pools of Tabocas' NPR, Ceará, Brazil. The black dots represent the observed values, and the boxplots depict the distributions of 1000 randomly simulated samples. The red box represents the nestedness component (β NES), and the green box represents the turnover (β TUR) component. Smaller black dots correspond to outliers, and the bars indicate the standard error

Fig. S4 a Pearson's correlation analysis among pools during the dry phase between environmental variables and predator richness and abundance of Tabocas' NPR, Ceará, Brazil. **b** Network metrics (specialisation h2', nestedness and modularity), number of interactions and predator richness and abundance. Spaces without the X represent significant correlation at p < 0.05. Blue circles indicate positive correlation and red circles negative correlation

Fig. S4.1 Pearson's correlation analysis (cor: 0.831, p = <0.0001) and generalized linear model (GLM: $\beta 1=0.153$, SE = 0.015, df = 21, z = 10.10, p = <0.0001, AIC = 164.9) between predator richness and interactions among pools during the dry phase of Tabocas' NPR, Ceará, Brazil. See more details here: https://anonymous.4open.science/r/IntermittentDynamicsNetworks 2024-0E5E/

Fig. S5 Frequency of occurrence of food item categories during both flowing and dry phases (all pools combined) of Tabocas' NPR, Ceará, Brazil. The legend abbreviations are as follows: ter = terrestrial invertebrate; shr = shredder invertebrate; fil = filtering invertebrate; col = collector invertebrate; scr = scraper invertebrate; pre = predator invertebrate; fish = fish; plant = plant material, and det = organic detritus

Fig. S6 Frequency of occurrence of food item categories for each observed network pattern or structure corresponding to isolated pools of Tabocas' NPR, Ceará, Brazil. ter = terrestrial invertebrates; shr = shredders invertebrates; fil = filtering invertebrates; col = collectors invertebrates; scr = scrapers invertebrates; pre = predators invertebrates; fish = fish; plant = plant material, det = organic detritus. The colours represent the network structure (grey = random; green = modular; and light salmon= nested)

Fig. S7 Level of specialisation (h2') among interacting species in the ecological network from each pool during the dry phase of Tabocas' NPR, Ceará, Brazil. The pools are arranged in ascending order of level of specialisation. The colours represent the network structure (grey = random; green = modular; light salmon= nested)

Fig. S8 Nestedness values according to the number of prey of the theoretical model based on predator richness (black dots) and the observed network (light salmon dots) of Tabocas' NPR, Ceará, Brazil. The red lines represent linear regression. The variables from pools P16 and P17 are highly correlated and therefore it was not possible to calculate linear regression

Fig. S9 Modularity values according to the number of prey of the theoretical model based on predator richness (black dots) and the observed network (green dots) of Tabocas' NPR, Ceará, Brazil. The red lines represent linear regression. The variables from pools P16 and P17 are highly correlated and therefore it was not possible to calculate linear regression

Fig. S10 Specialisation h2' values according to the number of prey of the theoretical model based on predator richness (black dots) and the observed network (light purple dots) of Tabocas' NPR, Ceará, Brazil. The red lines represent linear regression. The variables from pools P16 and P17 are highly correlated and therefore it was not possible to calculate linear regression