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Quantifying life-history trade-offs in diameter growth for 1 

tropical tree species from a large urban inventory dataset 2 

Abstract 3 

Trees are important ecosystem service providers that improve the physical environment and 4 

human experience in cities throughout the world. Since the ecosystem services and maintenance 5 

requirements of urban trees change as they grow in time, predictive models of tree growth rates 6 

are useful to forecast societal benefits and maintenance costs over a tree’s lifetime. However, 7 

many models to date are phenomenological models with good prediction accuracies but lacking 8 

biologically interpretable parameters. This has limited our understanding of species life-history 9 

strategies for guiding tree species selection for urban plantings. In this study, we fit a diameter 10 

growth model to a large municipal tree inventory in Singapore using Bayesian inference and 11 

ordinary differential equation solver to obtain both biologically interpretable parameters and 12 

transferable predictions. We show that the 126 tree species studied here have growth parameters 13 

described by a tradeoff between fast juvenile growth when small versus slower but sustained 14 

adult growth when large, corresponding to the well-established “fast–slow” plant economics 15 

spectrum. These biological insights generally transferred well across time within the same 16 

locality; the transferability across space to a distant dataset in the United States was more 17 

variable, but it demonstrates that a biologically informed model produces more realistic 18 

predictions compared to phenomenological curve-fitting. Our findings highlight a more tangible 19 

way of selecting species for planting based not only on predicted growth, but also intuitive life-20 

history growth characteristics that could be further generalised by functional traits to explore 21 

new species suitable for urban forestry. 22 
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Introduction 28 

Trees play an integral role in improving the physical environment and human experience in cities 29 

(Gillerot et al., 2022; Pataki et al., 2011; Shanahan et al., 2017). In general, trees growing in 30 

urban areas require active arboricultural management to balance their social benefits (e.g., 31 

aesthetic values, heat mitigation, nature-based recreation) with potential costs (e.g., infrastructure 32 

damage, constraints on development). Urban tree management is a multi-faceted endeavour that 33 



2 

 

involves both upstream planning and integration with other urban infrastructure, and downstream 34 

site management for tree growth, removal and replacement. A key aspect of this process is the 35 

choice of tree species, which is usually based on the experience and familiarity of individual 36 

arborists with the species choices available in a given locality. The availability of municipal tree 37 

inventory datasets has made it possible to model various aspects of urban tree demography more 38 

systematically (Nowak et al., 2004; Semenzato et al., 2011), which can then objectively inform 39 

adaptive management approaches for urban forestry renewal. 40 

Tree growth rates are a key demographic parameter for urban forests, since the ecosystem 41 

services and maintenance requirements of urban forests change as trees grow over time (Moore, 42 

2022; Rötzer et al., 2021). For example, canopy area largely controls rainfall interception by 43 

trees and influences the amount of stormwater runoff avoided in urban areas (Dowtin et al., 44 

2023), and the size-dependent scaling of canopy area from diameter similarly governs many 45 

other ecosystem services, such as particulate matter deposition and shading. A predictive model 46 

of tree growth rates will therefore help us to forecast provisional returns and maintenance costs 47 

over a tree’s lifetime. However, many urban tree-growth studies to-date prioritise predictive 48 

accuracy of size by selecting the best out of several competing phenomenological models that are 49 

computationally less demanding, even though they lack biologically interpretable parameters 50 

(e.g., Escobedo et al., 2011; McPherson et al., 2016). In fact, the original model (McPherson and 51 

Simpson, 1999) that evolved into one of the most widely used urban forestry assessment tools, i-52 

Tree, was initially more mechanistic (identical to the Chapman–Richards equation in Zeide 53 

1993) but has later become more phenomenological in pursuit of prediction accuracy 54 

(McPherson et al., 2016). As such, the most popular urban forestry models to-date risk 55 

overfitting a particular dataset (Berland 2020; Thomas et al., 2019) and provide limited 56 

biological insights into how future urban plantings could be structured by a more general 57 

understanding of tree species’ life histories. 58 

On the other hand, parameter-heavy mechanistic models prioritise a good bottom-up 59 

understanding of size growth from cellular processes, such as photosynthesis and transpiration, 60 

which are then integrated into organismal growth (e.g., Falster et al., 2011; Moorcroft et al., 61 

2001). As trees grow, their size (e.g., diameter) often increases in a sigmoidal manner over long 62 

time periods, reflecting a tree’s propensity for exponential growth that is progressively opposed 63 

by various aging constraints (Falster et al., 2018; Zeide, 1993). The sigmoidal trajectory of 64 

diameter over a tree’s lifetime translates to a rate of change (i.e., diameter growth rate) that is 65 

hump-shaped: accelerating when small but later decelerating (black line in Fig. 1). The novel 66 

contribution of our study is to capture these biological processes across a large number of species 67 

in a continuous-time growth model that represents a middle ground between phenomenological 68 

curve-fitting and mechanistic complexity. By inferring species-specific growth parameters that 69 

reflect the comparative ecology of species ontogeny, our model provides a quantitative evidence 70 

base for future species selection, especially in tropical regions with high demographic diversity 71 

(Bialic-Murphy et al., 2024) but remain data poor (Song et al., 2017). 72 

In this study, we used a large municipal inventory in Singapore to fit a size-dependent diameter 73 

growth model to repeated measurements of trunk diameter from 176,961 trees monitored during 74 

2010–2019. We focused on tree diameter as it is the most available measurement across urban 75 

tree inventories worldwide (Ma et al., 2021) and provides the basis for allometric scaling to other 76 

morphometric features, such as height and crown size (Feldpausch et al., 2011; Peper et al., 77 

2014; Song et al., 2020). Using a class of model with biologically interpretable parameters to 78 
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quantify the growth characteristics of 126 tropical tree species, we show that they could facilitate 79 

species selection by ordinating species along a life-history spectrum defined by a tradeoff 80 

between juvenile and adult growth rates. We further demonstrate that these biological insights 81 

are generally transferable across time and space by validating our model’s predictions (i) to a 82 

testing dataset within the same 2010–2019 period, (ii) across time to a future dataset in 2023 83 

(same locality), and (iii) across space to an independent dataset in the United States. 84 

Furthermore, we leverage the few cases with less accurate extrapolation to discuss whether such 85 

a predictive cost is justified by the gain in generality and biological understanding in the spirit of 86 

Houlahan et al. (2016). 87 

Material and methods 88 

Tree inventory data 89 

We analysed a municipal tree inventory dataset managed by the National Parks Board of 90 

Singapore (NParks), which contained measurements of trunk girth of 186,858 trees growing in 91 

public landscapes (i.e., parks and roadsides) throughout Singapore from a 9.5-year period 92 

between 1 January 2010 and 1 June 2019. Later between 1 January and 30 June 2023, a subset of 93 

the trees were remeasured and we used this as an additional dataset to validate model predictions 94 

(see Statistical inference below for more detail). During each inspection, trunk girth was 95 

measured 1 m above ground by a professional arborist using a flexible metal measuring tape and 96 

rounded to the nearest centimeter. Trunk girth values (m) were converted to the diameter (cm) of 97 

the circular equivalent of the measured trunk shape prior to modelling; diameter therefore had a 98 

measurement precision of ≈ 0.32 cm. Although the dataset contained tree height information in 99 

addition to tree girth, the height measurements were not used because the values were visually 100 

estimated using an ordinal scale.  101 

From the whole dataset, we imposed a few selection criteria to remove data entries that were 102 

likely erroneous. Namely, we selected surviving trees at the time of data extraction (1 June 2019) 103 

and removed trees with girth < 0.1-m girth or very large diameters > 300 cm. As our model 104 

used species-specific parameters, we also excluded species with fewer than 100 individuals or 105 

modest variation in trunk diameter (range < 5 cm). We also removed species with fewer than 106 

100 unique combinations of initial diameter, final diameter and time lapsed, because these 107 

species had many identical rows of records that were very likely to be entry errors. Lastly, we 108 

omitted inventory observations from members of the palm family (Arecaceae) due to the lack of 109 

secondary growth, and the hemiephiphytic strangler fig, Ficus benjamina, due to measurement 110 

challenges associated with its numerous, lignified column roots. The final dataset contained 111 

176,961 trees from 126 species. For each individual tree, we limited the data to the initial and 112 

final diameter measurements (i.e., two measurements per tree) to avoid autocorrelation within 113 

each tree. Although autocorrelation due to repeated measurements within each tree can be 114 

accounted by random tree effects, in our pilot analyses we found it extremely difficult to reach 115 

model convergence because numerous trees were remeasured only once (i.e., the estimation of 116 

random effects for these trees rely on single repeated inspections). Across all trees, the time 117 

interval between first and final inspections varied from one day to 9.3 years.    118 
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Diameter growth model 119 

Many models have been developed for organismal growth, each with their own strengths and 120 

drawbacks (e.g., Hérault et al., 2011; Paine et al., 2012; Thomas et al., 2019; Tjørve and Tjørve, 121 

2010). For this study, we sought a middle ground between mechanistic complexity and 122 

phenomenological representation of tree diameter growth, and followed the approach adopted by 123 

Zeide (1993). Zeide reviewed a number of popular phenomenological models of tree growth 124 

(including the original model that evolved into the i-Tree program; McPherson and Simpson, 125 

1999), starting only from those with biologically interpretable parameters, and then distilled 126 

them into a few generalised forms. All of Zeide’s general model forms can be decomposed into 127 

two components: growth expansion and growth decline. In this study, we modelled the 128 

instantaneous growth rate of diameter, 𝐷, in cm per year using an equation (Zeide’s “YD form”, 129 

hereafter denoted as the function 𝑧) that depends only on tree size, but not tree age, since the 130 

latter is generally much harder to obtain, especially from tropical trees that lack growth rings: 131 

𝑑𝐷

𝑑𝑡
= 𝑧(𝐷,  𝑎,  𝑏,  𝑐) = 𝑎𝐷𝑏 exp[−𝑐(𝐷 − 1)].                (1) 132 

Equation (1) includes three biologically motivated, positive-bound parameters: 𝑎, 𝑏 and 𝑐. The 133 

parameter 𝑎 is the growth rate at 1-cm diameter (grey dashed lines in Fig. 1), which becomes 134 

apparent when 𝐷 = 1 is substituted into Equation (1). Zeide had originally wrote the last term as 135 

exp(−𝑐𝐷), but we reparameterised it slightly to exp[−𝑐(𝐷 − 1)] to let Equation (1) reduce to 𝑎 136 

when 𝐷 = 1. Doing so changes the meaning of 𝑎 from the more abstract “scaling factor” to the 137 

more tangible “growth rate at 1-cm diameter”. Conveniently, 1 cm is also the lower size 138 

threshold of diameter measurement in some forest inventories. 139 

The two components, 𝐷𝑏 and exp[−𝑐(𝐷 − 1)], are size-dependent autoregulatory terms that 140 

represent growth expansion and growth decline, respectively. The growth expansion term 𝐷𝑏 141 

(blue curve in Fig. 1) reflects the innate tendency of living bodies to grow and cells to multiply 142 

(Zeide, 2003). The diameter’s exponent 𝑏 encapsulates the scaling up of productive organs for 143 

the uptake of photosynthates, water, and nutrients from a given diameter. In contrast, the 144 

parameter 𝑐 in the growth decline term exp[−𝑐(𝐷 − 1)] (red curve in Fig. 1) captures the 145 

exponentially diminishing return of sustaining large diameters due to respiratory and overhead 146 

costs of cell maintenance, turnover and reproduction. Over a tree’s lifespan, biomass build-up 147 

causes the growth decline term to eventually dominate growth expansion, thus leading to a 148 

hump-shaped growth–diameter relationship (black curve in Fig. 1), and this hump-shaped 149 

relationship leads to the sigmoidal diameter-over-time trajectories commonly observed in both 150 

the field (Camac et al., 2018; Hérault et al., 2011; Kohyama et al., 2015) and theoretical models 151 

(Falster et al., 2018). 152 
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 153 

Figure 1: Conceptual diagram of a hypothetical tree species’ diameter growth curve 154 

(black) given by Equation (1), which partitions the growth process into the product of 155 

two size-dependent components: growth expansion (blue) and growth decline (red). 156 

Statistical inference 157 

We considered several potential approaches to fit the Zeide growth model to our data. The most 158 

direct approach would be to approximate the instantaneous diameter growth rate 𝑑𝐷/𝑑𝑡 using 159 

discrete-time measurements by calculating [𝐷(𝑡_1 ) − 𝐷(𝑡_0 )]/(𝑡_1 − 𝑡_0), and then regress 160 

these calculated values against the initial diameter 𝐷(𝑡0) (e.g., Hérault et al., 2011; Lai et al., 161 

2022). However, there would be at least two shortcomings to such an approach. First, this 162 

approximation approach would be biased when diameters do not grow linearly over time, and in 163 

such cases the bias is particularly strong when a long time has lapsed between diameter 164 

measurements (see Fig. 2 for an illustrated example). Such an estimation bias would increase 165 

prediction error in tree sizes and size-dependent ecosystem functions. The second disadvantage 166 

of modelling discrete-time growth is related to the observation model–process model concept of 167 

Bayesian inference (Kuhnert, 2014): what we measure and observe in the field is girth or 168 

diameter, not growth. Growth is therefore a latent, unmeasurable process that ideally should be 169 

statistically inferred rather than calculated. In other words, the most appropriate response 170 

variable (outcome) of a regression is diameter, whereas growth is a process whose properties and 171 

parameters need to be inferred. 172 
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 173 

Figure 2: (A) Conceptual figure of potential bias in the approximation of instantaneous 174 

growth from discrete-time measurements. For a hypothetical diameter growth trajectory 175 

over time (grey curve), size-dependent diameter growth 
𝑑𝐷

𝑑𝑡
 is the instantaneous slope at 176 

a particular diameter (black arrow, which translates to the black curve in panel B). Most 177 

studies, however, approximate the instantaneous growth by calculating the increment in 178 

diameter after some time interval. While such an approximation is slightly biased for 179 

short time intervals (blue), the bias becomes larger with increasing time intervals (red). 180 

In this example, discrete-time approximation of growth from a long census interval 181 

results in a considerable underestimation (red slope is much gentler than the black 182 

instantaneous slope). (B) Discrete approximation of instantaneous growth rate assumes 183 

a constant growth rate between census intervals (blue step-like lines), instead of a 184 

growth curve that is always adjusting to the changing diameter (black curve). When 185 

plotted or regressing against initial diameter 𝐷(𝑡0) (a common practice in the literature), 186 

biased approximation of diameter growth from discrete measurements leads to 187 

overestimation of the instantaneous growth rate early on (blue filled circle higher than 188 

the black curve), followed quickly by underestimation later during a tree’s lifespan (blue 189 

filled circle lower than the black curve). It is noteworthy that such biases can be reduced 190 

simply by plotting or regressing discrete diameter growth rates against the mean or 191 

midpoint of 𝐷(𝑡0) and 𝐷(𝑡1) (blue open circles), though it still is not the best approach. 192 

 193 

To avoid these shortcomings, we leveraged the continuous-time diameter growth model given by 194 

Equation (1) to infer instantaneous diameter growth rates by solving the corresponding ordinary 195 

differential equation. Specifically, we modelled the final diameter 𝐷𝑖𝑗(𝑡1) of tree 𝑖 in species 𝑗 at 196 

time 𝑡1 as function of its initial diameter 𝐷𝑖𝑗(𝑡0), elapsed time 𝑡1 − 𝑡0, and the three growth 197 

parameters 𝑎, 𝑏 and 𝑐 in Equation (1) in a lognormal generalised linear model (GLM): 198 

𝐷𝑖𝑗(𝑡1) ∼ Lognormal(log𝜇𝑖𝑗,  𝜎𝑗) , 199 
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where log𝜇𝑖𝑗 and 𝜎𝑗  are the linear predictor and residual variance of final diameters in the 200 

lognormal GLM, respectively. The predicted final diameters 𝜇𝑖𝑗 are estimated by finding 201 

solutions to the equation 202 

∫
1

𝑧(𝐷𝑖𝑗 ,  𝑎𝑗 ,  𝑏𝑗 ,  𝑐𝑗)

𝜇𝑖𝑗

𝐷𝑖𝑗(𝑡0)

𝑑𝑥 = 𝑡1 − 𝑡0 ,               (2) 203 

where the growth function 𝑧 in the integral takes the nonlinear form described in Equation (1), 204 

except each growth parameter was allowed here to vary by species to account for interspecific 205 

variation: 𝑧(𝐷𝑖𝑗 ,  𝑎𝑗 ,  𝑏𝑗 ,  𝑐𝑗) = 𝑎𝑗𝐷
𝑖𝑗

𝑏𝑗 exp[−𝑐𝑗(𝐷𝑖𝑗 − 1)]. The species-specific parameters (𝑎𝑗, 𝑏𝑗 206 

and 𝑐𝑗) were estimated as fixed effects, i.e., without assumed correlations as in random effects. 207 

We did this to examine if any correlation between parameters would arise without prior 208 

assumption, thus providing us more confidence in concluding any tradeoff in growth strategies 209 

across species. As further elaborated in Appendix A, there is no closed-form solution for 𝜇𝑖𝑗 in 210 

Equation (2) (i.e., the GLM predictor cannot be conventionally written with just 𝜇𝑖𝑗 on the left-211 

hand side). We therefore used the built-in ODE solver ode_rk45 in Stan to numerically compute 212 

𝜇𝑖𝑗. 213 

Prior to model fitting, we split 75% of the dataset into a training set (hereafter “in-sample data”) 214 

to estimate parameters, and 25% into a testing set (hereafter “out-of-sample data”) to validate 215 

predictions. Data splitting was performed hierarchically by species, such that each species 216 

retained 75% of its full data. The model was fitted with Bayesian inference in Stan (Stan 217 

Development Team, 2023) using the brms package v2.19.0 (Bürkner, 2021) in R v4.2.1 (R Core 218 

Team, 2022). The custom Stan code for the ODE is available on our GitHub repository. Bayesian 219 

inference was performed with 1,000 warmup and 1,000 post-warmup Hamiltonian Monte Carlo 220 

(HMC) iterations over four chains, resulting in a total of 4,000 posterior samples. We determined 221 

informative priors for the growth parameters using prior predictive checks that produced sensible 222 

predictions: log 𝑎𝑗 ~N(0, 0.5); log 𝑏𝑗 ~N(−1, 0.5); log 𝑐𝑗 ~N(−1, 0.5). We increased the target 223 

average acceptance probability to 0.99 to promote chain convergence. 224 

Biological interpretation 225 

In addition to estimating the species-specific growth parameters 𝑎𝑗, 𝑏𝑗 and 𝑐𝑗, we aimed to 226 

increase the utility of the model by extracting two extra pieces of information. First, we 227 

calculated the Spearman’s rank correlation between the three growth parameters across the full 228 

posterior distributions as a measure of life-history tradeoff in growth strategies. For example, a 229 

strong positive correlation between two parameters indicates that species are evolutionarily or 230 

ecologically constrained to be either high or low in both growth characteristics. On the other 231 

hand, a strong negative correlation indicates that species are constrained to have high values in a 232 

growth characteristic but have low values in another. We chose the nonparametric rank 233 

correlation to preserve the correlation between growth parameters in both arithmetic and 234 

logarithmic scales (skewed distributions are expected for the positive-bound parameters). 235 
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Model assessments 236 

We assessed the transferability of our model’s biological insights across time and space. First, 237 

we compared the residuals (difference between observed and predicted final diameters) of the in-238 

sample data to that of the out-of-sample data to examine prediction accuracy. Second, to examine 239 

the temporal transferability of our model’s prediction, we validated the short-term forecasts on a 240 

subset of 23,621 trees and species that were remeasured in 2023 (four years since the last 241 

measurement in the core dataset). The 2023 predictions were made from the last measured 242 

diameter of each tree in the 2010–2019 data. That is, every tree differs in the amount of time 243 

lapsed, which ranged from 3.7 to 11.9 years. Similarly, we examined 𝑅2 and model residuals to 244 

assess the goodness-of-fit of the temporal extrapolation. 245 

Additionally, we examined the spatial transferability of our model by validating predictions on 246 

one of the most widely referenced urban tree datasets in the United States (McPherson et al., 247 

2016). Initially, we attempted to validate our model against other datasets within the same 248 

biogeographical region but were not able to do so due to the extreme scarcity of open data in the 249 

Tropics. The US dataset shared ten of our species, measured from 453 trees in Hawaii and the 250 

southern Californian coast. To assess how well our model extrapolated to the US dataset, we 251 

calculated the log-likelihood ratio of our out-of-sample posterior predictions to the log-likelihood 252 

of McPherson’s in-sample point predictions. A log-likelihood ratio of 1 indicates that our out-of-253 

sample predictions have identical fit as McPherson’s in-sample predictions, whereas a log-254 

likelihood ratio of > 1 indicates that the US data are more likely to be reproduced by our out-of-255 

sample predictions compared to McPherson’s in-sample prediction, and vice versa. 256 

Results 257 

The 126 tree species varied greatly in growth characteristics, as reflected by the three species-258 

specific parameters 𝑎, 𝑏 and 𝑐 (Fig. S1 and Table S1). The growth parameters spanned three 259 

orders of magnitude, with diameter growth rate at 1 cm (𝑎) having the greatest range (0.5–12.6 260 

cm/yr), followed by the growth expansion factor (𝑏, range = 0.06–4.61) and lastly the growth 261 

decline factor (𝑐, range = 0.03–1.30). These growth characteristics were not fully independent; 262 

the parameter 𝑎 was moderately correlated with 𝑏 (Spearman’s 𝑟 = −0.31; Fig. S1A), whereas 𝑎 263 

and 𝑐 were very weakly correlated (𝑟 = 0.09; Fig. S1B). In contrast, the strongest correlation 264 

was the positive relationship between 𝑏 and 𝑐 (𝑟 = 0.49; Fig. S1C). 265 

In the following sections, we focus the on the positive correlation between the growth expansion 266 

factor 𝑏 and the growth decline factor 𝑐, which are the two size-dependent parameters that 267 

provide the deepest insights into the life-history tradeoffs among species (Fig. 3). Most species 268 

were either high in both 𝑏 and 𝑐, or low in both parameters. Few to none of the species were 269 

found in other regions of the 𝑏–𝑐 parameter space. The high 𝑏–high 𝑐 species displayed more 270 

sigmoidal diameter trajectories over time in Fig. 4A or a more peaked growth–diameter 271 

relationship in Fig. 4B, leading to much faster growth rates when small that then decelerate 272 

rapidly. In contrast, the low 𝑏–low 𝑐 species’ diameter trajectories over time and growth–273 

diameter relationships were less curved, leading to slower growth rates when small but 274 

sustaining growth rates longer into larger sizes. 275 
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 277 

Figure 3: Life-history tradeoff in diameter growth as inferred from the correlation 278 

between the growth expansion factor, 𝑏, and the growth decline factor, 𝑐. Points and 279 

error bars are median and 89% credible intervals (CIs), respectively, of the posterior. 280 

The labelled points are example species used in the Discussion: red = high 𝑏–high 𝑐 281 

species; blue = low 𝑏–low 𝑐 species; white with label = species estimates with caveats. 282 

Note the log-scale on both axes. 283 
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 286 

Figure 4: (A) Expected diameter trajectories of species from an initial diameter of 3.2 cm 287 

(≈ 10 cm girth, which is a common size at planting in our study area) over 20 years. (B) 288 

The instantaneous growth rates (instantaneous slopes of each trajectory in A) in relation 289 

to diameter. Each line denotes the median posterior prediction of a species. Coloured 290 

lines are the same set of example species in Fig. 3: red = high 𝑏–high 𝑐 species; blue = 291 

low 𝑏–low 𝑐 species. Note the square-root scale of the Y-axis in B. 292 

In terms of goodness-of-fit, our model had 𝑅2 = 0.88 for both the 2010–2019 in-sample and out-293 

of-sample final tree diameters. In-sample and out-of-sample prediction accuracies were fairly 294 

high, both with a median residual of 0.3 cm (Figs S2 and S3). The residual ranges of both in- and 295 

out-of-sample predictions were also very similar: 50% of residuals fell between −2.6 and 4.1 296 

cm, while 89% fell between −8.9 and 13.5 cm. We consider these residuals to be reasonable 297 

given that a median-sized tree in our dataset was 33.4 cm, with an interquartile range of 19.1–298 

50.9 cm. Increasing the time lapsed between initial and final diameter measurements did not 299 

seem to reduce prediction accuracy, as the median residuals stayed close to zero, even if the 300 

range of residuals increased slightly (Fig. S2).  301 

The temporal transferability of predictions to the 2023 data also extrapolated well, with 𝑅2 =302 

0.93 and 96% of observations within the prediction intervals; the median residual was −0.2 cm, 303 

with 89% of residuals falling between −8.7 and 10.8 cm (Figs S2 and S3). The spatial 304 

transferability of predictions to the US dataset (McPherson et al., 2016) also extrapolated well 305 

considering the 10,000-km distance between datasets (Fig. 5). Half of the ten shared species had 306 

log-likelihoods of ≥ 1, indicating that our out-of-sample predictions on them were comparable 307 

or better than the in-sample predictions of McPherson et al. (2016). For the other half, their log-308 

likelihoods was < 1 but not severely low (except for one species, Melaleuca citrina), and many 309 

of their data points still fell within our prediction intervals. 310 
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Figure 5: Spatial transferability of our model (trained on a dataset in Singapore) to the 313 

growth trajectories of ten shared species in a US dataset. Open circles and red dashed 314 

lines are US data and in-sample fit from McPherson et al. (2016), whereas black lines 315 

and shaded areas are posterior median and 89% CIs of our out-of-sample predictions. 316 

Values on the top-left corner of each panel show the log-likelihood ratio between ours 317 

and McPherson et al.’s (2016) models, respectively (89% CIs in parentheses). 318 

Discussion 319 

In this study, we quantified the growth characteristics of 126 tropical tree species using an urban 320 

tree inventory dataset comparable to some of the largest existing forest inventories (e.g., 321 

Anderson-Teixeira et al., 2015; Vidal et al., 2016). Distinct from similar work in temperate 322 

climates (Schelhaas et al., 2018), it was possible to model diameter growth for many more 323 

species due to the high demographic diversity supported by our study site’s tropical environment 324 

(Bialic-Murphy et al., 2024), which facilitates a more comprehensive comparison of life-history 325 

strategies across species. We demonstrated that growth models can serve beyond their predictive 326 

purpose; they can also include biologically-interpretable parameters that characterise tree growth 327 

strategies along the “fast–slow” plant economics spectrum (Reich, 2014) (i.e., tree species tend 328 

to either grow faster when small and then decelerate rapidly or grow slower when small but 329 

sustain growth over a longer lifespan).  330 

Life-history tradeoff in diameter growth 331 

Reich (2014) posited a unified “fast–slow” plant economics spectrum, along which a trade-off 332 

exists between traits optimising growth rates under high resource availability conditions and 333 

traits optimising survival under low resource availability conditions. Our findings reinforce this 334 

theory with the correlation between the growth expansion factor 𝑏 and the growth decline factor 335 

𝑐 (Fig. 3). The 126 tree species seemed to be constrained to either be high in both 𝑏 and 𝑐 336 
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(growing fast when small), or low in both (growing slow when small but sustained growth when 337 

large). Practically no species were found in the high 𝑏–low 𝑐 quadrant (fast growth throughout 338 

all size classes). The high 𝑏–high 𝑐 species (e.g., Adenanthera pavonina, Calophyllum 339 

inophyllum, Cordia subcordata, Lagerstroemia langkawiensis and Sterculia foetida) that grow 340 

faster when small eventually grow slower than the low 𝑏–low 𝑐 species (e.g., Cyrtophyllum 341 

fragrans, Filicium decipiens, Hopea odorata, Planchonella obovata, Xanthostemon chrysanthus; 342 

Fig. 3B). Thus, species that exhibit rapid growth during early life stages tend not to sustain this 343 

growth in subsequent growth phases. These life-history tradeoffs likely reflect several underlying 344 

processes, such as trees that grow fast and die fast reaching their natural mature size earlier for 345 

reproduction (Wenk and Falster, 2015), a trade-off between fast growth and tree hydraulic and 346 

mechanical safety (Eller et al., 2018), and a trade-off between intrinsic cell metabolism and 347 

deterioration in cell function (Brienen et al., 2020).     348 

Moreover, our results imply a nuanced interpretation of “fast growth”: species at opposite ends 349 

of the life-history spectrum (high 𝑏–high 𝑐 versus low 𝑏–low 𝑐) display contrasting 350 

instantaneous diameter growth curves that cross one another over time, resulting in an 351 

ontogenetic rank swap in growth rates (Fig. 4B). Both species groups grow faster than one 352 

another, but at different sizes or life stages. Such an ontogenetic rank swap in growth rates may 353 

also reconcile some species parameters that we initially thought were counterintuitive; a few 354 

species that are known to grow fast had low growth expansion factor 𝑏 (e.g., Khaya spp., 355 

Mangifera indica and Peltophorum pterocarpum), but perhaps their fast-growing characteristics 356 

are better captured by the also-low growth decline factor 𝑐 (Fig. 3). This also reflects that our 357 

horticulture knowledge of these species mainly came from more mature and established 358 

individuals, which also aligns with the fact that these species mostly consisted of larger trees on 359 

the ground. 360 

To further strengthen our mechanistic understanding, future work could identify plant functional 361 

traits that underpin such a life-history tradeoff. “Soft” functional traits that are more easily 362 

available, such as wood density and specific leaf area, are promising predictors of the growth 363 

parameters (Hérault et al., 2011; Thomas et al., 2019), whereas “hard” physiological traits that 364 

are more labour intensive to measure, such as xylem hydraulic conductivity and photosynthetic 365 

rate, provide even finer insights into how cellular functions scale to organismal growth (Falster 366 

et al., 2011; He et al., 2022; Reich, 2014). These traits can be used, for example, to test if tree 367 

species are evolutionarily restricted from having high growth expansion and low growth decline 368 

factors to always grow fast (i.e., the dearth of species in the bottom-right quadrant of Fig. 3). We 369 

showed that species with fast growth when small also have slower growth when they are large, 370 

thus attaining lower maximum sizes. Such a tradeoff could be related to hydraulic traits that 371 

permit highly energetic growth when small, but set an upper limit on tree stature due to 372 

difficulties in transporting water to the canopy (Liu et al., 2019; Poorter et al., 2010). 373 

Practical applications for species selection 374 

Our growth model offers the direct use of growth parameters to select species with the preferred 375 

life-history characteristics for specific landscape contexts. For example, species that grow 376 

rapidly up to a relatively small mature size (high 𝑏–high 𝑐) would be suitable candidates for 377 

urban sites where it is desirable to have high foliage cover from the outset (e.g., park entrances). 378 

On the other end of the life-history spectrum, species that grow more slowly when small but 379 
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show slower decline in growth rates when large (low 𝑏–low 𝑐) would be more appropriate for 380 

urban locations where the land use is expected to be more stable (e.g., heritage areas). Certain 381 

species at the peripheries of the overall growth-rate tradeoff may warrant particular attention in 382 

terms of planting strategy. For example, species showing fairly high growth rates across all size 383 

classes (low 𝑐 but relatively high 𝑏) are not likely to be suitable for constrained urban spaces, 384 

given their propensity for long-term growth (e.g., Alstonia angustifolia, Cinnamomum iners, 385 

Delonix regia and Samanea saman). More generally for urban forest management, the diameter 386 

growth rates obtained from the model would be useful to optimise planting strategy in particular 387 

sites, for example, by combining both fast-growing and slower-growing tree species to achieve 388 

shade provision over the shorter term, while sustaining the longer-term needs for shade and other 389 

environmental benefits through the slower-growing species that requires less maintenance. 390 

Nevertheless, it should be acknowledged that there are other relevant factors to consider for 391 

urban trees besides growth rates, such as structural safety, habitat value for wildlife, aesthetics, 392 

native conservation status, and susceptibility to disease (Conway and Vander Vecht, 2015; 393 

Trowbridge and Bassuk, 2004). 394 

Transferability of biological insights 395 

To assess how transferable these tree growth characteristics are across space and time, we 396 

validated our model’s predictions with data from the same locality within the same period 397 

(2010–2019) and in the future (2023), as well as an independent dataset in the United States 398 

(McPherson et al., 2016). When transferring to the same period or future within the same 399 

locality, our model compared favourably in terms of prediction accuracy to existing empirical 400 

models of urban tree growth, which have reported elsewhere 𝑅2 values around 0.5–0.9 (e.g., 401 

McPherson et al., 2016; Semenzato et al., 2011). Prediction accuracy as log-likelihood ratio also 402 

performed well for five out of ten species when our model was transferred to a different locality 403 

in the US, and was only severely low for one species. For some of the species with poorer spatial 404 

transferabilities, such as Calophyllum inophyllum, it is crucial to note that its extrapolation held 405 

up to 30–40 years since planting when many ecological forecasts only remain accurate within 406 

days to weeks (Lewis et al., 2022). Furthermore, many of the previous growth models with high 407 

goodness-of-fit are polynomial equations intended only for a certain number of years since 408 

planting but extrapolate spuriously into the future (Paine et al., 2012). For example, the fitted 409 

polynomial for Samanea saman would project a doubling in diameter to ~400 cm at 120 years 410 

since planting, whereas our model would predict ~70–150 cm guided by the biological 411 

understanding that growth decelerates in larger trees due to resource reallocation to reproduction 412 

and biomass turnover (Falster et al., 2018). It is also noteworthy that although our model 413 

underestimated the diameter growth of Cordia subcordata in the US data, our model still had a 414 

better fit than McPherson et al.’s (2016) in-sample fit as judged by log-likelihood; this was 415 

because the species was reported to have very large residual variance in the original analysis, 416 

which was prone to predicting negative diameters. We were unable to check if the reported 417 

variance was an entry error because we were unable to reproduce the original model fit.  418 

Nonetheless, it is important to address real-world factors that challenge extrapolation. Similar to 419 

Shoda et al. (2020), we also found that the species in our dataset tended to grow slower than their 420 

US counterparts, resulting in smaller diameters and thus underestimations in the long run. These 421 

underestimations could be due to missing exogenous factors in our model, such as abiotic 422 

environment (e.g., climate and soil properties) and management practices (e.g., pruning and 423 
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fertilization), which would have contributed to error in prediction or parameter estimations 424 

(Rötzer et al., 2021). It is possible that the same species in our study area experienced tighter 425 

growing space than their US counterparts. Competitive pressure from neighbouring trees may 426 

also become an increasingly important driver of urban tree growth (Brienen and Zuidema, 2006; 427 

Schelhaas et al., 2018), and many studies have examined suitable size-dependent growth models 428 

accounting for the biotic interactions among forest trees (e.g., Lai et al., 2022; Rüger et al., 429 

2011). Additionally, the inclusion of maintenance records containing information about the 430 

cultural practices used to care for trees will be especially useful (Shoda et al., 2020). 431 

Accordingly, we recommend future tree growth models to include both traits and environments, 432 

as well as their interaction, as moderators of tree growth parameters. 433 

Although the range of our predicted diameter growth rates overlapped with values reported for 434 

other species in natural forests (e.g., Hérault et al., 2011; Kohyama et al., 2015; Rüger et al., 435 

2011), our trees could display growth rates up to a magnitude greater similar to the urban trees in 436 

McPherson et al. (2016). For example, a Swietenia macrophylla tree with a diameter of 10–20 437 

cm was reported to grow at about 0.5 cm yr−1 in its native Amazonian range (Grogan et al., 438 

2014), but the same-sized trees in our study location grew over 2.0 cm yr−1 on average. The 439 

main reason for the higher growth rates in our study was likely because the trees in our dataset 440 

typically grew under high-light, open conditions compared to their natural or managed forest 441 

habitats (Smith et al., 2019). Moreover, many species in our dataset originated from tropical 442 

monsoon climates with pronounced dry seasons, whereas our study location lacks an extensive 443 

dry season and would therefore be more conducive to the year-round growth of these species 444 

compared to their habitat of origin. Furthermore, unusually early peak growth rates could reflect 445 

the arboricultural practice of providing compost and supplementary irrigation during the 446 

establishment stage.   447 

Limitations and future directions 448 

We have quantified the growth characteristics of 126 species with sufficient data, yet there 449 

remain more than a thousand tree species in Singapore with incomplete ontogeny (National 450 

Parks Board, 2024). Practitioners may wish to consider new candidate species under different 451 

circumstances, for example to design a planting palette that includes more under-studied native 452 

species or one that is more tolerant to future climate change (Laughlin et al., 2018). For these 453 

applications, a good understanding of trait–demography relationships will allow us to extrapolate 454 

predictions onto new species (e.g., Hérault et al., 2011). This research direction is a promising 455 

avenue given the increased accessibility of global and regional trait databases (e.g., Falster et al., 456 

2021; Kattge et al., 2011). Although trait-based theories of plant demography are mostly 457 

established from unmanaged forests, recent urban studies suggest that these trait–demography 458 

relationships are also generalisable to more managed settings (Simovic et al., 2024; Watkins et 459 

al., 2021).  460 

Although diameter is the most fundamental and measurable basis of tree growth on which other 461 

dimensions are derived via allometric scaling (McPherson et al., 2016; Rötzer et al., 2021), our 462 

study did not consider the other dimensions such as height, branch length and crown area to 463 

provide a more complete evaluation of ecosystem services and maintenance over a tree’s lifetime 464 

(Dowtin et al., 2023; Moore 2022). Compared to natural forests (e.g., Jucker et al., 2022), efforts 465 

to collect data and model allometry for large numbers of species comparable to our study remain 466 

low in tropical urban forestry (Rötzer et al., 2021; Roy et al., 2012; but see Song et al., 2020). 467 
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Addressing this knowledge gap will greatly realise the potential of tropical cities in leveraging 468 

their rich biodiversity to select species that provide multiple benefits and fulfil local needs (Song 469 

et al., 2017). 470 

Conclusions 471 

We have demonstrated that it is feasible to fit models with biologically interpretable parameters 472 

to municipal tree growth records with acceptable transferability, thus granting insights into the 473 

comparative life histories of tree species in tropical urban landscapes. By identifying the position 474 

of species along the established fast–slow continuum, our findings provide a quantitative 475 

evidence base to select species for planting based on preferred growth characteristics. We hope 476 

that this approach will empower urban tree managers to take bolder steps to respond dynamically 477 

to diverse selection pressures on urban tree performance, backed by empirical data. 478 

Data statement 479 

The data that has been used is confidential. Codes for the model will be archived on 480 

GitHub/Zenodo with a DOI link upon acceptance. 481 
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Appendices 675 

 676 

A. Solving the ODE growth model to predict future diameter 677 

Consider a generic model of instantaneous diameter growth rate of the form 678 

𝑑𝐷

𝑑𝑡
= 𝑧(𝐷, 𝜃) ,         (A. 1) 679 

where 𝑧(𝐷, 𝜃) can take any conceivable mathematical form and is a function of both current 680 

diameter 𝐷 and some parameters 𝜃. Given an initial diameter 𝐷(𝑡0), knowledge of how much 681 

time has elapsed (i.e., 𝑡1 − 𝑡0), and the values of the parameters 𝜃, we can mathematically 682 

determine the predicted future diameter 𝐷(𝑡1) by integrating the dynamical Equation (A.1) as 683 

∫
1

𝑧(𝐷, 𝜃)

𝐷(𝑡1)

𝐷(𝑡0)

𝑑𝑥 = ∫ 𝑑
𝑡1

𝑡0

𝑡                     (A. 2) 684 

and solving the resulting expression for the single unknown, 𝐷(𝑡1). This is referred to as solving 685 

the model’s “initial-value problem”. Note that our GLMM formula (Equation 2) replaces 𝐷(𝑡1) 686 

with 𝜇 to turn the integral from a mathematical expression to a statistical problem. 687 

The solution to the integral on the right-hand side of Equation (A.2) is equal to the amount of 688 

time elapsed, 𝑡1 − 𝑡0. In contrast, the integral on the left-hand side of this equation depends on 689 

the mathematical complexity of the growth-rate model 𝑧(𝐷, 𝜃), and in some cases may not 690 

always be analytically tractable. When using the nonlinear form given by Equation 1, an 691 

analytical solution does indeed exist, and if we substitute this solution into Equation A.2 we 692 

obtain 693 

𝐷(𝑡1)−𝑏(−𝑐𝐷(𝑡1))
𝑏

Γ(1 − 𝑏, −𝑐𝐷(𝑡1))694 

= 𝑎𝑐𝑒𝑐(𝑡1 − 𝑡0) + 𝐷(𝑡0)−𝑏(−𝑐𝐷(𝑡0))
𝑏

Γ(1 − 𝑏, −𝑐𝐷(𝑡0)) ,                        (A. 3) 695 

where Γ(𝑢, 𝑣) = ∫ 𝑥𝑢−1∞

𝑣
𝑒−𝑥𝑑𝑥 is the upper incomplete gamma function. Unfortunately, this is 696 

a transcendental equation for 𝐷(𝑡1) in that there is no way to rearrange it and obtain a single 697 

closed-form solution for 𝐷(𝑡1). This implies that numerical methods will need to be used to find 698 

the value of 𝐷(𝑡1) for which the left-hand side and right-hand side of Equation are equal. 699 

700 
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B. Pairwise comparison of all growth parameters 701 

  702 

Figure S1: Pairwise comparisons of the three species-specific growth parameters: 𝑎𝑗 703 

(growth rate at 1-cm diameter); 𝑏𝑗 (growth expansion factor); and 𝑐𝑗 (growth decline 704 

factor). Points and error bars are median and 89% credible intervals (CI), respectively, 705 

of the posterior. Numbers at the corner of each panel denote the median and 89% CI of 706 

Spearman’s rank correlation. Point size indicates sample size (number of trees). Note 707 

the log-scale on both axes. Panel C is identical to Fig. 2. 708 

  709 
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C. Species growth parameters 710 

 711 

Table S1: Posterior median (and 89% credible intervals in parentheses) of species-712 

specific growth parameters (see Equations 1 and 2).  713 

Species a b c 

Acacia auriculiformis 1.97 (0.85, 4.21) 1.25 (0.61, 2.09) 0.22 (0.14, 0.34) 

Adenanthera pavonina 1.84 (0.79, 4.23) 1.74 (0.83, 2.92) 0.31 (0.19, 0.49) 

Adinobotrys atropurpureus 2.84 (1.65, 4.24) 0.37 (0.19, 0.64) 0.07 (0.06, 0.09) 

Aleurites moluccanus 0.95 (0.54, 1.53) 0.44 (0.22, 0.78) 0.09 (0.06, 0.13) 

Allophylus cobbe 2.75 (1.25, 5.98) 1.30 (0.52, 2.41) 0.30 (0.17, 0.51) 

Alstonia angustifolia 1.26 (0.63, 2.32) 0.76 (0.42, 1.16) 0.09 (0.07, 0.13) 

Alstonia angustiloba 0.96 (0.51, 1.73) 0.64 (0.37, 0.96) 0.06 (0.05, 0.08) 

Alstonia scholaris 0.68 (0.41, 1.07) 0.54 (0.34, 0.78) 0.03 (0.02, 0.05) 

Andira inermis 1.77 (0.80, 4.02) 1.38 (0.79, 2.15) 0.19 (0.13, 0.28) 

Araucaria columnaris 1.08 (0.54, 2.03) 0.53 (0.26, 0.91) 0.09 (0.06, 0.13) 

Arfeuillea arborescens 1.75 (1.50, 2.01) 0.11 (0.06, 0.19) 0.06 (0.06, 0.07) 

Artocarpus heterophyllus 1.56 (0.77, 3.12) 0.58 (0.27, 1.11) 0.17 (0.11, 0.26) 

Azadirachta indica 1.58 (0.74, 3.25) 0.68 (0.30, 1.28) 0.17 (0.10, 0.28) 

Barringtonia asiatica 1.16 (0.60, 2.01) 0.57 (0.28, 0.97) 0.11 (0.07, 0.16) 

Barringtonia racemosa 1.54 (0.77, 2.97) 0.65 (0.31, 1.16) 0.16 (0.10, 0.24) 

Bauhinia x blakeana 2.14 (0.89, 4.97) 1.71 (0.89, 2.62) 0.35 (0.23, 0.49) 

Brachychiton acerifolius 2.64 (1.14, 6.23) 2.38 (1.53, 3.27) 0.50 (0.38, 0.63) 

Bucida buceras 1.12 (0.57, 2.06) 0.63 (0.33, 1.00) 0.08 (0.06, 0.12) 

Bucida molinetii 4.14 (2.33, 7.04) 0.49 (0.22, 0.98) 0.12 (0.08, 0.18) 

Callistemon viminalis 0.52 (0.27, 0.94) 0.54 (0.31, 0.84) 0.05 (0.03, 0.07) 

Calophyllum inophyllum 9.01 (4.44, 15.38) 0.69 (0.28, 1.34) 0.29 (0.23, 0.38) 

Calophyllum soulattri 0.69 (0.43, 1.02) 0.52 (0.25, 0.93) 0.13 (0.09, 0.20) 

Cananga odorata 1.99 (0.85, 4.73) 3.77 (2.49, 5.13) 1.30 (0.99, 1.65) 

Carallia brachiata 2.56 (1.27, 4.47) 0.72 (0.30, 1.35) 0.30 (0.23, 0.40) 

Cassia fistula 1.74 (1.23, 2.31) 0.24 (0.13, 0.42) 0.09 (0.07, 0.10) 
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Species a b c 

Cassia grandis 1.15 (0.56, 2.21) 0.48 (0.23, 0.93) 0.15 (0.10, 0.21) 

Casuarina equisetifolia 1.34 (0.63, 2.86) 0.75 (0.43, 1.13) 0.07 (0.05, 0.10) 

Cerbera odollam 1.27 (0.64, 2.47) 0.71 (0.40, 1.09) 0.07 (0.05, 0.10) 

Chrysophyllum cainito 1.64 (0.78, 3.29) 0.87 (0.42, 1.47) 0.16 (0.11, 0.25) 

Chukrasia tabularis 1.34 (0.75, 2.22) 0.51 (0.27, 0.88) 0.09 (0.06, 0.13) 

Cinnamomum cassia 1.06 (0.62, 1.77) 0.41 (0.19, 0.80) 0.16 (0.10, 0.24) 

Cinnamomum iners 2.42 (1.18, 4.43) 0.74 (0.38, 1.20) 0.14 (0.11, 0.19) 

Citharexylum spinosum 1.92 (1.02, 3.40) 0.60 (0.26, 1.14) 0.25 (0.19, 0.34) 

Clitoria fairchildiana 1.10 (0.52, 2.29) 0.59 (0.31, 0.93) 0.06 (0.04, 0.09) 

Coccoloba uvifera 1.11 (0.57, 2.01) 0.54 (0.27, 0.96) 0.12 (0.08, 0.19) 

Cordia scabra 1.72 (0.88, 3.31) 0.52 (0.22, 1.13) 0.31 (0.20, 0.47) 

Cordia subcordata 1.61 (0.87, 2.78) 0.57 (0.24, 1.18) 0.29 (0.19, 0.41) 

Couroupita guianensis 1.52 (0.66, 3.44) 1.09 (0.56, 1.83) 0.13 (0.08, 0.21) 

Cratoxylum cochinchinense 1.24 (0.69, 2.03) 0.46 (0.22, 0.87) 0.18 (0.13, 0.25) 

Cratoxylum formosum 2.67 (1.43, 4.46) 0.53 (0.25, 0.92) 0.18 (0.15, 0.21) 

Cynometra browneoides 0.88 (0.50, 1.43) 0.60 (0.31, 0.99) 0.10 (0.08, 0.14) 

Cynometra cauliflora 1.30 (0.61, 2.59) 0.71 (0.38, 1.12) 0.10 (0.06, 0.15) 

Cynometra malaccensis 1.13 (0.60, 2.27) 0.39 (0.18, 0.79) 0.24 (0.14, 0.37) 

Cynometra ramiflora 1.05 (0.56, 1.86) 0.56 (0.27, 0.97) 0.11 (0.07, 0.17) 

Cyrtophyllum fragrans 1.08 (0.81, 1.36) 0.25 (0.13, 0.41) 0.05 (0.04, 0.06) 

Dalbergia latifolia 1.33 (0.68, 2.44) 0.77 (0.42, 1.17) 0.12 (0.09, 0.15) 

Dalbergia oliveri 1.35 (0.68, 2.49) 0.65 (0.36, 1.02) 0.08 (0.07, 0.11) 

Delonix regia 1.22 (0.59, 2.38) 0.66 (0.34, 1.09) 0.10 (0.06, 0.15) 

Diospyros discolor 1.94 (0.97, 3.75) 0.67 (0.29, 1.31) 0.22 (0.14, 0.34) 

Dolichandrone spathacea 0.61 (0.29, 1.28) 0.75 (0.45, 1.09) 0.05 (0.03, 0.08) 

Dyera costulata 1.17 (0.66, 1.88) 0.47 (0.22, 0.85) 0.11 (0.07, 0.16) 

Elaeocarpus mastersii 4.17 (1.66, 9.18) 1.55 (0.34, 4.23) 0.73 (0.37, 1.43) 

Erythrophleum suaveolens 3.81 (3.06, 4.54) 0.15 (0.09, 0.26) 0.05 (0.04, 0.06) 
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Species a b c 

Ficus lyrata 2.59 (1.34, 4.59) 0.65 (0.30, 1.17) 0.20 (0.14, 0.28) 

Filicium decipiens 2.33 (1.54, 3.29) 0.37 (0.18, 0.65) 0.10 (0.08, 0.13) 

Flacourtia inermis 1.55 (1.00, 2.26) 0.41 (0.19, 0.79) 0.20 (0.14, 0.27) 

Garcinia atroviridis 1.33 (0.74, 2.29) 0.44 (0.20, 0.85) 0.21 (0.14, 0.31) 

Garcinia mangostana 1.34 (0.72, 2.27) 0.60 (0.28, 1.07) 0.16 (0.12, 0.22) 

Garcinia subelliptica 0.55 (0.29, 0.93) 0.54 (0.26, 0.99) 0.12 (0.07, 0.18) 

Gliricidia sepium 0.85 (0.39, 1.88) 0.33 (0.15, 0.68) 0.55 (0.31, 1.00) 

Gnetum gnemon 2.04 (1.45, 2.75) 0.31 (0.16, 0.54) 0.11 (0.08, 0.15) 

Gymnostoma nobile 0.63 (0.35, 1.30) 0.33 (0.16, 0.64) 0.24 (0.12, 0.45) 

Gymnostoma rumphianum 1.53 (0.74, 3.18) 0.72 (0.31, 1.40) 0.16 (0.09, 0.29) 

Hibiscus tiliaceus 1.38 (0.67, 2.62) 0.73 (0.38, 1.18) 0.13 (0.09, 0.19) 

Hopea odorata 3.66 (3.22, 4.05) 0.11 (0.06, 0.18) 0.08 (0.08, 0.09) 

Ilex cymosa 1.09 (0.57, 1.91) 0.60 (0.28, 1.07) 0.15 (0.10, 0.21) 

Khaya grandifoliola 2.61 (1.78, 3.50) 0.21 (0.11, 0.35) 0.04 (0.04, 0.05) 

Khaya nyasica 1.11 (0.59, 1.96) 0.64 (0.39, 0.93) 0.05 (0.03, 0.06) 

Khaya senegalensis 5.60 (3.76, 7.75) 0.30 (0.17, 0.45) 0.04 (0.04, 0.05) 

Kopsia arborea 3.58 (2.54, 4.69) 0.30 (0.14, 0.54) 0.16 (0.14, 0.20) 

Lagerstroemia floribunda 1.46 (0.69, 2.85) 0.89 (0.43, 1.47) 0.22 (0.16, 0.30) 

Lagerstroemia langkawiensis 3.68 (1.67, 6.83) 0.92 (0.41, 1.62) 0.31 (0.23, 0.41) 

Lagerstroemia speciosa 1.30 (0.72, 2.15) 0.52 (0.25, 0.88) 0.12 (0.09, 0.15) 

Libidibia ferrea 0.74 (0.42, 1.24) 0.52 (0.26, 0.86) 0.09 (0.06, 0.13) 

Lophanthera lactescens 1.86 (1.00, 3.36) 0.49 (0.21, 1.01) 0.27 (0.18, 0.40) 

Magnolia champaca 0.87 (0.49, 1.52) 0.41 (0.20, 0.78) 0.15 (0.10, 0.23) 

Magnolia x alba 1.10 (0.64, 1.78) 0.41 (0.20, 0.75) 0.12 (0.08, 0.19) 

Mangifera indica 3.09 (2.21, 3.95) 0.23 (0.12, 0.39) 0.05 (0.04, 0.06) 

Maranthes corymbosa 0.90 (0.47, 1.67) 0.62 (0.32, 1.02) 0.10 (0.06, 0.15) 

Melaleuca bracteata 1.50 (0.87, 2.31) 0.52 (0.25, 0.94) 0.15 (0.11, 0.21) 

Melaleuca cajuputi 1.27 (0.82, 1.81) 0.41 (0.21, 0.69) 0.08 (0.06, 0.11) 
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Species a b c 

Melaleuca citrina 1.75 (0.94, 3.08) 0.58 (0.29, 0.95) 0.10 (0.08, 0.14) 

Mesua ferrea 1.19 (0.71, 1.80) 0.49 (0.24, 0.84) 0.13 (0.10, 0.17) 

Mimusops elengi 2.21 (1.93, 2.52) 0.09 (0.05, 0.15) 0.06 (0.05, 0.07) 

Nephelium lappaceum 1.76 (0.91, 3.32) 0.56 (0.25, 1.13) 0.17 (0.10, 0.29) 

Peltophorum pterocarpum 6.95 (6.34, 7.55) 0.06 (0.03, 0.09) 0.05 (0.05, 0.05) 

Pentaspadon motleyi 1.14 (0.68, 1.85) 0.52 (0.25, 0.88) 0.11 (0.07, 0.17) 

Planchonella obovata 1.51 (1.11, 1.92) 0.37 (0.20, 0.62) 0.12 (0.10, 0.15) 

Plumeria obtusa 2.15 (1.18, 3.69) 0.54 (0.24, 1.09) 0.27 (0.20, 0.37) 

Plumeria rubra 0.71 (0.43, 1.05) 0.46 (0.23, 0.81) 0.10 (0.07, 0.14) 

Podocarpus rumphii 1.18 (0.61, 2.24) 0.45 (0.21, 0.85) 0.14 (0.08, 0.24) 

Pongamia pinnata 1.21 (0.84, 1.68) 0.29 (0.15, 0.49) 0.07 (0.05, 0.09) 

Pterocarpus indicus 3.20 (2.07, 4.49) 0.26 (0.14, 0.44) 0.03 (0.02, 0.04) 

Samanea saman 0.79 (0.61, 1.04) 0.92 (0.80, 1.04) 0.06 (0.05, 0.06) 

Sandoricum koetjape 1.81 (1.25, 2.49) 0.39 (0.21, 0.62) 0.07 (0.05, 0.08) 

Saraca indica 1.17 (0.70, 1.90) 0.44 (0.21, 0.83) 0.15 (0.10, 0.23) 

Saraca thaipingensis 0.73 (0.43, 1.12) 0.56 (0.30, 0.92) 0.09 (0.06, 0.12) 

Schizolobium parahyba 1.57 (0.74, 3.24) 0.79 (0.38, 1.38) 0.17 (0.11, 0.26) 

Sindora wallichii 0.78 (0.48, 1.22) 0.59 (0.33, 0.93) 0.08 (0.05, 0.12) 

Sterculia cordata 0.90 (0.48, 1.72) 0.34 (0.16, 0.69) 0.36 (0.21, 0.57) 

Sterculia foetida 1.55 (0.68, 3.45) 4.61 (3.52, 6.05) 0.86 (0.68, 1.10) 

Sterculia lanceolata 1.59 (0.82, 3.10) 0.54 (0.24, 1.07) 0.19 (0.11, 0.30) 

Sterculia monosperma 1.77 (0.77, 3.80) 1.07 (0.58, 1.60) 0.19 (0.14, 0.24) 

Sterculia parviflora 2.75 (1.76, 4.00) 0.42 (0.21, 0.73) 0.13 (0.10, 0.16) 

Suregada multiflora 0.65 (0.43, 0.92) 0.55 (0.30, 0.87) 0.09 (0.05, 0.13) 

Swietenia macrophylla 1.15 (0.84, 1.60) 0.60 (0.46, 0.74) 0.05 (0.05, 0.06) 

Syzygium aromaticum 1.25 (0.70, 2.18) 0.49 (0.22, 0.97) 0.21 (0.14, 0.31) 

Syzygium cerasiforme 1.24 (0.81, 1.74) 0.40 (0.21, 0.69) 0.09 (0.07, 0.12) 

Syzygium cumini 1.68 (0.83, 3.17) 0.54 (0.24, 1.13) 0.23 (0.14, 0.36) 
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Species a b c 

Syzygium glaucum 1.10 (0.87, 1.32) 0.27 (0.14, 0.46) 0.09 (0.07, 0.11) 

Syzygium grande 12.64 (10.76, 14.58) 0.11 (0.06, 0.18) 0.08 (0.08, 0.09) 

Syzygium incarnatum 1.60 (0.75, 3.24) 0.75 (0.37, 1.34) 0.15 (0.09, 0.24) 

Syzygium myrtifolium 1.01 (0.71, 1.36) 0.33 (0.16, 0.62) 0.18 (0.14, 0.23) 

Syzygium papillosum 1.03 (0.55, 1.90) 0.76 (0.39, 1.26) 0.14 (0.08, 0.22) 

Syzygium polyanthum 3.11 (1.95, 4.31) 0.35 (0.18, 0.62) 0.11 (0.09, 0.13) 

Syzygium zeylanicum 0.92 (0.56, 1.42) 0.34 (0.17, 0.61) 0.11 (0.07, 0.16) 

Tabebuia pallida 1.44 (0.72, 2.62) 0.62 (0.31, 1.03) 0.09 (0.06, 0.13) 

Tabebuia rosea 7.67 (6.52, 8.77) 0.11 (0.07, 0.18) 0.07 (0.06, 0.07) 

Tamarindus indica 1.63 (0.76, 3.44) 0.84 (0.45, 1.33) 0.14 (0.10, 0.19) 

Terminalia calamansanai 1.30 (0.59, 2.79) 0.92 (0.55, 1.36) 0.10 (0.07, 0.15) 

Terminalia catappa 1.06 (0.72, 1.47) 0.35 (0.20, 0.53) 0.03 (0.02, 0.04) 

Terminalia mantaly 1.74 (0.85, 3.28) 0.66 (0.32, 1.16) 0.14 (0.10, 0.22) 

Tristaniopsis whiteana 0.97 (0.50, 1.93) 0.35 (0.16, 0.72) 0.35 (0.20, 0.56) 

Vitex pinnata 2.17 (0.99, 4.74) 1.36 (0.67, 2.28) 0.25 (0.15, 0.41) 

Xanthostemon chrysanthus 1.35 (1.19, 1.48) 0.12 (0.07, 0.19) 0.05 (0.04, 0.05) 
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D. Model performance 715 

  716 

Figure S2: The relationship between residuals in diameter (i.e., observed − predicted 717 

diameter) and time lapsed between diameter measurements from in-sample (black) and 718 

out-of-sample (blue = same period 2010–2019; red = 2023) datasets. Circles are 719 

median while thick and thin bars are 50%- and 89%-tiles, respectively. For 720 

benchmarking, the horizontal lines and Y-axis limits mark the 50%- and 89-tiles of 721 

predictions, respectively, from the published models in McPherson et al., 2016. See 722 

codes accompanying this study for the calculation of the benchmark CIs.  723 
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E. Temporal transferability 725 

 726 

Figure S3: Validating the predicted diameter (using the model trained on 2010–2019 727 

data) on the observed diameter of a subset of trees in the same period (left), in 2023 728 

(middle) and an independent dataset from the United States (McPherson et al., 2016; 729 

right). Points and error bars are median and 89% credible intervals (CI), respectively, of 730 

the posterior. Blue slope denotes the 1:1 line. 731 


