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Highlights15

• Trees provide ecosystem services that change dynamically with their sizes.16

• We modelled diameter growth using a large tropical urban tree inventory.17

• Importantly, our model contains biologically interpretable parameters.18

• The growth parameters positioned species along a fast–slow continuum.19

• Our model provides insightful biology in addition to accurate predictions.20
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Abstract21

Trees are important ecosystem service providers that improve the physical environment and hu-22

man experience in cities throughout the world. Since the ecosystem services and maintenance23

requirements of urban trees change as they grow in time, predictive models of tree growth rates24

are useful to forecast societal benefits and maintenance costs over a tree’s lifetime. However,25

many models to date are phenomenological models with good prediction accuracies but lacking26

biologically interpretable parameters. This has limited our understanding of species life-history27

strategies for guiding tree species selection for urban plantings. In this study, we fit a diam-28

eter growth model to a large municipal tree inventory in Singapore using Bayesian inference29

along with an ordinary differential equation solver to obtain both accurate predictions and bio-30

logically interpretable parameters. We show that the 90 tree species studied here have growth31

parameters described by a tradeoff between fast juvenile growth when small versus slower but32

sustained adult growth when large, corresponding to the well-established “fast–slow” plant eco-33

nomics spectrum. We also use the growth model to calculate the time required to reach specific34

target diameters to directly illustrate a practical use case of our model inferences. Our findings35

highlight a more tangible way of selecting species for planting based not only on predicted36

growth, but also intuitive life-history growth characteristics that could be further generalised37

by functional traits to explore new species suitable for urban forestry.38
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Graphical abstract39
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1 Introduction46

Trees play an integral role in improving the physical environment and human experience in47

cities (Pataki et al., 2011; Shanahan et al., 2017). In general, trees growing in urban areas48

require active arboricultural management to balance their social benefits (e.g., aesthetic values,49

heat mitigation, nature-based recreation) with potential costs (e.g., infrastructure damage, con-50

straints on development). Urban tree management is a multi-faceted endeavour that involves51

both upstream planning and integration with other urban infrastructure, and downstream site52

management for tree growth, removal and replacement. A key aspect of this process is the53
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choice of tree species, which is usually based on the experience and familiarity of individual54

arborists with the species choices available in a given locality. The availability of municipal55

tree inventory datasets has made it possible to model various aspects of urban tree demography56

more systematically (Nowak et al., 2004; Semenzato et al., 2011), which can then objectively57

inform adaptive management approaches for urban forestry renewal.58

Tree growth rates are a key demographic parameter for urban forests, since the ecosystem59

services and maintenance requirements of urban forests change as trees grow over time (Moore,60

2022; Rötzer et al., 2021). For example, canopy area largely controls rainfall interception by61

trees and influences the amount of stormwater runoff avoided in urban areas (Dowtin et al.,62

2023), and the size-dependent scaling of canopy area similarly governs many other ecosystem63

services, such as particulate matter deposition and shading. A predictive model of tree growth64

rates will therefore help us to forecast provisional returns and maintenance costs over a tree’s65

lifetime. However, many urban tree-growth studies to-date prioritise predictive accuracy of66

size by selecting the best out of several competing phenomenological models that are compu-67

tationally less demanding, even though they lack biologically interpretable parameters (e.g.,68

Escobedo et al., 2011; McPherson et al., 2016). As such, phenomenological models provide69

limited biological insights into how future urban plantings could be structured by the optimal70

selection of tree species.71

On the other hand, parameter-heavy mechanistic models prioritise a good bottom-up under-72

standing of size growth from cellular processes, such as photosynthesis and transpiration, which73

are then integrated into organismal growth (e.g., Falster et al., 2011; Moorcroft et al., 2001). As74

trees grow, their size often increases in a sigmoidal manner over long time periods, reflecting75

a tree’s propensity for exponential growth that is progressively opposed by various aging con-76

straints (Falster et al., 2018; Zeide, 1993). The sigmoidal trajectory of size over a tree’s lifetime77

translates to a rate of change in size (i.e., growth rate) that is hump-shaped: accelerating when78

small but later decelerating (black line in Fig. 1). Our goal is to capture these biological pro-79

cesses in a multispecies growth model that reaches a middle ground between phenomenological80

curve-fitting and mechanistic complexity, by inferring species-specific growth parameters that81

reflect the comparative ecology of species, thus providing a quantitative evidence-base for fu-82
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ture species selection.83

In this study, we characterise the growth characteristics of 90 tropical tree species using84

a predictive model with biologically interpretable parameters, which ordinate species along a85

life-history spectrum defined by a tradeoff between juvenile and adult growth rates. Specifi-86

cally, we leverage a large municipal tree inventory in Singapore to fit size-dependent diameter87

growth models to repeated measurements of trunk diameter monitored over a decade. We88

then illustrate some uses of the inferred growth parameters to guide species selection and tree-89

population planning for urban forestry in terms of two key pieces of information: (1) life-90

history tradeoffs between growing fast when small versus sustained growth into larger sizes91

and; (2) time taken for a tree to reach its maximum diameter.92

2 Material and methods93

2.1 Tree inventory data94

We analysed the data from a municipal tree inventory managed by the National Parks Board95

of Singapore (NParks), which contained measurements of trunk girth of 854,412 trees growing96

in public landscapes (i.e., parks and roadsides) throughout Singapore from a 9.5-year period97

between 1 January 2010 and 1 June 2019. Later between 1 January and 30 June 2023, a subset98

of the trees (141,922) were remeasured and we used this as an additional dataset to validate99

model predictions (see Statistical inference below for more detail). During each inspection,100

trunk girth was measured 1 m above ground by a professional arborist using a flexible metal101

measuring tape and, after rounding most of the values (~70%) to the nearest decimeter (0.1 m),102

recorded in the inventory. These measurements were periodically updated with, on average,103

15.7-month intervals between repeated observations. Although the dataset contained tree height104

information in addition to tree girth, the height measurements were not used because the values105

were visually estimated using an ordinal scale. Trunk girth values (m) were converted to the106

diameter (cm) of the circular equivalent of the measured trunk shape prior to modelling.107

From the whole dataset, we imposed a few selection criteria to remove data entries that108

were likely erroneous. Namely, we selected surviving trees at the time of data extraction (1109
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June 2019) and removed trees with girth below measurement precision (< 0.1-m girth) or very110

large diameters (> 300-cm diameter). As our model used species-specific parameters, we also111

excluded species with fewer than 1,000 individuals or modest variation in trunk diameter (range112

< 5 cm), implying limited variation in growth. Lastly, we omitted inventory observations113

from members of the palm family (Arecaceae) due to the lack of secondary growth, and the114

hemiephiphytic strangler fig, Ficus benjamina, due to measurement challenges associated with115

its numerous, lignified column roots. The final dataset contained 390,121 trees from 90 species.116

For each individual tree, we limited the data to the initial and final diameter measurements (i.e.,117

two measurements per tree) to avoid autocorrelation within tree. Although autocorrelation due118

to repeated measurements within each tree can be accounted by random tree effects, in our pilot119

analyses we found it extremely difficult to reach model convergence because numerous trees120

were remeasured only once (i.e., the estimation of random effects for these trees rely on single121

repeated inspections). Across all trees, the time interval between first and final inspections122

varied from one day to 9.3 years.123

2.2 Diameter growth model124

Many models have been developed for organismal growth, each with their own strengths and125

drawbacks (e.g., Hérault et al., 2011; Paine et al., 2012; Thomas et al., 2019; Tjørve and Tjørve,126

2010). For this study, we sought a middle ground between mechanistic complexity and phe-127

nomenological representation of tree diameter growth, and followed the approach adopted by128

Zeide (1993). Zeide reviewed a number of popular phenomenological models of tree growth,129

starting only from those with biologically interpretable parameters, and then distilled them into130

a few generalised forms. All of Zeide’s general model forms can be decomposed into two com-131

ponents: growth expansion and growth decline. In this study, we modelled the instantaneous132

growth rate of diameter, D, in cm per year using an equation (Zeide’s “YD form”, hereafter133

denoted as the function z) that depends only on tree size, but not tree age, since the latter is134

generally much harder to obtain, especially from tropical trees that lack growth rings:135

dD
dt

= z(D, a, b, c) = aDbe−c(D−1) . (1)
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Equation 1 includes three biologically motivated, positive-bound parameters: a, b and c. The136

parameter a is the growth rate at 1-cm diameter (grey dashed lines in Fig. 1), which becomes137

most apparent when one substitutes D = 1 into Equation 1. Zeide had originally wrote the last138

term as e−cD, but we reparameterised it slightly to e−c(D−1) to let Equation 1 reduce to a when139

D = 1. Doing so changes the meaning of a from the more abstract “scaling factor” to the more140

tangible “growth rate at 1-cm diameter”. Conveniently, 1 cm is also the lower size threshold of141

diameter measurement in some forest inventories.142

The two components, Db and e−c(D−1), are size-dependent autoregulatory terms that repre-143

sent growth expansion and growth decline, respectively. The growth expansion term Db (blue144

curve in Fig. 1) reflects the innate tendency of living bodies to grow and cells to multiply145

(Zeide, 2003). The diameter’s exponent b encapsulates the scaling up of productive organs for146

the uptake of photosynthates, water, and nutrients from a given diameter. In contrast, the pa-147

rameter c in the growth decline term e−c(D−1) (red curve in Fig. 1) captures the exponentially148

diminishing return of sustaining large diameters due to respiratory and overhead costs of cell149

maintenance, turnover and reproduction. Over a tree’s lifespan, biomass build-up causes the150

growth decline term to eventually dominate growth expansion, thus leading to a hump-shaped151

growth–diameter relationship (black curve in Fig. 1), and this hump-shaped relationship natu-152

rally creates the sigmoidal diameter-over-time trajectories commonly observed in both the field153

(Camac et al., 2018; Hérault et al., 2011; Kohyama et al., 2015) and theoretical models (Falster154

et al., 2018).155
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Figure 1: Conceptual diagram of a hypothetical tree species’ diameter growth curve (black)
given by Equation 1, which partitions the growth process into the product of two size-dependent
components: growth expansion (blue) and growth decline (red).
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2.3 Statistical inference156

We considered several potential approaches to fit the Zeide growth model to our data. The157

most direct approach would be to approximate the instantaneous diameter growth rate dD
dt using158

discrete-time measurements by calculating D(t1)−D(t0)
t1−t0

, and then regress these calculated values159

against the initial diameter D(t0) (e.g., Hérault et al., 2011; Lai et al., 2022). However, there160

would be at least two shortcomings to such an approach. First, this approximation approach161

would be biased when diameters do not grow linearly over time, and in such cases the bias162

is particularly strong when a long time has lapsed between diameter measurements (see Fig.163

S1 for an illustrated example). Such an estimation bias would increase prediction error in tree164

sizes and size-dependent ecosystem functions. The second disadvantage of modelling discrete-165

time growth is related to the observation model–process model concept of Bayesian inference166

(Kuhnert, 2014): what we measure and observe in the field is girth or diameter, not growth.167

Growth is therefore a latent, unmeasurable process that ideally should be statistically inferred168

rather than calculated. In other words, the most appropriate response variable (outcome) of any169

regression approach is diameter, whereas growth is a process whose properties and parameters170

need to be inferred.171

To avoid these shortcomings, we leveraged the continuous-time diameter growth model172

given by Equation 1 to infer instantaneous diameter growth rates by solving the corresponding173

ordinary differential equation. Specifically, we modelled the final diameter Di j(t1) of tree i in174

species j at time t1 as function of its initial diameter Di j(t0), elapsed time t1 − t0, and the three175

growth parameters a, b and c in Equation 1 in a lognormal generalised mixed-effects model176

(GLMM):177

Di j(t1)∼ Lognormal
(
log µi j, σ j

)
,

where log µi j and σ j are the linear predictor and residual variance of final diameters in the178

lognormal GLMM, respectively. The predicted final diameters µi j are estimated by finding179

solutions to the equation180

∫
µi j

Di j(t0)

1
z(Di j, a j, b j, c j)

dx = t1 − t0 , (2)
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where the growth function z in the integral takes the nonlinear form described in Equation 1,181

except each growth parameter was allowed here to vary by species to account for interspecific182

variation: z(Di j, a j, b j, c j) = a jD
b j
i j e−c j(Di j−1). The species-specific parameters (a j, b j and183

c j) were estimated as fixed effects, i.e., without assumed correlations as in random effects. We184

did this to examine if any correlation between parameters would arise without prior assump-185

tion, thus providing us more confidence in concluding any tradeoff in growth strategies across186

species. As further elaborated in Appendix B, there is no closed-form solution for µi j in Equa-187

tion 2 (i.e., the GLMM predictor cannot be conventionally written with just µi j on the left-hand188

side). We therefore used the built-in ODE solver ode_rk45 in Stan to numerically calculate189

µi j.190

Prior to model fitting, we split half of the dataset into a training set (hereafter “in-sample191

data”) to estimate parameters, and another half into a testing set (hereafter “out-of-sample192

data”) to validate predictions. Data splitting was performed hierarchically by species, such that193

each species retained 50% of its data. The model was fitted with Bayesian inference in Stan194

(Stan Development Team, 2023) using the brms package v2.19.0 (Bürkner, 2021) in R v4.2.1195

(R Core Team, 2022). The custom Stan code for the ODE is available on our GitHub repository.196

Bayesian inference was performed with 1,000 warmup and 1,000 post-warmup Hamiltonian197

Monte Carlo (HMC) iterations over four chains, resulting in a total of 4,000 posterior samples.198

We increased the target average acceptance probability to 0.99 to promote chain convergence.199

After fitting the model, we compared the residuals (difference between observed and pre-200

dicted final diameters) of the in-sample data to that of the out-of-sample data to examine pre-201

diction accuracy. To further examine the ability of our model to extrapolate, we also validated202

the short-term forecasts on a subset of trees (52,892 individuals) that were remeasured in 2023203

(four years since the last measurement in the core dataset). The 2023 predictions were made204

from the last measured diameter of each tree in the 2010–2019 data. That is, every tree differs205

in the amount of time lapsed, which ranged from 3.6 to 10.5 years.206
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2.4 Model applications207

In addition to estimating the species-specific growth parameters a j, b j and c j, we aimed to208

increase the utility of the model by extracting two extra pieces of information. First, we cal-209

culated the Spearman’s rank correlation between the three growth parameters across the full210

posterior distributions as a measure of life-history tradeoff in growth strategies. For example, a211

strong positive correlation between two parameters indicates that species are evolutionarily or212

ecologically constrained to be either high or low in both growth characteristics. We chose the213

nonparametric rank correlation to preserve the correlation between growth parameters in both214

arithmetic and logarithmic scales.215

Second, we calculated the passage time required for each species to reach their maximum216

diameter from a certain initial diameter. To begin, we set the initial diameter at 3.2 cm, or ≈ 10217

cm in girth, which is a common size at which trees are transplanted into managed forests in218

Singapore. Next, we determined the “maximum” diameter as the diameter beyond which the219

growth rate is effectively zero. Because the Zeide growth model does not have a true asymptote,220

we opted for a slightly less arbitrary approach by setting the “practically-zero growth rate” to221

0.3 cm yr−1, which corresponds to the median absolute residual of our model (see Results222

and Fig. S3). The idea is that once growth rate drops below this threshold, it will be quite223

hard to detect any diameter increment, thus a tree is considered to have practically reached its224

maximum diameter. Using the full posterior distribution, we solved for the diameter value that225

corresponds to the eventual low growth rate of 0.3 cm yr−1 for each species using their inferred226

growth parameters and Equation 5 in Appendix C.227

3 Results228

Across species, our model explained 31–89% of variation (measured as Bayes R2) in the in-229

sample final tree diameters; and R2 seemed to increase with sample size (Fig. S2). In-sample230

and out-of-sample prediction accuracies were fairly high, both with a median residual of −0.3231

cm. The residual ranges of both in- and out-of-sample predictions were also very similar: 50%232

of residuals fell between −2.4 and 3.1 cm, while 89% fell between −7.9 and 12.1 cm. We233
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consider these residuals to be reasonable given that a median-sized tree in our dataset was 22.3234

cm, with an interquartile range of 12.7–44.6 cm. Increasing the time lapsed between initial235

and final diameter measurements did not seem to reduce prediction accuracy, as the median236

residuals stayed close to zero, even if the range of residuals did increase (Fig. S3). The short-237

term forecasts on the 2023 data also extrapolated well, with 95.0% of observations within the238

prediction intervals; the median residual was −0.5 cm, with 89% of residuals falling between239

−6.0 and 7.7 cm (Fig. S4).240

The 90 species varied greatly in growth characteristics, as reflected by the three species-241

specific parameters a, b and c (Fig. S5). The growth parameters spanned two to three orders of242

magnitude, with diameter growth rate at 1 cm (a) having the greatest range (0.03–8.57 cm/yr),243

followed by the growth expansion factor (b, range = 0.04–4.53) and lastly the growth decline244

factor (c, range = 0.01–0.92). There was a strong negative correlation between a and b [Spear-245

man’s r = −0.71, 89% CI = (−0.78,−0.65); Fig. S5A], whereas b and c were positively246

correlated [r = 0.51, 89% CI = (0.43,0.59); Fig. S5C]. The correlation between a and c was247

negative but weakest of all [r =−0.21, 89% CI = (−0.29,−0.12); Fig. S5B].248

In the following sections, we focus the on the positive correlation between the growth ex-249

pansion factor b and the growth decline factor c, which are the two size-dependent parame-250

ters that provide the deepest insights into the life-history tradeoffs among species (Fig. 2).251

Most species were either high in both b and c, or low in both parameters. Few to none of the252

species were found in other regions of the b–c parameter space. The high b–high c species253

displayed more sigmoidal diameter trajectories over time in Fig. 3A or a more peaked growth–254

diameter relationship in Fig. 3B, leading to much faster growth rates when small that then255

decelerate rapidly. In contrast, the low b–low c species’ diameter trajectories over time and256

growth–diameter relationships were less curved, leading to slower growth rates when small but257

sustaining growth rates longer into larger sizes.258

The tree species also varied greatly in the estimated maximum diameter, ranging from 7 to259

212 cm (Fig. S6). Similarly, the time required to reach maximum diameter for each species260

also varied greatly from 7 to 261 years (Fig. 4).261
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Figure 2: Life-history tradeoff in diameter growth as inferred from the correlation between the
growth expansion factor, b, and the growth decline factor, c. Points and error bars are median
and 89% credible intervals, respectively, of the posterior. Point size corresponds to sample size
(i.e., abundance) of each species. The labelled species are examples used in the Discussion.
Note the log-scale on both axes.
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Figure 3: (A) Expected diameter trajectories of species from an initial diameter of 3.2 cm
(≈ 10 cm girth, which is a common size at planting in our study area) over 20 years. (B) The
instantaneous growth rates (instantaneous slopes of each trajectory in A) in relation to diameter.
Each line denotes the median posterior prediction of a species.

4 Discussion262

In this study, we quantified the growth characteristics of 90 tropical tree species using an ur-263

ban tree inventory dataset comparable to some of the largest existing forest inventories (e.g.,264

Anderson-Teixeira et al., 2015; Vidal et al., 2016). Distinct from similar work in temperate cli-265

mates (Schelhaas et al., 2018), it was possible to model diameter growth for many more species266

due to the high diversity supported by our study site’s tropical environment, which facilitates a267

more comprehensive comparison of life-history strategies across species. We demonstrated the268

good prediction accuracy of our growth model, and then leveraged its biologically-interpretable269

parameters to compare tree growth strategies by their relative positions along the “fast–slow”270

plant economics spectrum (Reich, 2014) (i.e., tree species tend to either grow faster when271

small and then decelerate rapidly or grow slower when small but sustain growth over a longer272

lifespan). Such a life-history tradeoff leads to high variations among species in the temporal273

trajectories of diameter growth, maximum attainable diameter, and time required for each to274

realise those maximum diameters.275
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Figure 4: Years required for each species to reach its maximum diameter from an initial diam-
eter of 3.2 cm (≈ 10 cm girth, which is a common size at planting in our study area). Points
and error bars are median and 89% credible intervals, respectively, of the posterior predictions.
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4.1 Model performance276

We first established that the fitted Zeide growth models compared favourably in terms of predic-277

tion accuracy to existing empirical models of urban tree growth models, which have reported278

elsewhere R2 values around 0.5–0.9 (e.g., McPherson et al., 2016; Semenzato et al., 2011).279

Although a few of our species (17%) had prediction accuracies below a previously reported280

minimum R2 of 0.5 (McPherson et al., 2016), we considered this a worthwhile cost relative281

to the benefit of deeper insights into these species’ underlying biology. Furthermore, many282

of the previous growth models with high goodness-of-fit are polynomial equations that fit the283

data well within the observed diameter range but extrapolate more poorly (Song et al., 2020).284

In contrast, our model remained robust when predicting over longer timespans and onto large285

diameters (Figs S3 and S4).286

Although the range of our predicted diameter growth rates overlapped with values reported287

for other species in natural forests (e.g., Hérault et al., 2011; Kohyama et al., 2015; Rüger et288

al., 2011), our trees could display growth rates up to a magnitude greater similar to the urban289

trees in McPherson et al. (2016). For example, a Swietenia macrophylla tree with a diameter of290

10–20 cm was reported to grow at about 0.5 cm yr−1 in its native Amazonian range (Grogan et291

al., 2014), but the same-sized trees in our study location grew over 2.0 cm yr−1 on average. The292

main reason for the higher growth rates in our study was likely because the trees in our dataset293

typically grew under high-light, open conditions compared to their natural or managed forest294

habitats (Smith et al., 2019). Moreover, many species in our dataset originated from tropical295

monsoon climates with pronounced dry seasons, whereas the study location lacks an extensive296

dry season and would therefore be more conducive to the year-round growth of these species297

compared to their habitat of origin. Furthermore, unusually early peak growth rates could298

reflect the arboricultural practice of providing compost and supplementary irrigation during the299

establishment stage.300

4.2 Life-history tradeoff in diameter growth301

Reich (2014) posited a unified “fast–slow” plant economics spectrum, along which a trade-off302

exists between traits optimising growth rates under high resource availability conditions and303
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traits optimising survival under low resource availability conditions. Our findings support this304

theory with the correlation between the growth expansion factor b and the growth decline fac-305

tor c (Fig. 2). The 90 tree species seemed to be constrained to either be high in both b and c306

(growing fast when small), or low in both (growing slow when small but sustained growth when307

large). Practically no species were found in the high b–low c quadrant (fast growth throughout308

all size classes). Moreover, our results imply a nuanced interpretation of “fast growth”: species309

at opposite ends of the life-history spectrum (high b–high c versus low b–low c) display con-310

trasting instantaneous diameter growth curves that cross one another over time, resulting in311

an ontogenetic rank swap in growth rates. The high b–high c species (e.g., Cordia sebestena,312

Barringtonia acutangula, Plumeria obtusa, Sterculia foetida) that grow faster when small even-313

tually grow slower than the low b–low c species (e.g., Cyrtophyllum fragrans, Libidibia ferrea,314

Mangifera indica, Xanthostemon chrysanthus; Fig. 3B). Thus, species that exhibit rapid growth315

during early life stages tend not to sustain this growth in subsequent growth phases. These life-316

history tradeoffs likely reflects several biological processes, such as trees that grow fast and317

die fast reaching their natural mature size earlier for reproduction (Wenk and Falster, 2015), a318

trade-off between fast growth and tree hydraulic and mechanical safety (Eller et al., 2018), and319

a trade-off between intrinsic cell metabolism and deterioration in cell function (Brienen et al.,320

2020).321

To further strengthen our mechanistic understanding, future work could identify plant func-322

tional traits that underpin such a life-history tradeoff. “Soft” functional traits that are more323

easily available, such as wood density, are promising promising predictors of the growth param-324

eters (Hérault et al., 2011), whereas “hard” physiological traits that are more labour intensive325

to measure, such as xylem hydraulic conductivity and photosynthetic rate, provide even finer326

insights into how cellular functions scale to organismal growth (Falster et al., 2011; He et al.,327

2022; Reich, 2014). These traits can be used, for example, to test if tree species are evolution-328

arily restricted from having high growth expansion and low growth decline factors to always329

grow fast (i.e., the dearth of species in the bottom-right quadrant of Fig. 2). We showed that330

species with fast growth when small also have slower growth when they are large, thus attain-331

ing lower maximum sizes. Could this tradeoff be related to hydraulic traits that permit highly332
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energetic growth when small but constrain an upper limit on tree stature due to difficulties in333

transporting water to the canopy (Liu et al., 2019; Poorter et al., 2010)?334

4.3 Practical uses of the growth model335

Our growth model offers two potential applications for species selection in arboriculture prac-336

tices. First and foremost is the direct use of growth parameters to select species with the pre-337

ferred life-history characteristics for specific landscape contexts. For example, species that338

grow rapidly up to a relatively small mature size (high b–high c) would be suitable candidates339

for urban sites where it is desirable to have high foliage cover from the outset (e.g., park en-340

trances). On the other end of the life-history spectrum, species that grow more slowly when341

small but show slower decline in growth rates when large (low b–low c) would be more ap-342

propriate for urban locations where the land use is expected to be more stable (e.g., heritage343

areas). Certain species at the peripheries of the overall growth-rate tradeoff may warrant par-344

ticular attention in terms of planting strategy. For example, species showing fairly high growth345

rates across all size classes (low c but relative high b) are not likely to be suitable for con-346

strained urban spaces, given their propensity for long-term growth (e.g., Pterocarpus indicus).347

Conversely, species with low growth rates overall (low b but relatively high c) would likely be348

suitable choices for these tight spaces (e.g., Sygyzium myrtifolium). More generally for urban349

forest management, the diameter growth rates obtained from the model would be useful to op-350

timise planting strategy in particular sites, for example, by combining both fast-growing and351

slower-growing tree species to achieve shade provision over the shorter term, while sustaining352

the longer term needs for shade and other environmental benefits through the slower-growing353

species that requires less maintenance. Nevertheless, it should be acknowledged that there are354

other relevant factors to consider for urban trees besides growth rates, such as structural safety,355

habitat value for wildlife, aesthetics, native conservation status, and susceptibility to disease356

(Conway and Vander Vecht, 2015; Trowbridge and Bassuk, 2004).357

Second, our model also allows us to calculate the number of years required for each species358

to attain a given diameter. This is potentially useful for grounding the expectations of public359

stakeholders for new development sites, or when existing sites are affected by re-development360
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or infrastructure works and will need to be replanted. Additionally, the models can also be361

used to more accurately project overall values of ecosystem services that scale directly with362

size (e.g., carbon sequestration and evapotranspirative cooling).363

4.4 Limitations and future directions364

The lower model accuracy for some species could be due to the lack of model terms account-365

ing for the influence of exogenous factors, such as abiotic environment (e.g., climate and soil366

properties) and management practices (e.g., pruning and fertilization), which would have con-367

tributed to error in prediction or parameter estimations. Competitive pressure from neighbour-368

ing trees may also become an increasingly important driver of urban tree growth (Brienen369

and Zuidema, 2006; Schelhaas et al., 2018), and many studies have examined suitable size-370

dependent growth models accounting for the biotic interactions among forest trees (e.g., Lai et371

al., 2022; Rüger et al., 2011). Additionally, the inclusion of maintenance records containing372

information about the cultural practices used to care for trees will be especially useful. Ac-373

cordingly, we recommend future tree growth models to include both traits and environments,374

as well as their interaction, as moderators of tree growth parameters.375

Furthermore, it would be prudent to acknowledge the low measurement precision of data as376

a potential limitation of the growth model and inferences. It is important to note that most of our377

field measurements (~70%) were rounded to the nearest 10-cm girth (≈ 3-cm diameter). This378

is a rather low precision compared to the range of inferred annual diameter growth rates (see Y-379

axis values in Fig. 3B). In addition, very large values of diameters in buttressing species, such as380

Pterocarpus indicus and Terminalia catappa, may be prone to further measurement error. Other381

than impacting parameter estimations, low measurement precision also makes model validation382

challenging because we cannot be sure if a mismatch between predicted and observed diameters383

is due to poor modelling or poor measurement, especially for slow-growing species. Despite384

the coarse girth measurements, our study still clearly shows the potential for scientific insights385

from inventory data collected primarily for management purposes. We recommend that cities386

use a measurement precision corresponding to smaller growth increments. Although most girth387

measurements in our study were rounded to the nearest decimetre, there remained some diligent388
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records with greater precision (rounded to the nearest centimeter), which surely have helped in389

the modelling process.390

Although we have quantified the growth characteristics of 90 species for future plantings,391

practitioners may still wish to consider new species under different circumstances, for exam-392

ple to design a planting palette that includes more under-studied native species or one that is393

more tolerant to future climate change (Laughlin et al., 2018). For these applications, a good394

understanding of trait–demography relationships will allow us to extrapolate predictions onto395

new species (e.g., Hérault et al., 2011). This research direction is a promising avenue given the396

increased accessibility of global and regional trait databases (e.g., Falster et al., 2021; Kattge397

et al., 2011). Although trait-based theories of plant demography are mostly established from398

unmanaged forests, recent urban studies suggest that these trait–demography relationships are399

also generalisable to more managed settings (Simovic et al., 2024; Watkins et al., 2021).400

4.5 Conclusions401

We have demonstrated that it is feasible to fit models with biologically interpretable parameters402

to municipal tree growth records with good accuracy, thus granting insights into the compar-403

ative life histories of tree species in tropical urban landscapes. By identifying the position of404

species along the established fast–slow continuum, our findings provide a quantitative evidence405

base to select species for planting based on preferred growth characteristics. We hope that this406

approach will empower urban tree managers to take bolder steps to respond dynamically to407

diverse selection pressures on urban tree performance, backed by empirical data.408
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Appendices626

A. Bias in discrete-time growth calculation627
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Figure S1: (A) Conceptual figure of potential bias in the approximation of instantaneous growth
from discrete-time measurements. For a hypothetical diameter growth trajectory over time
(grey curve), size-dependent diameter growth dD

dt is the instantaneous slope at a particular di-
ameter (black arrow, which translates to the black curve in panel B). Most studies, however,
approximate the instantaneous growth by calculating the increment in diameter after some time
interval. While such an approximation is slightly biased for short time intervals (blue), the bias
becomes larger with increasing time intervals (red). In this example, discrete-time approxima-
tion of growth from a long census interval results in a considerable underestimation (red slope is
much gentler than the black instantaneous slope). (B) Discrete approximation of instantaneous
growth rate assumes a constant growth rate between census intervals (blue step-like lines), in-
stead of a growth curve that is always adjusting to the changing diameter (black curve). When
plotted or regressing against initial diameter D(t0) (a common practice in the literature), biased
approximation of diameter growth from discrete measurements leads to overestimation of the
instantaneous growth rate early on (blue filled circle higher than the black curve), followed
quickly by underestimation later during a tree’s lifespan (blue filled circle lower than the black
curve). It is noteworthy that such biases can be reduced simply by plotting or regressing dis-
crete diameter growth rates against the mean or midpoint of D(t0) and D(t1) (blue open circles),
though it still is not the best approach.
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B. Solving the ODE growth model to predict future diameter628

Consider a generic model of instantaneous diameter growth rate of the form629

dD
dt

= z(D,θ) , (3)

where z(D,θ) can take any conceivable mathematical form and is a function of both current630

diameter D and some parameters θ . Given an initial diameter D(t0), knowledge of how much631

time has elapsed (i.e., t1 − t0), and the values of the parameters θ , we can mathematically632

determine the predicted future diameter D(t1) by integrating the dynamical Equation 3 as633

∫ D(t1)

D(t0)

1
z(D,θ)

dx =
∫ t1

t0
dt (4)

and solving the resulting expression for the single unknown, D(t1). This is referred to as solving634

the model’s “initial-value problem”. Note that our GLMM formula (Equation 2) replaces D(t1)635

with µ to turn the integral from a mathematical expression to a statistical problem.636

The solution to the integral on the right-hand side of Equation 4 is equal to the amount of637

time elapsed, t1 − t0. In contrast, the integral on the left-hand side of this equation depends638

on the mathematical complexity of the growth-rate model z(D,θ), and in some cases may639

not always be analytically tractable. When using the nonlinear form given by Equation 1, an640

analytical solution does indeed exist, and if we substitute this solution into Equation 4 we obtain641

D(t1)
−b (−cD(t1))

b
Γ(1−b,−cD(t1))= acec (t1 − t0)+D(t0)

−b (−cD(t0))
b

Γ(1−b,−cD(t0)) ,

where Γ(u,v) =
∫

∞

v xu−1e−xdx is the upper incomplete gamma function. Unfortunately, this is642

a transcendental equation for D(t1) in that there is no way to rearrange it and obtain a single643

closed-form solution for D(t1). This implies that numerical methods will need to be used to644

find the value of D(t1) for which the left-hand side and right-hand side of Equation 5 are equal.645
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C. Solving for the maximum diameter646

To solve for the maximum diameter Dmax at which a sufficiently low growth rate dD
dt = G̃ = 0.3647

cm yr−1 is reached, we could rearrange the Zeide growth model in Equation 1 to648

Dmax =−b
c

W

(
−c

b

(
e−cG̃

a

)1/b
)

, (5)

where W is the Lambert’s W function (Lehtonen, 2016), which we computed in R using the649

lambertW function in the lamW package v2.2.3. Depending on the values of a, b and c, Equation650

5 could potentially have two solutions or “branches”, one of which is ≤−1 and another ≥−1.651

We ensured sensible maximum diameters simply by taking the larger positive solution of the652

two.653
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D. Goodness of fit654
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Figure S2: Bayes R2 of each species plotted against their sample size. Points and error bars are
median and 89% credible intervals (CI), respectively, of the posterior.

31



E. Model performance655
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Figure S3: The relationship between residuals in diameter (i.e., observed − predicted diameter)
and time lapsed between diameter measurements from in-sample (black) and out-of-sample
(grey) datasets. Circles are posterior median, while thick and thick bars are 50% and 89%
credible intervals, respectively.
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F. Short-term forecast656

Figure S4: Validating the predicted diameter (using the model trained on 2010–2019 data) on
the observed diameter of a subset of trees in 2023. The 2023 predictions were made from the
last measured diameter of each tree in the 2010–2019 data, i.e., every tree differ in the amount
of time lapsed. Points and error bars are median and 89% credible intervals (CI), respectively,
of the posterior. Blue slope denotes the 1:1 line.
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G. Pairwise comparison of all growth parameters657
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Figure S5: Pairwise comparisons of the three species-specific growth parameters: a j (growth
rate at 1-cm diameter); b j (growth expansion factor); and c j (growth decline factor). Points and
error bars are median and 89% credible intervals (CI), respectively, of the posterior. Numbers
at the corner of each panel denote the median and 89% CI of Spearman’s rank correlation. Note
the log-scale on both axes. Panel C is identical to Fig. 2.
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H. Passage time in relation to maximum diameter658
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Figure S6: Relationship between maximum diameter and years to reach it from 3.2 cm (≈ 10
cm girth, which is a common size at planting in our study area). Each point represents a species.
Points and error bars are median and 89% credible intervals, respectively, of the posterior. The
Y-axis corresponds to the X-axis in Fig. 4. Note the log-scale on both axes.
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