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ABSTRACT  33 

Understanding population responses to variable environments is central to much of current 34 

research in population ecology and conservation biology. Environmental variability, a key 35 

component of global climate change, increases the extinction risk of species across the tree of 36 

life. Therefore, quantifying the sensitivity of populations to environmental variability is timely 37 

in the face of global climate change. A common approach to measure the impact of 38 

environmental variability on a population is by quantifying the population’s capacity towards 39 

demographic buffering specifically, the population’s ability to reduce the impact of 40 

environmental variability on its own growth rate. This line of work has, over the past 25 years, 41 

resulted in multiple, heterogeneous methods to quantify demographic buffering. To date, we 42 

lack clarity on which method is most appropriate, and under what conditions. To identify the 43 

best method to quantify demographic buffering, we test four methods – one correlational 44 

method, two methods using terms from Tuljapurkar’s approximation and the summation of 45 

stochastic elasticities of variance (∑ 𝐸𝑎𝑖𝑗

𝜎2
) – for their efficacy to inform conservation strategies. 46 

We compare and contrast these methods via three different tests to determine the efficacy of 47 

the methods across four integral projection models for plants representing different life 48 

histories. In the first test, we determine if the measures, structured by ontogeny, are similar or 49 

distinct by analyzing their covariance structure across the four species. In the second and third 50 

tests, we perform two counterfactual simulations to test if the measures offer insights about the 51 

populations’ responses to variable environments that are better than chance. We find that the 52 

four methods significantly differ in their ability to identify and quantify demographic buffering. 53 

Furthermore, our simulations identify ∑ 𝐸𝑎𝑖𝑗

𝜎2
 as the most effective method to quantify 54 

demographic buffering. This work represents a clear example of how and why to test the metrics 55 

we infer from structured systems prior to their applications in systems of interest (e.g., 56 

endangered populations). In addition, our finding that commonly used approaches to quantify 57 

demographic buffering are ineffective has broad implications for our current understanding of 58 

how natural populations are responding to climate change, and thus for effective conservation 59 

practices. 60 

 61 

 62 
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STATE OF THE ART 63 

Increased environmental variability is a key threat to natural populations in response to global 64 

climate change (Masson-Delmotte et al., 2021; Sutherland et al., 2013). From droughts to 65 

hurricanes, environmental variability takes a variety of forms across species (Raventós et al., 66 

2021; Rodríguez-Caro et al., 2021). However, the net effect of environmental variability on 67 

population dynamics is broadly conserved across taxa: it often leads to a reduction in a 68 

population’s stochastic population growth rate (𝜆𝑠; Tuljapurkar, 1982, 1989) and consequent 69 

increases in extinction risk (May, 1973). These effects are especially concerning as global 70 

climate change is projected to increase environmental variability in regions hosting the highest 71 

biodiversity (Bathiany et al., 2018). Therefore, understanding the sensitivity of populations to 72 

environmental variability and the strategies populations use to reduce this sensitivity is critical. 73 

Demographic buffering is often used to quantify the impact of environmental variability on 74 

population dynamics. Demographic buffering quantifies the degree to which a population’s 75 

combination of demographic rates (e.g., survival, growth, reproduction) reduce the impact of 76 

environmental variability on 𝜆𝑠. Similar to a chemical buffer on a solution’s pH, a more 77 

demographically buffered population has a combination of demographic rates that reduce the 78 

population’s sensitivity to environmental variability relative to a less demographically buffered 79 

population (Gascoigne, Kajin, & Salguero-Gómez, 2023; Pfister, 1998). In turn, demographic 80 

buffering has been extensively used to infer both the sensitivity of populations to environmental 81 

variability (Hilde et al., 2020; Pfister, 1998) and the strategies populations use to reduce this 82 

sensitivity (McDonald et al., 2017). This understanding has led to a series of studies analysing 83 

the impact of climate variability on conservation measures (Colchero et al., 2021), population 84 

viability (Rodríguez-Caro et al., 2021), life histories (Morris et al., 2008) and more topics 85 

across ecology and evolutionary biology (Gascoigne, Kajin, Tuljapurkar, et al., 2023; 86 

McDonald et al., 2017; Morris & Doak, 2004; Santos et al., 2023). However, researchers 87 
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measure demographic buffering in numerous, different ways, as reviewed in Hilde et al., 88 

(2020). 89 

Over the past 25 years, demographic buffering has taken a variety of mathematical forms 90 

and interpretations. Mathematically, demographic buffering has been calculated using multiple 91 

correlation and derivative based methods (Hilde et al., 2020; Santos et al., 2023). Furthermore, 92 

these measures of demographic buffering have been inferred as both a population’s relationship 93 

to a variable environment (Rodríguez-Caro et al., 2021) and an evolved aspect of a population’s 94 

life history (Li & Ramula, 2015; McDonald et al., 2017). Currently, we lack a comprehensive 95 

understanding of what is an effective measure of demographic buffering. We define “efficacy” 96 

as the ability of a measure of demographic buffering to infer a population’s response to a 97 

variable environment. Unfortunately, previous research into demographic buffering often 98 

assumes the efficacy of their methods without testing this assumption. Furthermore, out of the 99 

suite of methods used to calculate demographic buffering, we do not know which measures are 100 

more effective that others. In turn, to fill this gap in knowledge, we aim to test for efficacy in 101 

measures of demographic buffering. 102 

To test for efficacy in four measures of demographic buffering, we use four size-structured 103 

stochastic integral projection models (IPMs; Easterling et al., 2000). Using the PADRINO 104 

database (Levin et al., 2022), we simulate IPMs for four plant species with different life 105 

histories. Subsequently, we calculate four well-established measures of demographic 106 

buffering: one using a correlation method (Spearman’s ρ: McDonald et al., 2017; Pfister, 1998), 107 

two methods using terms from Tuljapurkar’s approximation (𝑉𝑠 and 𝑉𝑠 +  𝑉𝑐: Maldonado-108 

Chaparro et al., 2018; Tuljapurkar, 1989) and one using summed stochastic elasticities of 109 

variance (∑ 𝐸𝑎𝑖𝑗

𝜎2
: Haridas & Tuljapurkar, 2005; Morris et al., 2008; Tuljapurkar et al., 2003). 110 

We test the potential differential efficacy of these four measures of demographic buffering with 111 
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three separate tests. In the first test, we analyzed the correlation structure of the four measures 112 

of demographic buffering structured along the ontogeny (i.e., the size classes in each IPM) of 113 

the four species. Here, we hypothesized that (H1) different measures of demographic buffering 114 

would offer different values for the same populations as the methods are parameterized using 115 

dissimilar values (e.g., stochastic vs. deterministic elasticities) and methods (e.g., Spearman’s 116 

ρ correlation vs. summed products). In the second test, we stabilized (i.e., fixed values as 117 

constant through time) the demographic rates along the ontogeny, on size/stage increment at a 118 

time, and regressed the difference in stochastic population growth rate (Δ𝜆𝑠) against the degree 119 

of buffering associated with each size class along the ontogeny. We hypothesized that (H2) 120 

there is a strong negative relationship between the degree of buffering along the ontogeny and 121 

Δ𝜆𝑠 as we predicted stabilizing demographic rates to have the largest positive effect in the least 122 

buffered size classes. In the third test, we elucidate whether counterfactual simulations of the 123 

plant populations informed by their distributions of demographic buffering, along an ontogeny, 124 

yield improved population growth relative to chance. Specifically, we collectively stabilize the 125 

demographic rates of all size classes across a timeseries to varying degrees. The degree to 126 

which the size class specific demographic rates were stabilized was determined by the 127 

distributions of size class specific buffering, determined by each method (i.e., ρ, 𝑉𝑠, 𝑉𝑠 +  𝑉𝑐 128 

and ∑ 𝐸𝑎𝑖𝑗

𝜎2
). To determine if these distributions offer improved information for demographic 129 

rate stabilization relative to chance, we also simulated the random stabilization of demographic 130 

rates along ontogeny as a control. We hypothesized that (H3) the stabilization of demographic 131 

rates informed by size-class specific demographic buffering distributions would yield a 132 

significantly higher Δ𝜆𝑠 than a random stabilization of demographic rates.  133 

 134 

 135 
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METHODOLOGICAL APPROACH 136 

To test for efficacy in measures of demographic buffering, i.e. the ability of natural populations 137 

to minimise the expected negative effects of environmental stochasticity (Hilde et al., 2020; 138 

Maldonado-Chaparro et al., 2018; Morris et al., 2008; Rodríguez-Caro et al., 2021), we used 139 

four different measures. Since these measures of demographic buffering are dependent on 140 

structured demographic models (i.e., related to Tuljapurkar’s approximation; Tuljapurkar, 141 

1989), we used four environmentally explicit integral projection models (IPMs) to test our 142 

hypotheses. 143 

 144 

Environmentally explicit integral projection models 145 

We used four integral projection models (IPMs) from the PADRINO IPM database (Levin et 146 

al., 2022) to test for efficacy in measures of demographic buffering. IPMs are discrete-time 147 

population models that project a population structured by a continuous trait (e.g., height, mass) 148 

within a finite domain [i.e., from the smallest trait value (𝛼) to the largest trait value (𝜔)] 149 

across time steps. An environmentally explicit IPM can be written as, 150 

(Eq. 1)   𝑛𝑡+1(𝑧′) = ∫ 𝐾(𝑧′, 𝑧, 𝜓𝑡) 𝑛𝑡(𝑧) 𝑑𝑧 
𝜔

𝛼
. 151 

Here, the distribution of the continuous trait at time 𝑡 [𝑛𝑡(𝑧)] is projected through the K-kernel 152 

[𝐾(𝑧′, 𝑧, 𝜓𝑡)] to generate the distribution of the continuous trait at time 𝑡 + 1 [𝑛𝑡+1(𝑧′)]. The 153 

K-kernel represents a continuous two-dimensional surface quantifying the survival and 154 

potential change in state values of individuals between 𝑡 and 𝑡 + 1, as well as the per-capita 155 

contributions of size 𝑧 individuals at time 𝑡 to the occurrence of size 𝑧′ individuals at time 𝑡 +156 

1. In an environmentally explicit IPM, the K-kernel is a function of one or more time-157 

dependent environment variables (𝜓𝑡) (Ellner et al., 2016).  158 



7 

 

In our study, we simulated IPMs for four plant species with different life histories. 159 

Specifically, we used IPMs for one herbaceous perennial (Berberis thunbergii, Merow et al., 160 

2017), two tropical perennials (Calathea crotalifera and Heliconia tortuosa, Westerband & 161 

Horvitz, 2017) and one biennial (Carlina vulgaris, Rees & Ellner, 2009). The parameter values 162 

and formulas used to construct these IPMs can be found in the supplementary materials. 163 

To simulate the IPMs, we used a mesh point integration method (Easterling et al., 2000; 164 

Ellner et al., 2016) which discretises the K-kernel into matrix form with 𝑛 × 𝑛 dimensions, 165 

where each bin (𝑛) can be thought of as a small, discrete size class along the life cycle of the 166 

species. Since the discretised kernel mimics a matrix population model (MPM; Caswell, 2001), 167 

we will discuss our methods in the form of matrix notation where the matrix is represented as 168 

𝐀 with demographic rates 𝑎𝑖𝑗 referring to the survival-dependent changes in classes and 169 

reproductive contributions of individuals in stage 𝑗 toward stage 𝑖 (Caswell, 2001). 170 

 171 

Tuljapurkar’s approximation and measures of demographic buffering 172 

The metrics used to quantify demographic buffering are derived from Tuljapurkar’s 173 

approximation (Tuljapurkar, 1982, 1989, 1990). This approximation (Eq. 2) quantifies the 174 

degree to which a population’s collection of demographic rates across time contribute to its 175 

long-run stochastic population growth rate.  176 

(Eq. 2)   log(𝜆𝑠) ≈ log(𝜆1) −
1

2
 [𝑉𝑠 + 𝑉𝑐] . 177 

The approximation is calculated by subtracting the summed impact of temporal variance of 178 

these demographic rates (𝑉𝑠, Eq. 3) and within-time step covariance between demographic rates 179 

(𝑉𝑐, Eq. 4) of demographic rates from the logged population growth rate associated with the 180 
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arithmetic mean matrix – i.e., the MPM constructed through element-by-element arithmetic 181 

means along the time series [log(𝜆1)]. 182 

(Eq. 3)   𝑉𝑠 = ∑ 𝑒𝑖𝑗
2 𝐶𝑉𝑖𝑗

2
𝑖𝑗  . 183 

(Eq. 4)   𝑉𝑐 = ∑ 𝑒𝑖𝑗𝑒𝑘𝑙 [
cov(𝑎𝑖𝑗,𝑎𝑘𝑙)

𝑎𝑖𝑗̅̅ ̅̅  𝑎𝑘𝑙̅̅ ̅̅ ̅
]𝑖𝑗≠𝑘𝑙  . 184 

Both 𝑉𝑠 and 𝑉𝑐 are calculated using the elasticities of 𝜆1 in response to demographic rates from 185 

the mean MPM (𝑒𝑖𝑗)1. Additionally, 𝑉𝑠 measures the impact of variance using the squared 186 

coefficient of variance of individual demographic rates (𝐶𝑉𝑖𝑗
2), and 𝑉𝑐 quantifies the impact of 187 

the covariances between demographic rates by dividing the within-time step covariance of 188 

demographic rates [cov(𝑎𝑖𝑗, 𝑎𝑘𝑙)] by the product of their means (𝑎𝑖𝑗̅̅ ̅̅  𝑎𝑘𝑙̅̅ ̅̅ ). 189 

 190 

Four measures of demographic buffering 191 

The first measure of demographic buffering is a correlation-based approach. As illustrated by 192 

Pfister (1998) – the seminal paper on demographic buffering – one strategy by which a 193 

population can reduce 𝑉𝑠 (Eq. 3) is by having a negative covariance between the elasticities of 194 

population growth rate associated with the mean MPM (𝑒𝑖𝑗) and the temporal coefficient of 195 

variance values of said demographic rates (𝐶𝑉𝑖𝑗). In turn, this first measure of demographic 196 

buffering (𝜌) is a calculation of the covariance between 𝑒𝑖𝑗
2  and 𝐶𝑉𝑖𝑗

2 [i.e., cov(𝑒𝑖𝑗
2 , 𝐶𝑉𝑖𝑗

2) = 𝜌]. 197 

This negative covariance in 𝜌 would mean that the demographic rates that proportionally vary 198 

the most through time in population in fact have the least impact on the overall performance of 199 

the population, as quantified elasticities of 𝜆1, whilst the most important demographic rates 200 

 
1 Elasticities quantify the proportional contribution of underlying demographic rates to changes in population 

growth rate – i.e., 𝑒𝑖𝑗 =
𝑎𝑖𝑗

𝜆

𝜕𝜆

𝜕𝑎𝑖𝑗
 (De Kroon et al., 1986). 
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would be proportionately stable over time. Out of all the possible measures of demographic 201 

buffering, this correlation-based approach is the most commonly used (Hilde et al., 2020). 202 

 The second and third measures of demographic buffering use the values directly from 203 

the second-term of Tuljapurkar’s approximation. The second measure of demographic 204 

buffering quantifies the impact of temporal variance in demographic rates (𝑉𝑠, Eq. 3). The third 205 

measure of demographic buffering sums the impact of demographic rate variance and within-206 

timestep covariance (𝑉𝑠 + 𝑉𝑐, Eq. 3,4). 207 

 The fourth measure of demographic buffering uses the summation of stochastic 208 

elasticities of variance. The summation of stochastic elasticities of variance (∑ 𝐸𝑎𝑖𝑗

𝜎2
) represents 209 

the degree to which proportional increases in demographic rate variance negatively impacts 𝜆𝑠. 210 

In turn, we can numerically represent ∑ 𝐸𝑎𝑖𝑗

𝜎2
 as, 211 

(Eq. 5)  ∑ 𝐸𝑎𝑖𝑗

𝜎2
= ∑ [

var(𝑎𝑖𝑗)

𝜆𝑠
∗

𝜆𝑠

∗𝑎𝑖𝑗
−𝜆𝑠

0.00001∗var(𝑎𝑖𝑗)
].  212 

As per Haridas & Tuljapurkar (2005), we can rewrite Tuljapurkar’s approximation (Eq. 2) as, 213 

(Eq. 6)  log(𝜆𝑠) ≈ log(𝜆1) −
1

2
 [∑ 𝐸𝑎𝑖𝑗

𝜎2
]. 214 

Thus, we define the fourth measure of demographic buffering as ∑ 𝐸𝑎𝑖𝑗

𝜎2
. 215 

 216 

Testing for efficacy in measures of demographic buffering 217 

To test which measures of demographic buffering are effective, and the degree to which they 218 

are effective, we ran three specific tests.  219 

 We tested H1, that the different measures of demographic buffering would offer 220 

different values for the same populations, in two steps. First, we quantified the degree of 221 
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demographic buffering associated with each measure of all 𝑛 size classes of the 𝑛 × 𝑛 222 

discretised IPM, one size class at a time. Second, we quantified the correlation of these values 223 

for all four species. If the measures of demographic buffering are distinct, different correlation 224 

patterns of the measures should emerge across the four examined species. 225 

The second and third tests involved counterfactual simulations of the four species. Both 226 

simulations involved stabilizing the demographic rates of an individual size class (i.e., 𝑗) 227 

toward their arithmetic mean across a simulated timeseries of 1,000 timesteps. This 228 

stabilization approach tests a key assumption of measures of demographic buffering: whether 229 

the degree to which a stage class is demographically buffered implicates the degree to which 230 

the whole population would benefit from the stabilization of demographic rates in said stage 231 

class. If a measure of demographic buffering is effective, we predict a positive relationship 232 

between the degree of stage specific demographic buffering and the degree to which the 233 

population benefits from the stabilization of demographic rates in each stage class along the 234 

life cycle of the species. 235 

 To test H2, that there is a strong negative relationship between the degree of buffering 236 

associated with an individual stage along an ontogeny and the improvement in population 237 

growth associated with the stabilization of demographic rates associated with said stage (i.e., 238 

Δ𝜆𝑠), we used a counterfactual approach. Specifically, we stabilized the demographic rates of 239 

each size class one at a time, whilst leaving the demographic rates of all other stages to vary 240 

through time. After running 1,000 simulations of the stabilized population timeseries, the mean 241 

stochastic population growth rate of the stabilized population was calculated. The difference 242 

between the stabilized stochastic population growth rate and the stochastic population growth 243 

rate of the non-stabilized population timeseries was calculated (i.e., Δ𝜆𝑠). Subsequently, 244 

measures of Δ𝜆𝑠 were regressed against each measure of stage-specific demographic buffering 245 
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(i.e., 𝜌, 𝑉𝑠, 𝑉𝑠 + 𝑉𝑐 and ∑ 𝐸𝑎𝑖𝑗

𝜎2
). The degree to which Δ𝜆𝑠 and the measures of stage-specific 246 

demographic buffering negatively covary corresponds to the efficacy of the individual 247 

measures of demographic buffering – i.e., stabilizing demographic rates in the least buffered 248 

stages producing greater Δ𝜆𝑠 values than more buffered stages. Negative covariances were 249 

assessed using Spearman’s 𝜌 correlations with significance attributed to p < 0.05. 250 

 To test H3, that the stabilization of demographic rates informed by size-class specific 251 

demographic buffering distributions would yield a significantly higher Δ𝜆𝑠 than a random 252 

stabilization of demographic rates, we used another counterfactual approach. Specifically, we 253 

stabilized the demographic rates relative to their measures of stage-specific demographic 254 

buffering. In other words, if a stage class (𝑗) were the least demographically buffered for a 255 

specific measure of demographic buffering (e.g., ∑ 𝐸𝑎𝑖𝑗

𝜎2
), that stage class would be stabilized 256 

to its arithmetic mean. However, if a stage class were the most demographically buffered, the 257 

timeseries would resemble the non-stabilized population timeseries. For intermediate levels of 258 

demographic buffering, the population’s timeseries of demographic rates was set to the 259 

weighted average of the stabilized and non-stabilized population timeseries, relative to the 260 

percentile the stage is demographically buffered (for more details, see Supplementary 261 

Methods). To test for efficacy, we used a permutation approach. Specifically, we simulated 262 

10,000 random distributions of demographic buffering and stabilized the timeseries of 263 

demographic rates relative to these random distributions. This resulted in a null distribution of 264 

how an ineffective measure of demographic buffering may stabilize the system. To test whether 265 

the measures of demographic buffering are effective, we identified the 95th percentile within 266 

the null distribution and attributed efficacy to any measure that was consistently greater than 267 

the 95th percentile across all four species. 268 

 269 
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RESULTS 270 

Test 1: Identifying differences in the measures of demographic buffering across ontogeny 271 

In the first test, we aimed to identify whether the four measures of demographic buffering offer 272 

similar or distinct inferences across the four examined species. For this, we analysed the 273 

correlation structure of each measure of demographic buffering structured across ontogeny and 274 

found heterogeneity across the four species, thus supporting of H1 (Fig. 1). These differences 275 

are demonstrated by the differences in correlation patterns across the four species. 276 

Interestingly, the only pairwise combination of demographic buffering measures that offered a 277 

highly stereotyped correlation structure was 𝑉𝑠 and 𝑉𝑠 + 𝑉𝑐. These results are also mirrored with 278 

a principal component analysis of the measures of demographic buffering across the four 279 

species (Supplementary Fig. 1). 280 

 281 

 282 

 283 

 284 

 285 
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 286 

 287 

Figure 1: Heterogeneity in the measures of demographic buffering. Here, we show the 288 
correlation structure of four measures of demographic buffering structured across ontogeny for 289 

all four plant species. The four measures are: Spearman’s 𝜌 coefficient correlating elasticities 290 

and 𝐶𝑉 values associated with individual demographic rates, 𝑉𝑠 which quantifies the impact of 291 

demographic rate variance on population growth using Tuljapurkar’s approximation, 𝑉𝑠 + 𝑉𝑐 292 

which quantifies the impact of demographic rate variance and covariances on population 293 
growth using Tuljapurkar’s approximation and the summed stochastic elasticities of variance 294 

(∑ 𝐸𝑎𝑖𝑗

𝜎2
). The numbers in the centre of the cells represent the Spearman’s 𝜌 coefficient 295 

associated with pairwise combinations of the demographic buffering measures. Redder (bluer) 296 

tones correspond to more positive (negative) correlations. 297 

 298 

 299 

 300 

 301 

 302 
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Test 2: Testing for efficacy by stabilizing demographic rates across individual stages 303 

In the second test, we quantified the efficacy in each measure of demographic buffering. 304 

Specifically, we hypothesized (H2) that individual simulations of each species, where the 305 

demographic rates of each stage were stabilized (i.e., re-parameterized to be constant through 306 

time) one stage at a time, would lead to a negative relationship between the degree of buffering 307 

associated with a specific stage and  Δ𝜆𝑠. The rationale for this hypothesis is the stabilization 308 

of demographic rates in individual stages should have a larger positive effect in the least 309 

buffered stages than in more buffered stages. Of the four different methods for calculating 310 

demographic buffering, only ∑ 𝐸𝑎𝑖𝑗

𝜎2
 generated negative relationships between degree of 311 

buffering and Δ𝜆𝑠 across the four species (Spearman’s 𝜌, p < 0.05; Fig. 2). The other metrics 312 

(i.e., 𝜌, 𝑉𝑠 and 𝑉𝑠 + 𝑉𝑐) only generated negative relationships between degree of buffering and  313 

Δ𝜆𝑠 in Berberis thunbergii and Carlina vulgaris (Spearman’s 𝜌, p < 0.05; Fig. 2). In turn, the 314 

second test indicates ∑ 𝐸𝑎𝑖𝑗

𝜎2
 is the only measure of demographic buffering that is predictably 315 

effective across all four examined species.   316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 
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 325 

 326 

Figure 2: Stabilization of demographic rates across the life cycle of four examined species 327 

identifies ∑ 𝑬𝒂𝒊𝒋
𝝈𝟐

 as an effective measure of demographic buffering. Here, the results from 328 

the simulations where demographic rates were stabilized for stages one at a time are shown – 329 
rows indicate species whilst columns represent the different measures of demographic 330 

buffering. The four measures are: Spearman’s 𝜌 coefficient correlating elasticities and 𝐶𝑉 331 

values associated with individual demographic rates, 𝑉𝑠 which quantifies the impact of 332 

demographic rate variance on population growth using Tuljapurkar’s approximation, 𝑉𝑠 + 𝑉𝑐 333 
which quantifies the impact of demographic rate variance and covariances on population 334 
growth using Tuljapurkar’s approximation and the summed stochastic elasticities of variance 335 

(∑ 𝐸𝑎𝑖𝑗

𝜎2
). The x-axis of each graph represents the degree of buffering from least buffering (on 336 

the left) to the most buffered (on the right). The y-axis represents the change in stochastic 337 

population growth rate (Δ𝜆𝑠) due to the stabilization of demographic rates in the associated 338 

stage. Significant negative relationships (assessed by Spearman’s 𝜌, p < 0.05) are shown with 339 
red asterisks. 340 

 341 

 342 

 343 

 344 

 345 
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Test 3: Testing for efficacy by stabilizing demographic rates weighted by the distribution of 346 

demographic buffering across ontogeny 347 

In the third test, we quantified the efficacy in each measure of demographic buffering. 348 

Specifically, we test (H3) whether stabilizing demographic rates relative to the distribution of 349 

demographic buffering across ontogeny outperforms stabilization measures that were not 350 

informed by demographic buffering measures.  From these simulations, we found ∑ 𝐸𝑎𝑖𝑗

𝜎2
 is the 351 

only measure of demographic buffering that performs better than chance in improving the 352 

population’s stochastic growth rate (Δ𝜆𝑠) (Fig. 3). This is shown by all Δ𝜆𝑠 values associated 353 

with ∑ 𝐸𝑎𝑖𝑗

𝜎2
 being greater than the 95th percentile of the simulated null distribution. 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 
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 366 

Figure 3: Stabilization of demographic rates weighted by the distribution of buffering 367 

across ontogeny indicates ∑ 𝑬𝒂𝒊𝒋
𝝈𝟐

 is an effective measure of demographic buffering. Here, 368 

the results for simulations where demographic rate variances are stabilized relative to each 369 

measure of demographic buffering are shown. The four measures are: Spearman’s 𝜌 coefficient 370 

correlating elasticities and 𝐶𝑉 values associated with individual demographic rates, 𝑉𝑠 which 371 

quantifies the impact of demographic rate variance on population growth using Tuljapurkar’s 372 

approximation, 𝑉𝑠 + 𝑉𝑐 which quantifies the impact of demographic rate variance and 373 
covariances on population growth using Tuljapurkar’s approximation and the summed 374 

stochastic elasticities of variance (∑ 𝐸𝑎𝑖𝑗

𝜎2
). The grey histograms represent the null distributions 375 

(i.e., populations stabilized by a random buffering distribution), and the grey vertical line 376 

represents the 95th percentile of the null distribution. In this test, efficacy is attributed to a 377 
measure of demographic buffering that is consistently greater than the 95th percentile across all 378 

four species (i.e., ∑ 𝐸𝑎𝑖𝑗

𝜎2
). The patterned vertical lines represent values of Δ𝜆𝑠 for populations 379 

stabilized by the individual measures of demographic buffering. 380 

 381 

 382 

 383 

 384 

 385 
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DISCUSSION 386 

In this study, we aimed to test for efficacy across four measures of demographic buffering. To 387 

test for efficacy, we used four IPMs associated with plants with different life histories [i.e., one 388 

herbaceous perennial (Berberis thunbergii, Merow et al., 2017), two tropical perennials 389 

(Calathea crotalifera and Heliconia tortuosa, (Westerband & Horvitz, 2017)) and a biennial 390 

plant (Carlina vulgaris, Rees & Ellner, 2009)]. Collectively,  our findings identify the 391 

summation of stochastic elasticities of variance (∑ 𝐸𝑎𝑖𝑗

𝜎2
) as the most effective measure of 392 

demographic buffering over three other metrics: Spearman’s 𝜌 coefficient correlating 393 

elasticities and 𝐶𝑉 values associated with individual demographic rates, 𝑉𝑠 which quantifies 394 

the impact of demographic rate variance on population growth using Tuljapurkar’s 395 

approximation and 𝑉𝑠 + 𝑉𝑐 which quantifies the impact of demographic rate variance and 396 

covariances on population growth using Tuljapurkar’s approximation. This efficacy is 397 

supported by three independent tests. In test 1, the stage-based measures of demographic 398 

buffering were shown to have different correlation structures across the four species (Fig. 1, 399 

Supplementary Fig. 1). This disparity of results indicates the four measures are not measuring 400 

demographic buffering in the same manner. In tests 2 and 3, the measures differed in their 401 

efficacy to infer a population’s response to simulations of reduced demographic rate variance 402 

(Figs. 2,3). Specifically, only ∑ 𝐸𝑎𝑖𝑗

𝜎2
 was consistently effective across all four species in both 403 

tests 2 and 3. 404 

 Our findings have broad implications for past and future studies of demographic 405 

buffering. Previous studies have primarily focused on the correlation method (i.e., 𝜌) for 406 

studies of individual populations (Hilde et al., 2020) or comparative approaches (McDonald et 407 

al., 2017) with few studies using ∑ 𝐸𝑎𝑖𝑗

𝜎2
 (but see Morris et al., 2008). This is problematic as 408 

tests 2 and 3 show stage-based conservation measures based on the correlation approach to be 409 
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ineffective – especially in contrast to  ∑ 𝐸𝑎𝑖𝑗

𝜎2
. While previous work has shown the correlation-410 

based approach to (1) have a phylogenetic signal across plant species (McDonald et al., 2017), 411 

(2) signal buffering versus labile strategies in variable environments (Li & Ramula, 2015) and 412 

(3) potentially be an axis of life history variation (Salguero-Gómez, 2021), we suggest these 413 

inferences might not extend to structured conservation measures of populations in variable 414 

environments. To fully connect our findings to previous literature, future work should focus on 415 

reanalysing results from broad comparative analyses (McDonald et al., 2017; Morris et al., 416 

2008) using multiple measures – especially ∑ 𝐸𝑎𝑖𝑗

𝜎2
 – to test previous findings. 417 

 Whilst these findings offer new insights to the efficacy of demographic buffering 418 

measures, inferences drawn from these findings have important limitations. First, the degree to 419 

which the generality of these findings are constrained to certain life histories remains unknown. 420 

Whilst here we used species with different life history strategies (i.e., one herbaceous perennial, 421 

two tropical perennials and one biennial), the extent to which these findings may apply to more 422 

unique life histories (e.g., eusocial insects, migratory megafauna or semelparous fish) is 423 

unknown and open to future research. Second, our results indicate that the measures of 424 

demographic buffering are in fact different and should, therefore, be treated as such. This is 425 

not to say that only ∑ 𝐸𝑎𝑖𝑗

𝜎2
 has a place in the buffering literature. For example, important 426 

research can – and has – been directed at other terms from Tuljapurkar’s approximation to infer 427 

population responses to changes in environmental stochasticity (Compagnoni et al., 2016, 428 

2021; Evers et al., 2023; Paniw et al., 2018). And third, the test for efficacy is stage specific, 429 

because structured populations often incur stage structured perturbations. For example, hunting 430 

and extreme events can perturb demographic processes unevenly across a life cycle (Darimont 431 

& Child, 2014; von Takach Dukai et al., 2018). However, whilst our approach is more in 432 

keeping with the ecological dynamics of structured populations, the theory around 433 
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demographic buffering is agnostic of stage specific perturbations (Hilde et al., 2020; Morris et 434 

al., 2008; Pfister, 1998; but see Gaillard et al., 1998). Therefore, the inefficacy of 𝜌, 𝑉𝑠 and 435 

𝑉𝑠 + 𝑉𝑐 can only be attributed to stage explicit inferences of demographic buffering, not 436 

interpretations at the level of the whole population (Rodríguez-Caro et al., 2021) or across 437 

species (Pfister, 1998). 438 

 In the future, demographic buffering could be connected to two previously disparate 439 

corners of ecology and evolution. First, variance in demographic rates is not the sole driver of 440 

population extinction and persistence in variable environments (Capdevila et al., 2020; 441 

Hastings et al., 2018; McDonald et al., 2016). Indeed, transient dynamics, temporary 442 

fluctuations in populations that decay over time due to progressive shifts toward a stable 443 

age/stage/size structure, are also at play (Stott et al., 2011, 2012; Tuljapurkar et al., 2023). 444 

Recent research has shown the transient portfolio of populations in response to disturbance to 445 

have broad impacts on population trajectories (Capdevila et al., 2020; Ezard et al., 2010; 446 

Jackson et al., 2019; McDonald et al., 2016; White et al., 2013). Furthermore, the transient 447 

portfolio can be the mechanism by which the population is able to persist (Hansen et al., 2019) 448 

and be a key contributor to the variance of population growth rate overtime (Jelbert et al., 2019; 449 

McDonald et al., 2016). Unfortunately, previous papers focusing on demographic buffering 450 

have been agnostic to the transient dynamics in their populations of interest – thereby making 451 

this a key area for future work. Second, the link between demographic buffering and life history 452 

evolution is incomplete. The components that build all measures of demographic buffering are 453 

in some way connected to the sensitivities or elasticities of population growth rate (𝜆) in 454 

response to changes in demographic rates. These sensitivities and elasticities are often used to 455 

infer ecological processes (e.g., demographic buffering) but also selection gradients (Brodie et 456 

al., 1995; Caswell, 1978). Whilst previous work has implicated demographic buffering as a life 457 

history strategy (Jongejans et al., 2010; Koons et al., 2009; Rodríguez-Caro et al., 2021), there 458 
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is no evidence for selection acting on any measure of demographic buffering in a natural 459 

population. In turn, future work must be aimed at filling this gap in knowledge.  460 

In conclusion, we have shown: (1) the efficacy of ∑ 𝐸𝑎𝑖𝑗

𝜎2
 as a measure of demographic 461 

buffering, (2) how different measures of demographic buffering report different values for the 462 

same populations of interest and (3) the utility of counterfactual simulations to test for efficacy 463 

in metrics of interest. This work supports previous uses of ∑ 𝐸𝑎𝑖𝑗

𝜎2
 (Gascoigne, Kajin, 464 

Tuljapurkar, et al., 2023; Morris et al., 2008; Santos et al., 2023; Westerband & Horvitz, 2017) 465 

and opens new avenues of research to both confirm previous findings and extend ideas 466 

surrounding demographic buffering to other areas of ecology and evolution. 467 
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SUPPLEMENTARY METHODS 704 

To perform the counterfactual simulations used in test 3, we stabilized the demographic rates 705 

associated with each stage (i.e., where the demographic rate is 𝑎𝑖𝑗 and the focal stage is 𝑗) 706 

relative to the degree of buffering associated with each stage (𝐷𝐵𝑗). Note, here 𝐷𝐵𝑗 represents 707 

the degree of buffering associated with each measure of demographic buffering (i.e., 𝜌, 𝑉𝑠, 𝑉𝑠 +708 

𝑉𝑐 and ∑ 𝐸𝑎𝑖𝑗

𝜎2
) individually. The method by which we stabilized demographic rates is as 709 

follows. 710 

First, we calculated the distribution of demographic buffering across ontogeny and 711 

scaled the values between 0 and 1. The scaled values (𝛽𝑗) were calculated as:  712 

𝛽𝑗 =
𝐷𝐵𝑗−min(𝐷𝐵𝑗)

max(𝐷𝐵𝑗)−min(𝐷𝐵𝑗)
. 713 

This scaling means that a 𝛽𝑗 value of 0 is the least buffered stage whilst a 𝛽𝑗 value of 1 is the 714 

most buffered stage.2 715 

Second, we used the original time series of demographic rates (𝑎𝑖𝑗,𝑡) and the 𝛽𝑗 716 

distribution to generate a new series of demographic rates (𝑎𝑖𝑗,𝑡
∗ ) that are stabilized toward the 717 

mean demographic rate (𝑎𝑖𝑗̅̅ ̅̅ ) proportional to 𝛽𝑗: 718 

𝑎𝑖𝑗,𝑡
∗ = 𝛽𝑗(𝑎𝑖𝑗,𝑡) + (1 − 𝛽𝑗)(𝑎𝑖𝑗̅̅ ̅̅ ). 719 

In other words, if a stage class (𝑗) were the least demographically buffered for a specific 720 

measure of demographic buffering (∑ 𝐸𝑎𝑖𝑗

𝜎2
), that stage class would be stabilized to its 721 

arithmetic mean. However, if a stage class were the most demographically buffered, the time 722 

series would resemble the non-stabilized population time series. 723 

 724 

 725 

 726 

 
2 It is worth noting that the relationship between the valued inferred from the measure of demographic buffering 

and degree of buffering varies across each measure. Specifically, 𝜌, 𝑉𝑠 and 𝑉𝑠 + 𝑉𝑐  have a negative relationship 

with degree of demographic buffering. However, ∑ 𝐸𝑎𝑖𝑗
𝜎2

 has a positive relationship with demographic buffering. 

In turn, all values were transformed to be both positive (as 𝜌 and ∑ 𝐸𝑎𝑖𝑗
𝜎2

 can have negative values) and have a 

positive relationship with the inferred degree of demographic buffering. 
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SUPPLEMENTARY FIGURES 727 

 728 

 729 

 730 

Supplementary Figure 1: Heterogeneity in the measures of demographic buffering. Here 731 

we show the covariance structure, via a principal component analysis (PCA), of four different 732 

measures of demographic buffering, structured across ontogeny, for four species of plants. The 733 

four measures are: Spearman’s 𝜌 coefficient correlating elasticities and 𝐶𝑉 values associated 734 

with individual demographic rates, 𝑉𝑠 which quantifies the impact of demographic rate variance 735 

on population growth using Tuljapurkar’s approximation, 𝑉𝑠 + 𝑉𝑐 which quantifies the impact 736 

of demographic rate variance and covariances on population growth using Tuljapurkar’s 737 

approximation and the summed stochastic elasticities of variance (∑ 𝐸𝑎𝑖𝑗

𝜎2
). Prior to running the 738 

PCA, all values were scaled and centred. The points represent buffering values associated with 739 

individual stages across the life history of each species. The arrows represent the covariance 740 

structure of each measure of demographic buffering. It is worth noting that the arrows for 𝑉𝑠 741 

and 𝑉𝑠 + 𝑉𝑐 are almost perfectly overlapping in the plots for Calathea crotalifera and Heliconia 742 

tortuosa. 743 

 744 

 745 
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SUPPLEMENTARY TABLES 746 

Supplementary Table 1: Formulas, regressions and parameters used to construct the 747 

IPMs for Berberis thunbergii. 748 

 749 

Construction Model Parameter 

Density-independent environmentally 

stochastic IPM 

𝑛(𝑧′ , 𝑡 + 1) =  ∫ 𝐾(𝑧′, 𝑧, 𝜓𝑡)𝑛(𝑧, 𝑡)𝑑𝑧
𝜔

𝛼

 
𝛼 = 2 

𝜔 = 25 

𝑧 = log(plant area) 

𝜓𝑡 =  {𝑇𝑡, 𝑃𝑡, 𝑃𝐴𝑅𝑡, 𝑁𝑡, 𝑝𝐻𝑡} 𝜓 = an array containing 

climate values 

K-kernel 𝐾(𝑧′, 𝑧, 𝜓𝑡) =  𝑃(𝑧′ , 𝑧, 𝜓𝑡) +  𝐹(𝑧′, 𝑧, 𝜓𝑡)   

Sub-kernels 

P-subkernel 𝑃(𝑧′, 𝑧, 𝜓𝑡) = 𝑠(𝑧, 𝜓𝑡) ∗ 𝑔(𝑧′ , 𝑧, 𝜓𝑡)  

F-subkernel 
𝐹(𝑧′, 𝑧, 𝜓𝑡) = 𝑓𝑠(𝑧) ∗ 𝑓𝑙𝑝(𝑧) ∗ 𝑔𝑒𝑟𝑚𝑝(𝜓𝑡)

∗ 𝑠𝑑𝑙𝑠(𝑧′) 

 

Demographic 

functions 

Survival 

logit(𝑠(𝑧, 𝜓𝑡)) = 𝑠𝑖 + 𝑠𝑧 ∗ 𝑧 + 𝑠𝑇 ∗ 𝑇𝑡 + 𝑠𝑃 ∗ 𝑃𝑡

+ 𝑠𝑃𝐴𝑅 ∗ 𝑃𝐴𝑅𝑡 + 𝑠𝑁 ∗ 𝑁𝑡 + 𝑠𝑝𝐻

∗ 𝑝𝐻𝑡 

𝑠𝑖 = -11.8 

𝑠𝑧 = 1.05 

𝑠𝑇 = 1.11 

𝑠𝑃 = 0.22 

𝑠𝑃𝐴𝑅 = -0.52 

𝑠𝑁 = -0.1 

𝑠𝑝𝐻 = 0.11 

Growth 

𝑔(𝑧′ , 𝑧, 𝜓𝑡) = dnorm(𝑧′, 𝑔𝜇(𝑧, 𝜓𝑡), 𝑔𝑠𝑑) 𝑔𝑠𝑑 = 1.48 

𝑔𝜇(𝑧, 𝜓𝑡) =  𝑔𝑧 ∗ 𝑧 + 𝑔𝑇 ∗ 𝑇𝑡 + 𝑔𝑃 ∗ 𝑃𝑡 + 𝑔𝑃𝐴𝑅

∗ 𝑃𝐴𝑅𝑡 + 𝑔𝑁 ∗ 𝑁𝑡 + 𝑔𝑝𝐻 ∗ 𝑝𝐻𝑡 

𝑔𝑧 = 1.02 

𝑔𝑇 = 0.65 

𝑔𝑃 = 0.02 

𝑔𝑃𝐴𝑅  = 0.59 

𝑔𝑁 = -0.04 

𝑔𝑝𝐻 = 0.4 

Reproduction 

𝑓𝑠(𝑧) =  exp(𝑠𝑒𝑒𝑑𝑖 + 𝑠𝑒𝑒𝑑𝑧 ∗ 𝑧) 𝑠𝑒𝑒𝑑𝑖 = -23.01 

𝑠𝑒𝑒𝑑𝑧 = 1.32 

logit(𝑓𝑙𝑝(𝑧)) =  𝑓𝑙𝑖 + 𝑓𝑙𝑧 ∗ 𝑧 𝑓𝑙𝑖 = -33.43 

𝑓𝑙𝑧 = 1.68 

logit(𝑔𝑒𝑟𝑚𝑝(𝜓𝑡)) =  𝑔𝑒𝑟𝑚𝑖 + 𝑔𝑒𝑟𝑚𝑇 ∗ 𝑇𝑡

+ 𝑔𝑒𝑟𝑚𝑃 ∗ 𝑃𝑡 + 𝑔𝑒𝑟𝑚𝑃𝐴𝑅

∗ (𝑃𝐴𝑅𝑡/0.018) + 𝑔𝑒𝑟𝑚𝑝𝐻

∗ 𝑝𝐻𝑡 

𝑔𝑒𝑟𝑚𝑖 = -11.8 

𝑔𝑒𝑟𝑚𝑇 = 0.51 

𝑔𝑒𝑟𝑚𝑃 = -0.02 

𝑔𝑒𝑟𝑚𝑃𝐴𝑅 = -0.02 

𝑔𝑒𝑟𝑚𝑝𝐻 = 0.26 

𝑠𝑑𝑙𝑠(𝑧′) = dnorm(𝑧′, 𝑠𝑑𝑙𝜇 , 𝑠𝑑𝑙𝑠𝑑) 𝑠𝑑𝑙𝜇 = 10.23 

𝑠𝑑𝑙𝑠𝑑 = 1.581 

Environment 

values 

Mean temperature in 

warmest month 
𝑇 ~ N(0, 1.5)  

Mean May 

precipitation 
𝑃 ~ N(0, 1.5)  

PAR 𝑃𝐴𝑅 ~ N(0, 1.5)  

Soil Nitrogen 𝑁 ~ N(0, 1.5)  

Soil pH 𝑝𝐻 ~ N(0, 1.5)  

 750 

 751 

 752 
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Supplementary Table 2: Formulas, regressions and parameters used to construct the 753 

IPMs for Calathea crotalifera. 754 

 755 

Construction Model Parameter 

Density-independent environmentally 

stochastic IPM 

𝑛(𝑧′ , 𝑡 + 1) =  ∫ 𝐾(𝑧′, 𝑧, 𝜓𝑡)𝑛(𝑧, 𝑡)𝑑𝑧
𝜔

𝛼

 
𝛼 = 0.57 

𝜔 = 11.9 

𝑧 = leaf area 

𝜓𝑡 =  {𝑗𝑡 , 𝐴𝑡} 𝜓 = an array 

containing climate 

values 

K-kernel 𝐾(𝑧′, 𝑧, 𝜓𝑡) =  𝑃(𝑧′ , 𝑧, 𝑗𝑡 , 𝐴𝑡) +  𝐹(𝑧′, 𝑧, 𝑗𝑡)   

Sub-kernels 

P-kernel 𝑃(𝑧′, 𝑧, 𝑗𝑡 , 𝐴𝑡) = 𝑠(𝑧, 𝑗𝑡) ∗ 𝑔(𝑧′ , 𝑧, 𝑗𝑡 , 𝐴𝑡)  

F-kernel 

𝐹(𝑧′, 𝑧, 𝑗𝑡) = 𝑟𝑝(𝑧, 𝑗𝑡) ∗ 𝑟𝑜(𝑧, 𝑗𝑡) ∗ 𝑛𝑓 ∗ 𝑛𝑠 ∗ 𝑠𝑠(𝑗𝑡)

∗ 𝑠𝑑𝑙𝑠(𝑗𝑡) ∗ 𝑠𝑑𝑙𝑠𝑖𝑧𝑒(𝑧′, 𝑗𝑡) 

𝑛𝑓 = 23 

𝑛𝑠 = 3 

 

Demographic 

functions 

Survival 

logit(𝑠(𝑧, 𝜓𝑡)) = 𝑠𝑖 + 𝑠𝑧 ∗ 𝑧 + 𝑠𝑗 ∗ 𝑗𝑡 + 𝑠𝑧∗𝑗 ∗ 𝑧 ∗ 𝑗𝑡 𝑠𝑖 = -2.74 

𝑠𝑧 = 0.95 

𝑠𝑗  = 0.07 

𝑠𝑧∗𝑗 = -0.02 

Growth 

𝑔(𝑧′, 𝑧, 𝑗𝑡 , 𝐴𝑡) = dnorm(𝑧′, 𝑔𝜇(𝑧, 𝑗𝑡 , 𝐴𝑡), 𝑔𝑠𝑑) 𝑔𝑠𝑑 = 1.53 

𝑔𝜇(𝑧, 𝑗𝑡 , 𝐴𝑡) =  𝑔𝑖 + 𝑔𝑧 ∗ 𝑧 + 𝑔𝑗 ∗ 𝑗𝑡 + 𝑔𝐴 ∗ 𝐴𝑡

+ 𝑔𝑧∗𝑗 ∗ 𝑧 ∗ 𝑗𝑡 + 𝑔𝑧∗𝐴 ∗ 𝑧 ∗ 𝐴𝑡

+ 𝑔𝑗∗𝐴 ∗ 𝑗𝑡 ∗ 𝐴𝑡 + 𝑔𝑧∗𝑗∗𝐴 ∗ 𝑧 ∗ 𝑗𝑡

∗ 𝐴𝑡 

𝑔𝑖 = 0.76 

𝑔𝑧 = 0.9 

𝑔𝑗  = 0.03 

𝑔𝐴 = 0.006 

𝑔𝑧∗𝑗  = -0.001 

𝑔𝑧∗𝐴 = 0.00045 

𝑔𝑗∗𝐴 = -0.0052 

𝑔𝑧∗𝑗∗𝐴 = 0.00035 

Reproduction 

logit(𝑟𝑝(𝑧, 𝑗𝑡)) =  𝑟𝑝,𝑖 + 𝑟𝑝,𝑧 ∗ 𝑧 + 𝑟𝑝,𝑗 ∗ 𝑗𝑡 + 𝑟𝑝,𝑧∗𝑗

∗ 𝑧 ∗ 𝑗𝑡 

𝑟𝑝,𝑖 = -13.23 

𝑟𝑝,𝑧 = 1.401 

𝑟𝑝,𝑗  = -0.213 

𝑟𝑝,𝑧∗𝑗  = 0.043 

𝑟𝑜(𝑧, 𝑗𝑡) = exp(𝑟𝑜,𝑖 + 𝑟𝑜,𝑧 ∗ 𝑧 + 𝑟𝑜,𝑗 ∗ 𝑗𝑡 + 𝑟𝑜,𝑧∗𝑗 ∗ 𝑧

∗ 𝑗𝑡)  

𝑟𝑜,𝑖 = -6.673 

𝑟𝑜,𝑧 = 0.829 

𝑟𝑜,𝑗 = 0.067 

𝑟𝑜,𝑧∗𝑗 = -0.007 

𝑠𝑠(𝑗𝑡 < 6) =  0.29 

𝑠𝑠(𝑗𝑡 ≥ 6) =  0.32 

 

𝑠𝑑𝑙𝑠(𝑗𝑡 < 6) =  0.14 

𝑠𝑑𝑙𝑠(𝑗𝑡 ≥ 6) =  0.95 

 

𝑠𝑑𝑙𝑠𝑖𝑧𝑒(𝑧′, 𝑗𝑡 < 6) =  dnorm(𝑧′, 3.08,0.54) 

𝑠𝑑𝑙𝑠𝑖𝑧𝑒(𝑧′, 𝑗𝑡 ≥ 6) =  dnorm(𝑧′, 2.88,1.4) 

 

Environment 

values 

Canopy openness* 𝑗 ~ N(3, 1.4)  

Photosynthetic rate* 𝐴 ~ N(6, 0.8)  

 756 

* In Westerband and Horvitz (2017), canopy openness (𝑗) and photosynthetic rate (𝐴) were 757 
modelled as random samples from a sequence of values or draws from a uniform distribution. 758 

Specifically canopy openness was realized at time 𝑡 as random draws from the sequence 759 

{1, 2, 3, 4, 5} whilst photosynthetic rate was realized at time 𝑡 as random draws from a uniform 760 

distruction (i.e., 𝐴 ~ U(5, 7)). However, since our manipulation of the environment involves 761 
explicitly changing the temporal variance of a series, we coerced the distributions into normal 762 
distributions with the same mean and reported variance of the original sampling distributions 763 

reported in Westerband and Horvitz (2017).  764 
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Supplementary Table 3: Formulas, regressions and parameters used to construct the 765 

IPMs for Carlina vulgaris. 766 

 767 

Construction Model Parameter 

Density-independent environmentally 

stochastic IPM 

𝑛(𝑧′ , 𝑡 + 1) =  ∫ 𝐾(𝑧′, 𝑧, 𝜓𝑡)𝑛(𝑧, 𝑡)𝑑𝑧
𝜔

𝛼

 
𝛼 = 1.5 

𝜔 = 5 

𝑧 = log(longest leaf 

length) 

𝜓𝑡 = an array 

containing the 

parameters associated 

with environmentally 

stochastic demographic 

functions 

K-kernel 𝐾(𝑧′, 𝑧, 𝜓𝑡) =  𝑃(𝑧′ , 𝑧, 𝜓𝑡) +  𝐹(𝑧′, 𝑧, 𝜓𝑡)   

Sub-kernels 

P-subkernel 𝑃(𝑧′, 𝑧, 𝜓𝑡) = 𝑝𝑠(𝑧, 𝜓𝑡) ∗ [1 − 𝑝𝑓(𝑧)] ∗ 𝑔(𝑧′ , 𝑧, 𝜓𝑡)  

F-subkernel 
𝐹(𝑧′, 𝑧, 𝜓𝑡) = 𝑝𝑠(𝑧, 𝜓𝑡) ∗ 𝑝𝑓(𝑧, 𝜓𝑡) ∗ 𝑓𝑛(𝑧)

∗ 𝑓𝑑(𝑧′, 𝜓𝑡) ∗ 𝑝𝑒 

𝑝𝑒 = 0.00095 

 

Demographic 

functions 

Size dynamics: 

Rosette growth and 

recruit size 

𝑔(𝑧′ , 𝑧, 𝜓𝑡) = dnorm(𝑧′, 𝑔𝜇(𝑧, 𝜓𝑡), 𝑔𝑠𝑑) 𝑔𝑠𝑑 = 0.29 

𝑔𝜇(𝑧, 𝜓𝑡) = 𝑔𝑖,𝑡 + 𝑔𝑧,𝑡(𝑧) 

𝑓𝑑,𝑡 =  dnorm(𝑧′, 𝑓𝜇 , 𝑓𝑠𝑑) 

𝑔𝑖 , 𝑟𝜇~MVN(μ, Σ) 

μ = (1.14, 3.16) 

Σ = (
0.037 0.041
0.041 0.075

) 

𝑔𝑧 ~ N(0.74, 0.13) 

𝑓𝑠𝑑 = 0.5 

 

Probability of 

survival 

logit(𝑝𝑠(𝑧, 𝜓𝑡)) =  𝑠𝑖 + 𝑠𝑧 ∗ 𝑧 𝑠𝑖 ~ N(-2.28, 1.16) 

𝑠𝑧 ~ N(0.90, 0.41) 

Probability of 

flowering 

logit(𝑓𝑙𝑝(𝑧, 𝜓𝑡)) =  𝑓𝑙𝑖 + 𝑓𝑙𝑧 ∗ 𝑧 𝑓𝑙𝑖 ~ N(-16.19, 1.03) 

𝑓𝑙𝑧 = 3.88 

Seed production 𝑓𝑛(𝑧) =  exp (𝐴 + 𝐵 ∗ z) 𝐴 = 1, 𝐵 = 2 

 768 

 769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 
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Supplementary Table 4: Formulas, regressions and parameters used to construct the 778 

IPMs for Heliconia tortuosa. 779 

 780 

Construction Model Parameter 

Density-independent environmentally 

stochastic IPM 

𝑛(𝑧′ , 𝑡 + 1) =  ∫ 𝐾(𝑧′, 𝑧, 𝜓𝑡)𝑛(𝑧, 𝑡)𝑑𝑧
𝜔

𝛼

 
𝛼 = 0.78 

𝜔 = 11.07 

𝑧 = leaf area 

𝜓𝑡 =  {𝑗𝑡 , 𝐴𝑡} 𝜓 = an array 

containing climate 

values 

K-kernel 𝐾(𝑧′, 𝑧, 𝜓𝑡) =  𝑃(𝑧′ , 𝑧, 𝑗𝑡 , 𝐴𝑡) +  𝐹(𝑧′, 𝑧, 𝑗𝑡)   

Sub-kernels 

P-kernel 𝑃(𝑧′, 𝑧, 𝑗𝑡 , 𝐴𝑡) = 𝑠(𝑧, 𝑗𝑡) ∗ 𝑔(𝑧′ , 𝑧, 𝑗𝑡 , 𝐴𝑡)  

F-kernel 

𝐹(𝑧′, 𝑧, 𝑗𝑡) = 𝑟𝑝(𝑧, 𝑗𝑡) ∗ 𝑟𝑜(𝑧, 𝑗𝑡) ∗ 𝑛𝑓 ∗ 𝑛𝑠 ∗ 𝑠𝑠(𝑗𝑡)

∗ 𝑠𝑑𝑙𝑠(𝑗𝑡) ∗ 𝑠𝑑𝑙𝑠𝑖𝑧𝑒(𝑧′, 𝑗𝑡) 

𝑛𝑓 = 37 

𝑛𝑠 = 2.5 

 

Demographic 

functions 

Survival 

logit(𝑠(𝑧, 𝜓𝑡)) = 𝑠𝑖 + 𝑠𝑧 ∗ 𝑧 + 𝑠𝑗 ∗ 𝑗𝑡 + 𝑠𝑧∗𝑗 ∗ 𝑧 ∗ 𝑗𝑡 𝑠𝑖 = -2.05 

𝑠𝑧 = 0.78 

𝑠𝑗  = -0.22 

𝑠𝑧∗𝑗 = 0.05 

Growth 

𝑔(𝑧′, 𝑧, 𝑗𝑡 , 𝐴𝑡) = dnorm(𝑧′, 𝑔𝜇(𝑧, 𝑗𝑡 , 𝐴𝑡), 𝑔𝑠𝑑) 𝑔𝑠𝑑 = 0.71 

𝑔𝜇(𝑧, 𝑗𝑡 , 𝐴𝑡) =  𝑔𝑖 + 𝑔𝑧 ∗ 𝑧 + 𝑔𝑗 ∗ 𝑗𝑡 + 𝑔𝐴 ∗ 𝐴𝑡

+ 𝑔𝑧∗𝑗 ∗ 𝑧 ∗ 𝑗𝑡 + 𝑔𝑧∗𝐴 ∗ 𝑧 ∗ 𝐴𝑡

+ 𝑔𝑗∗𝐴 ∗ 𝑗𝑡 ∗ 𝐴𝑡 + 𝑔𝑧∗𝑗∗𝐴 ∗ 𝑧 ∗ 𝑗𝑡

∗ 𝐴𝑡 

𝑔𝑖 = 2.6 

𝑔𝑧 = 0.56 

𝑔𝑗  = -1.55 

𝑔𝐴 = 0.44 

𝑔𝑧∗𝑗  = 0.18 

𝑔𝑧∗𝐴 = -0.034 

𝑔𝑗∗𝐴 = 0.014 

𝑔𝑧∗𝑗∗𝐴 = -0.0014 

Reproduction 

logit(𝑟𝑝(𝑧, 𝑗𝑡)) =  𝑟𝑝,𝑖 + 𝑟𝑝,𝑧 ∗ 𝑧 + 𝑟𝑝,𝑗 ∗ 𝑗𝑡 + 𝑟𝑝,𝑧∗𝑗

∗ 𝑧 ∗ 𝑗𝑡 

𝑟𝑝,𝑖 = -12.55 

𝑟𝑝,𝑧 = 1.527 

𝑟𝑝,𝑗  = 0.154 

𝑟𝑝,𝑧∗𝑗  = -0.013 

𝑟𝑜(𝑧, 𝑗𝑡) = exp(𝑟𝑜,𝑖 + 𝑟𝑜,𝑧 ∗ 𝑧 + 𝑟𝑜,𝑗 ∗ 𝑗𝑡 + 𝑟𝑜,𝑧∗𝑗 ∗ 𝑧

∗ 𝑗𝑡)  

𝑟𝑜,𝑖 = -1.009 

𝑟𝑜,𝑧 = 0.157 

𝑟𝑜,𝑗 = -0.382 

𝑟𝑜,𝑧∗𝑗 = 0.048 

𝑠𝑠(𝑗𝑡 < 6) =  0.15 

𝑠𝑠(𝑗𝑡 ≥ 6) =  0.2 

 

𝑠𝑑𝑙𝑠(𝑗𝑡 < 6) =  0.26 

𝑠𝑑𝑙𝑠(𝑗𝑡 ≥ 6) =  0.33 

 

𝑠𝑑𝑙𝑠𝑖𝑧𝑒(𝑧′, 𝑗𝑡 < 6) =  dnorm(𝑧′, 2.73, 0.71) 

𝑠𝑑𝑙𝑠𝑖𝑧𝑒(𝑧′, 𝑗𝑡 ≥ 6) =  dnorm(𝑧′, 2.34, 1.17) 

 

Environment 

values 

Canopy openness 𝑗 ~ N(3, 1.4)  

Photosynthetic rate 𝐴 ~ N(6.5, 0.8654937)  

 781 

* In Westerband and Horvitz (2017), canopy openness (𝑗) and photosynthetic rate (𝐴) were 782 

modelled as random samples from a sequence of values or draws from a uniform distribution. 783 

Specifically canopy openness was realized at time 𝑡 as random draws from the sequence 784 

{1, 2, 3, 4, 5} whilst photosynthetic rate was realized at time 𝑡 as random draws from a uniform 785 

distruction (i.e., 𝐴 ~ U(5, 8)). However, since our manipulation of the environment involves 786 
explicitly changing the temporal variance of a series, we coerced the distributions into normal 787 
distributions with the same mean and reported variance of the original sampling distributions 788 

reported in Westerband and Horvitz (2017).  789 


