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Abstract
Recently, researchers have begun studying the role that third-party arbitration may play in the evolution of cooperation.
Using the iterated prisoner’s dilemma (IPD), they show that arbitration can mitigate the negative effects of perception
errors on the stability of cooperative strategies. Open questions, both theoretical and empirical, however, remain. To
promote research on the role of third-party arbitration, we introduce an R package, IPDToolkit, which facilitates both
simulation of synthetic data and Bayesian analysis of empirical data. To address theoretical questions, IPDToolkit
provides a Monte Carlo simulation engine that can be used to generate play between arbitrary strategies in the IPD
with arbitration and assess expected pay-offs. To address empirical questions, IPDToolkit provides customizable,
Bayesian finite-mixture models that can be used to identify the strategies responsible for generating empirical game-
play data. We present a complete workflow using IPDToolkit to teach end-users its functionality.
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Recently, Boyd and Mathew (2021) introduced a
theoretical examination of the use of third-party arbitration
in the iterated prisoner’s dilemma (IPD). They show that
arbitration can mitigate the negative effects of perception
errors on the stability of cooperative strategies. Perception
errors normally create a serious obstacle to the maintenance
of reciprocity, because they cause interacting individuals to
disagree about past behavior and thus cause cooperation to
unravel (Sugden et al. 2004; Boyd 1989; Boerlijst et al. 1997;
Nowak and Sigmund 1990, 2005). Third-party arbitration
provides a public signal that essentially converts perception
errors into execution errors, which are more easily resolved
(Sugden et al. 2004; Boyd 1989; Boerlijst et al. 1997).

Important theoretical and empirical questions about
this topic remain open. For example, one may wish to
examine how Arbitration-Tit-for-Tat (ATFT) fares against
other arbitration-based strategy variants using Monte
Carlo simulation. Or, perhaps more fundamentally, one
may wish to identify which strategies are actually used
by human players in experimental IPD setups when
arbitration is possible. Here, we introduce an R package,
IPDToolkit, that can help to address both kinds of
questions. IPDToolkit provides a Monte Carlo simulation
engine that can be used to simulate play between arbitrary
strategies in the IPD with arbitration. More substantially,
IPDToolkit provides customizable, Bayesian models
that can be used to identify the strategies responsible for
generating empirical game-play data. These functions can be
used both to classify the strategies used by human players
in experimental setups, and study how covariates influence
strategy choice.

In analyzing IPD game-play data, researchers often aim
to identify the probability that a given player, i, uses a
given strategy, s—e.g., ATFT—out of a set of S possible
strategies. They may even wish to investigate the effects of
various individual-level predictor variables on the strategies
that individual players chose to employ. These kinds of
classification problems are commonly addressed using finite
mixture models (McNicholas 2017; McLachlan et al. 2019).
In such models, the probability of the observed data under
each of a finite number of probability mass functions is
calculated, and then used to estimate a vector of weights
that gives the relative probability that each individual’s
sequence of data was generated by each specific strategy
in the considered set (McNicholas 2017; Nasserinejad et al.
2017). In this paper, we provide a Bayesian implementation
of such a finite mixture model specifically tailored to game-
play data realized under the IPD where third-party arbitration
is possible (Boyd and Mathew 2021).

We begin the paper by outlining the installation and set-
up of IPDToolkit. We then introduce our framework
for the forward simulation of data. We describe each key
function, and provide example code. We also review the data
structure, describe the set of included strategies, and teach
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users how additional strategy files can be integrated into
our simulation engine. Next, we present the mathematical
formalism describing our Bayesian finite mixture models.
We then describe the R functions used to implement
these models, and provide example code, analyses, and
visualizations. We conclude the paper by discussing some of
the inferential challenges involved in analysis of empirical
IPD game-play data.

Installation and setup
The IPDToolkit package is accessible at: https://
github.com/ctross/IPDToolkit. This page con-
tains additional annotated R code and example workflows.
Bug-reports, feature requests, and other relevant comments
should be made through GitHub, where the package will be
maintained.

Much of the functionality of IPDToolkit is made
possible by R (R Core Team 2019) and the rstan package
(Stan Development Team 2019) and its dependencies. The
user must install these programs in order to use our software.
Installation and loading of IPDToolkit is then simple.
Just run three lines of code from R:

library(devtools)
install_github("ctross/IPDToolkit")
library(IPDToolkit)

Next, the user sets a path, and uses the setup folders
function to create a directory structure that will be used
to add custom strategy functions and save results. This
directory will be named “PrisonersDilema”.

path = "C:/Maynard/Desktop"
setup_folders(path,import_code=TRUE,

overwrite=FALSE)

The import code=TRUE argument will clone the Stan
code provided by IPDToolkit into the new directory; set
overwrite=TRUE to overwrite any previously customized
code. At this point, IPDToolkit has full functionality,
but its set of strategy functions is rather limited. Additional
strategy functions, however, can be easily supplied by the
user, and integrated into our simulation and analysis engines.

Forward data simulation

Included strategy functions
In the forward data simulation code, we provide a suite of
12 strategies (see Table 1). By placing the names listed in the
“Strategy name” column of Table 1 into any of the simulation
functions, data will be simulated under that strategy.

Additional strategy functions used for forward data
simulation must be written in R code, and should be saved
in the StrategiesR subdirectory. Additional strategy
functions used for data analysis must be written in Stan
code, and should be saved in the StrategiesStan
subdirectory. Once added to the directory, these new
functions can be integrated into the R environment by
running integrate new functions:

integrate_new_functions(path)

User-supplied functions must accept the same inputs as
our standard functions, and must return output vectors of the
same form as well. We provide a template strategy file in
the supplementary materials. This strategy file, which we call
GLUM, behaves opposite of TFT, cooperating only after its
partner defects, and defecting after its partner cooperates.

Simulation functions

We provide two key functions for forward simulation:
simulate sequence and simulate round robin.

The first function, simulate sequence, simulates an
iterated prisoners dilemma game between two strategies:

simulate_sequence(n_rounds=40,
strategies=c("ATFT","ATFT"),
error_rate=0.05,
arb_error_rate_type_1=0.1,
arb_error_rate_type_2=0.1)

The argument n rounds controls the length of the
game. The argument strategies determines which two
strategies will play; these names must match the names
of valid R functions designed to implement the logic
of a strategy. The argument error rate controls the
frequency of computer introduced errors that transform
intended cooperation events by player i into apparent
defections as observed by player j. The argument
arb error rate type 1 controls the rate at which the
arbitrator fails to correctly classify errors introduced by
the computer. The argument arb error rate type 2
controls the rate at which the arbitrator incorrectly classifies
true defections as errors introduced by the computer. The
simulate sequence function then returns a list of data
vectors as described in the next sub-section.

The second function, simulate round robin, is
a wrapper function for simulate sequence, and
simulates an iterated prisoners dilemma game between all
pairwise combinations of a list of players:

simulate_round_robin(n_rounds=40,
mode="pairwise", players=c("ATFT"
,"GLUM","TFTA","WSLS","ALLC","
RANDY"), error_rate=0.05,
arb_error_rate_type_1=0.1,
arb_error_rate_type_2=0.1,
n_games=NULL, matchups=NULL)

The argument players determines which strategies
will be included in the round-robin tournament. The
argument mode determines how players will be paired. The
default, “pairwise”, creates a full round-robin tournament.
Other options are: “random”, which will create n games
matchups at random from the supplied set of players,
and “specified”, which allows the user to hard-code the
matchups, by supplying an n games by 2 matrix of
such player ID pairings via the matchups argument. The
simulate round robin function returns a relational
data-base, which includes the list of data vectors as described
in the next sub-section, along with game-specific, and player-
specific data lists.

https://github.com/ctross/IPDToolkit
https://github.com/ctross/IPDToolkit
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Table 1. The strategies considered in our model, and some of their properties. The algorithmic definitions of these functions are
included in the supplementary Stan code.

Function
ID

Strategy
name

Deterministic
moves Sneaky

Arbitration-
based

Standing-
based Citation

Λ1 ALLD ✓
Λ2 ALLC ✓
Λ3 RANDY
Λ4 TFT ✓ ✓ (Axelrod and Hamilton 1981)
Λ5 TF2T ✓ ✓
Λ6 GTFT ✓ (Molander 1985)
Λ7 WSLS ✓ ✓ (Nowak and Sigmund 1993)
Λ8 TFTA ✓ ✓ ✓
Λ9 TF2TA ✓ ✓ ✓
Λ10 GTFTA ✓ ✓
Λ11 WSLSA ✓ ✓ ✓
Λ12 ATFT ✓ ✓ ✓ ✓ (Boyd and Mathew 2021)

Simulation visualization

The function sequence plot is also a wrapper function
for simulate sequence, but is designed specifically to
visualize move sequence data:

sequence_plot(n_rounds=20, focal="
ATFT", partner="ATFT", seed
=1234, error_rate=0.1,
arb_error_rate_type_1=0.5,
arb_error_rate_type_2=0.5)

The arguments focal and partner determine which
two strategies will play, with focal being the first to
move. The sequence plot function can be used to study
the interaction dynamics between strategies visually. For
example, Figure 1 shows how sensitive various strategy
pairings are to computer introduced errors. Perception errors
can mute cooperation between TFT players (McElreath
and Boyd 2008), but ATFT players rapidly re-establish
cooperation through the use of contrition (Boyd 1989) and
third party arbitration to resolve perceived slights (Boyd
and Mathew 2021). The sequence plot function is also
essential in debugging new strategy files, and validating that
their simulation behavior works as expected.

Data structure

In the forward simulation model of the IPD with arbitration,
we produce several key variables: (1) whether the arbitrator
was called at the start of the half-round, A ∈ {0, 1}, which
takes a value of 1 if the arbitrator was called and a value
of 0 otherwise; (2) the arbitrator’s ruling, E ∈ {0, 1}, which
takes a value of 1 if the arbitrator was called and ruled that
a defection was introduced by the computer, but a value
of 0 otherwise; (3) the focal player’s intended move, Ȳ ∈
{0, 1}, where cooperation is a 1 and defection is a 0; (4) the
focal player’s observable move (after the computer may have
changed 1 → 0), Y ∈ {0, 1}; (5) the identity of the focal
player in each half-round, I ∈ N; (6) the half-round time-
step identifier, T ∈ N; and, finally, (7) the game identifier,
G ∈ N.

These variables are represented as vectors in long-form:
Eqs. 1–7 provide an example of the data structure.

A =
[
0 0 0 1 . . . 0 0 0 0 . . .

]
(1)

E =
[
0 0 0 1 . . . 0 0 0 0 . . .

]
(2)

Ȳ =
[
1 1 0 1 . . . 1 1 0 1 . . .

]
(3)

Y =
[
1 1 0 0 . . . 1 1 0 0 . . .

]
(4)

I =
[
1 2 1 2 . . . 7 8 7 8 . . .

]
(5)

T =
[
1 2 3 4 . . . 1 2 3 4 . . .

]
(6)

G =
[
1 1 1 1 . . . 4 4 4 4 . . .

]
(7)

Bayesian data analysis
The simulation engine introduced above is helpful for
theoretical analysis concerning the performance of specific
strategies against one another. However, researchers often
have empirical questions: which strategies do human players
use in an IPD game when arbitration is possible? How
does the rate of perception errors affect strategy use? Are
individuals with specific psychological characteristics more
likely to use aggressive strategies like SneakyTFT than
forgiving strategies like TF2T? These kinds of questions can
be addressed by using finite mixture models (McNicholas
2017; McLachlan et al. 2019) to evaluate the weight
of evidence that a given player used a given strategy,
conditional on some observed sequence of game play data,
some set of individual-level covariate data, and some set of
person-specific parameters.

We begin this section by describing the notation we
use to represent strategies. We then detail the individual-
level parameters used by our strategy functions. Following
this, we provide our methodology for determining the
probability of a sequence of game-play moves under a
specific strategy function. Next, we detail the construction of
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Figure 1. Examples of plots produced by sequence plot. From left to right within a plot, the game progresses round by round.
In the first half-round, the grey player is making move decisions. In the second half-round, the black player is making move
decisions. Within half-rounds, time proceeds top to bottom.
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In Figure 1a, TFT and TFT begin with mutual cooperation. However, once the computer introduces an error, cooperation breaks
down, and an unending sequence of mutual defection ensues. In Figure 1b, TFT and GTFT begin with mutual cooperation. Once
the computer introduces an error, cooperation breaks down, but GTFT eventually forgives TFT and cooperation resumes. In Figure
1c, TFT and TFTA begin with mutual cooperation. Once the computer introduces an error, cooperation breaks down. TFTA calls the
arbitrator to figure out if the observed defection was the result of an error. If the arbitrator rules that no error occurred, then the cycle
of defection continues. But, when the arbitrator rules that the observed defection was the result of an error, TFTA forgives, and
cooperation is reestablished. In Figure 1d, ATFT and ATFT begin with mutual cooperation. Once the computer introduces an error,
cooperation is rapidly restored. Through the use of a standing indicator, ATFT can restore cooperation within a single round,
regardless of the ruling of the arbitrator.
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the strategy weight parameters, and outline how individual-
level covariate data can be integrated into the model. Finally,
we implement the mixture model and then use Bayes’ rule to
determine the posterior probability that each individual used
each given strategy, conditional on their game-play data.

To test our statistical models, we use the forward data
simulator to produce a round-robin data-set. We then analyze
this simulated data-set and ensure that our model can recover
the true strategy used by each simulated player.

Notation for the strategy functions

By default, we consider a suite of S = 12 total strategies
(see Table 1). Each is denoted as a strategy-specific function,
Λs(Q,Φ), of data and parameters. Each Λs function takes
in a list of data, Q = {A,E, Ȳ , Y, I, T,G, i, t, g} and a
list of parameters, Φ, and returns a 2-vector, λ, as an
output. The first output element, λ[1] ∈ (0, 1), gives the
strategy’s probability of calling the arbitrator in a given
round conditional on the values of the function’s inputs. The
second element, λ[2] ∈ (0, 1), gives the strategy’s probability
of cooperating in a given round conditional on the values of
the function’s inputs.

For example, the 4th strategy in our set is SneakyTFT. As
such, for a given player, i, with a parameter set Φi = {ξ[i]},
at a given time-point, t, in a given game, g, we could write
Λ4(Qg,Φi) explicitly. We indicate that we sub-set all data
vectors inQ to include only the data whereG = g by writing
Qg . Then we can write:

Λ4(Qg,Φi) :=


( 0 1 ), if T[t] = 1

( 0 0 ), if T[t] > 1 and Y[t−1] = 0

( 0 1−ξ[i] ), if T[t] > 1 and Y[t−1] = 1

(8)

First, note that SneakyTFT is not an arbitration strategy, so
the first element of its output vector is always 0—it never
calls the arbitrator. Also, since SneakyTFT is programmed
here to be a ‘nice’ strategy, it always cooperates on the first
half-round. Thus, in the first time-step of a game, SneakyTFT
returns the vector ( 0 1 ). For all other rounds, SneakyTFT
first evaluates its partner’s observed move from the last half-
round, Y[t−1], and defects if the other player appears to have
defected (i.e., if Y[t−1] = 0). If the other player cooperated
(i.e., if Y[t−1] = 1), then SneakyTFT will cooperate with
probability 1− ξ[i], where ξ[i] is the ‘sneaky defection rate’
of individual i. If the value of ξ[i] in individual i approaches
zero, then SneakyTFT behaves equivalently to TFT.

Other strategies can be more complicated, and involve
more parameters. Consider our 10th strategy, SneakyGTFTA.
For a given player, i, with a parameter set Φi = {ξ[i], ψ[i]},
at a given time-point, t, in a given game, g, we can write
Λ10(Qg,Φi) explicitly as:

Λ10(Qg,Φi) :=



( 0 1 ), if T[t] = 1

( 0 1−ξ[i] ), if T[t] > 1 and Y[t−1] = 1

( 1 ψ[i] ), if T[t] > 1 and Y[t−1] = 0

and E[t] = 0

( 1 1−ξ[i] ), if T[t] > 1 and Y[t−1] = 0

and E[t] = 1

(9)

Since SneakyGTFTA is also programmed to be a ‘nice’
strategy, it cooperates on the first half-round, returning
the vector ( 0 1 ) when T[t] = 1. In other time-points, it
cooperates with probability 1− ξ[i], as long as its partner
cooperated in the prior round (i.e., when Y[t−1] = 1).
However, if the partner did not cooperate in the prior round,
then SneakyGTFTA calls the arbitrator. If the arbitrator rules
that the computer did not introduce an error (E[t] = 0; i.e.,
that the observed defection was ‘real’), then SneakyGTFTA
nevertheless cooperates with probability, ψ[i], a person-
specific generosity/forgiveness rate. If the arbitrator rules
that the computer did introduce an error (E[t] = 1; i.e., that
the observed defection was ‘a mistake’), then SneakyGTFTA
cooperates with probability, 1− ξ[i], behaving as if the other
player cooperated.

For similar details on every other strategy file, see
Supplementary Stan code.

Individual-level game-play parameters
Each individual in the data-set has a unique set of parameters
that controls the behavior of that individual’s strategy
functions. The probability of calling the arbitrator after
an observed defection is controlled by α[i]. The ‘sneaky
defection’ rate—or the probability that an individual playing
a sneaky strategy variant (e.g., SneakyTFT) defects in cases
where they would not if they were playing the corresponding
non-sneaky strategy variant (i.e., TFT)—is controlled by ξ[i].
The generosity rate—or the probability that an individual
playing a generous strategy variant (e.g., GTFT) cooperates
in cases where they would not if they were playing the
corresponding non-generous strategy variant (i.e., TFT)—
is controlled by ψ[i]. The cooperation rate for the RANDY
strategy—which cooperates completely at random—is given
by π[i]. These parameters have weak priors in our most basic
models:

α[i] ∼ Beta(11, 1) (10)

ξ[i] ∼ Beta(1, 11) (11)

ψ[i] ∼ Beta(4, 8) (12)

π[i] ∼ Beta(6, 6) (13)

However, if any of these parameters are key targets of
theoretical interest, they can instead be modeled as a function
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of some covariate vector Z[i], as:

α[i] = logistic(α̂[i] + να[1]Z[i,1] + . . .) (14)

ξ[i] = logistic(ξ̂[i] + νξ[1]Z[i,1] + . . .) (15)

ψ[i] = logistic(ψ̂[i] + νψ[1]Z[i,1] + . . .) (16)

π[i] = logistic(π̂[i] + νπ[1]Z[i,1] + . . .) (17)

where individual-level random effects are given by:
α̂[i], ξ̂[i], ψ̂[i], π̂[i] ∼ Normal(0, 5). The suite of ν parameters
above are standard regression parameters with weak priors of
the form: ν ∼ Normal(0, 5). The symbol logistic represents
the inverse logit function, and maps the linear model to the
unit interval.

Likelihood of game-play data
To estimate the probability of a given strategy conditional
on a long sequences of moves, we will build up a finite
mixture model as indicated previously. But first, we need
to introduce a couple key functions. The first is a modified
Bernoulli log probability mass function. Let X ∈ {0, 1}
represent a move decision (either A or Ȳ ) in game, g, at
a given time-point, t. Let, υ represent the probability of
a move decision as generated by some strategy function
conditional on some set of observed data and person-specific
parameters. Finally, let η be a constant that provides some
implementation error allowance. Note that in the model for
arbitration calls, we let υ = 0 if the strategy does not call
the arbitrator, but set υ = α[i] if the strategy does call the
arbitrator; this allows individuals to call the arbitrator less
frequently than predicted under the pure arbitration strategy.
The log probability of observing the outcome X conditional
on υ and η is given by:

P (X| υ, η) :=

{
log

(
υ(1− η) + (1− υ)η

)
, if X = 1

log
(
υη + (1− υ)(1− η)

)
, if X = 0

(18)

This function, P , is a generalization of the Bernoulli log
probability mass function that uses a Dirichlet mixture for the
Bernoulli’s mean parameter. Note that as η → 0, P (X| υ, η)
converges to the Bernoulli log probability mass function
(Blitzstein and Hwang 2019). The P (X| υ, η) function is
more general, in that, for η > 0, it allows multiple causal
paths to produce a given outcome. For example, if X = 1,
then the first term in the mixture gives the probability of
the outcome given some strategy function’s output, υ, in the
circumstance that no implementation error occurs, (1− η).
The second term in the mixture is the probability that an
implementation error occurs multiplied by the probability of
a positive outcome when such an error occurs. Similar logic
holds when X = 0.

Next, because there are two move decisions made by
the player in each half-round, t, of a given game, g—
an arbitration call, A[t], and a cooperation/defection move,
Ȳ[t]—that both inform our estimation of strategies, we
need a log probability function that jointly accounts for
both outcomes. We first note that we let Φi represent

the set of all move parameters for individual i: i.e.,
Φi = {α[i], ξ[i], ψ[i], π[i]}. Then, we can write our main
log probability function as: F (A[t], Ȳ[t]| Λs, Qg,Φi, η). For
clarity, we will denote the eth element from the output vector
of a strategy function as: Λs(Qg,Φi)[e].

Then, in a given game, g:

F (A[t], Ȳ[t]| Λs, Qg,Φi, η) := P (A[t]| Λs(Qg,Φi)[1], η)+
P (Ȳ[t]| Λs(Qg,Φi)[2], η)

(19)
This function gives a log probability value for the data

in a given round of a given game, for a given respondent,
under a given strategy. However, our target of inference here
is the person-specific probability of the observed sequence of
game-play data under a given strategy. The probability of the
full move sequence is equal to the product of the per-round
probabilities. As such, the next step in our model is to sum
the log probability of the observed data conditional on each
strategy, s, over all of the games played by individual i. We
will let Υ[i,s] store these values.

To calculate Υ[i,s], we sum over all games, and all moves
within each game, where individual i was the player making
the move:

Υ[i,s] =

G̃∑
g=1

T̃g∑
t=1

{
F (A[t], Ȳ[t]| Λs, Qg,Φi, η), if I[t] = i

0, otherwise

(20)

Here G̃ is the total number of games played and T̃g is the total
number of time-steps in game g. The element, Υ[i,s], now
gives the log probability of individual i’s entire sequence
of data conditional on the strategy, s, and a set of person-
specific move parameters, Φi = {α[i], ξ[i], ψ[i], π[i]}.

Individual-level prior strategy probabilities
Each individual is also given a parameter vector, Θ[i],
that controls their probability of playing each strategy. We
construct Θ[i] using a Softmax link function. We first define:

θ[i,s] = χ[i,s] + β[1,s]Z[i,1] + . . . (21)

with χ[i,s] ∼ Normal(0, 5), and β[1,s] ∼ Normal(0, 5), for
s ∈ {1, . . . , S − 1}. Then we set:

θ[i,S] = 0 (22)

Because the Softmax function is invariant to addition of a
constant to each component of its input, it is standard to use
S − 1 free parameters for the intercept and slope coefficients,
and fix the last category to 0 (Stan Development Team
2021a). As such, the random intercept parameters, χ[i,s],
will reflect the log-odds of category s relative to the ‘base’
category, S, for individual i. Likewise, the β[1,s] parameters
reflect the change in log-odds of category s relative to
the ‘base’ category, S, as a function of some individual-
level covariate, Z[i,1]. In our simplest model, we include no
covariates, and thus omit any β parameters. We use ALLD
as the ‘base’ category.
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To yield an individual-level unit S-simplex on the log-
scale, we then write:

Θ[i] = log
(
Softmax(θ[i])) (23)

where the Softmax function is defined as: Softmax(X) :=
exp(X)∑K

k=1 exp(X[k])
, where exp(X) is the elementwise exponen-

tiation of X , and the sum in the denominator runs over all K
elements in the input vector. The elements of the parameter
vector, Θ[i], represent the prior log probability that each
strategy is played by individual i.

Modeling the finite mixture
The probability mass of a finite mixture (McNicholas 2017;
McLachlan et al. 2019; Stan Development Team 2021b) is
given by:

H(X | κ, γ) =
J∑
j=1

κ[j]Hj(X | γj) (24)

Following Nasserinejad et al. (2017), H(X | κ, γ) is the
overall probability mass of the observed data andHj(X | γj)
is the probability mass of the observed data under latent class
j. J is the true number of latent classes. κ is a vector that
represents the class mixing proportions; its elements are non-
negative and sum to 1. Finally, γ is a list of parameter sets
used to determine the probability mass of the data in class j.

In our individual-level implementation of this model, the
class mixing proportions are each given by: exp(Θ[i,s]).
Likewise, the probability mass of the observed data under
each latent class s is given by: exp(Υ[i,s]). Accordingly, the
log probability mass of the data for individual i is given by:
log

(∑S
s=1 exp(Θ[i,s] +Υ[i,s])

)
, which we calculate in Stan

using the numerically stable log sum exp function (Stan
Development Team 2021b). We iterate this calculation over
all individuals in the data set to complete the model. Further
details about finite mixture models in Stan can be found in
the Stan manual (Stan Development Team 2021b).

Recovering posterior strategy probabilities

To calculate the posterior probability, Θ̂[i,s], that individual i
used each particular strategy, s, conditional on the observed
data, we need to use Bayes’ rule (Blitzstein and Hwang
2019):

Pr(A | B) =
Pr(A)Pr(B | A)

Pr(B)
(25)

which we will unpack here as:

Θ̂[i,s]︸ ︷︷ ︸
Probability that
player i played
strategy s given
the move data

=

Probability that
player i plays

strategy s︷ ︸︸ ︷
exp (Θ[i,s]) ·

Probability of i’s
move data given

strategy s︷ ︸︸ ︷
exp(Υ[i,s])

S∑
s=1

exp(Θ[i,s]) exp(Υ[i,s])︸ ︷︷ ︸
Probability of i’s move data

under any strategy s ∈ {1, . . . , S}

(26)

Running the model
In contrast to simple linear regression models—which can
be written in a general form that permits broad use, e.g., with
functions like lm in R—the potential complexity of strategy
functions in the IPD necessitates much more bespoke model
specifications. To make the process of defining custom Stan
models easier for end users, we use a two-step process.
After the user runs the setup folders, all of the Stan
code needed to run a finite mixture model is cloned
from the IPDToolkit package into the “PrisonersDilema”
directory. These copies can be modified by the user if needed.
If the user wishes to use our standard model, then they can
simply run:

create_stan_models(path)

which will compile all of the different strategy files and
associated Stan code into a single Stan model. For now, we
will assume the user is using the basic models, but we will
review how to modify and expand our code shortly.

Once the Stan model is built, the user has two options
for estimating the model: optimization using the L-BFGS
algorithm in Stan (see Stan Development Team 2021d, for
further details) or Markov Chain Monte Carlo (MCMC)
using a variant of Hamiltonian Monte Carlo (see Stan
Development Team 2021c, for further details). Optimization
is fast, and is useful for the exploratory phase of research.
However, it has a few key shortcomings that we review later.
MCMC is slow (McElreath 2018, and see Bommarito 2014),
but it affords much more robust inference, and should be used
for final model fits.

To fit the model using optimization, run:

fit_IPD_optim(d, covariates=NULL,
n_strategies=12)

and to fit the model using MCMC, run:

fit_IPD_mcmc(d, covariates=NULL,
n_strategies=12, n_chains=1,
n_cores=1, iterations=2000,
warmup=1000, adapt_delta=0.95,
max_treedepth=12)

The symbol d is a data object of the form exported by the
simulate round robin function, covariates is a
matrix with as many rows as there are individuals in the data-
set, and n strategies gives the number of considered
game-play strategies. Both functions return a Stanfit
object which can be processed using the standard tools
included in rstan.

Modifying the base model
Writing in parable about statistics, McElreath (2018) claims
that “mass production has some advantages, but it also makes
our clothes fit badly.” In order for statistical tools to provide
insight, they often need to be tailored to specific scientific
problems; they must become bespoke, custom-designed
products. In the case of modeling IPD game-play, researchers
need to use their knowledge of the data generating process
(e.g., as gleaned through qualitative debriefing interviews) to
ensure that the set of considered strategies plausibly covers
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the set of strategies used to generate the empirical data. Every
context is different, and new strategy files may need to be
integrated into the IPDToolkit data analysis code in order
for the model to produce meaningful estimates.

Writing bespoke Stan models, however, is not facile, so
we have designed a work-flow to minimize the complexity
of the task, while still allowing for customizability. In the
“PrisonersDilema” directory, there are two sub-folder which
contain Stan code. The “StrategiesStan” folder may contain
only strategy files; new strategy files may be added by the
user here. All other Stan code is in the “StanCode” folder;
these files may be edited by the user.

If the user wishes to simply change some priors, they can
open the Model.R file, change the priors as desired, and
then re-run the create stan models(path) function
to push these changes into the final model.

More substantial changes are also possible. For example,
imagine that data was collected on “opposite day”, and
debriefing interviews indicated that it was common for many
respondents to report punishing cooperators and cooperating
with defectors. To account for this somewhat peculiar play
style, we can add a new strategy file, GLUM, to our
model. This is a two-step process. In the first step, we
add a function file. Inside of the “StrategiesStan” folder,
we can open the file SneakyTFT.R, and modify the line
containing: coop[1] == 1, to read as: coop[1] == 0 and
save it as GLUM.R. The final code will then read as:

vector Pred_GLUM(int the_round, int
[] arb, int[] arb_error, int[]
coop, int[] coop_intent, int[]
coop_err, real xi){

vector[2] pred;
pred[1] = 0;
if(the_round==1){
pred[2] = 1;
}
else{
pred[2] = (coop[1]==0)?(1-xi):0;
}
return pred;

}

Unpacking the details of the code above is a more
advanced topic than we can discuss here, but we refer readers
to our GitHub link for feature requests. Additionally, the Stan
Manual has excellent tutorials on coding logical functions.

The second step is to edit the Parameters.R file. The
following can be added on line 96:

p = Pred_GLUM(g_round[i], arb[(i-1)
:i], arb_err[(i-1):i], coop[(i
-1):i], coop_intent[(i-1):i],
coop_err[(i-1):i], xi[actor_id[
i]]);

p = P(p,arb[i],coop_intent[i],G[
actor_id[i]],H[actor_id[i]],
alpha[actor_id[i]]);

Upsilon[actor_id[i],13] += sum(p);

The first step adds the strategy function to Stan’s
database, and the second step calls that function in the

appropriate place. As before, the user must run the
create stan models(path) function to push these
changes into the final model.

Visualizing the results
To visualize the strategy probability results, Θ̂[i], for each
individual, we provide a heatmap that shows the distribution
of posterior probability over strategies for each player:

visualize_IPD_results(fit, d, mode="
optim", smart_sort=FALSE, color=
"darkred", strategy_set=c("ALLD"
,"ALLC","RANDY","TFT","TF2T","
GTFT","WSLS","TFTA","TF2TA","
GTFTA","WSLSA","ATFT"))

The argument fit is the results object returned
by either fit IFD optim or fit IFD mcmc.
The argument d is the data object passed to either
fit IFD optim or fit IFD mcmc. The argument mode
∈ {“optim”, “mcmc”} indicates which method was used to
fit the model. The argument smart sort sorts players so
that individuals with similar strategies are clustered on the
y-axis; this makes it easier to see the relative frequencies
of the inferred strategies in the sample of respondents. The
argument color gives the color of the ‘hot’ end of the
heatmap. Finally, the argument strategy set gives the
list of strategies in the Stan model. The order here must
match the order of strategies in the Stan file. Figure 2 plots
some example heatmaps, with and without sorting.

Testing the model

The basic model
To validate our statistical model, we first simulate data using
our forward simulation code. We then analyze these data to
ensure that we recover the correct strategy classifications
(and to validate our simulation code, we visually check
pairwise matchups using the sequence plot function).

To simulate a full round-robin tournament between all
S = 12 strategies, we write:

d = simulate_round_robin(players =
c("ALLD","ALLC","RANDY","TFT","
TF2T","GTFT","WSLS","TFTA","
TF2TA","GTFTA","WSLSA","ATFT"),

n_rounds=40,
error_rate=0.2,
arb_error_rate_type_1=0.5,
arb_error_rate_type_2=0.25)

Then, we can fit the optimizer-based and/or MCMC-based
models to the data:

create_stan_models(path)
f_opt = fit_IPD_optim(d,n_strategies

=12)
f_mcmc = fit_IPD_mcmc(d,n_strategies

=12)

Finally, we create heat-maps to check classification
accuracy:



Ross et al. 2024 9

Figure 2. Example heatmap plots produced by visualize IPD results. Each row represents a player. Each column
represents a strategy. The color intensity of the cell represents the posterior probability that the player indicated by the row-names
used the strategy indicated by the column-names. In frame 2a, smart sorting is turned off, so players appear in the order they are
supplied. In frame 2b, smart sorting is turned on, so players appear sorted by strategy type; this makes it easier to see the relative
frequencies of the inferred strategies in the sample of respondents.

Liam

Olivia

Lucas

Charlotte

Emma

Mia

Benjamin

Elijah

Ava

Sophia

Harper

Alexander

ALLD ALLC RANDY TFT TF2T GTFT WSLS TFTA TF2TA GTFTA WSLSA ATFT
Inferred strategy

P
la

ye
r 

ID

Strategy Probability: 
 0.00 0.25 0.50 0.75 1.00

(a) Smart sorting turned off.

Mia

Lucas

Elijah

Alexander

Benjamin

Liam

Ava

Sophia

Olivia

Harper

Charlotte

Emma

ALLD ALLC RANDY TFT TF2T GTFT WSLS TFTA TF2TA GTFTA WSLSA ATFT
Inferred strategy

P
la

ye
r 

ID

Strategy Probability: 
 0.00 0.25 0.50 0.75 1.00

(b) Smart sorting turned on.

visualize_IPD_results(f_opt, d,
color="darkred")

visualize_IPD_results(f_mcmc, d,
color="darkred", mode="mcmc")

Figure 3 illustrates that our model can achieve near-perfect
strategy classification, at least in ideal circumstance, like
here, where each strategy competes with every other strategy.
To test the model in more empirically plausible situations, we
use a different data simulation set up, and explore the effect
of covariates on model performance.

The model with covariates
In most empirical tests of the iterated prisoner’s dilemma, a
large set of individuals will not compete in a full round-robin
tournament. Rather, even if there is a large set of respondents,
each will generally only play with a few partners. This
complicates the estimation procedure, because, for example,
if a TFT player happens to compete only against ALLC
players, it will be hard too conclude that this player is
actually playing TFT and not ALLC, as the move sequence
would be identical under either strategy. Additionally, in
empirical settings, individuals often vary in key ways,
and researchers often seek to explore the effects of such
covariates on strategy use.

Here, we attempt to create a more empirically plausible
test case. We create a sample of 60 individuals who vary
in some way, Z. We let Z[i] affect both the probability
that individual i plays strategy s (i.e., strategy choice), and
the value of ξ[i] (i.e., the ‘sneaky defection rate’). We then
randomly sample players into dyads who play an iterated

prisoner’s dilemma. In total, we simulate 180 games; so
every individual plays only a few games each. Because the
code gets a bit lengthy at this point, we direct readers to the
supplemental R workflow on the package’s GitHub page to
follow along.

Figure 4 illustrates the results of strategy classification and
Figure 5 illustrates the results of the sneaky defection rate
estimation. In both cases, the model performs well.

Possible problems, and solutions

Finite sets and misclassifications
The quality of inferential results generated under the finite
mixture modeling approach is highly contingent on the
considered strategy set meaningfully capturing the bulk
of empirical variation in game-play behavior. If players
are empirically using strategies that are not included in
the model’s strategy set, then model outcomes are not
interpretable; put rather anthropomorphically, the model
believes that the data must have been generated under at least
one of the S considered strategies.

In order to obtain interpretable quantitative results,
researchers must first have a good qualitative understanding
of the data generating process in their system of interest
(McElreath 2018). Debriefing interviews can be used to
give respondents the opportunity to describe how they have
been playing, which heuristics/strategies they may have been
using, and why they have chosen to play in that way.

By integrating domain knowledge, and using custom
strategy functions, classification can be improved. For
example, see Figure 6, where we show how the frequency
distribution of strategies in a sample can be misleading when
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Figure 3. Model evaluation with simulated data. As before, each row represents a player. Each column represents a strategy. The
color intensity of the cell represents the posterior probability that the player indicated by the row-names used the strategy indicated
by the column-names. Here, the player IDs (row names) have been set to show the true strategy that the player on that row used to
generate their data. Perfect classification is apparent by all density laying on the diagonal. In frame 3a, we find that optimization
yields apparently perfect classification, even with only 30 rounds of play per match-up. In frame 3b, we see that MCMC also yields
near-perfect classification. Some advantages between MCMC and optimization are apparent. Optimization will stop at some point
on a probability surface; however, many points on that probability surface can be near equally probable. Notice that MCMC
indicates that data generated under RANDY look similar to data generated under (sneaky) GTFT. Why? There is a near perfect
invariance in the log probability function when: (1− ξ[i]) = ψ[i] = π[i], and this is accurately captured by MCMC. Optimization is
overconfident; MCMC better represents our inability to distinguish between RANDY and (sneaky) GTFT. Finally, we note that the
excellent classification in these test cases is helped greatly by the fact that each strategy faces off against each other strategy in the
data simulation, yielding a large set of diverse data. Typical use cases might not permit such accurate classification.

ALLC

RANDY

TFT

TF2T

GTFT

WSLS

TFTA

TF2TA

GTFTA

WSLSA

ATFT

ALLD ALLC RANDY TFT TF2T GTFT WSLS TFTA TF2TA GTFTA WSLSA ATFT
Inferred strategy

P
la

ye
r 

ID

Strategy Probability: 
 0.00 0.25 0.50 0.75 1.00

(a) Model fit with optimization.
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(b) Model fit with MCMC.

the full set of generative strategies is not considered in the
mixture model. Notably, when a key strategy is missing, we
will often observe elevated density on (sneaky) GTFT and
GTFTA, as these strategies have independent person-specific
cooperation rate parameters after opponent cooperation and
defection events. As such, if the true strategy file is not
included in the mixture model, these rather flexible strategies
will tend to be preferred by the classifier, as they are often
probability maximizing in the context of the remaining
strategy options.

Invariances between strategies

As we have discussed earlier, and seen in Figure 4, a plethora
of invariances can emerge between strategies—limiting the
inferences that one can draw from simple visualizations.
For example, SneakyGTFT with parameters ψ[i] and
ξ[i] behaves identically to RANDY with parameter π[i],
when (1− ξ[i]) = ψ[i] = π[i]. Likewise, SneakyGTFT with
parameters ψ[i] and ξ[i] behaves identically to SneakyTFT
with parameter ξ[i], when ψ[i] → 0. Additionally, random
sampling phenomena can affect classification. For instance, a
GTFT player with a low forgiveness rate might be classified

as TFT, if during a short game, they happened to not forgive
a rare defection.

In many cases, invariances can be minimized by running
longer games, increasing the number of partners that
each focal player is paired with, and increasing the rate
of computer introduced errors. These three interventions
help to improve classification by providing the additional
data needed to distinguish strategies. For example, if
pilot debriefing interviews suggest that GTFT players only
cooperate 10 percent of the time after observed defections,
this suggests that long games with high computer-introduced
error rates will be needed to distinguish GTFT players
from TFT players; whereas, if forgiveness rates are high,
then many fewer rounds may be needed to achieve good
classifications. In cases where more data alone cannot
improve classification, priors can sometimes be made
informative by integrating domain knowledge (McElreath
2018); in some cases, priors can fully resolve an invariance
(see Figure 7).

Conclusions
In this paper, we have introduced a new R package that
should help facilitate studies of the role that third-party
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Figure 4. Here, we have attempted to classify the strategy used by each of 60 players using optimization. The row names give the
ID code of each player and the strategy they played. The x-axis location of probability weight is indicative of predicted strategy
usage. As before, we note generally good classification. Most players were correctly classified, with the exception of a couple
RANDY players who were classified as playing other strategies, and some TFT and GTFT players who were mixed up. One player,
Luna, who was programmed to play TFT, was, by chance, never selected to compete in the tournament. As a result, her posterior
probability vector over strategies is essentially flat; with no game play data to condition on, the model cannot classify her strategy.
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Figure 5. Among the players using strategies with a sneaky
defection rate, ξ, we observe a strong correlation ρ = 0.91
between the real ξ values used to generate data and the ξ
values recovered from our model.
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arbitration plays in stabilizing cooperation. Our package
provides functionality for both theoretical simulation studies,
and empirical investigations of game-play behavior. We
have provided some example analyses here, and validated
the performance of our Bayesian models by recovering the
parameters of the simulation models. The IPDToolkit
package is openly accessible at: https://github.com/
ctross/IPDToolkit. We invite users to submit any
questions, bug-reports, feature requests, and other relevant
comments through GitHub, where the package will be
maintained and improved.
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Figure 6. In order for the frequencies of different strategies in a sample of respondents to be accurately estimated, the set of
considered strategies must include the bulk of the strategies employed empirically. Consider, for example, frame 6a—here, GLUM
is a common strategy in the sample, but it was not a considered strategy in the mixture model. As such, the implied strategy
frequencies in frame 6a diverge from the true strategy frequencies in frame 6b. Notably, GTFT seems to be quite common in the
naı̈ve model in frame 6a; however, from the improved model based on domain knowledge that GLUM is common (in frame 6b), it is
clear that GTFT is never actually played.
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(a) Model fit without GLUM strategy file.
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(b) Model fit with GLUM strategy file.

Figure 7. The effect of priors on classification. Invariances between some strategies can lead to classification errors, especially
when models are fit via optimization. Frame 7a shows that when very flat priors—i.e., Beta(1,1)—are used on ψ and π, RANDY is
often misclassified as GTFT. By using moderate priors, perhaps informed by pilot interviews, to specify more reasonable ranges for
key parameters, classification is improved. In frame 7b, we set ψ[i] ∼ Beta(20, 70) and π[i] ∼ Beta(45, 45), to better reflect our
prior knowledge that ψ[i] ≈ 0.2 and π[i] ≈ 0.6 in the generative model.
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(a) Model with flat priors on ψ and π.
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(b) Model with moderately informative priors on ψ and π.
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