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Abstract17

Synonymous codons are used unevenly despite coding for the same amino acid. Recent work has18

provided critical insights into the functions, mechanisms, and fitness consequences of codon usage19

bias and synonymous mutations. However, experiments aimed at understanding the role of synony-20

mous mutations often involve only a small number of reporter genes. How do these observations21

generalize across genomes, where confounding factors include gene expression and GC content?22

We propose the following principles for making inferences about the functions, mechanisms, and23

evolution of codon usage. First, use additive selection-uniform mutation-drift equilibrium as the24

null model. This evolutionary model explains how codon usage in low-expressed genes is driven by25

mutation bias and, in high-expressed genes, is driven by selection. It performs well enough to serve26

as a sensible default for understanding the evolution of codon usage patterns. Second, analyses27

of codon usage should control for gene expression. The effect of a synonymous change on mRNA28

translation scales with a gene’s total protein production rate such that evolutionary selection on29

codon usage is strongest in highly-translated genes. Because protein production rate correlates30

with many other gene features, researchers must control for its effects. Third, researchers must31

consider mechanistically how codon usage affects biological processes. While correlations between32

codon usage and other molecular measurements are valuable, proposed mechanistic roles of codon33

usage must be consistent with established biological mechanisms. In conclusion, the underlying ar-34

chitecture of molecular evolution should be considered before invoking other superficially plausible35

explanations of codon usage.36

Introduction37

While the existence and prevalence of synonymous codon usage bias is non-controversial, the bio-38

logical causes of this bias are controversial. As seasoned researchers in the field, we believe that39

controversies in the codon usage literature are the result of multiple factors. First, researchers40

have no agreed-upon best way to quantify codon usage. There are a staggering number of met-41

rics for quantifying and identifying the “optimality” of a codon, as well as quantifying the overall42

codon adaptation of a gene (Roth et al., 2012). Second, there is no agreed-upon null distribution43
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for the expected frequencies of codon usage, to compare to alternative hypotheses. Synonymous44

codons are used unequally in every known organism, making the null model of equal codon usage45

unsupportable. Third, codon usage metrics can be confounded by many factors, particularly gene46

expression and amino acid usage biases.47

We believe that most of these issues can be addressed through the integration of molecular48

models of the processes of protein translation with evolutionary models of allele fixation. This49

approach naturally leads to a cogent and powerful null model that includes the effects of selection,50

mutation bias, and genetic drift. We begin our argument by providing background context and a51

basic rationale for our claim. We next lay out a well-supported yet simple and mechanistic model,52

the additive selection-uniform mutation-drfit equilibrium (ASUMDE), that we argue should be53

adopted as a default null model for codon usage bias in a genome. We present examples where the54

lack of appropriate null models in published analyses has led to spurious conclusions about codon55

usage bias. Finally, we end with a discussion of the limitations of the ASUMDE model and call for56

more nuanced models.57

A brief history of codon usage bias research58

The genetic code is degenerate, as most amino acids are coded for by more than one codon (Crick59

et al., 1957). As gene sequences became available in the 1970s, it became clear that codons were60

not used at equal frequencies within a species (Clarke, 1970; Fitch, 1976; Grantham et al., 1980).61

This non-uniform usage of synonymous codons, or codon usage bias, has been the subject of intense62

study over the last 40 years.63

In the 1980s, a clear relationship between codon usage and the tRNA pool emerged: codon64

frequencies tended to correlate with tRNA abundances, and high-expressed genes were biased to-65

wards codons corresponding to more abundant tRNA (Gouy and Gautier, 1982; Ikemura, 1981,66

1982, 1985). All other things being equal, codons with higher concentrations of cognate tRNA are67

translated both faster, i.e. higher elongation rate, and also more accurately, i.e. lower missense68

error rate. These results suggested synonymous mutations were neither irrelevant nor neutral,69

but could be under natural selection to promote translation, and coevolving with the tRNA pool70
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(Bulmer, 1987). During this early period of codon usage research, two major hypotheses emerged71

to explain this observation: (1) the regulatory hypothesis (Grosjean and Fiers, 1982; Konigsberg72

and Godson, 1983; Walker et al., 1984; Hinds and Blake, 1985; Burns and Beachamn, 1985) and73

(2) selection-mutation-drift equilibrium models, also referred to as the Li-Bulmer model (Li, 1987;74

Bulmer, 1991).75

The regulatory hypothesis posited that codon usage regulated protein production, such that us-76

ing slower codons would produce fewer proteins. However, the regulatory hypothesis overestimates77

the general impact of codons on protein production. Both theoretical and experimental evidence78

suggest that total protein production per mRNA is primarily limited by translation initiation, while79

codons primarily determine translation elongation (Andersson and Kurland, 1990; Bulmer, 1991;80

Arava et al., 2003; Salis et al., 2009; Kosuri et al., 2013; Erdmann-Pham et al., 2020). Thus, synony-81

mous mutations have a smaller effect on protein production, on average, than mutations to regions82

near the start codon that determine translation initiation, a conclusion supported by reporter gene83

studies (Kudla et al., 2009), omics-scale measurements of ribosome positioning (Arava et al., 2003),84

and theoretical studies of mRNA translation dynamics (Shah et al., 2013; Subramaniam et al.,85

2014; Erdmann-Pham et al., 2020). It is simpler for evolution – or genetic engineers – to change86

protein production by altering a few regulatory elements near the start codon than by altering 100s87

of codons across the gene.88

In contrast, selection-mutation-drift equilibrium models posit that genome-wide codon usage89

frequencies are at an equilibrium between natural selection favoring “optimal” synonymous codons,90

while “non-optimal” codons are introduced via mutation and fixed (i.e., found in all members91

of a population) via genetic drift. The most successful version is the additive selection-uniform92

mutation-drift- equilibrium (ASUMDE), which models selection per protein produced, and muta-93

tion as uniform across the proteome. Unlike the regulatory hypothesis, the ASUMDE hypothesis94

assumed that natural selection on codon usage related to mRNA translation acts additively depend-95

ing only on the total protein production rate, rather than to optimize protein-specific regulation.96

The major interpretation is that additive selection acts via the pool of free ribosomes in the cell,97

such that slow codons cause ribosomes to pause on transcripts, resulting in a reduction to the98

pool of ribosomes available to initiate translation. As the evidence indicates mRNA translation is99
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initiation-limited, a reduction to the pool of free ribosomes would negatively impact cellular-wide100

mRNA translation dynamics, consistent with both theoretical and empirical analysis (Shah et al.,101

2013; Subramaniam et al., 2014; Frumkin et al., 2018; Ballard et al., 2019; Erdmann-Pham et al.,102

2020). However, the additive selection model is also interpretable as selection acting against less103

accurate codons due to a fitness cost for each mistranslated protein (Wallace et al., 2013).104

The emergence of omics-scale technologies and advancements in molecular biology, genetics, and105

bioinformatics led to vast improvements in our understanding of the mechanisms and functions of106

codon usage and synonymous mutations. Genome-wide correlations between synonymous codon107

usage and gene expression were observed in multiple species spanning the tree of life (Drummond108

et al., 2005; Drummond and Wilke, 2008; Hiraoka et al., 2009). Aside from elongation speed or109

efficiency, codon usage has been implicated in translation accuracy (Kurland, 1992; Akashi, 1994;110

Eyre-Walker, 1996; Gilchrist and Wagner, 2006; Drummond and Wilke, 2008; Mordret et al., 2019),111

mRNA secondary structure (Chamary and Hurst, 2005; Stoletzki, 2008), translation initiation112

(Kudla et al., 2009; Hockenberry et al., 2014), cotranslational protein folding (Komar et al., 1999;113

Kimchi-Sarfaty et al., 2007; Tsai et al., 2008; Buhr et al., 2016; Walsh et al., 2020), protein secretion114

(Fluman et al., 2014; Zalucki et al., 2009), and mRNA decay (Presnyak et al., 2015; Wu et al.,115

2019; Forrest et al., 2020) (for a comprehensive overview, see reviews by Chaney and Clark (2015);116

Hanson and Coller (2018); Nieuwkoop et al. (2020); Wu and Bazzini (2023)). Codon usage has117

also been implicated in non-translation processes, such as transcription (Zhou et al., 2016; Zhao118

et al., 2021). As a result, there is a resurgence in the idea that codon usage can play a regulatory119

role in protein production. Work with reporter genes implicates synonymous mutations in many120

of these functions and mechanisms. However, a key challenge is understanding the general role121

of codon usage and synonymous mutations in these mechanisms and functions on a genome-wide122

scale. To this end, numerous bioinformatics studies attempted to extrapolate observations made123

from a relatively small number of genes to genome-wide trends by looking for associations with124

codon usage. The results of these studies often conflicted, creating numerous controversies.125

Before returning to these controversies, we explain the ASUMDE model and argue why it is126

useful in resolving them.127
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The additive selection-uniform mutation-drift equilib-128

rium (ASUMDE) model129

The ASUMDE model quantifies the relative contributions of mutation bias and natural selection130

to shaping codon frequencies. Generally, mutation bias drives codon usage in low-translated genes131

while selection drives codon usage in high-translated genes (Figure 1). Because the ASUMDE132

model involves selection specifically on total protein production rate per gene(Shah and Gilchrist,133

2011; Wallace et al., 2013; Gilchrist et al., 2015), we shall carefully distinguish protein production134

rate from the more ambiguous term ”gene expression”.135

Precisely, ASUMDE is a population genetics model of codon usage, incorporating selection that136

scales additively with the gene’s protein production rate, mutation with a uniform bias across the137

genome, and genetic drift that limits the impact of selection based on the (effective) population138

size. The probability of observing codon c, in gene g, is:139

pc,g ∝ exp (Mc +NePgSc) (1)

where:

Mc Mutation bias towards codon c

Ne Effective size of population

Pg Protein production rate of gene g

Sc Selection coefficient towards codon c.

Note that the prediction is constant across a gene, i.e., every position in a gene that encodes the140

same amino acid has the same probabilities for codon usage.141

We approach the ASUMDE model from three perspectives. First, ASUMDE is a regression of142

codon counts on protein production rate, i.e., the simplest statistical model for the dependence of143

codon usage on protein production rate. Technically, ASUMDE is a logistic regression, a common144

statistical model within the generalized linear model family, such that the parameters can be145
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estimated using standard statistical methods (Agresti, 2002). The same framework extends to 3-146

, 4- and 6- codon families as a multinomial logistic regression, again with well-developed fitting147

algorithms that are widely implemented and that quantify uncertainty in the parameter estimates.148

Second, ASUMDE is a mechanistic model of evolution that quantifies codon usage in terms149

of underlying biological causes. The mechanistic motivation for the model is that first, mutations150

happen at rates that depend only on the codon sequence, e.g. AAA to AAG. Next, these mutations151

are fixed in a population at rates depending on selection for speed or accuracy of translation, and152

drift. Selection scales with a codon-specific selection coefficient that is the same for all genes,153

the protein production rate that is different for each gene, and the effective population size from154

population genetics that determines the strength of selection compared to drift (Berg et al., 2004;155

Sella and Hirsh, 2005; McCandlish et al., 2015). Mechanistic selection-mutation-drift equilibrium156

models exist within a larger framework of origin-fixation models with a 50-year history as successful157

population genetics tools (see McCandlish and Stoltzfus (2014) for a review of these models and158

the relevant population genetics theory). The selection coefficient is in the sense of population159

genetics, where Pg(Sc − Sc′) is interpreted as change in average number of offspring from having160

codon c rather than codon c′ in gene g. The mutation bias Mc is proportional to the log mutation161

rate such that exp(Mc −Mc′) is the ratio of mutation rates between codon c and codon c′. The162

ASUMDE model is separate for each amino acid, and so also implicitly relies on a separation of163

scales where synonymous codon substitutions have on average, smaller selection coefficients than164

nonsynonymous substitutions.165

Third, ASUMDE is the steady state equilibrium of a Markov chain, similar to other stochastic166

dynamical models. This equilibrium approximation is inaccurate because evolution is by definition,167

a departure from a steady state, and limitations of the equilibrium assumption are discussed by168

McCandlish and Stoltzfus (2014). However, the success of ASUMDE’s statistical predictions of169

average codon usage show that the model is explanatory.170

This situation - a standard statistical model that is also a mechanistic model with interpretable171

parameters - is very helpful. Standard statistical models can be fit to data with a low risk of errors172

in model specification and parameter estimation and, therefore, a low risk of spurious conclusions.173

Interpretable parameters - selection coefficients and mutation bias - can be meaningfully compared174
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with other biological data.175

Development of the ASUMDE model: incorporating176

protein production rate per gene177

The earliest selection-mutation-drift equilibrium models for codon usage proposed a selection coeffi-178

cient reflecting the overall strength of selection on codon usage (Bulmer, 1991). This model did not179

explicitly incorporate protein production rate per gene, which has since been shown to dominate180

per-gene evolutionary rate (Drummond et al., 2006). As quantitative gene expression data became181

available, researchers began to account for different codon usage in high and low expression genes182

(Sharp et al., 2005; Harrison and Charlesworth, 2011; Pechmann and Frydman, 2013; de Oliveira183

et al., 2021). Such approaches for quantifying adaptive codon usage trace back to the Codon Adap-184

tation Index (CAI) of Sharp and Li (1987), which identifies “optimal” codons based on a set of185

high-expressed genes. However, protein production rate and other gene expression measures are186

continuous variables, not simply “high“ or “low“.187

Shah and Gilchrist (2011) developed the ASUMDE model to quantify the effect of protein pro-188

duction rate on codon usage precisely. They introduced equation 1, with a uniform mutation bias189

term and a selection coefficient that is multiplied by per-gene protein production rate estimates190

derived from high-throughput data. This separated the effects of mutation and natural selec-191

tion to provide codon-specific estimates of mutation bias and selection coefficients. Importantly,192

these selection coefficients were well-correlated with expected waiting times estimated from tRNA193

abundances, suggesting that selection related to elongation speed or efficiency is a major driver of194

adaptive codon usage bias. Overall, the ASUMDE model developed by Shah and Gilchrist (2011)195

was able to explain 92% of the variation in codon counts across the Saccharomyces cerevisiae yeast196

genome.197

A limitation of the Shah and Gilchrist (2011) ASUMDE model was that it failed to account for198

the noise present in empirical gene expression data. By “noise”, we mean both that estimates from199

any one study are randomly inaccurate or biased by growth conditions, and also that measuring200
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gene expression by RNA abundance (for example) is not a perfectly accurate measure of protein201

production rate. Thus, Wallace et al. (2013) incorporated the ability to account for noise in202

gene expression data using a more complex Bayesian statistical approach. The success of Wallace203

et al. (2013) exploited their observation that the ASUMDE model is the same as a (multinomial)204

logistic regression on codon frequencies, allowing for parameter estimation with standard statistical205

methods. To test the predictions of the model with independently obtained data, Wallace et al.206

(2013) showed that codon-specific estimates of mutation bias correlated well with mutation biases207

estimated from mutation accumulation experiments. Thus, the ASUMDE model precisely quantifies208

the observation that codon usage in low-translated genes is primarily driven by mutation bias, and209

in high-translated genes can be driven by selection.210

To extend the ASUMDE model to species lacking empirical gene expression data, Gilchrist et al.211

(2015) developed a Bayesian framework to estimate an evolutionary-average protein production212

rate per gene simultaneously with estimating per-codon mutation and selection coefficients. This213

model, termed the Ribosomal Overhead Cost version of the Stochastic Evolutionary Model of214

Protein Production Rates (ROC-SEMPPR), can be applied to any species with an annotated215

genome (i.e., a FASTA file containing protein-coding sequences). ROC-SEMPPR estimates of216

protein production rate per gene are often well-correlated with empirical gene expression data217

(Cope et al., 2018; Landerer et al., 2020; Cope and Shah, 2022). Indeed, Gilchrist et al. (2015)218

showed that incorporating empirical gene expression data had little impact on model performance,219

demonstrating that codon usage itself is sufficient to accurately estimate protein production rates220

per gene, mutation biases, and selection coefficients. The ROC-SEMPPR framework is implemented221

in the AnaCoDa R package (Landerer et al., 2018), for wider use.222

A key lesson is that codon “optimality” should not be determined by codon frequencies in a223

set of high-translated genes, but by the continuous changes in synonymous codon frequencies as224

protein production rate varies. This is because if mutation bias is very strong or natural selection225

is very weak, the selectively favored codon may not be the most frequent even in high-translated226

genes. A similar idea was proposed by Hershberg and Petrov (2012), who argued that the “optimal”227

synonymous codon should be defined as the codon whose gene-specific frequencies correlated best228

with gene-level estimates of codon bias. The ASUMDE model makes this argument precise.229
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Molecular spandrels and codon usage230

In their 1979 essay “The Spandrels of San Marco and the Panglossian Paradigm”, evolutionary231

biologists Stephen Jay Gould and Richard Lewontin argued that biologists had become enamored232

with natural selection and adaptation, too often attempting to explain biology with no consideration233

to developmental constraints or neutral evolutionary processes such as genetic drift (Gould and234

Lewontin, 1979). They likened the adaptive explanations to the presence of spandrels in St. Mark’s235

cathedral. At first glance, the beautiful artwork painted within the spandrels may lead to the236

conclusion that the building was designed to accommodate such artwork; however, spandrels are237

merely the result of stacking a dome on arches, with the artwork made to fit the available space238

(Figure 3). Analogously, a correlation between codon usage and gene-level traits is often interpreted239

in the light of adaptive evolution. As efforts attempt to unlock signals of selection on codon usage240

related to various processes and mechanisms, it is important to ensure that the observed bias is241

not more simply explained by generic models such as ASUMDE (Figure 3). Failing to properly242

control for factors such as gene expression and amino acid biases could lead to spurious conclusions243

regarding the nature or direction of natural selection on codon usage.244

A common observation is the apparent enrichment of slow codons at the 5’-ends of coding245

regions, spawning both adaptationist and non-adaptationist explanations. One hypothesis argued246

that slow codons are selected for at the 5’ end forming a “ramp”, an adaptation to prevent down-247

stream ribosome queueing and promote overall efficient translation (Tuller et al., 2010; Sejour et al.,248

2023). In contrast, we found that selection on codon usage is positively correlated between the 5’-249

end and the remainder of the gene (Cope et al., 2018). Our results show that the same codons are250

generally favored at the 5’-end as the remainder of the coding region, but the strength of selection251

on codon usage is generally weaker at the 5’-end. Several other studies argue that selection at the252

5’-end may be quantitatively different from the rest of coding regions, possibly due to conflicting253

selection pressures related to mRNA secondary structure (Kudla et al., 2009; Bentele et al., 2013;254

Goodman et al., 2013; Hockenberry et al., 2014) or weaker selection against premature termination255

errors that are more likely to occur at slower codons (Eyre-Walker, 1996; Qin et al., 2004; Gilchrist,256

2007; Gilchrist et al., 2009; Yang et al., 2019). Direct experimental testing of 5’ ends also found257
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that the “ramp” hypothesis is a ”spandrel”, not supported by evidence: substituting faster codons258

at 5’ ends of genes in budding improves expression (Sejour et al., 2023). So, 5’-end selection still259

generally conforms to the assumptions of the ASUMDE: codon usage is well-described by a balance260

between additive selection (for speed or accuracy), uniform mutation, and genetic drift.261

Numerous studies have focused on the role of codon usage in regulating protein biogenesis (e.g.,262

protein folding, protein secretion), often looking for regions of slow codons that are thought to be263

connected to these processes (Chaney and Clark, 2015). Results differ drastically across studies due264

to differences in how codon usage bias was quantified. Furthermore, some of these studies failed to265

test their hypotheses relative to the ASUMDE expectation explicitly and so failed to account for266

the effects of gene expression and amino acid biases (Figure 2).267

Other previous work found an enrichment of slow codons in signal peptides – N-terminal deter-268

minants of protein secretion – in E. coli, which was hypothesized to be due to increased selection269

for inefficient codons to modulate protein secretion (Burns and Beachamn, 1985; Power et al., 2004;270

Zalucki et al., 2009). Empirical studies indicate that synonymous mutations in signal peptides can271

impact protein secretion in specific cases (Zalucki et al., 2007; Zalucki and Jennings, 2007; Zalucki272

et al., 2008, 2010), but does the enrichment of slow codons in signal peptides reflect a true evolu-273

tionary adaptation? We concluded that the enrichment of slow codons in the signal peptides of E.274

coli relative to the 5’-ends of non-secreted proteins is consistent with the ASUMDE model(Cope275

et al., 2018). We simulated coding sequences using ASUMDE as a null model: assuming no differ-276

ences in selection on codon usage in the 5’-ends encoding signal peptides and non-secreted proteins,277

we found that signal peptides always had a lower average Codon Adaptation Index (CAI) (Cope278

et al., 2018). This difference did not reflect selection but instead was driven partly by differences279

in amino acid composition of signal peptides, because CAI normalizes codon-specific coefficients280

separately for each amino acid. After controlling for both gene expression effects and amino acid281

biases, there was no enrichment for slow codons in signal peptides: the effect disappeared.282

Another possible molecular spandrel is the proposal that slow codons are selected based on their283

effect on protein folding. Much like protein secretion, empirical evidence indicates that altering284

synonymous codon usage can affect protein folding (Purvis et al., 1987; Krasheninnikov et al.,285

1991; Kimchi-Sarfaty et al., 2007; Holtkamp et al., 2015; Buhr et al., 2016; Walsh et al., 2020). In286
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well-supported cases, codon usage appears to modulate cotranslational protein folding by slowing287

down translation during key parts of the folding process. As a result, numerous studies attempted288

to connect differences in codon usage with protein structure by looking for patterns across larger289

sets of protein-coding sequences.290

Zhou et al. (2015) investigated codon usage within intrinsically disordered protein regions, find-291

ing a negative correlation between CAI and the “disorderedness” of a region within a protein across292

many species. This led them to conclude that disordered regions had a “preference” for slow codons,293

supposedly to assist upstream structured or ordered regions fold co-translationally. However, this294

work did not account for the fact that disordered regions are generally avoided in high-expression295

genes (Singh and Dash, 2008; Gsponer et al., 2008; Dubreuil et al., 2019) and have distinct amino296

acid biases (Singh, 2015). We used ROC-SEMPPR to test for differences in natural selection on297

codon usage between structured and disordered regions of proteins in E. coli and S. cerevisiae298

(Cope and Gilchrist, 2022). In contrast to the findings of Zhou et al. (2015), we found that additive299

selection on protein production rate was the predominant selective force driving codon usage in300

both structured and disordered regions. Much like with 5’-ends, selection was weaker in disordered301

regions, but this does not indicate a change in codon “preference”. Indeed, such results could also302

be explained by reduced selection against missense errors as concluded in a similar study of disor-303

dered region codon usage (Homma et al., 2016). Based on simulations, Cope and Gilchrist (2022)304

concluded that if selection for slow translation does occur in disordered regions, it likely affects less305

than 1% of codon sites. This means that the ASUMDE is generally a good description of codon306

usage within disordered regions. Similarly, Cope and Gilchrist (2022) also used simulations under307

the ROC-SEMPPR model to show that the apparent enrichment of “non-optimal” codons at the308

second and third positions of α-helices in yeasts (Pechmann and Frydman, 2013) was perfectly309

consistent with expectations under ASUMDE. In other words, structured regions and IDRs prefer-310

entially used the same codons, as do different positions in α-helices, in both cases consistent with311

an ASUMDE model and refuting arguments for specific selection based on structure.312

These and other examples (Akeju and Cope, 2024) show that failing to use a null model that313

appropriately accounts for confounding factors when testing for selection on codon usage can lead314

to spurious conclusions. The examples have two important implications. First, amino acid biases315
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can impact codon usage metrics that only consider relative codon usage, because the strength of316

selection on codon usage often varies between amino acids. Second, differences in metrics such as317

CAI or tAI should not be interpreted as reflecting differences in selection on codon usage with-318

out carefully controlling for other factors affecting coding sequence evolution. In particular, the319

ASUMDE model calculates selection coefficients on the same scale for every amino acid, avoid-320

ing biases found in metrics that normalize coefficients for each amino acid in a way that is not321

theoretically grounded.322

A tangled web: the relationship between gene expres-323

sion, codon usage, and other biological mechanisms324

Not accounting for gene expression when explaining codon usage patterns can also lead to spurious325

conclusions. Protein production rate is correlated with many other processes involved in gene326

expression. If unaccounted for, these correlations could give the false impression that codon usage327

plays a mechanistic role in another process.328

Problems arising from shared correlations with gene expression extend beyond the study of329

codon usage. For example, previous studies concluded that the evolutionary rate of a protein –330

often measured as the ratio of the nonsynonymous to synonymous substitutions across species –331

correlated with gene dispensability (Hirsh and Fraser, 2001) and properties of the protein-protein332

interaction network (Fraser et al., 2002; Han et al., 2004; Fraser et al., 2004). However, these333

correlations largely disappeared after controlling for gene expression (Pál et al., 2003; Batada et al.,334

2007; Bloom and Adami, 2003, 2004; Wang and Zhang, 2009).335

A recent hypothesis is the role of codon usage in modulating mRNA decay. The Codon Stabi-336

lization Coefficient (CSC) intends to reflect a codon’s contribution to mRNA stability - i.e., longer337

lifetime - by correlating how a codon’s frequency changes as a function of mRNA half-life (Presnyak338

et al., 2015). However, recent work identified synonymous codon variants of transcripts that increase339

mRNA secondary structure and thus mRNA half-life (Zhang et al., 2023). This sequence space has340

been largely unexplored by previous design algorithms and evolution, as few natural sequences fall341

13



within this space. Selection for extensive RNA secondary structure requires base-pairing between342

distant regions of the same mRNA including non-adjacent codons.343

How then do we explain the high correlation between CSC and mRNA half-life? Simulating344

under ROC-SEMPPR using protein production rate estimates from ribosome profiling data (Wein-345

berg et al., 2016), we find that predicted CSC estimates for simulated genes agree with the CSC346

estimates from real protein-coding sequences 4. Thus, if mRNA decay is primarily determined by347

translation dynamics (Chan et al., 2018), and protein production rates are translation-initiation-348

limited, then a correlation between codon usage and mRNA decay is expected even if the former349

has relatively little to no mechanistic role in the latter on a genome-wide scale. Our results do350

not invalidate a mechanistic role for codon usage on mRNA decay on a genome-wide scale, but351

correlations between these various gene-level traits (e.g., protein production rate, mRNA half-life)352

make it difficult to distinguish selection on mechanistically distinct processes.353

Other recent work has hypothesized a role for codon usage in transcription. Work proposing354

a mechanistic role for codon usage in transcription must overcome two key challenges. First,355

RNA polymerase only recognizes nucleotides, not codons. Second, transcription and translation356

are highly correlated. Zhao et al. (2021) proposed that the correlation between codon usage and357

mRNA abundances in the nucleus (where translation does not occur) of the fungi N. crassa serves358

as evidence that codon usage impacts transcription. However, this ignores the fact that whole-359

cell mRNA and nuclear mRNA abundances are well-correlated, necessitating the use of partial360

correlations. When using partial correlations, we find that codon usage negatively correlates with361

nuclear mRNA abundances (Table 1).362

Limitations and extensions of the ASUMDE model363

As said by George Box, “All models are wrong, but some are useful,” (Box, 1979). All current364

versions of the ASUMDE model assume each codon within a sequence evolves independently of other365

codons and ignores the effects of recombination, i.e., linkage-related effects are absent. Furthermore,366

ASUMDE models for codon usage fall into a class of ”mutation-limited” models in molecular367

evolution known as origin-fixation models in which a mutation is either fixed or purged from a368
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population before the arrival of the next mutation (McCandlish and Stoltzfus, 2014). As a result,369

the ASUMDE models ignore polymorphism within populations.370

The ASUMDE model does not fit codon usage bias well in humans, where by contrast variations371

in GC-richness and dinucleotide biases are dominant (Radrizzani et al., 2024). This is thought to be372

due to humans’ small effective population size, which both limits the impact of translation selection373

and also allows more scope for junk DNA and mobile genetic elements (Radrizzani et al., 2024). By374

contrast, the ASUMDE model is particularly effective in quantifying codon usage in fast-growing375

microbial species with strong selection.376

We have encountered other species where the ROC-SEMPPR implementation of ASUMDE did377

a poor job of explaining codon usage patterns. In some cases, this appears to be due to intragenomic378

variation in non-adaptive nucleotide biases, which can result from biased gene conversion (Duret379

and Galtier, 2009; Galtier et al., 2018), context-dependent mutation rates, strand-specific mutation380

biases, or lateral gene transfer events such as introgressions. Landerer et al. (2020) found that ROC-381

SEMPPR performed poorly on a budding yeast, Lachancea kluyveri, which is noted for having a382

large introgressed region (approximately 450 genes) with a higher GC% content than the rest of the383

genome (Payen et al., 2009). By allowing the codon-specific mutation bias and selection coefficient384

parameters to vary between the ancestral and introgressed genes, ROC-SEMPPR obtained much385

better predictions of protein production rates in L. kluyveri (Landerer et al., 2020).386

GC-biased gene conversion (gBGC) has become a prevalent hypothesis for explaining variation387

in non-adaptive nucleotide biases in species ranging from budding yeasts to humans (Duret and388

Galtier, 2009) (but see Liu et al. (2017)). By using empirically determined recombination rates, it389

is possible to control for the effects of gBGC when estimating selection on codon usage using the390

SMDE model (Harrison and Charlesworth, 2011); however, such data is generally unavailable for391

non-model species. Cope and Shah (2022) showed that unsupervised machine learning approaches392

can help deal with intragenomic variation in non-adaptive nucleotide biases, but better insight can393

be gained from more nuanced models that explicitly incorporate evolutionary processes such as394

gBGC.395

Finally, although previous work has used the ASUMDE implementation ROC-SEMPPR to396

test for differences in natural selection within genes (Cope et al., 2018; Cope and Gilchrist, 2022),397
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ROC-SEMPPR does not explicitly allow for differences in the direction of selection. As noted398

previously, selection on codon usage is hypothesized to be related to selection for elongation speed,399

translation accuracy, and mRNA secondary structure, among others. Some evidence suggests400

codons favored by one selective pressure need not be favored by another (i.e., the fastest codon401

need not be the most accurate) (Stoletzki, 2008; Shah and Gilchrist, 2010). ROC-SEMPPR and402

similar frameworks currently average over these processes, such that selection coefficients will reflect403

the dominant selective pressure. Models that are able to explicitly separate these selective pressures404

would greatly improve our understanding of the evolution of codon usage.405

Concluding Remarks406

The evolutionary biologist Theodosius Dobzhansky famously said (Dobzhansky, 1973) “Nothing in407

biology makes sense except in the light of evolution.” Michael Lynch took this idea a step further,408

arguing that (Lynch, 2007) “Nothing in evolution makes sense except in the light of population409

genetics,”: in essence, evolutionary outcomes are the result of microevolutionary processes. Popu-410

lation genetics thus provides null models against which to evaluate adaptive hypotheses (Bromham,411

2009; Koonin, 2016). We agree with Dobzhansky and Lynch: codon usage bias does not make sense412

without the population genetics-based ASUMDE model and its extensions. Despite its limitations,413

the ASUMDE model is a sensible default null model on which to build more detailed models.414

Even in non-evolutionary studies of the functions and mechanisms of codon usage, researchers415

must be cautious that many gene-level traits and processes are correlated with protein production416

rate, such that naive correlations may suggest a mechanistic or functional role for codon usage417

where none exists. In such cases, researchers must use more advanced statistical analyses, such418

as partial correlations. Researchers must also be careful not to over-interpret their results and be419

mindful of mechanisms, noting that codons are only “seen” as codons when translated by ribosomes.420

In addition to numerous technical advances, the field of codon usage will benefit from models that421

more realistically model coding sequence evolution.422

In conclusion, we propose the following principles for making inferences about the functions,423

mechanisms, and evolution of codon usage:424
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1. Use additive selection-uniform mutation-drift equilibrium as the null model.425

2. Control for gene expression.426

3. Consider mechanistically how codon usage affects biological processes, starting with transla-427

tion.428
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Figure 1: How codon frequencies change as a function of per-gene protein production rate in
Saccharomyces cerevisiae yeast. Individual points and error bars represent the mean (±1 std.
dev) observed codon frequencies in genes binned based on empirical protein production rates
taken from ribosome profiling data (Weinberg et al., 2016). Solid lines represent the expected
codon frequencies based on the additive selection-uniform mutation equilibrium. The dashed
black line represents the 95th percentile of empirical protein production rate values. The *
indicates the codon favored by natural selection. In some cases, such as the amino acid lysine,
the mutation and selection are biased towards opposite codons. As a result, the selectively-
favored codon has lower frequencies in low-translation genes, but higher frequencies in high-
translation genes. This contrasts with amino acids such as glutamine where mutation and
selection are biased towards the same codon. In this case, the selectively favored codon is
almost always used more frequently in low and high-translation genes, but this discrepancy
grows for the latter genes. Natural selection has a major impact on only a small percentage
of highly translated genes.
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Figure 2: Models of selection on codon usage. The ASUMDE model of codon usage has
selection on a coding region proportional to its protein production rate, and independent of
position on the gene. Alternate models of position-dependent selection can be confounded
by amino acid composition and gene expression.
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Figure 3: Molecular spandrels in codon usage bias. The major forces driving codon usage bias
are translational selection, mutation biases, and genetic drift as quantified by the ASUMDE
model. Other patterns detectable in codon usage may be consequences of the ASUMDE
model, so this structural explanation should be excluded before getting overly excited about
an alternative model.
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Figure 4: Comparing Codon Stabilization Coefficient (CSC) estimated for true and simulated
protein-coding sequences in S. cerevisiae. Simulated protein-coding sequences used publicly-
available ribosome profiling data from Weinberg et al. (2016). Colors indicate if the CSC
value was significantly different from 0 in both, either, or neither of the real and simulated
protein-coding sequences.
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