*These authors contributed equally

12 CRediT statement

 Editing
Is the audience gender-blind? Smaller audience in female talks highlights prestige differences in academia

Júlia Rodrigues Barreto ${ }^{1 *}$, Isabella Romitelli ${ }^{1 *}$, Pamela Cristina Santana ${ }^{1,2}$, Ana Paula Aprígio Assis ${ }^{3}$, Renata Pardini ${ }^{4}$, Melina de Souza Leite ${ }^{1 *+}$
${ }^{1}$ Department of Ecology, Institute of Biosciences, University of São Paulo, Brazil
${ }^{2}$ Department of Biology, Biodiversity Unit, Lund University, Lund, Sweden
${ }^{3}$ Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Brazil
${ }^{4}$ Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil
${ }^{+}$corresponding author: melina.leite @ib.usp.br

Júlia Rodrigues Barreto: Conceptualization, Investigation, Methodology, Software, Resources, Validation, Formal Analysis, Data Curation, Visualization, Writing - Original Draft, Writing - Review \& Editing

Isabella Romitelli: Conceptualization, Investigation, Methodology, Writing - Review \& Editing
Pamela Cristina Santana: Conceptualization, Methodology, Resources, Visualization, Writing - Review \&

Ana Paula Aprígio Assis: Conceptualization, Methodology, Resources, Writing - Review \& Editing
Renata Pardini: Conceptualization, Methodology, Writing - Review \& Editing
Melina de Souza Leite: Conceptualization, Investigation, Methodology, Software, Resources, Validation, Formal analysis, Data Curation, Visualization, Writing - Original Draft, Writing - Review \& Editing

Abstract

Although diverse perspectives are fundamental for fostering and advancing science, power relations have limited the development, propagation of ideas, and recognition of minority groups in academia. Gender bias is one of the most well-documented processes, leading women to drop out of their academic careers due to fewer opportunities and lower prestige. Using long-term data (2008-2019) on talks ($\mathrm{n}=344$) from a seminar series in Ecology, Evolution, and Conservation Biology, we investigated the audience as a measure of women scientists' prestige. We questioned whether affirmative actions focused on increasing women's representation were enough to enhance women's visibility and recognition in science. Specifically, we evaluated (i) the strength of the leaky pipeline effect on the female representation as speakers and the effect of affirmative actions; (ii) whether the audience of the talk depends on the speaker's gender, even accounting for the speaker's career length and productivity (iii), and (iv) if there were gender differences in the topics of the talks. The results indicate that women gave fewer talks than men, and this difference was greater for seminars given by professors. However, affirmative action increased the representativeness of women throughout their career positions. Female speakers had smaller audiences, especially among professors, indicating higher prestige for male professors even with comparable productivity metrics. We found no gender effect in the research topics presented, indicating that the difference in audience may also not be related to the topics of the talks. We raise the discussion that gender bias in the academic community in attending talks may decrease the visibility of research carried out by women, potentially impacting professional development and restricting the visibility of ideas. Moreover, although encouraged, affirmative action increasing representativeness may not be enough against more subtle gender-stereotype biases. Our research contributes to the discussion of how gender inequity can influence visibility and reinforce the stigmatization of science.

Keywords: gender-science stereotype, gender equity, seminars, academic career, affirmative actions, audience, research topics.

Introduction

Diversity is a fundamental part of the advancement of science. Evidence shows that the current lack of social diversity, including gender, race, and ethnicity, in academia represents a highly inefficient equilibrium (Miriti, 2020, Pew Research Center Science, 2021, Doleac et al., 2021). Limiting the diversity of perspectives not only hinders the scope of inquiry but also reduces the potential for innovative solutions, underscoring the importance of inclusivity in fostering a more robust and dynamic scientific community (Hong, Page, 2004, Page, 2007). For instance, Gender equity is listed as one of the 17 goals of the United Nations 2030 agenda (United Nations General Assembly, 2015).

The lack of representation and discrimination against women in academia is a reality that has been widely recognized. Women publish fewer first-authored articles (Larivière et al., 2013, Fox et al., 2016, 2023), receive smaller grants (Wennerås, Wold, 1997, Zandonà, 2022) and start-up funding (Sege et al., 2015, Oliveira et al., 2019), are paid less (Woolston, 2019), are less invited to talks (Schroeder et al., 2013), are promoted with reduced frequency, and hold fewer positions of power or influence (Niemeier, González, 2004, Amrein et al., 2011), such as being reviewers in scientific publications and grants (Astegiano et al., 2019) or in the editorial board of scientific journals (Fox et al., 2018, but see Barros et al., 2021). All of this contributes to the well-known phenomenon of the "leaky pipeline" of women's representation in science, i.e., women tend to leave the academic career path earlier (Shaw, Stanton, 2012, Zandonà, 2022).

Recent policies have been enacted to tackle the "leaky pipeline" phenomenon and increase the presence of women in university committees, journal editorial boards, scientific events, and organizations (Greska, 2023). While these measures primarily focus on enhancing female representation, gender-science stereotypes, which are entrenched and overly simplistic views about gender roles, continue to challenge these efforts by significantly shaping perceptions and behaviors (Nosek et al., 2002). Such stereotypes persist as a major source of gender bias in academia, with pervasive cultural effects against equity (Reuben et al., 2014, Miller et al., 2015, Calaza et al., 2021). These stereotypes typically present scientists as male, creating an academic environment that diminishes the visibility and recognition of women's contributions. This reduced recognition leads to lower prestige for female scientists, perpetuating a vicious cycle that keeps them in a disadvantaged position within academia (Ross et al., 2022). Such dynamics illustrate the complex interplay between affirmative
actions aimed at increasing representation and the deep-rooted biases and stereotypes that continue to impede true gender equity.

Using the audience in talks of a seminar series in Ecology, Evolution, and Conservation Biology as a measure of prestige, we evaluate whether affirmative actions focused on increasing women's representation are enough to enhance women's visibility and recognition in science. To do so, we first evaluated (i) the strength of the leaky pipeline effect on the female representation as speakers and the effect of affirmative actions. Then, we analyzed (ii) whether audience size depends on the speaker's gender and academic level and whether affirmative actions for representativeness had a side effect on the audience. As prestige can be influenced by speakers' attributes other than gender and the topic of the talk, we additionally evaluated (iii) if gender differences in the audience of professors reflected differences in the speaker's career length and productivity and (iv) if there were gender differences in the topics of the talks.

We rely on the analysis of long-term data (2008-2019) on women's representation among speakers, audiences, and topics of the talks in an ecological seminar series ($\mathrm{n}=344$ talks) at one of the main Latin American universities, the University of São Paulo, Brazil. Such events are fruitful occasions to catalyze learning, discuss ideas, contribute to further developing the speaker's research, and expand collaboration networks. They are pillars for promoting individual and social changes within scientific communities locally and globally.

Methods

Ecological seminar series

The EcoEncontros is a seminar series of weekly talks at the Ecology Graduate Program at the University of São Paulo (PPGE-USP), Brazil. EcoEncontros started in 2008 and is organized by a committee formed mainly by graduate students (master's and doctorate), in which females comprised around 70% of the organizing committee members until 2019. In the seminars, invited speakers present their research at any stage of development: as a project, preliminary results, published papers, or any other topics of interest. Although it is a graduate program seminar series, almost 20% of the speakers between 2008 and 2019 were affiliated with foreign institutions. In 2018, the EcoEcontros organizing committee implemented affirmative actions to increase female representation by actively reinforcing invitations and
incentives for women speakers. This decision stemmed from the committee's recognition of persistent discussions about gender disparity in science, motivating them to take action to address this issue.

Data collection

We retrieved recorded information from all talks between 2008 and 2019 from the EcoEncontros committee attendance list archives ($\mathrm{N}=344$ talks). We retrieved data about the speaker (gender, academic level, and affiliation) and the seminar (date, title, abstract, and audience). We inferred the speaker's gender by name and photo (always present on the seminars' posters). Even though we are aware that the binary classification underrepresents gender diversity and may not reflect the self-declared gender of the speaker, we believe that any possible bias by the audience in attending the talks is also led by the same information.

We classified the speaker's academic level into 3 categories: student (bachelor's, master's, or doctoral degrees), postdoctoral researcher, and professor (assistant, associate, full, or lecturer). Senior researchers at non-university scientific institutions were also included in the professor category. We assessed audience size through the presence list of the seminar, in which all attendees signed their names and affiliations. We excluded special seminars such as round tables and talks unrelated to the speaker's research, totaling 327 talks for the analyses. We classified talks in terms of whether they were presented before or after the start of the organizing committee's affirmative actions (2018): 256 talks (78%) were given before and $71(22 \%)$ after it.

We also collected information on the gender balance for each academic level in the Graduate Ecology Program during the same period (2008-2019). We used that information to calculate the population gender ratio for each academic level to represent the most likely speakers' pool. Over the years, women represented, on average, 61% of the graduate students (master's and doctorate), 48% of the postdoctoral researchers, and 38% of the professors (Figure S1).

Data analyses

Leaky pipeline effect in female speakers and the affirmative action effect

To investigate the strength of the leaky pipeline effect on the female representation as speakers and the effect of affirmative actions, we modeled the proportion of female speakers
as a function of their academic level and whether the talk occurred before or after affirmative actions. We excluded talks from non-academic professionals, totaling 320 talks used in this analysis.

To differentiate gender bias in talks from the possible effect of gender balance in the graduate program community, we considered the information on gender ratio (female/male) for each academic level per year in the Graduate Program as our possible speaker's pool. The population gender ratio for each academic level in each year was included as a predictor variable in all competing models. Even though we acknowledge that the PPGE community might not accurately describe the population of potential speakers, as speakers can have affiliations other than PPGE (58% outside PPGE, 42% outside the institute), it represents the most likely source of speakers.

We used generalized linear mixed-effects models with a Binomial distribution (response variable: 0 for male; 1 for female) and set up models based on the combination of academic level and before-after affirmative actions (Table 1a). We included the year of the talk as a random intercept to account for differences in the proportion of female speakers through the years. We used model selection based on the Akaike Information Criterion (AIC) to infer the models that best fit our data. We also used the criteria of equality plausible models for those with an AIC lower than 2.

Speaker gender differences in seminars audience and affirmative action effects

To evaluate whether audience size depends on the speaker's gender, academic level and whether affirmative actions for representativeness had a side effect on the audience, we modeled the audience (number of attendants) as a function of the speaker's gender, academic level, and whether the talk occurred before or after the affirmative actions. We excluded talks from non-academic professionals and seminars when more than one speaker presented on the same day, totaling 298 talks for this analysis. Similarly to the previous analysis, we modeled the year as a random intercept to account for possible differences in audience through time. Given the large variation in the audience (ranging from 4 to 101), we used generalized linear models with negative binomial distribution. We set up models using the same procedure as previously explained (Table 1b).

To investigate if gender differences in the audience of professors reflected differences in the speaker's career length and productivity, we collected information on the professor's
productivity, career length, and institution prestige rank. We collected the following information on each professor's Google Scholar profile: (1) career length, measured as the number of years from the first cited publication until the year of the talk; (2) i10-index, which measures the number of papers with at least ten citations; (3) H-index, which counts the number for papers with at least the same number of citations; (4) total number of citations; (5) cumulative number of citations until the year of the talk; (6) citations of the most cited paper. To measure the professor's institution rank, we used two Nature Indexes (Nature Index 2021): count and share. A count of one is to an institution or country if one or more authors of the research article are from that institution or country, regardless of how many co-authors there are from outside that institution or country (Nature Index, 2021). A fractional count considers the percentage of authors from that institution and the number of affiliated institutions per article. We performed a Principal Component Analysis (PCA) with all metrics and used the first axis as the predictor variable for the productivity index. We analyzed 87 professors' talks since we could not get productivity information for nine professors.

Gender differences in seminar topics

To investigate possible gender differences in the topics of the talks, which could explain part of the gender differences in the previous questions, we performed a text analysis with the titles and abstracts of the talks. We recovered talk titles from 320 talks (140 for females, 180 for males) and abstracts from 234 talks (99 for females, 135 for males). Titles and abstracts written in Portuguese or Spanish were translated into English. We compared the frequency of words used by male and female speakers using Pearson correlation. Given the small sample size for text analysis, we did not compare it by academic level. However, we also analyzed the data separately for professors, with 96 titles (24 for females, 72 for males) and 77 abstracts (20 for females, 57 for males).

To investigate differences in research topics of talks given by male and female speakers, we performed a topic modeling analysis, an unsupervised machine learning model to identify groups of similar words (i.e., topics) within a body of text. We used Latent Dirichlet Allocation (LDA), following Silge \& Robinson (2017), which treats each document (abstracts and titles) as a mixture of topics and each topic as a mixture of words. We compared LDA models with different numbers of topics ($\mathrm{k}=2,3,4,5,10,20$) using AIC model selection. After classifying the talks within topics, we compared the frequency of topics between male and female speakers with a Chi-square test.

All data analysis was performed in R (version 4.3, R Core Team, 2022), using the main packages: glmmTMB (Brooks et al., 2017), DHARMa (Hartig, 2016), bbmle (Bolker, R Development Core Team, 2023), performance (Lüdecke et al., 2021), ggeffects (Lüdecke, 2018) for modeling; tidytext (Silge, Robinson, 2016), topicmodels (Grün, Hornik, 2011), tm (Feinerer et al., 2008), and quanteda (Benoit et al., 2018) for text analysis. The complete list of packages, together with all code and data, is openly available on the Zenodo repository (Leite, Barreto, 2024).

Results

From the 327 talks analyzed in 12 years, 184 were given by men (56%) and 143 by women (44%). When separated by academic level ($\mathrm{N}=320$, excluding non-academic speakers), women gave fewer talks than men in higher academic levels, from 52% of the students and 43% of the postdocs to 24% of the professors' talks (Figure 1a). Before 2018, men were most of the speakers in 7 of 10 years (Figure 1b). Affirmative actions in 2018 and 2019 increased the gender balance among speakers to 52% and 50% of women in each respective year.

Figure 1. a) Total number of speakers by gender (females in purple and males in yellow) and academic level for all talks in 12 years of the EcoEcontros seminar series. b) Number of talks by gender for each year. The dashed vertical line indicates the beginning of affirmative action to increase women's representation. Percentages in both figures are the proportion of female researchers within each academic level in (a) and year in (b).

Leaky pipeline effect in female presenters

Two models were equally plausible for the proportion of female speakers (Table 1a). Both models included academic level as a predictor, with the difference that the best-fitted model
includes affirmative actions and the interaction between them (conditional $\mathrm{R}^{2}=0.15$, marginal $\mathrm{R}^{2}=0.12$, Figure 2). Before the start of affirmative action, we found a decrease in the proportion of female speakers through academic levels, with female speakers only 21% of the professors' speakers (Figure 2, gold lines). After implementing affirmative action, the proportion of females in all academic levels was more balanced and did not differ from 50\% (Figure 2, green lines). If we consider the second most plausible model, the proportion of females also decreased with academic level, being smaller than 50% only for female professors (26\%, Figure S2).

Figure 2. Proportions of female speakers according to academic level and affirmative actions (before in gold and after 2018 in green) predicted by the best-fitted model (Table 1a).
Vertical line ranges mean 95% confidence intervals for the estimated proportions. The size of the circles is proportional to the number of talks given by a male (y -axis 0) and female (y axis 1) in each category, ranging from 3 (smallest circle - male postdocs after affirmative actions) to 69 (largest circle - male professors before the affirmative action).

Table 1: Model selection results for (a) the proportion of female speakers according to academic level and affirmative actions and (b) the audience (number of attendants in the seminar) according to the gender of the speaker, the academic level, and affirmative actions. For (a), all models include the population gender ratio as a predictor (not shown). All sets of models include Year as random intercepts (not shown). For (b), we are presenting only the models with weights above 0.01 Equally plausible models (dAIC <2) are in bold. Asterisks between predictors mean interactions between them.

Models	AIC	dAIC	df	weight
a) Proportion of female speakers $(\mathrm{N}=320)$				
~ academic level $*$ affirmative actions	$\mathbf{4 2 4 . 5 3}$	$\mathbf{0 . 0 0}$	$\mathbf{8}$	$\mathbf{0 . 4 6}$
~ academic level	$\mathbf{4 2 5 . 2 8}$	$\mathbf{0 . 7 6}$	$\mathbf{5}$	$\mathbf{0 . 3 2}$
\sim academic level + affirmative actions	426.58	2.05	6	0.17
\sim NULL	430.06	5.53	3	0.03
\sim affirmative actions	430.28	5.76	4	0.03

b) Audience ($\mathrm{N}=298$)

\sim gender * academic level + affirmative actions	$\mathbf{2 1 6 0 . 0 3}$	$\mathbf{0 . 0 0}$	$\mathbf{9}$	$\mathbf{0 . 4 5}$
\sim gender + academic level + affirmative actions	$\mathbf{2 1 6 1 . 4 3}$	$\mathbf{1 . 4 1}$	$\mathbf{7}$	$\mathbf{0 . 2 2}$
\sim gender * academic level	2161.27	2.24	8	0.15
\sim gender + academic level	2163.49	3.47	6	0.08
\sim gender + academic level * affirmative actions	2166.62	3.95	9	0.06
\sim gender * academic level * year	2167.07	6.59	14	0.02

c) Audience for professors' speakers $(\mathrm{N}=87)$

\sim gender + productivity index + affirmative actions	$\mathbf{6 9 1 . 3 2}$	$\mathbf{0 . 0 0}$	$\mathbf{6}$	$\mathbf{0 . 6 0}$
\sim gender * productivity index + affirmative actions	$\mathbf{6 9 2 . 9 5}$	$\mathbf{1 . 6 4}$	$\mathbf{7}$	$\mathbf{0 . 2 7}$
\sim productivity index + affirmative actions	695.04	3.73	5	0.09
\sim gender + affirmative actions	696.94	5.62	5	0.04
\sim affirmative actions	702.13	10.82	4	0.00

Speaker gender differences in seminars audience

We found that male professors had the largest audience on average for their talks (Figure 3a, Table S1). The two equally plausible models for the audience (Table 1b) included gender, academic level, and affirmative actions as predictors, with the difference that the best-fitted
model included an interaction of gender and academic level (conditional $R^{2}=0.22$, marginal $R^{2}=0.18$, Figure 3a). For both models, (1) male speakers had, on average, a larger audience than female speakers, (2) the higher the academic level, the larger the audience, and (3) affirmative actions increased the audience of the seminars. According to the best-fit model, male professors' talks had, on average, 1.4 times more audience than female professors' talks (34 and 24 attendees, respectively, after affirmative actions), an increase of almost 30% of the audience.

For the subsequent analysis of professors' talks ($\mathrm{N}=87$), the PCA results (Figure 3b) show that career length and productivity metrics for professors were highly correlated with the first axis (52% of variance explained), while the institution indexes composed the second PCA axis (21% of variation explained). In general, male and female professors did not show multivariate differences in career length and productivity metrics.

To explain the professor's audience, we used the first PCA axis as a proxy of productivity (Figure 3b). As expected, professors' audience increased with productivity for both equally plausible models (Table 1c). However, male professors still had, on average, an audience 1.4 times higher than female professors regardless of the productivity index (Figure 3c). The marginal R^{2} of the best-fitted model was 0.21 .

Figure 3. a) Audience (number of attendants) in seminars according to gender, academic level, and affirmative actions (before and after 2018) with the prediction (black contour circles) and confidence intervals (vertical black lines) from the best-fitted model for the audience (Table 1b). b) Principal Component Analysis (PCA) for the productivity metrics for professors and institutions ($\mathrm{N}=87$), for variables code see Table S2. c) The professor's audience analysis is based on the gender and productivity index (PCA first axis). Lines and shaded areas represent marginal predictions and 95% confidence intervals for the estimates of the best-fitted model with additive effects of productivity index, gender, and affirmative actions. We fixed the affirmative action to 'before' to display the predictions because most data come from this period ($\mathrm{N}=67$).

Gender differences in topics of research presentation

The frequencies of the most used words by male and female speakers were highly correlated (all data $r_{p}=0.87$; professors $r_{p}=0.66$), indicating that there is no clear distinction between the words used by male and female speakers in their titles and abstracts (Figure 4 all speakers, Figure S 4 only professors). The best number of topics in the LDA analysis was 2
for both analyses (all talks and professor only). However, we found no difference in topics between male and female talks in general (Chi-square $=0.28, \mathrm{df}=1, \mathrm{p}$-value $=0.59$), neither for professors $($ Chi-square $=0.50, \mathrm{df}=1, \mathrm{p}$-value $=0.48)$.

Figure 4. Frequency plot of the most used words in the titles and abstracts of the seminars given by female (y -axis) and male (x -axis) speakers. Both axes are at the logarithm 10 scale. The color scale indicates the absolute difference in the percentage of use between male and female speakers. Words with the exact same frequency were randomly assigned to display. The dashed line indicates the slope of 1 ; words closer to it have similar frequencies in both sets of texts The Pearson correlation between word frequencies was 0.87 for all talks (this plot) and 0.66 for professors only (Figure S4).

Discussion

Our results revealed a smaller audience in women professors' talks, suggesting a long-term persistence of lower prestige and recognition of women in academia. Although affirmative action toward increasing women's representation fixed the leaky pipeline effect, it was not enough to produce an increase in the prestige of women speakers (changes in audience size). The fact that female professors attract smaller audiences, even when presenting on similar topics and having comparable productivity to male professors, suggests that there may be
underlying biases or cultural factors at play that we can partially attribute to the genderscience stereotype that is pervasive in the academic and non-academic communities.

To the best of our knowledge, this is the first long-term study evaluating audience gender bias in Ecology, Evolution, and Conservation. Studies from different disciplines found conflicting results. For example, the audience size for female speakers was lower in Philosophy, the same in Biology and Psychology (Carter et al., 2018), and higher in Economy (Dupas et al., 2021). However, unlike what we did, these studies did not investigate further reasons for the observed differences. Nevertheless, our study complements what was found by many other studies on gender bias in seminar and conference talks (e.g., Davenport et al., 2014, Schmidt et al., 2017, Doleac et al., 2021), showing that the culture of seminars is not gender-neutral and the audience is not blind to gender (Dupas et al., 2021). Women speakers are usually treated differently, receiving more questions in general (Davenport et al., 2014, but see Schmidt et al., 2017) and even more harsh and patronizing questions (Dupas et al., 2021). It seems unlikely that the fact that female speakers attracted smaller audiences could reflect any explicit decision by seminar attendees to treat women differently. Instead, our results may indicate a systemic bias favoring male scientists (Reuben et al., 2014, Miller et al., 2015). In this regard, the male-scientist stereotype, rooted in our male-dominated culture (Young et al., 2013) and especially higher for college-educated people (Miller et al., 2015), is the best hypothesis to explain the academic's willingness to attend a seminar based on the gender of the speaker. Our study presents another layer of evidence of how gender-biased stereotypes still influence the visibility and recognition of women in science.

Seminars and talks are a way for academics to get feedback, disseminate their work, and expand their professional networks (Schmidt et al., 2017, Doleac et al., 2021). Similar to what happens in many other instances, the academic community's gender bias in attending talks given by women may decrease the visibility of research carried out by them, potentially impacting professional development and restricting the reach of the research. In the long run, smaller prestige and recognition of women in science perpetuates the gender productivity gap (Astegiano et al., 2019) if it does not force women to evaluate whether they have chosen the right career (Dupas et al., 2021). Therefore, it is utterly important to address the underlying cultural and systemic factors that may be contributing to the gender bias in academic speaking opportunities and audience attendance. Our results highlight the need for continued efforts to promote gender diversity and to challenge gender stereotypes at all levels of
academia, while at the same time providing support and resources to women academics to succeed in their careers.

On the one hand, we found that the problem of gender bias in the audience of female speakers seems harder to address with the most common affirmative actions towards representativeness, in our case, those ensuring an equal proportion of female speakers. On the other hand, we argue that since female scientists provide positive role models for women (Young et al., 2013), attending seminars presented by a woman not only increases the scientist's visibility but may help reduce the implicit stereotype that science is masculine in the culture-at-large (Young et al., 2013). Although this positive feedback may seem hard and slow to achieve, it is crucial to increase awareness of the commonly ignored biases (Calaza et al., 2021). Addressing gender disparities in scientific events demands a more comprehensive and sustained approach.

Many different levels of affirmative actions to promote community engagement and to support inclusive, socially aware, and diverse sciences (Calaza et al., 2021, Diele-Viegas et al., 2021) are necessary to speed up the time to achieve equity and ban the skewed societal view of scientists as a man. For instance, our institute organized a webinar with experts in social research to explore stereotypes, visibility, and recognition in light of our findings. We invited our community to reflect on why we put more effort into attending certain talks and not others, and to pay attention to whether there may be any unnoticed bias regarding the characteristics of the speaker in this decision. We, as academics, should be able to ask ourselves the following question: If the same seminar were given by a prestigious white male professor, would I attend?

While our study provides valuable insights into long-term gender bias in academic seminars, it has limitations, such as focusing on a specific seminar series at one institution. Future research expanding the scope to encompass a broader range of institutions and disciplines could shed light on whether the phenomenon of a smaller audience for female academics is widespread or specific to some disciplines in science. Exploring the intersectionality of gender with other factors such as race, ethnicity, and geographic origin is also necessary to address ways to improve diversity in academia (Schmidt et al., 2017, Diele-Viegas et al., 2021). Since our study is observational, we also encourage other approaches, such as Bertrand \& Mullainathan (2004) for racial discrimination in the labor market and MossRacusin et al. (2012) for gender discrimination in academic science. Future experimental
studies could, for instance, assess the willingness to attend talks depending on the features of the speaker. By addressing these gaps, academia can continue to work towards creating a more equitable and inclusive scientific community where all voices are valued and represented.

Acknowledgments

We would like to thank the EcoEncontros Committee from 2018-2021 for collecting and providing such valuable data. We thank Camila Castanho, Paulo Inácio Prado, and Esther Sebastián-González for their discussions and suggestions. We thank the IB-Mulheres group for the opportunity to present and discuss our study at the Women's Day seminar in 2021. We also thank the Graduate Program in Ecology of the University of São Paulo (PPGE-USP) for coordinating and providing secretarial support (special thanks to Vera Lima!) and hosting, encouraging, and supporting the seminar series. We appreciate the entire PPGE community's efforts to create an atmosphere of diversity and solidarity and promote inclusive and open science. PCS is currently supported by a postdoctoral fellowship from Carl Tryggers Foundation (CTS 21:1386) and was supported by a doctoral fellowship from CNPq (process number: 140232/2018-4) during the execution of this project.

Data and code availability statement

All the data used and the analysis code produced in this study is available in the Zenodo repository https://doi.org/10.5281/zenodo. 11237445 (Leite, Barreto, 2024). Names were omitted from the available dataset to preserve the speakers' anonymity.

Conflict of interest

We declare no conflict of interest.

References

Amrein K, Langmann A, Fahrleitner-Pammer A, Pieber TR, Zollner-Schwetz I (2011) Women Underrepresented on Editorial Boards of 60 Major Medical Journals. Gender Medicine 8: 378-387.
Astegiano J, Sebastián-González E, Castanho C de T (2019) Unravelling the gender productivity gap in science: a meta-analytical review. Royal Society Open Science 6: 181566.

Barros C dos S de, Pistón N, Delciellos AC, Leite M de S (2021) Is Oecologia Australis promoting gender equality in its review process? Oecologia Australis 25: 642-647.

Benoit K, Watanabe K, Wang H, Nulty P, Obeng A, Müller S, et al. (2018) quanteda: An R package for the quantitative analysis of textual data. Journal of Open Source Software 3: 774.

Bertrand M, Mullainathan S (2004) Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination. American Economic Review 94: 991-1013.
Bolker B, R Development Core Team (2023) bbmle: Tools for general maximum likelihood estimation [WWW document]. URL https://CRAN.R-project.org/package=bbmle
Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R journal 9: 378-400.
Calaza KC, Erthal FCS, Pereira MG, Macario KCD, Daflon VT, David IPA, et al. (2021) Facing Racism and Sexism in Science by Fighting Against Social Implicit Bias: A Latina and Black Woman's Perspective. Frontiers in Psychology 12.
Carter AJ, Croft A, Lukas D, Sandstrom GM (2018) Women's visibility in academic seminars: Women ask fewer questions than men. PloS One 13: e0202743.
Davenport JRA, Fouesneau M, Grand E, Hagen A, Poppenhaeger K, Watkins LL (2014) Studying Gender in Conference Talks -- data from the 223rd meeting of the American Astronomical Society.
Diele-Viegas LM, Cordeiro TEF, Emmerich T, Hipólito J, Queiroz-Souza C, Sousa E, et al. (2021) Potential solutions for discrimination in STEM. Nature Human Behaviour 5: 672-674.
Doleac JL, Hengel E, Pancotti E (2021) Diversity in Economics Seminars: Who Gives Invited Talks? AEA Papers and Proceedings 111: 55-59.
Dupas P, Modestino AS, Niederle M, Wolfers J, Collective TSD (2021) Gender and the Dynamics of Economics Seminars [WWW document]. Cambridge, MA: National Bureau of Economic Research. URL http://www.nber.org/papers/w28494.pdf
Feinerer I, Hornik K, Meyer D (2008) Text Mining Infrastructure in R. Journal of Statistical Software 25.
Fox CW, Burns CS, Muncy AD, Meyer JA (2016) Gender differences in patterns of authorship do not affect peer review outcomes at an ecology journal. Functional Ecology 30: 126-139.
Fox CW, Meyer J, Aimé E (2023) Double-blind peer review affects reviewer ratings and editor decisions at an ecology journal. Functional Ecology 37: 1144-1157.
Fox CW, Ritchey JP, Paine CET (2018) Patterns of authorship in ecology and evolution: First, last, and corresponding authorship vary with gender and geography. Ecology and Evolution 8: 11492-11507.
Greska L (2023) Women in Academia: Why and where does the pipeline leak, and how can we fix it? MIT Science Policy Review 4: 102-109.
Grün B, Hornik K (2011) topicmodels: An R Package for Fitting Topic Models. Journal of Statistical Software 40.
Hartig F (2016) DHARMa - an R package for residual diagnostics of GLMMs [WWW document]. theoretical ecology. URL https://theoreticalecology.wordpress.com/2016/08/28/dharma-an-r-package-for-residual-diagnostics-of-glmms/
Hong L, Page SE (2004) Groups of diverse problem solvers can outperform groups of highability problem solvers. Proceedings of the National Academy of Sciences 101: 1638516389.

Larivière V, Ni C, Gingras Y, Cronin B, Sugimoto CR (2013) Bibliometrics: Global gender disparities in science. Nature 504: 211-213.

Leite M de S, Barreto JR (2024) Data and Code from: Is the audience gender-blind? Smaller audience in female talks highlights prestige differences in academia. Zenodo(epub ahead of print) doi: https://doi.org/10.5281/zenodo. 11237445.
Lüdecke D (2018) ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open Source Software 3: 772.
Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D (2021) performance: An R package for assessment, comparison and testing of statistical models. Journal of Open Source Software 6: 3139.
Miller DI, Eagly AH, Linn MC (2015) Women's representation in science predicts national gender-science stereotypes: Evidence from 66 nations. Journal of Educational Psychology 107: 631-644.
Miriti MN (2020) The Elephant in the Room: Race and STEM Diversity. BioScience 70: 237-242.
Moss-Racusin CA, Dovidio JF, Brescoll VL, Graham MJ, Handelsman J (2012) Science faculty's subtle gender biases favor male students. Proceedings of the National Academy of Sciences 109: 16474-16479.
Nature Index (2021) Nature Index. Available at http://www.natureindex.com/ (accessed on June 12, 2021) [WWW document]. URL https://www.nature.com/nature-index/
Niemeier DA, González C (2004) Breaking into the Guildmasters’ Club: What We Know about Women Science and Engineering Department Chairs at AAU Universities. NWSA Journal 16: 157-171.
Nosek BA, Banaji MR, Greenwald AG (2002) Math $=$ male, me $=$ female, therefore math \neq me. Journal of Personality and Social Psychology 83: 44-59.
Oliveira DFM, Ma Y, Woodruff TK, Uzzi B (2019) Comparison of National Institutes of Health Grant Amounts to First-Time Male and Female Principal Investigators. JAMA 321: 898-900.
Page SE (2007) The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies (New Edition). Princeton University Press.
Pew Research Center Science (2021) STEM Jobs See Uneven Progress in Increasing Gender, Racial and Ethnic Diversity [WWW document]. URL https://www.pewresearch.org/science/2021/04/01/stem-jobs-see-uneven-progress-in-increasing-gender-racial-and-ethnic-diversity/
R Core Team (2022) R: A language and environment for statistical computing. v4.3.1.
Reuben E, Sapienza P, Zingales L (2014) How stereotypes impair women's careers in science. Proceedings of the National Academy of Sciences 111: 4403-4408.
Ross MB, Glennon BM, Murciano-Goroff R, Berkes EG, Weinberg BA, Lane JI (2022) Women are credited less in science than men. Nature 608: 135-145.
Schmidt SJ, Douglas S, Gosnell NM, Muirhead PS, Booth RS, Davenport JRA, et al. (2017) The Role of Gender in Asking Questions at Cool Stars 18 and 19. (epub ahead of print) doi: 10.5281/zenodo.546881.
Schroeder J, Dugdale HL, Radersma R, Hinsch M, Buehler DM, Saul J, et al. (2013) Fewer invited talks by women in evolutionary biology symposia. Journal of Evolutionary Biology 26: 2063-2069.
Sege R, Nykiel-Bub L, Selk S (2015) Sex Differences in Institutional Support for Junior Biomedical Researchers. JAMA 314: 1175-1177.
Shaw AK, Stanton DE (2012) Leaks in the pipeline: separating demographic inertia from ongoing gender differences in academia. Proceedings of the Royal Society B: Biological Sciences 279: 3736-3741.
Silge J, Robinson D (2016) tidytext: Text mining and analysis using tidy data principles in R. JOSS 1.

Silge J, Robinson D (2017) Text mining with R: a tidy approach. First edition. Beijing Boston Farnham Sebastopol Tokyo: O'Reilly.
United Nations General Assembly (2015) Transforming our world: the 2030 Agenda for Sustainable Development. Resolution adopted by the General Assembly on 25 September 2015 [WWW document]. URL https://sdgs.un.org/2030agenda
Wennerås C, Wold A (1997) Nepotism and sexism in peer-review. Nature 387: 341-343.
Woolston C (2019) Scientists' salary data highlight US\$18,000 gender pay gap. Nature 565: 527-527.
Young DM, Rudman LA, Buettner HM, McLean MC (2013) The Influence of Female Role Models on Women's Implicit Science Cognitions. Psychology of Women Quarterly 37: 283-292.
Zandonà E (2022) Female ecologists are falling from the academic ladder: A call for action. Perspectives in Ecology and Conservation 20: 294-299.

Supplementary Material of Barreto et al. (2024)

Is the audience gender-blind? Smaller audience in female talks highlights prestige differences in academia

Table S1. Descriptive summary of the audience of talks by career position and gender.

Academic position	Gender		Min	Mean	SD	Median Max	
Student	F	77	4	17.58	6.69	18.0	36
Student	M	70	6	19.83	8.20	19.0	44
Postdoc	F	23	5	19.52	10.34	18.0	50
Postdoc	M	32	5	18.97	8.78	18.0	43
Professor	F	24	4	21.54	9.78	21.0	40
Professor	M	72	5	29.51	16.46	26.5	101

Table S2. Variables used to measure the professors' productivity, career length, and institution prestige rank. Variables codes are presented in the PCA results in Figure 3b.

Variable	Code	Description
Career length	career_Y	The number of years from the first cited publication until the year of the talk
i10-index	i10	The number of papers with at least ten citations
H-index, which counts;	h	The number for papers with at least the same number of citations
Total citations	tot_cit	Total number of citations
Cumulative number of citations	cit_cum	Cumulative number of citations until the year of the talk
citations of the most cited paper	most_cit	Number of citations of the most cited paper
Nature index Count	nature_count	A count of one is to an institution or country if one or more authors of the research article are from that institution or country, regardless of how many co-authors there are from outside that institution or country
Nature Index Share	nature_share	A fractional count considers the percentage of authors from that institution and the number of affiliated institutions per article

Figure S1. Gender balance per academic position and year for the Graduate Program of Ecology (PPGE-USP). This information was used to calculate the population gender ratio for each academic position and year as the most likely source of speakers for the EcoEncontros seminar. Gender ratio was used in the model for the proportion of female speakers to control for the possible biases in the gender balance in the population.

Figure S2. The proportion of female speakers per academic position of the second most plausible model (see Table 1a in the main text), which has academic position and the population gender ratio as predictors. The population gender ratio was fixed at 1 for the predictions.

Figure S3. Audience (number of attendees) in seminars according to gender, academic position, and affirmative actions (before and after 2018) with the prediction (black contour circles) and confidence intervals (vertical black lines) from the second bestfitted model for the audience (Table 1 b in the main text).

Figure S4: Frequency plot of the most used words in the titles and abstracts of the seminars given by female (y -axis) and male (x-axis) professor speakers. Both axes are at the logarithm 10 scale. The color scale indicates the absolute difference in the percentage of use between male and female speakers. Only the most common words are displayed, words with the exact same frequency were randomly assigned to display. Words that are close to the dashed line have similar frequencies in both sets of texts. The Pearson correlation between word frequencies was 0.87 for all talks (Figure 4, main text) and 0.66 for professors only (this figure).

Figure S5. Word clouds generated from the titles and abstracts of the seminars given by female (purple) and male (yellow) speakers for all talks. The size of each word represents its frequency in the text. The Pearson correlation between word frequencies was 0.87 for all speakers (p -value <0.001).
seed population increase today teaching system geographic indirectly anastrephapart analysis variation mangrove functions relevant since ${ }_{2}{ }^{8}$ howevertheory good production many economic implications . depend morphological integration important females ${ }_{E}^{\text {composition }}$ knowฐ్g still evolution interaction $\begin{aligned} & \text { distribution legal } \\ & \text { structure extrafloral }\end{aligned}$
윧 튱 behaviorline $\frac{2}{\sigma}$ still evolution interaction structure extrafloral
曾 틍 recent $\frac{5}{0}$ facilitation
nature pollination understanding
nature polination understan
crypticbird"
$\underset{\substack{\text { actionanimal } \\ \text { antneed }}}{ }$ coloay plant data diverse
antrieec

reproduction service main
baleen bats
hand present
bnvironn
insect ordstems PCOSVStem brazil work loss 足
argumentative
spatial extinction diversity study $\begin{gathered}\text { activities } \\ \text { skills } \\ \text { decision }\end{gathered}$
${ }^{\text {among }}$ neotropic science society forest importance
nectar whales role andscape threat efficiency
eloped together landsape patterns ${ }_{\text {cin }}^{\text {w }}$ well control education
lecture fraterculus information large potential fragmented
endemism biomes sexual management $\begin{aligned} & \text { large } \\ & \text { better } \\ & \mathbb{y}\end{aligned}$ cycling markers
numerous conditions graduate value wild bignoniaceaedisease point
molecular dynamic contexts associated
mechanisms rodentsmixed withinapplication departmentmanakins
tropicseveral sexual article influence reproduction ${ }_{\text {two }}{ }^{\text {addition }}$ ial mediate good tind sexual predators organisms potential scale
 individuals
onportant history network lastesocine
gasresource individuals risk litle latin adaptation food factors view decades
casesway conservation diversitymodel area animacesseswater discussamphibiain studynatureusing maffec foresent plant many life
mone
moncase eCO plant recenthigh interaction ${ }^{\text {ttx }}$ कwild bpology SOPCIOS amosng size crop Nödefense nociety soll? kating insect 은잉 insect richness systems
environment research different variation impact change ${ }^{\text {long }}$ dynamic ${ }_{\text {climate }}$ well aspectssem behavior pollination forest uselandscape ybiomass distance rasuit Eecosystem resultssustainability
y presence structure

Figure S6. Word clouds generated from the titles and abstracts of the seminars given by female (purple) and male (yellow) professors only. The size of each word represents its frequency in the text. The Pearson correlation between word frequencies was 0.66 for professors only (p-value <0.001).

