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Abstract 22 

Understanding what drives temporal changes in community composition is urgent given 23 

widespread population declines that increase vulnerability to demographic noise. We 24 

investigated how demographic stochasticity and environmental variability relate to 25 

compositional variability both locally (temporal β-diversity) and regionally (temporal 26 

changes in spatial β-diversity). To do this, we first simulated communities without 27 

environmental selection to test whether commonly used β-diversity metrics were robust to 28 

demographic stochasticity alone. In the absence of environmental forcing, a rank-change 29 

metric showed no consistent relationship with community size, confirming that observed size 30 

effects in empirical data would not be artifacts of the metric. We then analyzed 468 riverine 31 

fish community time series collected between 1981 and 2019 across 39 regions spanning 32 

three biogeographic realms, modeling local and regional compositional variability against 33 

community size, its temporal variability, species richness, rarity, and environmental variation 34 

and synchrony. Empirical analyses revealed scale dependence in the processes shaping 35 

compositional change. At the local scale, internal community properties were more 36 

important. Smaller median community size and greater fluctuations in total abundance were 37 

related to higher temporal β-diversity, consistent with a stronger role of demographic 38 

stochasticity in small communities. Higher species richness also increased temporal β-39 

diversity, likely by enlarging the pool of possible colonists and increasing the number of 40 

feasible community states. At the regional scale, however, these factors had little influence. 41 

Instead, the spatial synchrony of precipitation emerged as the main predictor of temporal 42 

changes in spatial β-diversity. Metacommunities embedded in more synchronized 43 

environments exhibited less temporal variability in among-site dissimilarity, suggesting that 44 

synchronized environmental forcing constrains spatial reshuffling of communities over time. 45 

Together, these results reveal a scale-dependent shift in the processes influencing 46 



3 
 

 

compositional variability. Local temporal β-diversity can be primarily driven by demographic 47 

stochasticity and richness effects, whereas regional compositional dynamics by 48 

environmental factors. This integration of demographic and environmental perspectives 49 

highlights how the balance between internal and external processes shifts across scales. It is 50 

important to understand how such processes interact in a time when biodiversity is declining, 51 

populations are getting smaller and climates are becoming more variable. These trends could 52 

change how ecological communities vary over time. 53 

 54 

  55 
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Introduction 56 

Ecosystems show decreasing temporal variability when analyzed across broader 57 

spatial scales, higher organizational levels, or more complex trophic structures (Wang et al. 58 

2019, Kéfi et al. 2019, Hammond et al. 2020, Siqueira et al. 2024). This scaling pattern has 59 

been associated to multiple mechanisms, mainly deterministic ones such as compensatory 60 

species dynamics (Gonzalez and Loreau 2009), mobile predators (McCann et al. 2005) and 61 

spatially synchronized environmental effects (Steiner et al. 2013), as well as statistical 62 

averaging (Doak et al. 1998). Stochastic processes, particularly demographic stochasticity, 63 

are also expected to influence variability, especially where local population sizes are small 64 

(Lande et al. 2003). Yet we lack a clear understanding of how random demographic events at 65 

the individual and population level cascade into turnover in species composition through 66 

time, and how those effects aggregate across local communities to alter metacommunity 67 

temporal dynamics. This gap persists despite the growing recognition of stochastic processes 68 

in ecosystems (Vellend 2016, Leibold and Chase 2018) and the increasing need of 69 

understanding biodiversity temporal dynamics under global change (Shimadzu et al. 2015, 70 

Magurran et al. 2019, Tatsumi et al. 2021, Dornelas et al. 2023).  71 

Demographic stochasticity is chance variation in individual fates (births, deaths) 72 

whose relative influence increases as population size declines (Reed and Hobbs 2004, 73 

Melbourne and Hastings 2008). At the population level, these random events produce drift-74 

like temporal trajectories (Lande 1993). When such dynamics occurs independently among 75 

localities it generates asynchronous population dynamics that, when scaled up, can result in 76 

large within-site compositional turnover through time (high temporal β-diversity) and also in 77 

high among-site dissimilarity in snapshot surveys (Siqueira et al. 2020). Thus, spatial patterns 78 

observed at a single time may reflect underlying stochastic dynamics operating 79 

asynchronously across sites. 80 
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Environmental stochasticity (i.e., temporal variation in abiotic or biotic conditions) 81 

differs qualitatively from demographic noise because it can affect many individuals 82 

simultaneously (Lande et al. 2003). These processes leave different empirical signatures. 83 

Whereas demographic stochasticity generates uncorrelated, site-specific random walks in 84 

abundance (Melbourne and Hastings 2008), environmental stochasticity can produce 85 

synchronized temporal responses across sites if the driver is spatially correlated (Bjørnstad et 86 

al. 1999). The relative importance of each stochasticity type depends on the magnitude, 87 

temporal pattern, and spatial correlation of environmental variation relative to population 88 

size. So, accounting for spatial scale and correlation structure is central to interpreting both 89 

static and temporal diversity patterns.  90 

These contrasting dynamics map directly onto temporal changes in spatial β-diversity 91 

(Tatsumi et al. 2021). Asynchronous, drift-like turnover can maintain or amplify spatial β-92 

diversity over time, whereas synchronized environmental factors tends to homogenize 93 

communities across sites. Both processes can also increase local extinction risk when 94 

populations are small (Lande et al. 2003), and the spatial pattern of extinctions determines 95 

whether communities differentiate or homogenize through time (Olden et al. 2004). The 96 

balance between drift, environmental selection, and dispersal ultimately determines how local 97 

population fluctuations scale up to regional compositional change, even though dispersal and 98 

spatial averaging may mitigate these effects (Arim et al. 2023, Suzuki and Economo 2024).  99 

Disentangling these mechanisms in observational data is difficult because unmeasured 100 

or noisy environmental drivers can mimic demographic signals. Empirical studies therefore 101 

rely on indirect tests and complementary diagnostics: using community size (e.g., total 102 

number of individuals; Orrock & Watling, 2010) or area (Liu et al. 2018) as proxies for 103 

susceptibility to demographic noise, checking variance–mean relationships and temporal 104 

metrics, comparing observed patterns to null simulations, and applying dynamic models that 105 
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partition demographic and environmental stochasticity (Cohen et al. 2013, Nakadai 2021, 106 

Knape et al. 2023). For example, if smaller communities exhibit higher compositional 107 

variability or weaker environmental relationships, this suggests demographic noise plays a 108 

role (Gilbert and Levine 2017, Siqueira et al. 2020). Recent research supported this strategy 109 

by showing that while the strength of environmental filtering increased with community size, 110 

spatial β-diversity in fish communities decreased (Jacobi and Siqueira 2023). It is important 111 

to note, however, that this approach employs size–diversity relationships to assess the relative 112 

contributions of environmental and demographic processes rather than treating community or 113 

ecosystem size as a direct indicator of stochasticity. 114 

Considering this framing and the widespread population declines that potentially 115 

increase vulnerability to demographic noise (McCallum 2015, He et al. 2019, Almond et al. 116 

2020), we investigated how demographic stochasticity and environmental variability relate to 117 

compositional variability both locally (temporal β-diversity) and regionally (temporal 118 

changes in spatial β-diversity). If compositional variability is mostly driven by demographic 119 

stochasticity, then (1) abundance-based temporal β-diversity should increase as mean 120 

community size decreases, and (2) there should be weak statistical relationship between 121 

compositional changes and measuared environmental factors.  122 

To test these expectations, we first used simulations to validate whether β-diversity 123 

metrics reliably captured demographic variability. We then analyzed 468 fish-community 124 

time series (1981–2019; 39 regions), modeling local and regional compositional variability 125 

against community size, environmental drivers, and species richness. By combining 126 

simulation and empirical approaches, we are able to measure the contributions of 127 

environmental processes and demographic drift to changes in the temporal composition of 128 

communities of different sizes. 129 

 130 
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Material and methods 131 

Data 132 

We ran our empirical analyses using data from two databases. From the RivFishTIME 133 

(Comte et al. 2021), we obtained time series count data of riverine fish around the globe. 134 

TerraClimate (Abatzoglou et al. 2018) provided high-resolution monthly data for 135 

environmental variables, from which we calculated annual averages for precipitation, 136 

maximum air temperature, and minimum air temperature (which is a good proxy for water 137 

temperature (Stefan and Preud’homme 1993).  138 

We defined a metacommunity as the set of sites within basin delineations 139 

(HydroBASINS level 7) (Lehner and Grill 2013) and assigned a Strahler stream order for 140 

each sampled site using information from the HydroRIVERS network (Lehner and Grill 141 

2013). We then selected metacommunities that met the following criteria: (1) comprised at 142 

least five communities in first to third-order streams, (2) were sampled at least four times in 143 

different years, and (3) had at least five species. When dealing with metacommunity data 144 

comprising multiple sampling events per year, we selected the sampling date with the highest 145 

number of sampled sites to maximize the sample size. These steps resulted in 468 146 

communities distributed within 39 metacommunities, sampled from 1981 to 2019, located in 147 

the Australasia (12), Nearctic (12), and Palearctic (15) biogeographical realms (see Appendix 148 

S1: Figure S1). These metacommunities were composed on average of 12 communities 149 

(standard deviation = 9) sampled, on average, 11 times in the time-series (standard deviation 150 

= 5) with an average temporal extent of 14 years (standard deviation = 5). All data selection 151 

and manipulation were performed in R v. 4.2.1 (www.r-project.org) using the packages ncdf4 152 

(Pierce 2023), mapview (Appelhans et al. 2023) raster (Hijmans et al. 2023), sf (Pebesma 153 

2018, Pebesma and Bivand 2023), sp (Pebesma and Bivand 2005, Bivand et al. 2013), and 154 

tidyverse (Wickham et al. 2019). 155 
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 156 

Metrics of community size and species richness 157 

We quantified local community size as the median number of individuals over time, 158 

representing the central tendency of population vulnerability to demographic stochasticity; 159 

that is, smaller values indicated communities where demographic stochasticity was more 160 

likely to occur. At the regional scale, we calculated metacommunity size as the median of 161 

these local medians over time. In addition to these measures of central tendency, we also 162 

included the temporal coefficient of variation (CV) in community size as a predictor of 163 

compositional variability at both local and regional scales.  164 

Additionally, we calculated the proportion of species in the lowest abundance 165 

category (PL), which represents the share of relatively rare species in the regional species 166 

pool, following (Xiao et al. 2025). For each site we defined PL as the proportion of species 167 

whose mean abundance over the time series (for that specific site) fell in the lowest 168 

abundance bin of the observed species–abundance distribution, and we computed an 169 

analogous PL for each region. PL at the local scale was calculated by considering the whole 170 

set of samples within a community through time (the whole time series for each community) 171 

as the species pool. For regional PL, we calculated PL at the metacommunity level (the whole 172 

metacommunity was the species pool) for each time step and then used the median of these 173 

values for each metacommunity. For our regional models, we also included the temporal 174 

coefficient of variation (CV) of PL to account for fluctuations in the relative share of rare 175 

species through time. We included PL as an additional predictor at both local and regional 176 

scales because the share of relatively rare species may modulate susceptibility to 177 

demographic drift and to environment-driven losses, and thus influence temporal β-diversity. 178 

To represent local species richness, we estimated the median asymptotic richness of 179 

each community over time. At the regional scale, we estimated gamma diversity as the 180 
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median asymptotic richness of each metacommunity over time. Asymptotic richness was 181 

estimated with the iNEXT package (Hsieh et al. 2022), which combines extrapolation and 182 

interpolation techniques. 183 

 184 

Environmental predictors of temporal variability in species composition 185 

Environmental predictors of temporal variability in species composition included the 186 

coefficient of variation (CV) of maximum (CV tmax) and minimum (CV tmin) temperature 187 

and of precipitation (CV ppt). These metrics were measured by dividing the standard 188 

deviation of temperature and precipitation values at each site over time by the mean of these 189 

values.  190 

We measured environmental synchrony within metacommunities by calculating the 191 

correlation of each environmental variable between communities over time (synchrony of 192 

maximum temperature = syn tmax, synchrony of minimum temperature = syn tmin, 193 

synchrony of precipitation = syn ppt). A high correlation or environmental synchrony would 194 

indicate that the environmental conditions being analyzed changed similarly across sites, 195 

while a low synchrony indicates that environmental conditions vary more independently 196 

across sites.  197 

Finally, we also investigated if sample size (number of samples collected) and time 198 

series length (temporal extent of sampling) at both community and metacommunity levels, 199 

and metacommunity spatial extent could counfound the estimated relationships. We 200 

measured the spatial extent of each metacommunity by calculating the mean Euclidean 201 

distance between the central point of each metacommunity and its constituent communities. 202 

The mean distance between communities provides a measure of the overall spatial extent of 203 

the region encompassed by the metacommunity. We used the geosphere package (Hijmans 204 

2022) to perform these calculations.  205 
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 206 

Metrics of temporal variability in species composition 207 

A major challenge involved in relating community size to metrics of spatial and 208 

temporal variability in species composition is that they can be mathematically related to each 209 

other regardless of the underlying assembly process (Beck et al. 2013, Chase and Knight 210 

2013, Barwell et al. 2015, Cao et al. 2021). Thus, to select appropriate metrics of temporal 211 

variability that could be modeled against community size, we first simulated 212 

metacommunities without environmental selection, i.e. under purely neutral-like dynamics, 213 

according to the following steps.  214 

Riverine networks were simulated using the mcbrnet R package (Terui and Pomeranz 215 

2023). We first simulated random branching networks using the function brnet, which were 216 

then used in the mcsim function to simulate metacommunity dynamics. Since we were 217 

interested in simulating metacommunities without niche differentiation, we simulated species 218 

with similar niches along a spatially homogeneous environment. Carrying capacity was 219 

similar within communities in a given metacommunity but varied randomly among 220 

metacommunities (ranging from 50 to 150 individuals). We manipulated random mortality 221 

intensity and carrying capacity to approximate metacommunity sizes observed in the 222 

empirical datasets. We assigned the same dispersal probability to all species in each 223 

simulation but conducted multiple simulations with different probabilities (high: 1, 224 

intermediate: 0.5, low: 0.1) to assess their impact on the relationship between a metric of 225 

temporal variability and community size.  226 

Each simulation included 39 metacommunities, matching the empirical dataset. These 227 

metacommunities contained 5 to 30 communities and 5 to 48 species, reflecting the observed 228 

numbers in the empirical data. We ran each simulation for a total of 1000 time steps. After 229 

that, we selected species composition in ten time-steps (100, 200, 300, 400, 500, 600, 700, 230 
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800, 900, and 1000) as our temporal samples to measure the temporal variability at both local 231 

(within each community) and regional (among communities) scales using different metrics: 232 

(i) temporal variability in species composition at the local and regional scales, employing the 233 

metric proposed by Lamy et al., (2021) and implemented in the ltmc package (Sokol and 234 

Lamy 2022) and (ii) temporal beta diversity, measured as the median of species rank changes 235 

(Avolio et al. 2019) within each community over time, using the RAC_change function in the 236 

codyn package (Hallett et al. 2020), and (iii) temporal variation in spatial turnover within 237 

metacommunities, via the RAC_difference function in the codyn package (Hallett et al. 238 

2020). The median difference in species rank among communities within metacommunities 239 

was calculated at each time step.  240 

Finally, we regressed all these metrics of temporal variability against median 241 

community size over time and compared the outcomes. Because the assembly of our 242 

simulated metacommunities excluded environmental selection, any size effect would indicate 243 

that the metric was biased by sampling or other artifacts rather than reflecting true 244 

demographic stochasticity. Thus, a lack of relationship between community size and temporal 245 

variability in these neutral simulations provides a necessary baseline for evaluating which 246 

metrics can be reliably interpreted in the empirical analyses.  247 

 248 

Linear models 249 

Modelling temporal β-diversity 250 

The response variable selected to represent temporal variability in species 251 

composition, rank change (see results), represents proportional values bounded between 0 252 

and 1. To meet model assumptions of homoscedasticity and normality of residuals for 253 

Gaussian models, rank change was transformed using a logit transformation with a small 254 

offset (1e-6) to avoid zeros. Predictor variables were standardized (mean = 0, SD = 1) to 255 
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improve model convergence and facilitate interpretation of effect sizes. We assessed 256 

multicollinearity among all predictors using variance inflation factors (VIF), and all values 257 

were below 2, indicating no cause for concern. We also tested for and found no significant 258 

correlation between rank change and two potential confounding variables, time series length 259 

and number of samples per time point. As we had no a priori hypotheses for these variables, 260 

they were excluded from the final models to aid interpretation and avoid overfitting. 261 

We evaluated a series of increasingly complex linear models to explain temporal 262 

variability in local species composition (logit–transformed rank change). First, we fitted a 263 

beta regression including our standardized predictors: median community size, its temporal 264 

coefficient of variation (CV), the proportion of species in the lowest abundance category 265 

(PL), estimated richness, and the CV of minimum temperature, maximum temperature, and 266 

precipitation. Next, we added a random intercept for metacommunity identity to account for 267 

non‐independence among sites, and then introduced a dispersion submodel so that residual 268 

variance could vary as a function of community size, CV of community size, and PL. 269 

Likelihood‐ratio tests and AIC comparisons showed that both the random effect and the 270 

heteroskedasticity component improved model fit (Appendix S1: Table S1). 271 

Because our response is bounded between 0 and 1, we then refitted this full structure 272 

under both beta and Gaussian families. Although AIC favored the beta formulation, graphical 273 

and statistical diagnostics of residuals from the beta model (using DHARMa simulated-274 

residual tests) revealed major issues with dispersion and quantile deviations. In contrast, the 275 

same diagnostics showed that the Gaussian location–scale model more closely met 276 

underlying assumptions, with a uniform QQ-plot and no dispersion issues. Furthermore, a 277 

check for out-of-bounds predictions from the Gaussian model found that none of the 278 

predictions fell outside the [0,1] interval. Based on these checks, we selected the Gaussian 279 

location–scale model for all subsequent inference. We estimated model explanatory power 280 
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using marginal and conditional R² values derived from the location component of the 281 

Gaussian GLMM, which included fixed effects and a random intercept for metacommunity 282 

identity. These R² values quantify the proportion of variance explained by the fixed effects 283 

alone (marginal R²) and by both fixed and random effects combined (conditional R²), but do 284 

not account for variation explained by the dispersion (variance) model.  285 

 286 

Modelling temporal changes in spatial β-diversity 287 

To analyze temporal changes in spatial β-diversity, we followed a similar model-288 

building and selection procedure as we did for temporal β-diversity. The response variable, 289 

the coefficient of variation in species ranks across sites within a metacommunity (CV_rank), 290 

is also a proportional measure bounded between 0 and 1. Consequently, it was logit-291 

transformed with a small offset (1e-6) to avoid zeros, and all predictor variables were 292 

standardized (mean = 0, SD = 1). We again tested for correlations with time series length and 293 

number of samples per time point. Because we found none, we excluded these variables from 294 

subsequent models as they were not part of our core hypotheses. 295 

We then assessed multicollinearity among our candidate predictors. Variance inflation 296 

factors (VIF) identified high collinearity among the temperature and precipitation synchrony 297 

metrics. We retained only synchrony in precipitation, which is most biologically relevant for 298 

our study systems, resulting in all VIF values below acceptable thresholds. 299 

We then evaluated a series of models. First, we fitted a beta regression with a logit 300 

link including all standardized predictors. Unlike the model for temporal β-diversity, the 301 

addition of a dispersion submodel (allowing residual variance to vary as a function of 302 

metacommunity community size, median proportion of rare species, synchrony in 303 

precipitation, and regional CV of community size) did not improve model fit (LRT: χ² = 7.94, 304 

df = 4, p = 0.094). We therefore proceeded with the simpler homoscedastic beta regression. 305 
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We compared this beta GLM to a Gaussian GLM with an identity link. In contrast to 306 

our model for temporal β-diversity, AIC favored the beta model (ΔAIC = 10.2; Appendix 307 

S1). Diagnostic checks using DHARMa revealed no issues with dispersion, uniformity, or 308 

outliers for the beta model, confirming that it met all necessary assumptions. A check for out-309 

of-bounds predictions confirmed that none of the predictions fell outside the [0,1] interval. 310 

Based on these results, we selected the homoscedastic beta regression for all subsequent 311 

inference. A full summary of the model selection procedure, including AIC values for all 312 

compared models, is provided in Appendix S1: Table S1. 313 

All model fitting was conducted in glmmTMB (Brooks et al. 2017), residuals were 314 

checked with DHARMa (Hartig 2024), and p‑values for fixed effects were obtained from 315 

Type II Wald χ² tests in the car package (Fox and Weisberg 2019). All analyses were 316 

conducted in R version 4.2.1 (R Core Team, 2022). 317 

 318 

Results 319 

Metrics of temporal variability in simulated metacommunities  320 

Our simulations indicated that most metrics of temporal variability in species 321 

composition had a relationship with community size. The LTMC metric (temporal turnover 322 

within communities) exhibited a consistent negative relationship with community size at the 323 

local scale and, at the regional scale, showed a negative relationship in some simulations, 324 

whereas in others no such pattern was observed (see Appendix S1: Table S2). However, 325 

when a relationship was present at the regional scale, it exhibited high explanatory power. 326 

The species rank difference metric was positively related to community size in most 327 

simulations at the regional scale; however, the explanatory power of the models (R2) was 328 

consistently low across all simulation scenarios (mean R2 = 0.03; see Appendix S1: Table 329 

S2). The species rank change metric (temporal variability in rank abundance curves) was the 330 
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only metric that was consistently not related to community size at the local scale (see 331 

Appendix S1: Table S2). 332 

Thus, considering that the metrics based on rank-abundance changes showed no 333 

spurious relationship with community size under neutral-like dynamics, we used them to 334 

analyze the empirical data. More specifically, to represent temporal variability in species 335 

composition for each community (temporal β-diversity within communities), we used the 336 

species-rank change metric. To represent temporal changes in spatial β-diversity within 337 

metacommunities, we used the coefficient of variation of rank differences across years.  338 

 339 

Relationships in the empirical dataset 340 

Temporal β-diversity 341 

The final Gaussian location-scale mixed model (family: Gaussian, link: identity) 342 

explained a major portion of the variance in temporal β-diversity. The conditional R², 343 

representing variance explained by both fixed and random effects, was 0.547. The marginal 344 

R², representing variance explained by fixed effects alone, was 0.191. Temporal β-diversity 345 

was primarily influenced by community properties (Table 1). 346 

In the conditional (mean) component of the model, median community size was 347 

negatively related to compositional variability (β = -0.006, SE = 0.002; Wald χ² = 9.29, df = 348 

1, p = 0.0023; Figure 1a), while temporal variability in community size (CV) was positively 349 

related (β = 0.013, SE = 0.002; Wald χ² = 28.95, df = 1, p = 7.44e-08; Figure 1b). Local 350 

species richness was also positively related to temporal β-diversity (β = 0.017, SE = 0.003; 351 

Wald χ² = 26.96, df = 1, p = 2.08e-07; Figure 1c). The proportion of species in the lowest 352 

abundance category (PL) was not a main predictor of temporal β-diversity. Among the 353 

climatic predictors, only the coefficient of variation in precipitation showed a marginal 354 
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positive relationship; variability in minimum and maximum temperature had no detectable 355 

effects (Table 1). 356 

The dispersion component of the model revealed that residual variance declined with 357 

increasing community size (β = -0.333, SE = 0.040; z = -8.27, p = 2e-16), temporal 358 

variability in community size (β = -0.115, SE = 0.035; z = -3.25, p = 0.00117), and the 359 

proportion of species in the lowest abundance category (β = -0.167, SE = 0.032; z = -5.29, p 360 

= 1.19e-07; Appendix S1: Table S3). 361 

 362 

Temporal changes in spatial β-diversity 363 

The beta regression model (family: beta, link: logit) explained 31% of the variance in 364 

temporal variability of spatial β-diversity (Ferrari's R² = 0.311). Variability was primarily 365 

influenced by environmental synchrony and only marginally by community properties (Table 366 

2). Spatial synchrony in precipitation was negatively related to variability in spatial β-367 

diversity (β = -0.153, SE = 0.073; Wald χ² = 4.42, df = 1, p = 0.036), indicating that 368 

metacommunities in regions with more synchronized precipitation conditions across sites 369 

exhibited more stable spatial structure over time. 370 

The coefficient of variation in community size showed a positive, marginal 371 

relationship with temporal variability in spatial β-diversity (β = 0.138, SE = 0.076; Wald χ² = 372 

3.29, df = 1, p = 0.069). Community size, gamma diversity, the proportion of rare species, its 373 

variability, and mean distance among sites had no effect on temporal variability in spatial β-374 

diversity (Table 2). 375 

 376 

Discussion  377 

Our research reveals a scale-dependent shift in the drivers of temporal β-diversity  378 

across spatial scales. At the local scale, internal community properties were more important. 379 
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Communities with smaller populations exhibited higher temporal compositional variability, 380 

whereas those with greater fluctuations in total abundance or higher species richness showed 381 

greater temporal β-diversity. In contrast, at the regional scale, an external environmental 382 

driver was most influential. Metacommunity-scale compositional variability was primarily 383 

determined by the spatial synchrony of precipitation, with more synchronized environments 384 

exhibiting less temporal variability in spatial β-diversity. Together, these findings suggest 385 

that the mechanisms underpinning temporal compositional dynamics might shift from 386 

internal demographic processes to external environmental forcing as observation scale 387 

increases.  388 

Our finding that temporal β-diversity is higher in small and variable (in size) 389 

communities highlights how the effects of demographic stochasticity can scale up to make 390 

community dynamics less predictable. When mean abundance is low, each birth or death 391 

event represents a larger proportional change in population size, amplifying random 392 

fluctuations and increasing the probability of local extinction (Lande, 1993). On top of this, 393 

there sporadic bottlenecks might occur due to high community size variance, when 394 

demographic stochasticity is particularly strong, which can reduce or eliminate deterministic 395 

fitness differences. Under such conditions, subordinate species can temporarily rise in 396 

relative abundance, reshuffling ranks (Orrock and Watling 2010, Gilbert and Levine 2017, 397 

Legault et al. 2019) and enabling stochastic reassembly (Leibold and Chase 2018). 398 

Additionally, extinction-recolonization dynamics can be exacerbated by community size 399 

variability, which further leads to higher, less predictable temporal β-diversity (Tatsumi et al. 400 

2021). The dispersion component of our model reinforces this interpretation, as residual 401 

variance declined with increasing mean community size and, to a lesser extent, with its CV, 402 

consistent with the scaling of demographic stochasticity.  403 
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Beyond community size, other processes can influence the temporal turnover of local 404 

communities (Magurran et al. 2019, Saito et al. 2021, Heino et al. 2024). Among the climatic 405 

variables tested, interannual variability in precipitation showed a marginal, positive 406 

relationship with compositional change (p = 0.072), suggestive that this pattern may reflect 407 

species differing in their responses to environmental fluctuations (Gonzalez and Descamps-408 

Julien 2004), whereas temperature variability had no detectable effect. Importantly, species 409 

richness was positively correlated with temporal β-diversity, probably because more diverse 410 

communities include a greater range of demographic and functional responses to stochasticity 411 

(Arim et al. 2023). Specifically, greater species richness (over time) increases the number of 412 

community states and the probability of turnover through stochastic reassembly by offering a 413 

wider pool of possible colonists and alternative trait combinations (Leibold and Chase 2018, 414 

Saito et al. 2021). Because the rank_change metric we used standardizes rank shifts across 415 

the full species pool (Hallett et al. 2016), our results are unlikely to reflect simple sampling 416 

effects, instead pointing to greater inherent dynamism in species-rich systems.     417 

The negative relationship we found between precipitation synchrony and temporal 418 

variability in spatial β-diversity is consistent with a Moran-type effect (Ranta et al. 1997, 419 

Liebhold et al. 2004). Spatial synchrony means that species abundances at different sites 420 

fluctuate together (positive cross-site correlations). If most species change in the same 421 

direction and by similar relative amounts across sites, the between-site differences in species 422 

composition are maintained through time (sites shift together), so spatial β-diversity remains 423 

relatively constant. Similar logic underlies synchrony observed in population dynamics 424 

(Liebhold et al. 2004, Koenig and Liebhold 2016) and community-level responses (Gouhier 425 

et al. 2010). In contrast, community size did not explain temporal variability in spatial β-426 

diversity, suggesting that demographic stochasticity plays a minor role at this scale. Likewise, 427 

while we tested the effect of PL (proportion of rare species) and its temporal CV, their 428 
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influence was neglegible compared with precipitation synchrony. Taken together, these 429 

results highlight precipitation synchrony as a driver of temporal variability in spatial β-430 

diversity in our systems, while other potential demographic mechanisms appear 431 

comparatively weaker.  432 

These interpretations are subject to a few caveats. First, community size is an indirect 433 

proxy for demographic susceptibility and does not measure per-capita demographic variance 434 

directly. Second, fish counts may be affected by imperfect detection that varies with 435 

abundance or habitat. Third, our environmental predictors are annual summaries 436 

(TerraClimate) and may miss ecologically important extremes or intra-annual hydrological 437 

dynamics (e.g., floods, droughts) that drive turnover in riverine systems. 438 

Understanding these scale-dependent processes is essential in a time of widespread 439 

population declines (McCallum 2015, Leuenberger et al. 2025). Population dynamics is 440 

fundamentally influenced by demographic stochasticity (Otto and Whitlock 1997, Whitlock 441 

2004, Willi et al. 2006), and our results show that this influence scales up to shape the 442 

temporal dynamics of communities. Across spatial scales, we demonstrate a shift in 443 

dominance from internal demographic processes to an external environmental factor. This 444 

finding combines previously lines of evidence and theory that were either centered on 445 

population-level variability or community-level dynamics (Lande 1993, Vindenes and Engen 446 

2017, Jacobi and Siqueira 2023). Ultimately, testing the causal relationships identified here 447 

will require new approaches that move beyond correlational analyses to directly quantify and 448 

manipulate the underlying processes. 449 
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Table 1. Summary of fixed effects from the Gaussian location-scale GLMM modeling 668 

temporal β-diversity (rank change). The model includes ecological predictors related to local 669 

community size, environmental variability, and species richness. PL = proportion of species 670 

in the lowest abundance category. All predictors were standardized prior to model fitting. All 671 

Wald chi-square tests were performed with 1 degree of freedom. 672 

 673 

Predictor Estimate Std. Error Wald χ² p-value 

Conditional Model (Mean)     

(Intercept) 0.152 0.006 – 2e-16 

Community size –0.006 0.002 9.29 0.0023 

CV of community size 0.013 0.002 28.95 7.44e-08 

PL 0.004 0.003 2.28 0.1315 

CV of min. temperature 0.007 0.006 1.81 0.1785 

CV of max. temperature –0.000 0.005 0.000 0.9965 

CV of precipitation 0.007 0.004 3.24 0.0717 

Species richness 0.017 0.003 26.96 2.08e-07 

 674 

  675 
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 676 

Table 2. Summary of fixed effects from the beta regression used to model temporal 677 

variability in spatial β-diversity. The model includes ecological predictors related to 678 

community size, environmental variability, and species richness. PL = proportion of species 679 

in the lowest abundance category. All predictors were standardized prior to model fitting. All 680 

Wald chi-square tests were performed with 1 degree of freedom. 681 

 682 

Predictor Estimate Std. Error Wald χ² p-value 

Intercept –2.468 0.072 – 2e-16 

Metacommunity size –0.032 0.091 0.12 0.7250 

Median PL 0.010 0.108 0.01 0.9278 

CV of PL 0.183 0.113 2.61 0.1059 

Spatial extent 0.041 0.070 0.34 0.5620 

Synchrony precipitation –0.153 0.073 4.42 0.0356 

CV of metacommunity size 0.138 0.076 3.29 0.0699 

Gamma diversity 0.028 0.111 0.06 0.8020 
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 685 

Figure 1. Partial effects of main predictors (p < 0.05) on predicted temporal variability in 686 

species composition (rank change) from the best-fitting Gaussian GLMM. (a) Local 687 

community size, (b) coefficient of variation of community size, and (c) estimated species 688 

richness. Shaded areas represent 95% confidence intervals. All predictors were scaled (mean 689 

= 0, SD = 1) prior to model fitting. 690 
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Figure 1. 696 
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Appendix S1. 698 

Table S1. Model selection for the analysis of temporal variability. Top: Local-scale analysis 699 

of temporal β-diversity (rank change). Bottom: Regional-scale analysis of temporal 700 

variability in spatial β-diversity (CV_rank). Abbreviations: df: degrees of freedom; AIC: 701 

Akaike Information Criterion; ΔAIC: difference in AIC relative to the best model in each 702 

section; BIC: Bayesian Information Criterion; logLik: log-likelihood; LRT: Likelihood-ratio 703 

test. 704 

Model Description df AIC ΔAIC logLik LRT χ² χ² df Pr(>χ²) 

Local-Scale 

Models  

        

fit1 Fixed effects only 

(Gaussian) 

9 -1225.2 151.2 621.61 - - - 

fit2 + Random intercept  10 -1318.5 58.0 669.25 95.28 1 < 2e-16 

fit3 + Dispersion submodel 

(Full Gaussian) 

13 -1376.4 0.0 701.21 63.93 3 8.5e-14 

fit_beta Beta distribution (Full 

structure) 

13 -1376.4 0.0 701.21 - - - 

fit_gauss Gaussian distribution (Full 

structure) 

13 -1299.9 76.5 662.96 0 0 1 

Regional-

Scale Models  

        

fit1.r Fixed effects only (Beta) 9 -144.65 0.1 81.33 - - - 

fit2.r + Dispersion submodel 

(Beta) 

13 -144.59 0.0 85.29 7.94 4 0.094 

fit_beta.r Beta distribution 

(Selected) 

9 -144.65 0.0 81.33 - - - 

fit_gauss.r Gaussian distribution 9 -134.45 10.2 76.22 0 0 1 
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Table S2. Statistics obtained in the process-based simulation model by relating the metrics of 708 

temporal variability in species composition with the median community size. Simulations 709 

were conducted using different seeds and dispersal rates. The p-value represents the 710 

significance of each relationship, and the explanatory power was measured by R2.  711 

Temporal variability metric set.seed Dispersal Slope p-value R2 Adjusted R2 

LTMC local  1234 0.1 -1.2E-04 0.0055 0.1901 0.1683 

LTMC regional 1234 0.1 -6.4E-06 0.0985 0.0721 0.0470 

Rank change 1234 0.1 1.0E-06 0.8411 6.3E-05 -0.0015 

Rank difference 1234 0.1 1.1E-05 0.0017 0.0252 0.0227 

LTMC local  1234 0.5 -3.8E-05 0.0132 0.1549 0.1321 

LTMC regional 1234 0.5 -1.2E-06 0.6211 0.0067 -0.0202 

Rank change 1234 0.5 8.6E-06 0.0364 0.0069 0.0053 

Rank difference 1234 0.5 4.2E-06 0.301 0.0028 0.0002 

LTMC local  1234 1 -3.7E-05 0.0108 0.1632 0.1406 

LTMC regional 1234 1 -2.3E-06 0.405 0.0188 -0.0077 

Rank change 1234 1 5.0E-07 0.9071 2.2E-05 -0.0016 

Rank difference 1234 1 1.2E-05 0.0091 0.0174 0.0149 

LTMC local  111 0.1 -1.3E-04 0.0001 0.328 0.3098 

LTMC regional 111 0.1 -9.0E-06 0.0021 0.2274 0.2065 

Rank change 111 0.1 -2.3E-07 0.9565 4.8E-06 -0.0016 

Rank difference 111 0.1 1.4E-05 1.5E-06 0.0580 0.0556 

LTMC local  111 0.5 -4.6E-05 0.0003 0.3016 0.2827 

LTMC regional 111 0.5 -6.7E-06 0.0060 0.1868 0.1648 

Rank change 111 0.5 6.3E-06 0.1187 0.0039 0.0023 

Rank difference 111 0.5 2.1E-05 2.1E-08 0.0778 0.0754 

LTMC local  111 1 -4.3E-05 0.0003 0.3063 0.2875 

LTMC regional 111 1 -5.5E-06 0.0255 0.1278 0.1042 

Rank change 111 1 -4.8E-07 0.9029 2.4E-05 -0.0016 

Rank difference 111 1 1.7E-05 1.4E-05 0.0476 0.0451 
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Table S3. Summary of fixed effects from the dispersion component of the Gaussian GLMM, 716 

where the log of the residual variance was modeled as a linear function of ecological 717 

predictors (i.e. log-linear dispersion model). This structure accounts for heteroscedasticity in 718 

the response variable by allowing residual variance to vary across observations as a function 719 

of median community size, the coefficient of variation (CV) in community size, and the 720 

proportion of species in the lowest abundance category (PL). The table reports estimated 721 

effects, standard errors, and z-values from Wald z-tests. All predictors were standardized 722 

prior to model fitting.  723 

Predictor Estimate Std. Error z value p-value 

(Intercept) –2.902 0.035 –82.460 2e-16 

Median local community size  –0.333 0.040 –8.270 2e-16 

CV of local community size –0.115 0.035 –3.250 0.00117 

PL –0.167 0.032 –5.290 1.19e-07 
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Supplementary Figures 726 

727 

Figure S1. Geographic distribution of the 39 metacommunities selected in our study, located 728 

in Australasia (12), Nearctic (12), and Palearctic (15) biogeographical realms. 729 
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 731 

 732 

Figure S2. Raw data on temporal variability in species composition (rank change) plotted 733 

against (a) local median community size, (b) coefficient of variation (CV) of local 734 

community size, and (c) estimated species richness for individual metacommunities (colors). 735 

Colored lines are exploratory visual aids (e.g., local trends), not model components. The 736 

black thicker line represents the overall relationship, with the grey band representing a 95% 737 

confidence interval. 738 
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