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Abstract: The temporal stability of ecological properties tends to increase with spatial scale and 10 

levels of biological organization, which is mostly associated with deterministic processes. 11 

However, random fluctuations caused by demographic stochasticity in small populations might 12 

extend to communities and metacommunities, potentially affecting stability propagation across 13 

biological levels and spatial scales. Here, we tested this hypothesis by combining process-based 14 

simulations and statistical modeling of 468 sites distributed across 39 regions, sampled from 15 

1981 to 2019, to investigate how fish communities and metacommunities changed over time at 16 

local and regional scales. We found that species-rich communities in highly seasonal 17 

environments were more variable. However, the major driver of compositional temporal 18 

variability was community size. Communities comprising smaller populations were more 19 

temporally variable than those comprising larger populations. This relationship was weaker at 20 

the regional scale, suggesting a dampening effect at the metacommunity level. Our results 21 

suggest that the potential effects of demographic stochasticity, which are undoubtedly stronger in 22 

small populations, might extend beyond populations, leaving different signals in the temporal 23 

variability of ecological properties. These effects appear to be stronger and consistent within 24 
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small communities and weaker in metacommunities. Our study advances the knowledge of how 25 

populational-demographic stochasticity might affect biodiversity temporal dynamics across 26 

scales. 27 

KEYWORDS: random demography; community size; compositional variability; environmental 28 

variability; spatial scale; temporal variability   29 
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Introduction 30 

Theoretical and observational research posit that the temporal variability of ecological 31 

properties (e.g., coefficient of variation of biomass) decreases with the increase of spatial scale, 32 

levels of biological organization, and trophic levels (Kéfi et al. 2019; Wang et al. 2019; 33 

Hammond et al. 2020; Siqueira et al. 2024). The explanations for these relationships are mainly 34 

based on deterministic processes, such as compensatory dynamics (Gonzalez and Loreau 2009, 35 

Brown et al. 2016), the role of mobile predators (McCann et al. 2005), and the Moran effect 36 

(Steiner et al. 2013). Small populations experience high temporal variability due to random 37 

demographic events (Reed and Hobbs 2004; Melbourne and Hastings 2008). Thus, as a process 38 

that unfolds over time, could demographic stochasticity increase the temporal variability of 39 

communities and metacommunities? Or do its effects also weaken from populations to 40 

metacommunities? Understanding how random demographic events may affect biodiversity 41 

temporal variability at larger scales is important to better forecast how ecosystems will respond 42 

to global changes. 43 

Demographic stochastic events such as birth, death, and emigration are inherent elements 44 

of population dynamics (Lande 1988; 1993; Otto and Whitlock 1997; Whitlock 2004; Willi, van 45 

Buskirk, and Hoffmann 2006; Melbourne and Hastings 2008). While various forces influence 46 

population demography, their impacts are consolidated into population size. Small populations 47 

are more susceptible to the effects of random events, making them more temporally variable than 48 

larger populations (Otto and Whitlock 1997; Reed and Hobbs 2004; Whitlock 2004). Expanding 49 

on this understanding, recent research suggests that the effects of local demographic stochastic 50 

events might extend to larger spatial scales and levels of biological organization. For example, 51 

there is mounting evidence indicating that demographic stochasticity increases spatial beta 52 
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diversity among local communities comprised of small populations (small communities; (Orrock 53 

and Watling 2010; Gilbert and Levine 2017; Siqueira et al. 2020) and weakens community-54 

environment relationships (Jacobi and Siqueira 2023).  55 

Although there is limited research about the effects of demographic stochasticity on the 56 

temporal variability of multispecies communities, most studies suggest that small communities 57 

tend to exhibit greater temporal variability (temporal beta diversity) compared to larger ones 58 

because small populations have few individuals to buffer against random fluctuations in their 59 

demography (Orrock and Fletcher 2005; Pedruski, Fussmann, and Gonzalez 2015; Gilbert and 60 

Levine 2017; Legault, Fox, and Melbourne 2019). One possible explanation for such relationship 61 

is that when demographic stochasticity plays a strong role in community assembly, niche 62 

differences become less important, as the likelihood of any demographic event happening is 63 

similar for all individuals, regardless of their fitness differences (Orrock and Watling 2010, 64 

Legault et al. 2019). For this reason, it is reasonable to expect that small local communities 65 

should have higher temporal variability in their species composition (i.e. high temporal beta 66 

diversity) than large communities. However, stochastic variability in species composition might 67 

be also caused by an interaction between trait-diversity, dispersal and population size (Arim et al. 68 

2023). Thus, further empirical research still needed to understand the effects of demographic 69 

stochasticity in the temporal assembly of ecological communities. 70 

Considering that small communities may experience high temporal variability in species 71 

composition, it is possible that metacommunities formed by small communities may also be 72 

highly variable in time. Simulations and experiments analyzing biodiversity variability have 73 

found that metacommunity size is a key factor shaping species composition temporal variability 74 

(LeCraw, Srivastava, and Romero 2014; Suzuki and Economo 2024). Thus, large temporal 75 
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fluctuations in species composition within the metacommunity should happen if random 76 

extinctions (or abundance changes) of species occur independently across different sites within 77 

the metacommunity. Alternatively, if demographic stochasticity is not widespread within the 78 

metacommunity, its effects might be negligible compared to the influence of deterministic 79 

processes like compensatory dynamics (Andrew Gonzalez and Loreau 2009; Loreau 2010; 80 

Brown, Downing, and Leibold 2016).  81 

In light of the ongoing declines in population sizes and the elevated rates of species 82 

extinction (McCallum 2015; He et al. 2019; Almond, Grooten, and Petersen 2020), we ask 83 

whether the effects of population-level demographic stochasticity propagate to higher levels of 84 

biological organization and influence biodiversity temporal dynamics at larger spatial scales. To 85 

do so, we analyzed how temporal variability in species composition was related to the size of 86 

communities at local and regional scales. If small communities are more variable than large ones  87 

simply due to their size, this would indicate a stronger influence of demographic stochasticity on 88 

these communities. However, analyzing this relationship is challenging as, aside from the need 89 

for a significant amount of independent temporally and spatially replicated data across a gradient 90 

of community size, it is crucial that the metrics used to quantify temporal variation in species 91 

composition are not inherently affected by differences in community size. Thus, we first used a 92 

process-based simulation model to test if metrics commonly used to quantify variation in species 93 

composition could indicate the effects of demographic stochasticity via their relationship with 94 

community size. We then applied these metrics to time-series observational data and statistical 95 

models to understand the relationships of temporal variability in species composition at both the 96 

community and metacommunity levels with community size and other potential predictors, 97 
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including temporal variation in environmental conditions, time series length, the number of 98 

samples in the time series, and species richness.  99 

We expected to find a negative relationship between temporal variability in species 100 

composition within local communities and community size, suggesting that local species 101 

composition vary more over time within small communities. At the metacommunity level, we 102 

had two competitive expectations: (1) either a negative relationship between temporal variability 103 

in spatial beta-diversity and regional community size (2) or no relationship between temporal 104 

variability in spatial beta-diversity and regional community size. Evidence supporting the latter 105 

would indicate that the effects of local demographic stochasticity are weakened over time at the 106 

regional scale. 107 

 108 

Material and methods 109 

Data 110 

We ran our empirical analyses using data from two large databases. From RivFishTIME 111 

(Comte et al. 2021), we obtained time series count data of riverine fish. TerraClimate 112 

(Abatzoglou et al. 2018) provided high-resolution monthly data for environmental variables, 113 

from which we calculated annual averages for precipitation, maximum air temperature, and 114 

minimum air temperature (a good proxy for water temperature; Stefan and Preud’homme 1993).  115 

We defined a metacommunity as the set of sites within basin delineations (HydroBASINS 116 

level 7 – Lehner and Grill 2013) and assigned a Strahler stream order for each sampled site using 117 

information from the HydroRIVERS network (Lehner and Grill 2013). After that, we selected 118 

metacommunities that met the following criteria: (1) were composed of at least five communities 119 

in first to third-order streams, (2) were sampled at least four times in different years, and (3) had 120 
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at least five species. When dealing with metacommunity data comprising multiple sampling 121 

events per year, we selected the sampling date with the highest number of sampled sites. These 122 

steps resulted in 468 communities distributed within 39 metacommunities, sampled from 1981 to 123 

2019, located in the Australasia (12), Nearctic (12), and Palearctic (15) biogeographical realms 124 

(Figure S1). These metacommunities are composed on average of 12 communities (standard 125 

deviation = 9) sampled, on average, 11 times in the time-series (standard deviation = 5) with an 126 

average temporal extent of 14 years (standard deviation = 5). All data selection and manipulation 127 

were made in R v. 4.2.1 (www.r-project.org) using the packages ncdf4 (Pierce 2023), mapview 128 

(Appelhans et al. 2022) raster (Hijmans 2023), sf (Pebesma 2018; Pebesma and Bivand 2023), sp 129 

(Pebesma and Bivand 2005, Bivand et al. 2013), tidyverse (Wickham et al. 2019). 130 

 131 

Representing the signature of demographic stochasticity  132 

Because the effects of demographic stochasticity are negatively correlated with 133 

population size, we used the median of community size over time as a proxy to represent the 134 

signature of demographic stochasticity. We measured the size of each community as the median 135 

number of individuals over time (local community size), considering that communities composed 136 

of fewer individuals are also composed, on average, of smaller populations than communities 137 

with more individuals. Finally, to represent the signature of demographic stochasticity at the 138 

regional scale, we measured the size of each metacommunity as the median community size 139 

within each metacommunity over time (regional community size).  140 

 141 

 142 

Metrics of temporal variability 143 
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A major challenge involved in the use of community size as a proxy for the signature of 144 

demographic stochasticity is that many community metrics can be mathematically related to 145 

sample size regardless of the underlying assembly process (Beck, Holloway, and Schwanghart 146 

2013; Chase and Knight 2013; Barwell, Isaac, and Kunin 2015; Cao et al. 2021). Thus, to select 147 

appropriate metrics of temporal variability that could be modelled against community size, we 148 

first developed a process-based simulation model according to the following steps.  149 

We first simulated a purely neutral dynamics in 39 metacommunities of varying sizes 150 

over 1000-time steps with the mcbrnet package (Terui and Pomeranz 2023). These simulations 151 

were performed using different levels of dispersal within the metacommunities, which mirrored 152 

the empirical dataset in terms of community and species numbers. Given that the assembly of the 153 

simulated metacommunities was entirely neutral, there should be no relationship between 154 

temporal variability in species composition and community size. If any metric of temporal 155 

variability was related with size, we understood it as unsuitable for our objective. Secondly, we 156 

selected 10 time steps and measured temporal variability at both local (within each community) 157 

and regional (among communities) scales using different metrics: (i) temporal variability in 158 

species abundance measuring the coefficient of variation of abundance at each organizational 159 

level based on the partitioning framework developed by Wang et al. (2019); (ii) temporal 160 

variability in species composition at the local and regional scales employing the metric proposed 161 

by Lamy et al. (2021) and implemented with the ltmc package (Sokol & Lamy 2022); (iii) 162 

temporal beta diversity as the median of species rank changes (Avolio et al. 2019) within each 163 

community over time, using the RAC_change function from the codyn package (Hallett et al. 164 

2020). Additionally, we used codyn to assess spatial beta diversity at the metacommunity level 165 

via the RAC_difference function. The median difference in species rank among communities 166 
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was calculated at each time step. Finally, we regressed all these metrics of temporal variability 167 

described above against the median community size over time and compared the outcomes. The 168 

performance of each metric is informed in the Results section. Further details on the process-169 

based simulation are available in the supplementary information. 170 

 171 

Predictors of temporal variability in species composition 172 

We measured several metrics that are expected to play a role in explaining temporal 173 

variability in species composition. This included assessing the number of samples collected over 174 

time (number of samples) and the temporal extent of each sampling (time series length) for each 175 

community and metacommunity. We also measured the coefficient of variation (CV) of 176 

maximum (CV tmax) and minimum (CV tmin) temperature and of precipitation (CV ppt) as 177 

potential predictors of community variability over time. These metrics were measured by 178 

dividing the standard deviation of temperature and precipitation values at each site over time by 179 

the mean of these values. We also estimated the median asymptotic richness of each community 180 

over time to be included as a predictor of community variability. Asymptotic richness was 181 

estimated with the iNEXT package (Hsieh et al. 2022), which combines extrapolation and 182 

interpolation techniques. At the metacommunity level, we also measured environmental 183 

synchrony as a proxy for the Moran effect (Siqueira et al. 2024). We measured environmental 184 

synchrony within metacommunities by calculating the correlation of each environmental variable 185 

(syn tmax, syn tmin, syn ppt) between communities over time. A high correlation or 186 

environmental synchrony would indicate that the environmental conditions being analyzed 187 

changed similarly across sites, while a low synchrony indicates that environmental conditions 188 

vary more independently across sites. Finally, we measured the spatial connectivity within each 189 
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metacommunity by calculating the mean Euclidean distance, in meters, between the central point 190 

of each metacommunity and its respective communities. The smaller the mean distance between 191 

communities, the greater the proximity centrality between them (Erős et al. 2012). We used the 192 

geosphere package to perform this calculation (Hijmans 2022). 193 

 194 

Statistical analysis 195 

To investigate how temporal variability in the species composition of local communities 196 

was related to community size, we fitted a Generalized Linear Mixed Model (GLMM) with 197 

metacommunity identity as a random effect. We modeled temporal variability in the species 198 

composition as the response variable and included as fixed-effects the median of local 199 

community size over time, estimated species richness (median of estimated species richness over 200 

time), the coefficients of variation of local environmental variables over time (CV tmax, CV 201 

tmin, CV ppt), the number of samples and the time series length of each community. All 202 

variables were log transformed and we assumed a Gaussian distribution. We used the lme4 203 

package (Bates et al. 2015) to fit this GLMM model and estimated the marginal (due to fixed 204 

effects) and the conditional (due to fixed and random effects) R2 values with the MuMIn package 205 

(Bartoń 2023). We also estimated p-values associated with the fixed effects using Wald chi-206 

square tests with the Anova function in the car package (Fox and Weisberg 2019).  207 

To investigate whether temporal variability in species composition within 208 

metacommunities was related to regional community size, we used a Generalized Linear Model 209 

(GLM). We included regional community size (median community size within each 210 

metacommunity over time), spatial connectivity, environmental synchrony (syn tmax, syn tmin, 211 

syn ppt), number of metacommunity samples over time, and the time series length of each 212 
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metacommunity as predictors. This model was also described by a Gaussian distribution and the 213 

variables were not log transformed. Model assumptions were examined via a visual assessment, 214 

utilizing the check_model function from the performance package (Lüdecke et al. 2021), and the 215 

simulateResiduals function from the DHARMa package (Hartig 2022). All analyses were 216 

performed in R version 4.2.1 (www.r-project.org). Data and codes used in this research are 217 

available at Zenodo (Jacobi 2024). 218 

 219 

Results 220 

Metrics of temporal variability in simulated metacommunities  221 

Our process-based simulation models indicated that while the temporal variability (CV) 222 

in abundance had a consistent negative relationship with community size both at the local and 223 

regional scales, the LTMC metric exhibited a negative relationship with community size at the 224 

local scale (Table S1). Thus, these metrics of temporal variability were not adequate to be used 225 

in our study. The species rank change metric was the only metric that was not related to 226 

community size at the local scale (Table S1). The species rank difference was positively related 227 

to community size in most simulations at the regional scale; however, the explanatory power of 228 

the models (R2) was consistently low across all simulation scenarios (mean R2 = 0.03; Table S1). 229 

Conversely, the LTMC metric had a negative relationship with regional community size in some 230 

simulations, while in others, no such relationship was observed (Table S1). However, when a 231 

relationship was present, it exhibited a higher explanatory power compared to the metric based in 232 

species rank differences.  233 

Thus, considering that the metrics based on change in species rank yielded the most 234 

robust results regarding community size variations in a neutral scenario, we used them to analyze 235 
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the empirical data. More specifically, to represent temporal variability in species composition for 236 

each community, we used the species rank change metric. To represent temporal variability in 237 

species composition in metacommunities we used the coefficient of variation (CV) of the rank 238 

difference of each year over time. 239 

Relationships in the empirical dataset 240 

Despite a small violation of model assumptions (residuals slightly deviated from the 241 

model predicted values; Figure S2; S3), the model describing temporal variability in species 242 

composition at the local scale explained 34% of the variation in community turnover (fixed 243 

effects = 29%, random effects = 5%). Temporal variability in community composition was 244 

negatively related to local community size (Wald X2
 [1, 458] = 112.4725, p-value = 2.2e-16, Figure 245 

1a), indicating that species change more in rank position over time in smaller communities. Such 246 

result was not observed in the null model, which reinforces the significance of observing this 247 

relationship in the real dataset. Compositional variability also increased with the increase of 248 

species richness (Wald X2
[1, 458] = 93.2697, p-value = 2.2e-16, Figure 1b), CV of the minimum 249 

temperature (Wald X2
[1, 458] = 9.3190, p-value = 0.002, Figure 1c), and of the CV of precipitation 250 

(Wald X2
[1, 458] = 7.8240, p-value = 0.005, Figure 1d). These relationships indicate that more 251 

diverse communities in more variable environments were also more temporally variable in their 252 

species composition.  253 
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 254 

Figure 1. Relationship between temporal variability in species composition of local communities 255 

(rank change) and (a) local community size, (b) species richness, (c) coefficient of variation of 256 

minimum temperature (CV tmin), and (d) coefficient of variation of precipitation (CV ppt). 257 

Points represent local communities; colors represent the metacommunity to which the local 258 

communities belong to. All variables are in log scale. Grey bands represent the 95% confidence 259 

interval.  260 

The model describing temporal variability in species composition at the regional scale 261 

exhibited high collinearity among the predictors of environmental synchrony. To address this 262 
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issue, we refitted the model by including only one environmental synchrony variable at a time 263 

and then selected the model with the lowest Akaike information criterion value corrected for 264 

small sample size (AICc). The selected model was the one that included synchrony of 265 

precipitation as a predictor of environmental synchrony (Table S2). Following this adjustment, 266 

the model showed no issues with assumptions (Figure S4) and explained 16% of temporal 267 

variability in species composition. The only predictor variable associated with p-value < 0.05 in 268 

the model was syn ppt (β = 0.0820; std. error = 0.0367; t-value[38, 33] = -2.232; p = 0.0324; Figure 269 

2a; Table S3), indicating that greater synchronicity in precipitation across communities reduces 270 

the temporal variability in regional species composition. While no relationship was found 271 

between temporal variability and regional community size, the data exhibited a slight negative 272 

trend (Figure 2b; Table S3), which may suggest that a negative relationship could emerge with a 273 

larger sample. In summary, our results indicate that the relationship between temporal variability 274 

in species composition and size was statistically strong only for the local scale. 275 

 276 
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Figure 2. Relationship between temporal variability in species composition in metacommunities 277 

(CV of rank difference) and (a) synchrony in precipitation among localities, and (b) regional 278 

community size. Grey bands represent the 95% confidence interval. 279 

 280 

Discussion  281 

Our research investigated the potential for random fluctuations driven by demographic 282 

stochasticity to extend beyond the population level and influence the dynamics of higher 283 

organizational levels of biological organization, such as communities and metacommunities.  284 

Agreeing with our predictions, we found a consistent negative relationship between temporal 285 

variability in species composition and community size, but mainly at the local scale. Although 286 

statistically weak, there was also a negative trend between temporal variability in species 287 

composition and community size at the regional scale. Together, our results suggest that the 288 

potential effects of demographic stochasticity, which are undoubtedly stronger in small 289 

populations, might leave different signals in the temporal variability of ecological properties, 290 

being stronger and consistent within small communities and weaker in metacommunities.  291 

Populations comprising few individuals tend to fluctuate more over time because 292 

independent random demographic events can cause substantial changes in both their mean size 293 

and variance compared to populations with many individuals (Lande 1993; Legendre et al. 1999; 294 

Melbourne and Hastings 2008; Fauvergue et al. 2012). In line with this knowledge, our finding 295 

of a negative relationship between temporal variability in species composition and community 296 

size suggests that communities comprised of small populations are also more likely to vary in 297 

time. This means that species abundances within these communities change more over time than 298 

within larger communities, relatively to their size and number of species. This result provides 299 
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empirical support to previous theoretical and experimental findings that indicated how random 300 

demographic events in small populations can lead to temporal changes in the compositional 301 

turnover of individual communities (Gilbert and Levine 2017; Legault, Fox, and Melbourne 302 

2019). These studies suggest that communities comprising small populations undergo more 303 

pronounced demographic fluctuations, preventing any species from maintaining a constant 304 

competitive advantage over others (Orrock and Fletcher 2005). Consequently, the smaller the 305 

community, the more the effects of demographic stochasticity increase community variability 306 

over time.   307 

Our results also indicated that the influence of demographic stochasticity on community 308 

composition weakens or even disappears over time as we move from the local to the regional 309 

scale. While at the local scale stochastic events are likely to cause major shifts in the species 310 

composition of small communities, at the regional scale they are likely to be counterbalanced by 311 

other factors such as the dispersal of individuals among patches and population spatial 312 

asynchrony (Wang and Loreau 2016; Thompson et al. 2020). To influence regional species 313 

composition, random demographic events that influence the species composition of local 314 

communities would need to occur concurrently and similarly in different communities, resulting 315 

in the loss (or change in the abundance) of the same species across the entire metacommunity. 316 

However, due to the inherently random nature of demographic stochasticity (Hubbell 2001; 317 

Lande, Engen, and Sæther 2003), its impact is unlikely to be uniform across communities. Even 318 

if demographic stochasticity were widespread within the metacommunities we studied, its effects 319 

on local communities would have been asynchronous, meaning that the species affected by its 320 

effects would vary from one community to another, thus keeping regional species composition 321 

relatively stable.  322 
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Although our analyses did not indicate a statistical relationship between temporal 323 

variability in species composition at the regional scale with metacommunity size, a visual 324 

inspection of the scatter plot suggested a negative trend between these variables. As the first 325 

study of its kind, we caution that our analyses, derived from a limited sample size (39 326 

metacommunities), should be approached with care before dismissing the potential propagation 327 

of the effects of random demography to the metacommunity level. Further studies comprising 328 

more metacommunities, longer time-series, and different response and predictor variables might 329 

clarify this potential relationship. For example, Suzuki and Economo (2024) found that 330 

increasing the number of patches in simulated metacommunities led to less temporal variability, 331 

implying that larger metacommunities could be more temporally stable.  332 

Beyond community size, multiple abiotic and biotic factors can influence the temporal 333 

variability of multispecies communities (Dunson and Travis 1991; Araújo and Luoto 2007; 334 

Valencia et al. 2020). After adjusting for the effect of community size, we found that 335 

communities with more species were also the ones with more compositional variability over 336 

time. Although this finding contrasts with the exiting research on the temporal stability of 337 

ecological properties, it can be explained by the type of variability being used here. The temporal 338 

variability of aggregate ecological properties, such as total biomass or abundance, is expected to 339 

decrease with the increase in the number of species due to the statistical averaging of fluctuations 340 

in species abundances (Doak et al. 1998; Xu et al. 2021). But our analyses were based on the 341 

temporal variability of species composition (rank of species abundances). As found recently by 342 

Arim et al. (2023), high functional and taxonomic diversity allows for a wider array of responses 343 

to environmental fluctuations, potentially resulting in varying levels of success for different 344 

species over time or under different conditions. Differential responses of species to stochastic 345 
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fluctuations in the environment can lead to changes in species dominance over time and increase 346 

the variability in species rank abundance (A. Gonzalez and Descamps‐Julien 2004). This is likely 347 

the reason why we found that the coefficient of variation (CV) of both minimum temperature and 348 

precipitation were positively related to the temporal variability in species composition of local 349 

communities.  350 

Demographic stochastic events are a natural component of population dynamics (Otto 351 

and Whitlock 1997, Whitlock 2004, Willi et al. 2006). Our research indicates that such 352 

population-level events can have consequences for the temporal dynamics of local communities 353 

and potentially to metacommunities. So far, most previous research on this topic highlighted the 354 

effects of demographic stochasticity on either population temporal dynamics or community 355 

spatial dynamics (Lande 1993; Legendre et al. 1999; Vindenes and Engen 2017; Siqueira et al. 356 

2020; Feng et al. 2022; Jacobi and Siqueira 2023). We extend previous findings here by showing 357 

with empirical data that demographic stochasticity can also generate greater temporal variability 358 

in species composition, but mainly at the local scale. We thus suggest that the effects of 359 

demographic stochasticity are scale-dependent, being strongest at the local scale and decreasing 360 

in intensity with the increase of spatial scale or level of biological organization. 361 
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Supplementary Information 590 

Process-based simulation model 591 

To select temporal variability metrics that could be used to investigate the role of 592 

demographic stochasticity, we simulated neutral temporal dynamics in metacommunities of 593 

varying sizes and examined the relationship between temporal variability metrics and community 594 

size. By simulating neutral metacommunities, we eliminated niche selection effects on species 595 

composition. As communities were assembled under neutral dynamics, any relationship between 596 

temporal variability and community size would suggest that a given variability metric was not 597 

appropriate.  598 

Initially, we simulated random branching networks using the function brnet from the 599 

mcbrnet package (Terui & Pomeranz, 2023). The branching networks were then employed in the 600 

mcsim function of the mcbrnet package to simulate our metacommunities. We generated 39 601 

metacommunities comprising the same range of community (5-30) and species (5-48) numbers 602 

as observed in the datasets used for statistical modeling. Given that we were interested in 603 

simulating a neutral dynamic, we excluded environmental variation and niche differences from 604 

the simulation. We randomly varied the number of species among the metacommunities to 605 

generate a gradient of metacommunity sizes. We also incorporated a species carrying capacity 606 

value within communities to restrict growth and prevent excessive size increase over time. The 607 

carrying capacity of each population was consistent within communities of a given 608 

metacommunity but varied randomly among metacommunities (ranging from 50 to 150 609 

individuals). We also introduced variability in species abundance within communities by 610 

simulating a disturbance. To achieve this, we set the disturbance probability to 1 and the intensity 611 

to 0.43 for all metacommunities. We arrived at this disturbance value by adjusting it to match 612 



30 
 

metacommunity sizes similar to those in real datasets. Additionally, we conducted simulations 613 

considering different dispersal values within metacommunities (0.1, 0.5, and 1) to observe if this 614 

could impact the relationships with size. Then, we ran each simulation for a total of 1000 time 615 

steps. We selected the time-steps 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 as our 616 

temporal samples to calculate metrics related to the temporal variability in species composition. 617 

We started measuring the temporal variability in species abundance at both the 618 

community and metacommunity levels to subsequently relate them to the median community 619 

size. We assessed temporal variability in species abundance by measuring the temporal 620 

variability of aggregate abundance at each biological level based on the framework proposed by 621 

Wang et al. (2019). However, we excluded this metric from our future analyses as it 622 

demonstrated a negative relationship with community size, both at the local and regional scales 623 

(Table. S1). Then, we decided to test some metrics for temporal variability in species 624 

composition. We measured both community and metacommunity variability using the approach 625 

proposed by Lamy et al. (2021) with the ltmc package. We also assessed temporal variability in 626 

the rank of species (Avolio et al. 2019), measuring the rank change within each community over 627 

time and the rank difference between communities at each time point. This was done using the 628 

codyn package (Hallett et al.) Considering multiple simulations conducted with various dispersal 629 

rates and different seeds, we observed that both at the local and regional scales, the metrics of 630 

species rank variability were less influenced by community size compared to the ltmc metrics 631 

(Table S1). When the metrics of species rank variability showed an association with size, the 632 

relationship exhibited low explanatory power. In contrast, the local ltmc metric consistently 633 

showed a negative relationship with community size, while the regional ltmc demonstrated 634 

higher explanatory power when related to community size. 635 
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 636 

Table S1. Statistics obtained in the process-based simulation model by relating the metrics of 637 

temporal variability in species composition with the median community size. Simulations were 638 

conducted using different seeds and dispersal rates. The p-value represents the significance of 639 

each relationship, and the explanatory power was measured by R2.  640 

Temporal variability 

metric 
set.seed Dispersal Slope p-value R2 

Adjusted 

R2 

Local abundance (CV) 1234 0.1 -1.7E-04 2.5E-14 0.7958 0.7903 

Regional abundance (CV) 1234 0.1 -4.1E-05 0.0002 0.3084 0.2897 

LTMC local  1234 0.1 -1.2E-04 0.0055 0.1901 0.1683 

LTMC regional 1234 0.1 -6.4E-06 0.0985 0.0721 0.0470 

Rank change 1234 0.1 1.0E-06 0.8411 6.3E-05 -0.0015 

Rank difference 1234 0.1 1.1E-05 0.0017 0.0252 0.0227 

Local abundance (CV) 1234 0.5 -1.3E-04 5.2E-15 0.8123 0.8072 

Regional abundance (CV) 1234 0.5 -4.4E-05 0.0006 0.2777 0.2581 

LTMC local  1234 0.5 -3.8E-05 0.0132 0.1549 0.1321 

LTMC regional 1234 0.5 -1.2E-06 0.6211 0.0067 -0.0202 

Rank change 1234 0.5 8.6E-06 0.0364 0.0069 0.0053 

Rank difference 1234 0.5 4.2E-06 0.301 0.0028 0.0002 

Local abundance (CV) 1234 1 1.1E-01 2.7E-13 0.7682 0.7619 

Regional abundance (CV) 1234 1 -5.1E-02 7.7E-05 0.3482 0.3306 

LTMC local  1234 1 -3.7E-05 0.0108 0.1632 0.1406 

LTMC regional 1234 1 -2.3E-06 0.405 0.0188 -0.0077 

Rank change 1234 1 5.0E-07 0.9071 2.2E-05 -0.0016 

Rank difference 1234 1 1.2E-05 0.0091 0.0174 0.0149 

Local abundance (CV) 111 0.1 -1.9E-04 4.0E-11 0.6967 0.6885 

Regional abundance (CV) 111 0.1 -6.0E-05 3.6E-05 0.3736 0.3567 

LTMC local  111 0.1 -1.3E-04 0.0001 0.328 0.3098 

LTMC regional 111 0.1 -9.0E-06 0.0021 0.2274 0.2065 

Rank change 111 0.1 -2.3E-07 0.9565 4.8E-06 -0.0016 

Rank difference 111 0.1 1.4E-05 1.5E-06 0.0580 0.0556 

Local abundance (CV) 111 0.5 -1.4E-04 9.5E-12 0.7192 0.7116 

Regional abundance (CV) 111 0.5 -4.8E-05 6.8E-06 0.4258 0.4103 

LTMC local  111 0.5 -4.6E-05 0.0003 0.3016 0.2827 

LTMC regional 111 0.5 -6.7E-06 0.0060 0.1868 0.1648 

Rank change 111 0.5 6.3E-06 0.1187 0.0039 0.0023 

Rank difference 111 0.5 2.1E-05 2.1E-08 0.0778 0.0754 
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Temporal variability 

metric 
set.seed Dispersal Slope p-value R2 

Adjusted 

R2 

Local abundance (CV) 111 1 -1.4E-04 2.7E-11 0.7028 0.6948 

Regional abundance (CV) 111 1 -4.7E-05 1.3E-07 0.5329 0.5203 

LTMC local  111 1 -4.3E-05 0.0003 0.3063 0.2875 

LTMC regional 111 1 -5.5E-06 0.0255 0.1278 0.1042 

Rank change 111 1 -4.8E-07 0.9029 2.4E-05 -0.0016 

Rank difference 111 1 1.7E-05 1.4E-05 0.0476 0.0451 

 641 

  642 
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Supplementary Figures 643 

644 

Figure S1. Geographic distribution of the 39 metacommunities selected in our study, located in 645 

Australasia (12), Nearctic (12), and Palearctic (15) biogeographical realms. 646 

 647 
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 648 

Figure S2 – Visual check of various assumptions of the model explaining temporal variability in 649 

species composition in local communities. 650 

An alternative way to assess a GLMM is by examining the residuals from the fitted 651 

model, a process that can be done with simulateResiduals function from the DHARMa package 652 

(Hartig, 2022). This function generates a qq-plot (Fig. S3 - left panel) to identify overall 653 

deviations from the expected distribution, typically including tests for distribution correctness 654 
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(KS test), dispersion, and outliers. Additionally, it produces the plotResiduals (Fig. S3 - right 655 

panel), which generates a plot of residuals against predicted values, aiding in visualizing 656 

deviations from uniformity. We observed that the residuals deviated slightly from the model's 657 

predictions (Fig. S3; the closer the solid line to the dashed line, the better the fit). However, a 658 

residual pattern does not suggest the model is unsuitable (Hartig, 2022). With a considerable 659 

number of data points, residual diagnostics are likely to show significance, as achieving a 660 

perfectly fitting model is improbable (Hartig, 2022). 661 

 662 

Figure S3 – Output from the simulateResiduals function of the DHARMa package, providing a 663 

visual aid in detecting deviations from uniformity for the model that explains the temporal 664 

variability in species composition in local communities (model one). Red stars represent 665 

simulation outliers.  666 
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 667 

Figure S4 – Visual check of various assumptions from the model that explains the temporal 668 

variability in species composition in metacommunities. 669 

  670 
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Supplementary  Tables 671 

Table S2. Model selection for generalized linear model of temporal variability in species 672 

composition at the regional scale (CV of rank difference) as a function of regional community 673 

size (Reg. size), spatial connectivity (Connectivity), number of metacommunity samples over 674 

time (Number of samples), time series length of each metacommunity (Time series length), 675 

synchrony in precipitation (Syn ppt), synchrony in maximum temperature (Syn tmax) and 676 

synchrony in minimum temperature (Syn tmin). AICs is Akaike’s Information Criterion 677 

corrected for small sample sizes, ∆AIC indicates the difference between a model’s AICc value 678 

and the AICc value for the best-fitting model. 679 

Model 
Reg. 

size 
Connectivity 

Number of  

samples 

Time series 

length 
Syn ppt Syn tmax Syn tmin AICc ΔAICc 

M1 x x x x x 

  

-128.6 0 

M2 x x x x 

  

x -128.28 0.32 

M3 x x x x 

 

x 

 

-128.02 0.58 

  680 
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Table S3. Model statistics summary for the metacommunity GLM. Here, the response variable 681 

was the temporal variability in species composition at the regional scale (CV of rank difference). 682 

Model coefficients (and their standard errors), t-values, and p-values are reported for each 683 

predictor variable and the intercept. 684 

 Estimate Std. Error t-value p-value 

Intercept 1.769e-01 4.538e-02 3.899 0.000447 

Regional size -4.074e-05 5.001e-05 -0.815 0.421058 

Connectivity -1.387e-09 1.438e-07 -0.010 0.992362 

Syn ppt -8.202e-02 3.674e-02 -2.232 0.032488 

Number of samples 3.278e-04 1.521e-03 0.216 0.830645 

Time series length -1.865e-03 1.720e-03 -1.085 0.285962 

 685 

686 
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