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# ABSTRACT
The ability of other species to adapt to human modified environments is increasingly crucial 
because of the rapid expansion of this landscape type. Behavioral flexibility, the ability to 
change behavior in the face of a changing environment by packaging information and making it 
available to other cognitive processes, is hypothesized to be a key factor in a species’ ability to 
successfully adapt to new environments, including human modified environments, and expand 
its geographic range. However, most tests of this hypothesis confound behavioral flexibility with 
the specific proxy aspect of foraging, social, or habitat use behavior that was feasible to 
measure. This severely limits the power of predictions about whether and how a species uses 
flexibility to adapt behavior to new environments. To begin to resolve this issue, we directly 
tested flexibility using two measures (reversal learning and puzzlebox solution switching) and 
investigated its relationship with foraging, social, and habitat use behaviors in a flexible species 
that is rapidly expanding its geographic range: the great-tailed grackle. We found relationships 
between flexibility and foraging breadth and foraging techniques, with the less flexible 
individuals using a higher proportion of human foods and having more human food sources 
within their home range, suggesting that they specialize on human foods. These relationships 
were only detectable after a flexibility manipulation where some individuals were trained to be 
more flexible via serial reversal learning and compared with control individuals who were not, 
but not when using data from outside of the flexibility manipulation. There were no strong 
relationships between flexibility and social or habitat use behaviors. Given that this species is 
rapidly expanding its geographic range and recently shifting more toward urban and arid 
environments, our findings could suggest that foraging breadth and foraging technique breadth 
are factors in facilitating such an expansion. Overall, this evidence indicates that cross-species 
correlations between flexibility and foraging, social, and habitat use behaviors based on proxies 
have a high degree of uncertainty, resulting in an insufficient ability to draw conclusions.

Keywords: flexibility, reversal learning, multiaccess box, sociality, habitat use, foraging breadth, 
foraging techniques, immigrant, urbanism, foraging innovations

# INTRODUCTION
The ability to adapt to human modified environments is increasingly crucial because of the rapid
expansion of this landscape type [@liu2020high; @wu2011quantifying; @goldewijk2001estimating]
that individuals must cope with. Behavioral flexibility (hereafter ‘flexibility’), the ability to change 
behavior in the face of a changing environment by packaging information and making it 
available to other cognitive processes [see @mikhalevich_is_2017 for background], is 
hypothesized to be a key factor in a species’ ability to successfully adapt to new environments, 
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including human modified environments, and expand its geographic range [e.g., 
@lefebvre1997feeding; @wright2010behavioral; @griffin2014innovation; @chow2016practice; 
@sol2000behavioural; @sol2002behavioural; ]. However, most tests of this hypothesis 
confound flexibility with the specific aspect of foraging, social, or habitat use behavior that is 
assumed to be involved in the particular study system, thus making a circular argument 
[@mikhalevich_is_2017]. For example, individuals with a larger diet breadth cannot be assumed
to be the more flexible individuals unless there is direct evidence that diet breadth and flexibility 
are linked at the individual level. The lack of evidence linking flexibility to the particular 
behaviors individuals use in their environments severely limits the power of predictions about 
whether and how a species uses flexibility to adapt behaviorally to new environments. 

Flexibility is hypothesized to be particularly important when a species initially moves into an 
environment [@wright2010behavioral]. Cross-species comparisons use foraging behaviors, 
including the number of novel foods eaten (often referred to as ‘innovation frequency’) and novel
foraging techniques (sometimes called ‘technical innovations’) used across species as a proxy 
for flexibility [@lefebvre1997feeding; @sol2000behavioural; @sol2002behavioural; @sol2005brain;
@sol2007big; overington2009technical; @reader2016animal]. The assumption that these 
variables are linked with flexibility has resulted in inconsistent conclusions. For example, 
species with more foraging innovations and, by proxy, supposedly more flexibility, are better at 
invading new environments [@sol2000behavioural; @sol2002behavioural]. However, resident 
birds are more flexible than migrants [@sol2005brain], and those with more foraging innovations
are habitat generalists, but flexibility does not relate to diet breadth 
[@overington2011innovative]. Studies investigating the link between flexibility and innovation 
frequency at the individual level show that this relationship varies in unpredictable ways 
[@auersperg_flexibility_2011; @bond2007serial; @ducatez_ecological_2015; 
@jelbert_investigating_2015; @logan2016far; @logan2016flexibilityproblem; 
@logan_western_2016; @logan_modifications_2014; @manrique_repeated_2013; 
@reader_evolution_2011; @tebbich_tale_2010]. This noise between and within species 
indicates that conclusions based on such flexibility proxies are uncertain [@logan2018beyond]. 
Further, the assumption that a food type or foraging technique is novel for a given species is 
biased by whether the human observer perceived the behavior to be novel, and not whether the 
behavior was actually novel to the species [see @logan2018beyond for an in depth treatment]. 
Additionally, innovation frequency calculations are not easily replicable and it is unclear what the
biological relevance of this measure is to the species in question, thus adding further evidence 
that measures of innovation frequency are highly noisy and uncertain [@logan2018beyond]. A 
less biased measure of foraging behavior involving the full repertoire, not only the pieces that 
are subjectively considered novel, combined with direct measures of flexibility are necessary to 
understand whether and how flexibility relates to adapting to new environments. 

Using flexibility to adjust to new social environments is thought to have been involved in the 
early hominid range expansion [@rockman2009landscape], and in the adaptation of people who
come from one culture and move to an area where a different culture is predominant 
[@backmann2020cultural]. Despite an interest in understanding if flexibility varies with aspects 
of social life outside of the human literature, few investigations have directly explored this 
relationship. For example, @bond2007serial found that the more social Pinyon jays 
(*Gymnorhinus cyanocephalus*) were more flexible than two less social species, Clark’s 
nutcrackers (*Nucifraga columbiana*) and California scrub jays (*Aphelocoma californica*). This
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indicates that more social interactions might be implicated in requiring more flexibility. While 
much is known about social learning of behaviors [@laland2017animal], we do not consider this 
relevant to understanding a species’ flexibility because it is unknown whether flexibility itself is 
socially learnable. Investigations into the relationship between flexibility and sociality are wide 
open for discoveries about whether, for example, individuals who are more flexible form 
stronger bonds or bonds with more individuals or are more likely to be immigrants from other 
areas.

Here, we directly investigate the relationship between flexibility and foraging, social, and habitat 
use behaviors in two populations (Tempe, Arizona and Woodland, California) of great-tailed 
grackles (hereafter ‘grackles’; *Quiscalus mexicanus*). Grackles are flexible 
[@logan2016flexibilityproblem; @logan2023flexmanip] birds who are originally from Central 
America and have rapidly expanded their geographic range across North America since the late
1800s [@wehtje2003range]. Between 1970 and 2019, they expanded their habitat breadth to 
include more urban and arid environments, indicating their success in human modified 
environments [@summers2023xpop]. We directly measured flexibility in grackles in a previous 
article [@logan2023flexmanip] using two methods and we use the flexibility data from that 
article here. The first is a common method: reversal learning of a color preference 
[@lea2020behavioral]. Two color choices are available, but only one color always contains a 
hidden food reward. After the individual learns to prefer the rewarded color, the food is then 
available only in the previously unrewarded color. The speed with which the individual changes 
their color preference is the measure of flexibility, with the faster individuals being more flexible. 
Both populations experienced one reversal and a subset of individuals within the Arizona 
population were manipulated to be more flexible through serial reversal learning. The second 
measure of flexibility used solution switching on a puzzlebox. The puzzlebox (multiaccess box) 
had four different ways of obtaining food rewards. Once a bird became proficient at solving one 
way, that locus was rendered non-functional and the number of seconds it took them to attempt 
a different locus served as the flexibility measure. All individuals were then released back to the 
wild where their foraging, social, and habitat use behaviors were observed. We aim to 
determine whether the more behaviorally flexible grackles have more flexible foraging behavior 
(i.e., eat a larger number of different foods, use a wider variety of foraging techniques), are 
more flexible in their social relationships (i.e., have more or stronger social bonds particularly 
with less related individuals, disperse farther from their natal area), and are more flexible in their
habitat use (i.e., are found in more diverse habitat types). Results will allow us to determine if, 
as predicted by our hypotheses and cross-species correlational data, individual level variation in
flexibility is linked with diet breadth, foraging proficiency, social interactions, habitat use, and 
movement into new geographic areas.

## PREREGISTERED HYPOTHESES
### H1: Behavioral flexibility (see Mikhalevich, Powell, and Logan (2017) for a detailed 
definition) is related to foraging behavior (measured with focal follows using this ethogram) in 
wild individuals (after their release from the aviaries). We measure flexibility in aviaries using 
two paradigms: reversal learning [where grackles must learn to prefer one of two options that 
contain food and then reverse this preference] and switching between options on a multiaccess 
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box (where grackles must learn to switch to a new option, out of four available options, when an 
option becomes non-functional). We expect this species to be behaviorally flexible because they
are fast at reversal learning (Logan 2016), they often encounter human-made “puzzle boxes” in 
the wild as they attempt to open packaging to access food when digging through garbage cans 
and eating at outdoor cafes, and they may track resources across time and space 
[@Rodrigo2021]. Foraging behavior is considered central to the rapid geographic range 
expansion of this species, and it is thought that they have been so successful by following 
human urban and agricultural corridors (Wehtje 2003, Peer 2011). Therefore, as humans 
continue to modify landscapes, this increases the amount of suitable grackle habitat.

- **Prediction 1:** Individuals that are faster to reverse preferences on a reversal learning 
task and who also have lower latencies to switch to solving new loci after previously 
solved loci become unavailable (multiaccess box) will eat a larger number of different 
foods and use a wider variety of foraging techniques in the wild, validating the cross-
species correlational finding that technique breadth (Overington et al. (2009)) and diet 
breadth (Ducatez, Clavel, and Lefebvre (2015)) are associated with flexibility.

- **P1 alternative 1:** If there is no correlation, this suggests that flexibility as we measure 
it represents a trait that is not related to the number of foods eaten and foraging 
techniques used. Flexibility may not necessarily be associated with diet and foraging 
technique breadth because flexibility could be constrained in a foraging context due to 
social competition (e.g., subordinates are outcompeted while foraging and thus try new 
foods and techniques) or ecological limitations (e.g., constrained by what is available). 
Additional research would be required to determine the factors that might constrain 
foraging behavior.

- **P1 alternative 2:** If there is a negative correlation between flexibility and the number 
of different foods eaten, this might indicate that the more flexible individuals target 
particular food items. If this prediction is supported, we will conduct an additional 
analysis to examine what food types the more flexible grackles eat and whether these 
food types are potentially more valuable (measured as having more calories).

- **P1 alternative 3:** If there is a negative correlation between flexibility and the number 
of foraging techniques, this could indicate that the more flexible individuals use 
particular, and potentially more effective, techniques.

- **P2:** Individuals whose flexibility has been increased experimentally will consume a 
larger number of foods and use more foraging techniques (measured with focal follows) 
than individuals whose flexibility has not been manipulated. This would further validate 
that flexibility is related to diet breadth and foraging techniques.

- **P2 alternative 1:** If the flexibility manipulation does not work in that those individuals 
in the experimental condition do not decrease their reversal learning speeds more than 
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control individuals, then we will rely on the general individual variation in flexibility and 
how it relates to foraging in the wild (as in P1).

- **P3:** The proportion of a grackle’s diet that is human foods and the proportion of their 
foraging techniques involving human foods is higher for the more flexible individuals, 
who will consistently occur in locations closer to known outdoor human food locations 
like picnic areas and outdoor cafe seating (measured as the repeatability of the 
individual’s distance from cafes across multiple separate focal follows) OR who will 
occupy a home range that contains more outdoor human food locations. For the diet, 
this is potentially due to A) having stayed in their parent’s home range (i.e., they eat 
human food because it happens to be more prevalent in their home range than in other 
home ranges; local specialization) or B) because these individuals move around to seek 
out such opportunities (potentially seeking out habitat edges within their population). For 
the foraging techniques, this is potentially due to human foods and their packaging 
changing at a faster rate than natural foods and prey items and their accessibility. The 
foods eaten and the foraging techniques used will be recorded during focal follows. 
Because this species is highly associated with human-modified landscapes, it is likely 
that consuming human foods is part of the reason for this association, and that flexible 
individuals are better at solving these human-made “puzzle boxes” to access food.

- **P3 alternative 1:** There is no correlation between an individual’s flexibility and the 
proportion of human foods in their diet, potentially because A) their daily range sizes 
encompass many different food resources, including human foods (though they are likely
not specialized on human foods), and B) some less flexible individuals might specialize 
on human foods.

- **P3 alternative 2:** There is a negative correlation between an individual’s flexibility and
the proportion of human foods in their diet, potentially because some of the less flexible 
individuals might specialize on human foods, thus increasing their consumption above 
that of the more flexible individuals.

### H2: Behavioral flexibility (see Mikhalevich, Powell, and Logan (2017) for a detailed 
definition) is related to social behavior (measured year-round with focal follows using this 
ethogram: 
https://docs.google.com/spreadsheets/d/1N8wsA3geaRGlMjRxYTRpdG2i5oCXNGq9zBlTnj02G
ho/edit?usp=sharing) in wild individuals. Flexibility is measured in aviaries using two paradigms:
reversal learning and switching between options on a multiaccess box. To give an example of 
the types of social relationships this sexually dimorphic species engages in, they forage and 
roost socially (Selander and Giller 1961) and they have a non-faithful-female frank polygynous 
mating system (Johnson et al. 2000). In terms of male social relationships, Johnson et al. (2000)
found during the breeding season in a population in Texas that one or more territorial males 
defend a territory with several nests from females, that non-territory holding resident males will 
queue to gain access to a territory, and that transient males move from colony to colony. There 
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could be varying needs for males to manage their relationships with each other in breeding and 
non-breeding seasons, and flexibility could potentially play a role in such management.

- **Prediction 4:** Flexible individuals are more likely to have a greater number of bonds 
OR stronger bonds with others, in particular with individuals who are less related, 
potentially because they are better able to adjust their behavior to that of an affiliate. 
Social bonds are measured using the focal follow method to sample affiliative and 
aggressive behaviors.

- **P4 alternative 1:** Individual flexibility is not related to the number or strength of social 
bonds, potentially because all individuals are able to form bonds with like individuals, 
including the less flexible individuals.

- **P4 alternative 2:** Flexible individuals may have fewer affiliates or be less likely to 
regularly affiliate with the same individuals, potentially because they frequently change 
their behavior and are difficult to associate with. We are not able to test this alternative in
this study, but could propose experimental designs for future research if this alternative 
is supported by the data.

### H3: Individuals that are behaviorally flexible [see Mikhalevich, Powell, and Logan 2017 for a
detailed definition] will differ in their use of microhabitats within human-modified landscapes 
(substrate qualification during each focal follow), but the macrohabitat (square kilometer) of 
each population will not differ in human population density (measured with a GPS point for each
focal follow after their release from the aviaries; we measure microhabitat types according to the
last substrate the focal individual was seen on at the end of the focal follow: grass, gravel (rock),
tree, building, dumpster, shrub, ground, miscellaneous human substrate. Flexibility is measured 
in aviaries using two paradigms: reversal learning and switching between options on a 
multiaccess box. Although we were only able to find this species in association with human-
modified landscapes based on eBird sightings (i.e., there appear to be no forest-based 
populations), individuals could use these landscapes in a variety of ways. For example, they 
could specialize on particular foods or at particular types of locations (e.g., foraging exclusively 
at cafes or in grassy areas), they could generalize across all foods and location types, or they 
might fall somewhere in between these extremes.

- **Prediction 5:** Individuals immigrating into a population are more likely to be flexible, 
potentially because they need to learn how to obtain resources in an unfamiliar area. 
Immigrants are individuals who carry many genetic variants (identified using ddRADseq) 
that are not found in other individuals in this population.

- **P5 alternative:** Individuals immigrating into a population are not more likely to be 
flexible, potentially because the human urban environment is comparable across 
landscapes.
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- **P6:** Flexible individuals will be found more regularly in a wider diversity of 
microhabitats (human-modified substrates including dumpsters, buildings, and 
miscellaneous human substrate; or natural substrates including grass, shrubs, trees, 
rock, and ground) during focal follows.

- **P6 alternative:** Flexibility is not associated with presence in diverse microhabitats 
because the more flexible individuals might specialize in specific foraging strategies best
suited to particular microhabitats.

- **P7:** There will be no difference in human population density among the sites for the 
grackle populations because all grackle populations are highly associated with human-
modified landscapes. Human population density per square mile data will be obtained 
from census information (US census bureau: 
https://www.census.gov/quickfacts/fact/note/US/LND110210, still looking for a source for
Central American countries)

- **P8:** Flexible individuals will not be associated with presence in diverse microhabitats,
not necessarily because they are specialists or generalists in specific foraging strategies,
but rather because they may focus on high quality resources in particular habitat types. If
this prediction is supported, we will conduct an additional analysis to examine the 
proportion of focal follows associated with a particular microhabitat type, which will allow 
us to determine whether the more flexible individuals are associated with particular 
microhabitats more than the less flexible individuals.

# METHODS
We first describe the changes we made from our original plans, then we describe the sampling 
methods to measure behavior, and finally outline the analyses we used for each prediction.

## Updates and changes to the preregistration
This study began as a preregistration, which received in principle acceptance at PCI Ecology in 
2019: https://github.com/corinalogan/grackles/blob/master/Files/Preregistrations/
g_flexforagingPassedPreStudyPeerReviewOn6Aug2019.pdf. The preregistration contains the 
pre-planned analyses. Here, we first describe the rationale for the ways in which we conducted 
the study differently from the plan, and then summarize the methods we used to obtain the 
results. 

**Changes made in the middle of data collection**
1) Because all models only included aviary-tested birds for our analyses, Condition 

(independent variable 6), which indicates whether a bird is aviary-tested or not aviary 
tested, was removed. We were only planning to use the Condition variable to compare 
foraging behavior, and not flexibility as it relates to foraging, between the aviary tested 
and non aviary tested birds, however there was not a large enough sample of focal 
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follows with foraging data on non aviary tested birds to run this comparison (13 July 
2022)

2) In the preregistration, we propose multiple measures of flexibility and state that the 
measure Flexibility 4 replaces the others if it is based on the better model as analyzed in
a separate article. We found that Flexibility 4 is based on the better model 
[@blaisdell2021causal] and we used the values for this measure for the individuals in 
the current article that were generated in an improved version of the model by 
@lukas2024flexmanip. Therefore, in the current article, we **used only Flexibility 4 
and not Flexibility 1** (both reflect performance in the color tube reversal experiment).

3) In @logan2023flexmanip, we discovered that the flexibility measures of the number of 
trials to reverse a preference in the color tube experiment and the latency to attempt to 
solve a new locus on the multiaccess box did not correlate with each other. Therefore, 
we **analyzed flexibility performance (latency to switch) on the multiaccess box 
separately**, as previously planned. However, we did not implement a multiaccess box 
latency analysis for P2 because it is a direct comparison of the birds in the control and 
manipulated groups in the reversal learning experiment.

4) In @logan2023flexmanip, we found that it is unnecessary and actually confounding to 
include the flexibility manipulation (manipulated or control) as an independent variable in
the models when the Flexibility 4 variable is already included. This is because we used 
data from the last reversal the individual participated in (reversal 1 for control birds and 
the last reversal in the serial reversals for the manipulated birds), which already 
accounts for the influence the flexibility manipulation had on the birds in the manipulated 
condition. Therefore, we **removed the flexibility manipulation condition variable** 
from the models in the current article. (13 July 2022)

5) Initially, the dependent variables for P2 calculated the number of different foods eaten 
and the number of foraging techniques used in the first X minutes of a focal follow. To 
equalize observation time across individuals, X minutes was the total observation time 
using the individual with the lowest sum across all individuals. As we started to clean the
data and prepare it for analysis, we noticed three individuals had no focal follows (sum 
focal time = 0 min) and the next lowest sum focal time was 497 seconds. The average 
sum focal time across all 38 individuals was 3024 seconds, which means that we would 
have excluded the majority of the data when using the originally prescribed calculation of
the dependent variables. Therefore, we **changed this to using the number of 
different foods eaten and the number of foraging techniques used by an individual
as the response variable and included the total observation time per individual as 
an explanatory variable**. The analyses for the P1 and P2 dependent variables 
accommodate this change by adjusting from a Poisson to a binomial distribution. (3 
August 2022 & 17 May 2023)

6) The dependent variables for P1 were also planned as calculating the number of different
foods eaten and the number of foraging techniques used in the first X minutes of a focal 
follow. However, we removed observation time and replaced it with the total number of 
food events observed per bird. The number of times we observed a bird eat is an upper 
bound on the number of food types and foraging techniques we can record for a bird 
(e.g., if we observed all individuals take only one food item, then differences in flexibility 
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could not explain differences in the number of foods taken or foraging techniques used 
because all individuals would have the same value). Therefore, we must account for this 
in the model by adding the **number of food events observed per bird**.

7) We **omitted observation time from the models in P3 that had the proportion of 
human foods** as the dependent variable because the fact that it is a proportion 
already accounts for overall differences in observation time.

8) We originally planned to collect data from three field sites: the middle of the northern 
expanding edge (Tempe, Arizona), on the northern expanding edge (Woodland, 
California), and at a site in the center of their original range (Central America). We were 
not able to run the Central American site because the research station we were planning
on using as the base for the site was exposed for having decades of sexual abuse 
toward women. We did not feel comfortable being at that station or bringing our business
there, and it was too late to find another site because they take years to set up. 
Therefore, we have **data from only two field sites and not three**. This also means 
our sample size is not >200 grackles as originally planned. Our sample size is 95 
grackles with focal follow data (69 in Arizona and 26 in California). We planned on 
bringing at least 60 of these grackles (across all three field sites) into the aviaries for 
behavioral choice tests. Of the 55 (24 in Arizona and 32 in California) grackles we 
brought into the aviaries, 39 (20 in Arizona and 19 in California) completed their reversal 
learning experiment. We stopped collecting data in December 2022 when the California 
field site's data collection was complete.

**Changes made after data collection, before data analysis**
9) As originally planned, we read @rethinking2020 and changed all of the analyses from 

MCMCglmms or glms to bespoke Bayesian models. In doing so, this **removed the 
need to conduct the pre-planned data checking** for overdispersion, 
underdispersion, zero-inflation, and heteroscedasticity. This is because the Bayesian 
models are already informed by the constraints of the hypothesis and experiment before 
they are run and, in many cases, we run simulations of the Bayesian models before 
running them on the actual data and we modify the models until they perform in a way 
that allows all feasible relationships, but not impossible relationships.

**Changes made after data collection, in the middle of data analysis**
10) We **removed the random effect of ID** from the models because there is only one 

data point per individual in the analyses. It was an error on our part to include it in the 
preregistration. (27 April 2023). Reassuringly, the interobserver reliability scores were 
very high (see Supplementary Material 1), indicating there was no difference between 
experimenters.

11) P4: We **only used the social association data from the nonbreeding season** 
even though we were not able to conduct a comparison between the seasons to 
determine whether they were similar or different. This is because, after we filtered the 
raw data to include only individuals in the behavioral flexibility test in the aviaries and 
with a minimum of 2 focal follows per season, we were left with only 7 interaction data 
points in the breeding season and there was no variability in this subset of data. This 
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small sample precludes us from comparing social network metrics across seasons, and 
therefore we use only the nonbreeding season social association data.

12) P6: We **removed population (random variable)** because we found no average 
differences in the flexibility components (phi and lambda) between the Arizona and 
California populations in @logan2023flexmanip. Also, it should not be included in the 
analysis because it is not directly part of the prediction, which is something we learned 
after taking Richard McElreath’s Statistical Rethinking course. We originally planned to 
run models with a Poisson distribution, however we used a **Normal distribution** 
(with a log link) because the Shannon Diversity Index is not a count, but more similar to 
a sum.

13) Ability to detect actual effects: in the preregistration, we stated, *“We will use Bayesian 
analyses to estimate our likely confidence in the results given simulated data. We will 
revise this preregistration to include these new analyses before conducting the planned 
analyses on our actual data. Based on the simulations, we might adapt the number of 
focal follows per individual or decide to collect much more data just with the aviary-
tested birds to increase the amount of information per individual.”* It ended up taking 5 
years of data collection to meet our pre-stated minimum sample size and we stopped 
data collection after meeting the minimum. At this point, we had not yet had time to build 
the models and run simulations because the field work was so time intensive. Therefore,
we used Bayesian simulation analyses to determine, **given our sample size for a 
given prediction, how large of an effect can we expect to reliably detect.**

14) P4: We originally planned to conduct **social network permutations** to determine 
whether individuals were associating non-randomly based on flexibility, however we 
ended up **removing them**. We cannot do a permutation that fully reflects the data 
that we collected because there was variation in how often individuals were observed 
and whether observations included unbanded birds, which arose from the difficulty in 
trapping grackles to band, and then finding and following the banded grackles. A 
permutation randomly redistributes values, but in this case, we cannot randomly 
redistribute values because there is variation in the actual data. For example, from the 
perspective of a focal bird that is banded, an unbanded partner that is observed once is 
a unique partner. However, there is no way to determine whether an unbanded bird 
observed with this focal individual is the same as an unbanded bird observed with a 
different focal individual. For the permutations, it is critically important how many birds 
there are in the network because this will influence the expected number of bonds that a 
permuted individual can expect to engage in. Permutations only work if all individuals are
known and are observed for roughly the same amount of time, and even still they might 
not account for the non-independence in the data [@hart2023bison; 
@ross2022modelling].

## Trapping
We used three different trapping techniques to capture grackles in the wild for transfer to the 
aviaries, including mist nets, walk-in traps, and bownets. Use of a particular trapping method 

10



depended on trapping location (e.g., mist nests required ample space for set up), time of day 
(e.g., mist nests are not as effective past dawn or before dusk), and individual grackle behavior. 
Some of these trapping methods decreased the likelihood of a selection bias for exploratory and
bold individuals because grackles cannot see the traps (i.e., mist nets). For the visible trapping 
methods, we conducted extensive trap habituation to increase the chance of catching the 
individuals that were initially more cautious approaching these traps.. To lure birds to the 
trapping location, we habituated birds to eating a mix of crackers, mealworms, and bird seed in 
the immediate vicinity of the trap. Following capture of a grackle, the bird was either processed 
immediately on site if they were not slated to undergo aviary testing, or the bird was transported 
to the aviary location for subsequent processing. Processing involved collecting biometric 
measurements, feathers, and blood. The latter was used to extract DNA and determine 
relatedness (P4, P5)

## Reversal Learning
We used reversal learning to measure grackle behavioral flexibility. Briefly, we trained grackles 
to search in one of two differently colored containers for food (Fig. 1a). After grackles showed a 
significant preference for one color (minimum of 17 out of 20 correct choices), we switched the 
location of the food to the container of the other color. We measured behavioral flexibility as the 
number of trials it takes grackles to switch their preference and search in the container of the 
other color on a minimum of 17 out of 20 trials (a reversal). Grackles in Arizona were randomly 
assigned to one of two groups: a flexibility manipulation group where they received serial 
reversals until they switched their preference quickly enough to meet the experiment passing 
criterion (form a preference in 2 sequential reversals in 50 or fewer trials), and a control group 
that received one reversal and then a similar number of trials as the manipulation group, but 
with two yellow tubes that both contained food. See the protocol for serial reversal learning at 
https://docs.google.com/document/d/18D80XZV_XCG9urVzR9WzbfOKFprDV62v3P74upu01xU
/edit?usp=sharing.

## Multiaccess Boxes
We used two different multiaccess boxes to generate additional measures of grackle flexibility. 
All grackles were given time to habituate to the multiaccess boxes prior to testing. We set up the
multiaccess boxes in the aviary of each grackle with food in and around each box in the days 
prior to testing. At this point, all loci were absent or fixed in open, non-functional positions to 
prevent early learning of how to solve loci. We began testing when the grackle was eating 
comfortably from the multiaccess box. For each multiaccess box, the goal was to measure how 
quickly they learned to solve each locus, and then how quickly they attempted to solve a new 
locus when a previously solved locus was rendered non-functional. We measured the latency in 
seconds until the grackle attempted a new locus after a previously solved locus was made non-
functional (solution switching). See protocols for multiaccess box habituation and testing at: 
https://docs.google.com/document/d/18D80XZV_XCG9urVzR9WzbfOKFprDV62v3P74upu01xU
/edit?usp=sharing.
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**Plastic multiaccess box**: This apparatus consisted of a box with transparent plastic walls 
(Fig. 1b). There was a pedestal within the box where the food was placed and 4 different 
options (loci) set within the walls for accessing the food. One locus was a window that, when 
opened, allowed the grackle to reach in to grab the food. The second locus was a shovel that 
the food was placed on such that, when turned, the food fell from the pedestal and rolled out of 
the box. The third locus was a string attached to a tab that the food was placed on such that, 
when pulled, the food fell from the pedestal and rolled out of the box. The last locus was a 
horizontal stick that, when pushed, shoved the food off the pedestal such that it rolled out of the 
box. A trial ended when a grackle used a locus to retrieve the food item or after 10 min, 
whichever came first. If the grackle had not yet solved a locus, but was on the ground at 10 min,
they were given an extra 5 min to interact. We reset the box out of view of the grackle and then 
began the next trial. To pass criterion for a locus, the grackle had to get food out of the box 
using only functional actions (i.e., they used a functional behavior to retrieve the food) in 2 
consecutive sessions, or solving in 9/10 trials within a session, or in 8 consecutive trials in 1 
session. After passing criterion, the locus is made non-functional to encourage the grackle to 
interact with the other loci.

**Wooden multiaccess box**: This apparatus consisted of a natural log that contained 4 
compartments (loci) covered by transparent plastic doors. Each door opened in a different way 
(open upward like a hatch, out to the side like a car door, pull out like a drawer, or push in). 
During testing, all doors were closed and food was placed in each locus. A trial ended when the 
grackle opened a door or after 10 min (or 15 min if the grackle was on the ground at 10 min). 
After solving a locus, the experimenter re-baited that compartment and closed the locus door 
out of view of the grackle, and the next trial began. After a grackle solved one locus 3 times, that
door was fixed in the open position and the compartment left empty to encourage the grackle to 
attempt the other loci. 

## Radio Telemetry
We attached radio transmitter tags to *most* grackles released from the aviaries upon 
completion of their test battery. Radio tags allowed us to relocate and track released grackles to
collect space use data and foraging and social behavior data. We used three different kinds of 
radio transmitters, namely Lotek (model: Pip Ag386, https://www.lotek.com/, Seattle, WA, USA),
Holohil (model: BD-2, https://www.holohil.com/, Carp, Ontario, Canada), and ATS (model: 
A2455, https://atstrack.com/, Isanti, MN, USA). Holohil and ATS tags were used on birds that 
could not accommodate the heavier Lotek tags, given that the weight of a radio tag must not 
exceed 3% of the bird’s total body weight to avoid hindering the animal’s movement behavior 
[@barron2010meta, @hallworth2015miniaturized, @murray2000critical]. We used the leg-loop 
harness method of attaching radio transmitters to the grackles in an effort to prolong the amount
of time the tag stays affixed to the bird’s body [@rappole1991new]. Before releasing the 
grackles back into the wild, we programmed each tag’s unique frequency into our Yagi*brand 
radio receiver and annotated which frequency corresponded to which individual. This allowed us
to quickly find and track birds upon release to the site at which they were initially caught.
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Immediately following the release of the radio-tagged grackles, each bird was followed for 30 
min to make sure they behaved normally. In the days following release, the radio receiver and 
antenna were used to relocate tagged individuals, together with the visual confirmation of color 
bands, for subsequent GPX tracking and focal follows. See full protocol for Radio Telemetry at: 
https://docs.google.com/document/d/1jtjgeWJoZ0Q1CfUpV6zdkyQL3p3WfW9KgyLrMNmNMJc/
edit#. 

## Focal Follows
To quantify foraging and social relationships, we conducted focal follows using methods 
described in @Altmann1974. Following the release of the study birds from the aviaries upon 
completion of their test battery, we observed each individual over an ideally 10 min period 
(increased to 15 min if the bird went out of view) to record all foraging behaviors and social 
interactions, categories of which are listed in the ethogram (see Supplementary Material 4). To 
ensure we fully sampled social and foraging behavior, we prioritized conducting focal follows on 
grackles that successfully completed all aviary tests, for which we have a much larger amount of
individualized data, including multiple measures of flexibility. We also sampled many other color 
marked grackles that were never tested in the aviaries, and thus do not have measures of 
flexibility. We aimed to conduct at least four, but no more than eight, focal follows for each 
individual, spaced equally across breeding (Apr - Aug) and non-breeding (Sept - Mar) seasons. 
Subsequent follows on the same individual were a minimum of three weeks apart from the 
previous focal follow to prevent temporal autocorrelation in behavior [@Whitehead2008]. Each 
observer successfully completed an interobserver reliability test before collecting focal follow 
data to be used in the data set (see Supplementary Material 1). We used two different methods 
of collecting focal follow data: the Prim8 behavioral data collection application, and voice 
recordings. At the end of every focal follow, observers recorded the ending group size, GPS 
point of the bird’s location, and substrate type. See full protocol for Focal Follows at: 
https://docs.google.com/document/d/12p4QwIZO85oItvO2GylooyEhCsJUNblAyAhR5Ei_jGk/
edit.

Data from focal follows that were used in analyses include: the number of food types taken and 
foraging techniques used (P1 and P2); the number of human foods taken by an individual, the 
distance to an outdoor human food source for an individual, number of human food sources 
inside an individual’s home range (in addition to GPX data, P3); the strength of the strongest 
bond (maximum bond), the strength of all bonds an individual has (strength), the maximum 
number of other individuals that the focal individual associated with (degree, P4), the Shannon 
Diversity Index was calculated from this data as a measure of the proportion of time spent in 
each microhabitat (P6); and the proportion of focal follows that were recorded in a particular 
microhabitat for each individual (P8).

## GPX Tracking
After releasing birds from the aviaries following completion of their test battery, we tracked 
grackle movements and space use by collecting GPX points on each bird’s location during the 
breeding and non-breeding seasons. GPX tracking occurred as soon as one day following a 
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bird’s release, and continued until a sufficient number of points were collected to calculate an 
accurate home range estimate [@leo2016home]. We prioritized tracking birds that successfully 
completed tests in the aviaries, however, we were limited by which bird to track based on which 
birds were discoverable on any given day. Where possible, radio tag transmitters were used in 
coordination with a radio receiver to triangulate grackle locations. We used the Open GPX 
Tracker app (Juan Manuel Merlos, 
https://apps.apple.com/de/app/open-gpx-tracker/id984503772) for iOS devices to collect these 
GPX data because this app allows the user to manipulate pin location after placement and 
starts a tracking timer to indicate duration of tracking time. This latter function is especially 
critical to the protocol because we collected one GPS point on the bird’s location every 60 sec. 
Once a minimum of 20 points and a maximum of 90 points were achieved in a day, the file was 
saved and the data collector resumed tracking other discoverable individuals. We attempted to 
balance the data collection times between the morning (i.e., before 12 PM) and afternoon (i.e., 
after 12 PM) to account for variation in movement and space use at different times of day. See 
full protocol for GPX Tracking at: 
https://docs.google.com/document/d/1jtjgeWJoZ0Q1CfUpV6zdkyQL3p3WfW9KgyLrMNmNMJc/
edit#. Data from GPX tracking that were used in analyses include: the distance to an outdoor 
human food source for an individual and the number of human food sources inside an 
individual’s home range (in addition to focal follow data, P3).

## Sample
Grackles were caught in the wild at two field sites across their geographic range: the middle of 
the northern expanding edge (Tempe, Arizona USA; n=94), and on the northern expanding 
edge (Woodland, California USA; n=35). Individuals were identified using colored leg bands in 
unique combinations, their data collected (blood, feathers, and biometrics), and then they were 
released back to the wild. Some individuals (34 in Arizona and 35 in California) were brought 
temporarily into aviaries for behavioral testing, and then released back to the wild where the 
data for this study were collected. We stopped collecting data in 2022 when the minimum 
sample sizes were met.

## Open materials
 - Ethogram for Prim8: 
https://docs.google.com/spreadsheets/d/1N8wsA3geaRGlMjRxYTRpdG2i5oCXNGq9zBlTnj02G
ho/edit?usp=sharing
 - Individuals for Prim8: 
https://docs.google.com/spreadsheets/d/1Lr0pwsmdnpVM8X2Fyoj9EIGa3zOY1WCZlntW7e0Ui
_Y/edit?usp=sharing
 - Protocol for cleaning the focal follow data: 
https://docs.google.com/document/d/1SMUy43qRd52BBTZM5Oe2hpSExBLRAC6iUVyGvrAlgq
s/edit?usp=sharing  
- Protocol for calculating P3 dependent variables 2 and 3: distance to outdoor human food areas
during focal follows, and number of outdoor human food areas within the home range: 
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https://docs.google.com/document/d/1W1uZ_AepoI6dcJcjeHWTHWnTi8GHkGf4H_2b8BQte-k/
edit?usp=sharing 

## Open data
The data is available at the Knowledge Network for Biocomplexity's data repository 
[@logan2024flexforagingdata], and code is available at the Rmd file at: 
https://github.com/corinalogan/grackles/blob/84efe125ee75e32310deba335872e8f222c3f990/
Files/Preregistrations/g_flexforaging.Rmd.

## Analyses
We did not exclude any data. When missing data occurred, the existing data for that individual 
was included in the analyses for the tests they completed. Analyses were conducted in R 
[current version `r getRversion()`; @rcoreteam] and RStudio [@rstudio], using several R 
packages: xtable [@dahl2019package], MCMCglmm [@hadfieldMCMCglmmpackage], 
rethinking [@rethinking2020], rstan [@rstan], formatr [@formatr], Rcpp [@rcpp], ggplot2 
[@ggplot2], knitr [@xie2018knitr; @xie2017dynamic; @xie2013knitr], dplyr [@dplyr], cmdstanr 
[@cmdstanr], posterior [@burkner2020posterior], cowplot [@wilkecowplot], irr 
[@gamer2012package], psych [@revelle2014psych; @psych], DHARMa 
[@Hartig2019dharma], lme4 [@lme4; @bates2012lme4], igraph [@butts2016sna], and rptR 
[@stoffel2017rptr]. We analyzed data for females and males separately because each sex has 
a distinct natural history that might play a role in behavioral differences.

### Calculating the independent variable Flexibility 4 ($\phi$ and $\lambda$)
We developed a Bayesian model of behavioral flexibility [@blaisdell2021causal], which better 
represents flexibility than using the number of trials to pass a reversal in a color tube experiment
[@lukas2024flexmanip]. This model represents flexibility using two parameters: the learning rate
$\phi$) and the rate of deviating from learned preferences ($lambda$). These two parameters 
make up the Flexibility 4 measure, which is an independent variable used in some of the 
analyses in the results section. We use $\phi$ and $\lambda$ from each bird's initial 
discrimination plus first reversal (for the Woodland birds and Tempe control birds) or the last two
reversals (for the Tempe manipulated birds). This means that the $\phi$ and $\lambda$ are 
used that reflect the individual’s current state when they are released back to the wild, after 
which point, the focal follows are conducted. We calculate $\phi$ and $\lambda$ using the 
model and code from @lukas2024flexmanip, and enter these into the data sheets used for the 
analyses in the results section of the current article.

## P1: Flexibility and food types / foraging techniques 
We used a binomial model that evaluates, of the known food types and foraging techniques, 
how many an individual uses. The model assumes every individual is able to eat all of the food 
types and use all of the foraging techniques, and it evaluates the probability of using a given 
food type or foraging technique at a given time. This model was run for males and females 
separately and takes the form of:
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$tech_{i}$ ~ Binomial(11, $p$),

logit($p$) ~ $a$ + $bp$*$\phi_{i}$ + $bl$*$\lambda_{i}$ + $be$*$obstime_{i}$ + $br$*$rank_{i}
$,

where $tech_{i}$ is the number of foraging techniques used (out of the total possible 11 foraging
techniques that were observed across both populations) by individual, i, $p$ is the probability of 
using a given technique, $a_{i}$ is the intercept, $bp$ is the slope for the interaction with $\
phi_{i}$ for individual, i, bl is the same for $\lambda_{i}$, $be$ is the slope for the interaction 
with total number of seconds individual, i, was observed for, $obstime_{i}$, and $br$ is the 
same for dominance rank per bird, $rank_{i}$. Note that the model is the same when analyzing 
the number of food types taken for each individual, $foods_{i}$, which replaces $tech_{i}$ in the
above model, and 22 (number of food types observed across both populations) replaces the 11.

## P2: Flexibility manipulation and food types / foraging techniques
The model is the same as in P1 except that this dataset includes only the Arizona grackles who 
were in the flexibility manipulation (serial reversal learning of color preferences) or the control 
group (only one reversal). Both sexes were analyzed together because the sample size was 
small. This model takes the form of:

$tech_{i}$ ~ Binomial(9, $p$),

logit($p$) ~ $a_{i}$[$treatment$] + $b_{i}$$time$,

where $tech_{i}$ is the number of foraging techniques used (out of the total possible 9 foraging 
techniques that were observed in the Arizona population) by individual, i, $p$ is the probability 
of using a given technique, $a_{i}$ is the intercept (one per level of $treatment$: control and 
manipulated), and $b_{i}$ is the slope for the interaction with total number of seconds of 
observation $time$ for individual, i. Note that the model is the same when analyzing the number
of food types taken for each individual, $foods_{i}$, which replaces $tech_{i}$ in the above 
model, and 20 (number of food types observed in the Arizona population) replaces the 9. 

We used contrasts to determine whether there was a difference between $treatment$s and 
concluded that there is a difference if the 89% compatibility interval does not cross zero.

## P3: Flexibility and human foods / human food sources
To investigate **what proportion of the diet consists of human foods** and how this relates 
to flexibility, we used a binomial model as follows:

$humanfoods_{i}$ ~ Binomial($totalfoods_{i}$, $p$),
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logit($p$) ~ $a_{i}$ + $bp$ * $\phi_{i}$ + $bl$ * $\lambda_{i}$ + $br$ * $rank_{i}$,

where $humanfoods_{i}$ is the number of human foods taken by individual, i, $totalfoods$ is the
total number of foods taken by individual, i, $p$ is the probability of taking human foods, $a_{i}$ 
is the intercept, $bp$ is the slope for the interaction with the flexibility component $\phi_{i}$, $bl$
is the slope for the interaction with the flexibility component $\lambda_{i}$, and $br$ is the slope
for the interaction with dominance rank, $rank_{i}$. Note that the model is the same when 
analyzing the latency (in sec) to attempt a new option on the multiaccess box except the terms 
for $\phi_{i}$ and $\lambda_{i}$ are replaced with $blat$ * $latency_{i}$ in the above model. 

We used the same model to investigate whether the **proportion human foods** relates with 
the **number of foraging techniques used**, but we removed all terms except for $a_{i}$, 
and added $bt$, the slope for the interaction with the number of techniques used per bird, 
$tech_{i}$.

To investigate the **distance to human food sources** and how this relates to flexibility, we 
recorded the spatial location of each individual at the end of each of its focal follow to measure 
the distance between this location and the nearest source of human food. We defined a human 
food source as locations where human-provided food is accessible to grackles, and this 
included dumpsters, restaurant outdoor seating areas, and feral cat feeding stations. To 
evaluate whether individual grackles consistently occur in certain spatial locations relative to 
human food (i.e., may have a preference for proximity to human food locations), we first 
examined whether distance to human food sources was repeatable within individuals across 
focal follows. If so, then we would be able to use a bird’s average distance as the response 
variable in the model. Repeatability is calculated as the ratio of variance among individuals in 
the distance to a human food source compared to total within- and among-individual variance in 
distance. We used a Bayesian mixed model (MCMCglmm) framework to determine the variance
components for the repeatability value. We additionally used the rptR function in R to calculate 
repeatability because this function also runs permutations of the data to calculate the p-value as
the probability of getting the observed repeatability value if the distance to human food sources 
was randomized across grackles. We found that distance to a human food source was a 
repeatable trait in grackles (p = 0.003) and the repeatability values and confidence intervals 
between the MCMCglmm and the rptR function were nearly identical (MCMCglmm: R = 0.28, CI
= 0.15-0.39; rptR: R = 0.28, CI = 0.16-0.39). Therefore, we went forward with the analysis that 
answers the question for this prediction using a normal model as follows: 

$distance_{i}$ ~ Normal($\mu$, $\sigma$),

$\mu$ ~ $a_{i}$ + $bp$ * $\phi_{i}$ + $bl$ * $\lambda_{i}$ + $br$ * $rank_{i}$,

where $distance_{i}$ is average number of meters to an outdoor human food source for 
individual, i, $\mu$ is the population mean number of meters to a human food source, $\sigma$ 
is the standard deviation, the rest of the terms are as in above models. Note that the model is 
the same when analyzing the latency (in sec) to attempt a new option on the multiaccess box 
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except the terms for $\phi_{i}$ and $\lambda_{i}$ are replaced with $blat$ * $latency_{i}$ in the 
above model. 

To investigate the **number of outdoor food sources within an individual’s home range** 
and how this relates to flexibility, we first measured home range size for each individual. We 
conducted high-resolution spatial location tracking for a different investigation 
[@mccune2020spaceuse] in which we used radio telemetry to follow grackles for 20-120 
minutes and record GPS locations of the grackle at 1-minute intervals. We used the Kernel 
Density Estimation tool in QGIS [@QGIS_software] to calculate home range size. This tool 
incorporates all of the GPS locations where a bird was seen, as well as the average step length 
(distance between two sequential spatial locations collected at 1-minute intervals) to inform the 
kernel radius. We selected a pixel size of 10 meters to account for the satellite accuracy from 
collected data points. However, because we are including the entire area of the calculated home
range instead of eliminating the outlying 5% in a 95% Kernel Density Estimation, pixel size did 
not affect the number of human food locations intersecting within a home range. Lastly, we used
the quartic kernel shape option in the home range calculation. We then drew a 25 meter radius 
circular buffer around each of the human food location points to account for trash and food 
disposal as well as incidences of birds queuing in the vicinity of food sources. To determine all 
food location buffers that intersected with each bird’s home range, we polygonized the home 
range raster output using the Polygonize (raster to vector) tool in QGIS to Select by Location the
intersecting human food sources. Our protocol and detailed methods for all spatial analyses can
be found at: 
https://docs.google.com/document/d/1W1uZ_AepoI6dcJcjeHWTHWnTi8GHkGf4H_2b8BQte-k/
edit?usp=sharing

The binomial model is as follows:

$number_{i}$ ~ Binomial($total_{i}$, $p$),

logit($p$) ~ $a_{i}$ + $bp$ * $\phi_{i}$ + $bl$ * $\lambda_{i}$ + $br$ * $rank_{i}$,

where $number_{i}$ is the number of human food sources inside the home range of individual, i,
$total$ is the maximum number of human food sources a bird had in its home range in this 
sample, $p$ is the probability of having a given number of human food sources in a home 
range, and the rest of the terms are as in the above models. Note that the model is the same 
when analyzing the latency (in sec) to attempt a new option on the multiaccess box except the 
terms for $\phi_{i}$ and $\lambda_{i}$ are replaced with $blat$ * $latency_{i}$ in the above 
model. 

## P4: Flexibility and social bonds

To quantify social relationships, we conducted at least four 10-minute focal follows on each 
subject spaced equally across breeding and non-breeding seasons. We found subjects in the 
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wild by attaching radio transmitter tags to all grackles that were released from the aviaries upon 
completion of their test battery. To ensure we fully sampled social and foraging behavior, we 
prioritized conducting focal follows on these tagged grackles for which we had a much larger 
amount of individualized data, including multiple measures of flexibility. 

To measure affiliative bonds, during each focal follow we recorded when another grackle came 
within one body length of the focal bird (and did not engage in aggressive interactions). In case 
we did not observe enough of these close associations, we also recorded when another grackle 
came within 3m of the focal subject (and did not engage in aggressive interactions). Finally, we 
conducted a scan sample at the end of the follow to determine group size as the number of 
other grackles within 10 m of the focal individual. Unmarked grackles that were seen in 
proximity of the focal individual were recorded and included in the count of group size and 
individual degree (the number of unique associates). However, because we cannot distinguish 
unmarked individuals from each other, we excluded unmarked bird data from calculations of an 
individual’s summed bond strengths (see details in the next paragraph). We also measured 
aggressive behavioral interactions, as indicated in our ethogram. The outcome of these dyadic 
interactions was used to create our index of dominance ranks (wins - losses / wins + losses). 

We conducted subsequent follows on the same individual only when 3 or more weeks passed 
since the previous focal follow to prevent temporal autocorrelation in behavior 
[@whitehead2008analyzing]. From the data sheet of dyadic associations during focal follows, 
we created a matrix of association strengths between all marked grackles by calculating the 
Half-Weight association index. This index determines association strength based on the 
proportion of observations in which two individuals are seen together versus separately, and 
accounts for bias arising from subjects that are more likely to be observed separately rather 
than together in the same group [@cairns1987comparison]. From the matrix of association 
values, we used the R package igraph [@csardi2006igraph] to create a social network, and 
calculated each individual’s strength (sum of all association values) and degree (maximum 
number of unique associates) values [@croft2008exploring].

Before analyzing degree and strength (individual strength and strength of the maximum bond), 
we determined if these values differed between breeding (Apr - Aug) and non-breeding seasons
(Sept - Mar) because social associations could change as a result of breeding behaviors. There 
was not enough data in the breeding season (only 5 banded bird to banded bird associations) to
statistically test if there was a difference between the seasons, therefore we omitted breeding 
season data from the analyses.  

**The maximum bond model is as follows:**

$maxbond_{i}$ ~ Normal($\mu$, $\sigma$),

$\mu$ ~ $a_{i}$ + $bp$ * $\phi_{i}$ + $bl$ * $\lambda_{i}$ + $br$ * $rank_{i}$,
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where $maxbond_{i}$ is the strength of the strongest bond and calculated as the half-weight 
index based on association behavior during focal follows for individual, i, $\mu$ is the population
mean strength of the strongest bond, and $\sigma$ is the standard deviation. The rest of the 
terms are as in the above models, and the same note about the latency model applies here. 

**The strength model is as follows:**

$strength_{i}$ ~ Normal($\mu$, $\sigma$),

$\mu$ ~ $a_{i}$ + $bp$ * $\phi_{i}$ + $bl$ * $\lambda_{i}$ + $br$ * $rank_{i}$,

where $strength_{i}$ is the sum of all bonds individual, i, has, $\mu$ is the population mean 
bond strengths, and $\sigma$ is the standard deviation. The rest of the terms are as in the 
above models, and the same note about the latency model applies here. 

**The degree model is as follows:**

$degree_{i}$ ~ Poisson($l$),

logit($l$) ~ $a_{i}$ + $bp$ * $\phi_{i}$ + $bl$ * $\lambda_{i}$ + $br$ * $rank_{i}$,

where $degree_{i}$ is the maximum number of other individuals that the focal individual, i, 
associated with, and $l$ is the population mean degree. The rest of the terms are as in the 
above models, and the same note about the latency model applies here. 

Because the response variables involve interactions within and between the sexes, we 
combined the sexes when analyzing the data.

We calculated the **percentage of territory that a male shares with another male** by using 
the polygons created for Prediction 3 to calculate the area of each male’s territory and 
performing an overlap analysis to determine the percentage of this area that overlapped with 
another male’s territory. We define territory as the space a bird was observed using (for 
foraging, nesting, etc.) during both the breeding and nonbreeding seasons, measured by 
following individuals for 20 - 120 minutes, noting the bird’s GPS location at 1-min intervals, 
several times a week after the bird was released from the aviaries. See the full protocol for this 
calculation at: 
https://docs.google.com/document/d/1W1uZ_AepoI6dcJcjeHWTHWnTi8GHkGf4H_2b8BQte-k/
edit?usp=sharing. 

**The percentage of shared territory model is as follows:**

$territory_{i}$ ~ Normal($\mu$, $\sigma$),

$\mu$ ~ $a_{i}$ + $bp$ * $\phi_{i}$ + $bl$ * $\lambda_{i}$ + $br$ * $rank_{i}$,
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where $territory_{i}$ is the percentage of shared territory an individual male, i, shares with 
another male, $\mu$ is the population mean percentage of shared territory, and $\sigma$ is the 
standard deviation. The rest of the terms are as in the above models, and the same note about 
the latency model applies here. 

We calculated the **relatedness between individuals who had the strongest bonds** with 
each other (maximum bond) using the protocol in @thrasher2018double. We estimated pairwise
relatedness between all individuals based on the extent of sharing of genetic variants as 
determined by ddRADseq. We calculated relatedness among pairs of individuals from single-
nucleotide-polymorphism (SNP) data [for details on SNP typing see @sevchik2021dispersal]. 
We performed the genetic analyses at the population level, calling SNPs and calculating 
relatedness separately for the Arizona and the California individuals. The populations are too far
apart geographically to expect any migration between them: combining the two populations into 
one analysis would lose information about the local relatedness in each. We used stringent 
settings for the SNP filtering, including loci only if they were present in 95% of the samples and 
had a minimum minor allele frequency of 0.05, to reduce potential noise from missing data. This
resulted in 493 SNPs in California for 35 individuals (2.8% missing data) and 462 SNPs in 
Arizona for 94 individuals (2.9% missing data). The expected heterozygosity in both populations
is 0.29, indicating that we have a high degree of power to calculate relatedness among 
individuals. We used functions in the package “related” [@pew2015related] in R to estimate 
relatedness among all pairs in a population using the approach by @queller1989estimating. For 
each individual, we identified who the individual with their strongest bond was, and took their 
pairwise relatedness. This is not necessarily symmetrical: individual A might have their 
strongest bond with individual B, but individual B might have an even stronger bond with 
individual C.  

The model to link relatedness between individuals who had the strongest bonds to $\phi$ and $\
lambda$ is:

$relatednessstrongestbond_{i}$ ~ Normal($\mu$, $\sigma$),

$\mu$ ~ $a_{i}$ + $bp$ * $\phi_{i}$ + $bl$ * $\lambda_{i}$,

and the model to link relatedness among the strongest bonds to the latency is:

$relatednessstrongestbond_{i}$ ~ Normal($\mu$, $\sigma$),

$\mu$ ~ $a_{i}$ + $bla$ * $latency_{i}$,

where $relatednessstrongestbond_{i}$ is the relatedness of individual i to the individual with 
whom it forms their strongest bond, $\mu$ is the average level of relatedness in the population 
and $\sigma$ is the standard deviation. The rest of the terms are as in the above models.
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## P5: Flexibility and immigration
To assess whether individuals are potential immigrants, we calculated their genetic relatedness 
to all other individuals in their population. Individuals with low average relatedness do not share 
many of the genetic variants locally present and therefore are more likely to be immigrants. In 
contrast, individuals with high average relatedness have relatives and others with whom they 
share genetic variants in the same population and are therefore likely to have hatched in the 
population. We used the same pairwise relatedness data as in P4 to calculate for each 
individual the average of their pairwise relatedness with all other individuals in the population for
whom we had genetic data (94 individuals in Arizona and 35 individuals in California). The 
model to link average relatedness to $\phi$ and $\lambda$ is:

$averagerelatedness_{i}$ ~ Normal($\mu$, $\sigma$),

$\mu$ ~ $a_{i}$ + $bp$ * $\phi_{i}$ + $bl$ * $\lambda_{i}$,

and the model to link average relatedness to the latency is:

$averagerelatedness_{i}$ ~ Normal($\mu$, $\sigma$),

$\mu$ ~ $a_{i}$ + $bla$ * $latency_{i}$,

where $averagerelatedness_{i}$ is the average relatedness of individual i, $\mu$ is the average
level of relatedness in the population and $\sigma$ is the standard deviation. The rest of the 
terms are as in the above models. 

## P6: Flexibility and habitat diversity
This species is primarily found within urbanized environments, however there are many different
substrates within urban habitats that could provide a variety of food items. Since we are 
interested in the flexibility of grackle foraging behaviors within the urban habitat, we focused our 
habitat diversity measures on the different substrates on which we are mostly likely to see 
individual variability in foraging behaviors and food types, if present. For example, cement, cafe,
and dumpster substrates are all likely to contain human-provided food (either because people 
leave food out for wild animals or wild animals are able to scrounge human foods), whereas 
grass, gravel, or other natural substrates such as trees likely contain non-human provided prey 
items including insects and small vertebrates. We used the Shannon diversity index to 
understand the evenness of substrate use within urban habitats as recommended by others in 
the field of urban ecology [@alberti2001quantifying; @tews2004animal].

The model takes the form of:

𝑑𝑖𝑣𝑖 𝜇𝑖 𝜎𝑖 ~ Normal( , ) [likelihood],
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𝜇𝑖 𝜙 𝛽𝑟 𝑟𝑎𝑛𝑘log( ) ~ a + bp*  + bl*$\lambda_{i}$ + *  [model],

𝑑𝑖𝑣𝑖where  is the Shannon Diversity Index [see @vegan for mathematical definition] for each 
𝜇𝑖 𝜎𝑖individual i,  is the mean and  is the standard deviation for each individual. The rest of the 

terms are as in the above models, and the same note about the latency model applies here. We
𝜙 𝜆determine that  and  are strongly related to the diversity index if the compatibility interval for 

the slope does not cross zero.

## P7: Human population density across sites
Human population density (population per square mile) was obtained from the U.S. Census 
Bureau for Tempe, Arizona 
(https://www.census.gov/quickfacts/fact/table/tempecityarizona,US/POP060220), Woodland, 
California (https://www.census.gov/quickfacts/fact/table/woodlandcitycalifornia/POP060220), 
and Sacramento, California 
(https://www.census.gov/quickfacts/fact/table/sacramentocitycalifornia,tempecityarizona,US/
POP060220) for 2010 and 2020 (the Census data), and from the U.S. Census American 
Community Survey (https://www.opendatanetwork.com/entity/1600000US0664000-
1600000US0686328-1600000US0473000/Sacramento_CA-Woodland_CA-Tempe_AZ/
geographic.population.density?year=2018&ref=compare-entity) for the rest of the years from 
2009 to 2018 (note that there is no data for 2019). The Woodland population consisted of two 
trapping locations: one in Woodland and the other in Sacramento. The two locations represent 
the same population because some of the same individuals were found at both locations. We 
designed a bespoke Bayesian model to determine whether there are differences between 
populations and we conducted a simulation to determine how much of a difference between the 
means (at least 250 people per square mile) would result in there being a difference between 
the cities (evaluated using a contrast).

The model takes the form of:

𝑝𝑖 𝜇𝑖 𝜎𝑖  ~ Normal( , ),

𝜇𝑖log( ) ~ a[city],

𝑝𝑖where  is the human population density (total population divided by the land area per square 
𝜇𝑖 𝜎𝑖mile) for each observation i,  is the mean and  is the standard deviation, and a[city] is the 

intercept for each city.

## P8: flexibility and microhabitat types
We examine the proportion of focal follows associated with each microhabitat per individual and 
relate this to their flexibility scores on their most recent reversal in the tube experiment. This 
allows us to see whether the more flexible individuals (faster to reverse) are associated with 
particular microhabitats more than the less flexible individuals.

23



The model takes the form of:

𝑓𝑜𝑙𝑙𝑜𝑤𝑠𝑖 𝑝 ~ Binomial($totalfollows$, ),

𝑝 𝑖 𝑖 𝜙logit( ) ~ a [habitat] + b  * ,

𝑓𝑜𝑙𝑙𝑜𝑤𝑠𝑖where  is the proportion of focal follows that were recorded in a particular microhabitat 
𝑝for each individual i, $totalfollows$ is the total number of focal follows per bird,  is the 

𝑖 𝛽𝑖probability of being in a given microhabitat, a  is the intercept (one per observation),  is the 
𝜙 𝜙slope for the interaction with , and  is the learning rate of attraction to one of the two options 

and is one of the two components of the flexibility measure [see @lukas2024flexmanip for 
𝜆 𝜙details]. Note that the model is the same when analyzing , which replaces  in the above 

𝜆model.  is the rate of deviating from the learned attractions and is the second component of the
𝜙 𝜆flexibility measure. We determine that  and  are strongly related to the proportion of focal 

follows in a given habitat if the compatibility interval for the slope does not cross zero.

### Ability to detect actual effects
Given our sample size for a given prediction, how large of a difference can we reliably detect? 
We developed bespoke Bayesian power analysis models to answer this question. There are 
three types of models that we use to analyze our results: the outcome variable follows either a 
normal or a binomial distribution, and for the binomial model there are two types of predictor 
variables, continuous and categorical. We developed a generic power analysis for each type. 
We ran these analyses for sample sizes of 4, 9, and 26 because sample sizes in the article 
range across 4, 6, 7, 8, 9, 10, 12, 13, 18, 19, 21, and 26, with 9 and 26 being the most common.
We simulate three different effect sizes and classify their sizes as follows 
[@cohen2013statistical]: 

● Small effect size: explains 20% of the variation in the outcome variable
● Medium effect size: explains 50% of the variation in the outcome variable
● Large effect size: explains 75% of the variation in the outcome variable

Models are run 100 times on each sample size/effect size setting and the proportion of times the
89% compatibility interval crosses zero is used to determine whether the model can reliably 
infer a relationship. The fewer times the interval crosses zero, the more power there is to detect 
the effect. We ran power analyses for the three types of models included in our article. 

**Scenario 1** is for an outcome variable that has a binomial distribution and a predictor 
variable that is continuous and standardized such that the mean is centered on zero ($\phi$, $\
lambda$, or latency to switch). The model takes the form of:

𝑝outcome ~ Binomial(22, ),
𝑝 𝛼𝑖 𝛽𝑖logit( ) ~  +  * predictor,

where 22 is chosen because it is in the middle of the range of values that appear in the models 
in this article.
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We found that the small sample size (n=4) can reliably detect large effects, the intermediate 
sample size (n=9) can reliably detect large and medium effects, and the large sample size 
(n=26) can detect large, medium, and small effects (Table 1).

**Scenario 2** is for an outcome variable that has a binomial distribution and a predictor 
variable that is categorical (flexibility manipulated vs control groups). We have only one model 
that uses this scenario (P2), therefore we used that particular sample size (n=18: 8 in the 
flexibility manipulated group, 10 in the control group). The model is the same as above, except 
for the second line:

𝑝 𝛽𝑖logit( ) ~ [predictor].

We found that our small sample size of 18 can reliably detect large and medium effects (Table 
1).

**Scenario 3** is for an outcome variable that has a normal distribution and a predictor variable 
that is continuous and standardized such that the mean is centered on zero ($\phi$, $\lambda$, 
or latency to switch). The model is as follows:
outcome ~ Normal(mu, sigma),

𝑖mu ~ a + b  * predictor.

We found that the small (n=4) and intermediate (n=9) sample sizes can reliably detect large 
effects, and the large sample size (n=26) can detect large and medium effects (Table 1).

Table 1. Our power to detect small, medium, or large effect sizes at various sample sizes 
(number of individuals) is indicated by the proportion of iterations the confidence interval 
crosses zero (a low proportion means that there is high power, whereas a high proportion 
indicates low power). Average slope is the value for b in the model output or the average 
contrast of b2 minus b1 in the model with the categorical predictor.
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# RESULTS
We found several relationships between flexibility and foraging, and some with social and 
habitat variables (Table 2). However, when evaluating the overall conclusion across all of the 
analyses in each prediction, the evidence indicated that there was support at the prediction level
for the foraging relationships in predictions 2 and 3 (Table 2; see Discussion for an explanation 
of this analysis and the R code). We share the results from each prediction below.

Table 2. Summary of all results. Pluses and minuses are relative to FLEXIBILITY and not the 
specific relationship between $\lambda$ or $\phi$ or latency, therefore a + means that the more 
flexible individuals, for example, use more food types, etc. We adopted this interpretation 
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because a lower $\lambda$ and latency means that the individual is more flexible, while a 
higher $\phi$ means they are more flexible, which makes the interpretation more confusing.

## P1: Flexibility and the number of foraging types
A total of 22 food types were taken and 11 foraging techniques used across both populations, 
which included 35 grackles (8 of which were in the flexibility manipulated condition; n=9 
females, mean number of follows per female=4.2, range=1-6; n=26 males, mean number of 
follows per male=4.6, range=1-8). The Arizona population took 20 food types, including lizard, 
bird poop, candy, vomit, condiment, and carcass, which the California population did not have. 
The California population took 15 food types, including mulch, which the Arizona population did 
not have. The Arizona population used 9 foraging techniques, including break into pieces, dunk 
in water, tolerated theft, and theft, which the California population did not have. The California 
population used 8 foraging techniques, including pick up, and sweep, which the Arizona 
population did not have. The food types were: fry, lizard, grains, insect, rock, cat food, worm, 
seed, food crumbs, vegetation, fruit, bird poop, candy, vomit, misc. trash, soil, condiment, 
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carcass, chicken, peanut, mulch, and unknown. The foraging techniques were: gape, lift or 
nudge, stalk catch, flip, food share, break into pieces, dunk in water, theft, dig, pick up, and 
sweep. Flexibility was measured as $\phi$, $\lambda$, and average switching latency on the 
multiaccess box. 

The*females* who used more **food types** had slower latencies to switch on the multiaccess 
box (i.e., less flexible), which supports prediction 1 alternatives 2 and 3, while $\phi$ and $\
lambda$ did not strongly relate to the number of different food types eaten as indicated by the 
slope’s compatibility interval (CI) crossing zero or not, which supports prediction 1 alternative 1 
(Figure 1; $\phi$: mean=-0.30, sd=0.51, 89% CI=-1.14-0.47; $\lambda$: mean=-0.27, sd=0.35, 
89% CI=-0.83-0.28; latency: mean=0.67, sd=0.38, 89% CI=0.08-1.29). The*males* who used 
more food types had higher $\lambda$ values (i.e., less flexible), which supports prediction 1 
alternatives 2 and 3, and higher $\phi$ values and faster latencies to switch on the multiaccess 
box (i.e., more flexible), which supports prediction 1 (Figure 1; $\phi$: mean=0.41, sd=0.14, 
89% CI=0.19-0.63; $\lambda$: mean=0.36, sd=0.16, 89% CI=0.10-0.62; latency: mean=-0.47, 
sd=0.20, 89% CI=-0.79 - -0.18).

The*females* who used more **foraging techniques** had lower $\phi$ values and higher 
switching latencies on the multiaccess box (i.e., less flexible), which supports prediction 1 
alternative 2, while the females with more foraging techniques had lower $\lambda$ values (i.e.,
more flexible; Figure 2; $\phi$: mean=-0.76, sd=0.51, 89% CI=-1.60 - 0.00; $\lambda$: mean=-
0.91, sd=0.43, 89% CI=-1.61 - -0.25; latency: mean=1.15, sd=0.42, 89% CI=0.53-1.87). 
The*males* who used more foraging techniques had lower switching latencies on the 
multiaccess box (i.e., more flexible), which supports prediction 1, while there was no strong 
relationship with $\phi$ or $\lambda$, which supports prediction 1 alternative 1 (Figure 2; $\phi$:
mean=0.19, sd=0.16, 89% CI=-0.07-0.45; $\lambda$: mean=0.21, sd=0.18, 89% CI=-0.10-0.49;
latency: mean=-0.79, sd=0.24, 89% CI=-1.19 - -0.42).
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Figure 1. Scatterplots for females (top row) and males (bottom row) showing the relationship 
between the number of different food types taken and flexibility: $\phi$ (left column), $\lambda$ 
(middle column), and the switching latencies on the multiaccess box (right column).
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Figure 2. Scatterplots for females (top row) and males (bottom row) showing the relationship 
between the number of different foraging techniques used and flexibility: $\phi$ (left column), $\
lambda$ (middle column), and the switching latencies on the multiaccess box (right column).

We found some support for prediction 1 alternative 2 - a negative correlation between food 
types taken and flexibility ($\lambda$ in males and latency to switch in females). Therefore, we 
conducted the preregistered follow up analysis examining what food types the more flexible 
individuals take and whether these food types are potentially more valuable (measured as 
having more calories). There was no correlation between average calories per 100g per bird 
and $\phi$ or $\lambda$ in males (n=19 males; $\phi$: mean=-0.01, sd=0.49, 89% CI=-0.81-
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0.77; $\lambda$: mean=0.01, sd=0.49, 89% CI=-0.75-0.79) or with switch latencies in females 
(n=4 females; mean=-0.03, sd=0.50, 89% CI=-0.84-0.80).

## P2: Flexibility manipulation and food types and foraging techniques
This dataset consists of only the Tempe grackles. There were 8 manipulated birds and 10 
control birds, and they had 1-8 focal follows per bird with a mean of 4.7 follows. 

We used a binomial model to determine how many of the known food types and foraging 
techniques were used. We found that flexibility manipulated individuals took an average of 1.9 
more food types and used an average of 1.1 more foraging techniques than control individuals 
at the average amount of observation time because the contrast compatibility interval did not 
cross zero (food types: mean=-1.85, sd=0.75, 89% compatibility interval=-3.02 - -0.65; 
techniques: mean=-1.12 sd=0.65, 89% compatibility interval=-2.16 - -0.09; Figure 3). The 
manipulated birds had a 1.9 higher likelihood of using any of the 20 food types, a 19% 
probability, whereas control birds only had a 10% probability. The manipulated birds had a 1.6 
higher likelihood of using any of the 9 techniques than the control birds, a 32% probability 
compared to a 20% probability for the control birds. See Supplementary Material 2.1 for an 
analysis that better accounts for undersampling, which gives the same results, but has much 
higher uncertainty.
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Figure 3. The relationship between the number of food types eaten (A) or foraging techniques 
used (B) and observation time (number of seconds) for the manipulated (triangle points with red 
shading and a solid line) and control (circle points with blue shading and a dashed line) 
individuals.

**UNREGISTERED ANALYSES:** The results suggest that the difference between manipulated
and control individuals could be due to differences in the probability that birds will switch among 
foraging techniques. We predict that manipulated birds have a higher probability of switching 
techniques per second or per minute because switching is a measure of flexibility, which was 
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manipulated in the aviaries for these individuals. The food type data set consisted of 13 
individuals (6=manipulated, 7=control), and the foraging technique data set consisted of 12 
individuals (n=5 manipulated, n=7 control) who had data that involved eating at least one food 
type or using at least one foraging technique. For each focal follow, we calculated the number of
switches between food types or techniques that occurred and the total amount of time that the 
bird was observed. We summed both measures across focal follows to have one data point per 
bird. This model takes the form of:

$switches_{i}$ ~ Binomial($totaltime_{i}$, $p$) *[likelihood]*,

logit($p$) ~ $\alpha_{i}$[$treatment$] *[model]*,

where $switches_{i}$ is the number of times individual, i, changed foraging techniques within a 
focal follow and summed across all of their focal follows, $totaltime_{i}$ is the number of 
seconds individual, i, was observed across all of its focal follows, $p$ is the probability of 
switching to a different technique per second, and $\alpha_{i}$ is the intercept (one per level of 
$treatment$: control and manipulated). Note that the model is the same when analyzing the 
number of food types eaten for each individual, $foodswitches_{i}$, which replaces 
$switches_{i}$ in the above model.

We found that the manipulated birds on average were 1.9 times more likely to switch to a 
different food type (mean=1.93, sd=0.31, 89% compatibility interval=1.44 - 2.38), and 1.7 times 
more likely to switch to a different foraging technique (mean=1.69, sd=0.33, 89% compatibility 
interval=1.19 - 2.21) compared to control birds (Figure 4). The manipulated birds had an 
average probability of switching among food types of 16% per minute compared with 8% for 
control birds, and the probability of switching among foraging techniques was 11% per minute 
for manipulated birds compared to 7% per minute for control birds.
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**Figure 4.** The probability of switching among food types (A) and foraging techniques (B) per 
minute for the control and manipulated birds. The small circles are the data points per individual 
and the large circles are the estimated means with their 89% compatibility intervals represented 
by the vertical lines.

There is the caveat that during a given focal follow, the bird might have been out of view for part
of the time. Our calculation of total time in view excludes the out of view time, but treats 
observations before and after the out of view period as a single focal follow. This could either 
overestimate switch rates if during the time out of view birds were not foraging or it could 
underestimate the switch rates if during the time out of view birds were foraging on different 
food types and using different foraging techniques. The control birds were out of view for 56 
seconds longer than manipulated birds on average (mean=-56.21, sd=30.12, 89% compatibility 
intervals=-104.26 - -9.07). Through running a simulation, we conclude that the reduced time in 
view should result in a +/-1% different estimated switch rate per minute. If the only reason for 
the difference in the switching rates between the manipulated and control birds is the difference 
in the time out of view, then the contrast in the switching rates between manipulated and control
birds would always overlap zero. This was not the case because the contrasts above did not 
cross zero. Therefore, the results that the manipulated birds have higher switching rates (16% 
and 11%) still holds because their rates are more than 2% higher than the rates of the control 
birds (8% and 7%).

In addition to the manipulated birds switching between food types more often than control birds, 
in an additional unregistered analysis, we explored whether it was also likely that the 
manipulated birds used more food types in part because they ate more often than control birds. 
We found that manipulated birds were observed to forage more frequently per minute than 
control birds (contrast: mean=0.18, sd=0.03, 89%CI=0.13-0.24). The difference in food types 
arose because control and manipulated birds feed on slightly different food types with 
manipulated birds having more food types that only they eat. Nevertheless, even after 
accounting for the total number of food events, the manipulated birds still switched among food 
types more often than control birds (contrast: mean=-0.04, sd=0.03, 89%CI=-0.09-0.00). For 
foraging technique switches, after accounting for the number of feeding events, the manipulated
birds had higher switch rates per minute, but the differences were not reliable with our small 
sample size as indicated by the compatibility interval crossing zero (contrast: mean=-0.02, 
sd=0.02, 89%CI=-0.04-0.01).

## P3: Human foods
The less flexible (higher $\lambda$) females and males ate a higher **proportion of human 
foods**, while there was no strong relationship with $\phi$ ($\phi$: females: n=6 birds; 
mean=0.23, sd=0.62, 89%CI=-0.77-1.22; males: n=20 birds, mean=0.11, sd=0.20, 89%CI=-
0.22-0.41; $\lambda$: females: mean=1.69, sd=0.62, 89%CI=0.73-2.75; males: mean=0.39, 
sd=0.19, 89%CI=0.09-0.68; Figure 5). The males with the higher latencies to switch options on 
a multiaccess box (less flexible) ate a higher proportion of human foods, while the females with 
the lower latency (more flexible) ate a higher proportion of human foods (females: n=4 birds, 
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mean=-1-59, sd=0.58, 89%CI=-2.55 - -0.68; males: n=15 birds, mean=0.93, sd=0.29, 
89%CI=0.48-1.38). The **proportion of human foods eaten and the number of foraging 
techniques used** were negatively correlated in females (n=6 birds; mean=-1.46, sd=0.61, 
89%CI=-2.47 - -0.56) and males (n=20 birds; mean=-0.34, sd=0.17, 89%CI=-0.60 - -0.07).

Figure 5. Proportion of human food sources inside a bird’s home range and its association with 
A) $\lambda$ (standardized so it is centered on zero) from the reversal learning experiment and
B) the latency to switch options on the multiaccess box in females (blue triangles) and males 
(black circles).

Even though flexibility is not related to the proportion of human foods eaten, females (n=9) with 
a higher $\lambda$ (less flexible) have smaller average **distances to human food sources**, 
while there is no relationship for males (n=26) or for $\phi$ or latency in both sexes ($\phi$ 
females: mean=-0.11, sd=0.28, 89%CI=-0.55-0.33; males: mean=0.11, sd=0.27, 89%CI=-0.32-
0.55; $\lambda$ females: mean=-1.07, sd=0.28, 89%CI=-1.51 - -0.60; males: mean=-0.20, 
sd=0.26, 89%CI=-0.61-0.21; latency: females: mean=0.47, sd=0.53, 89%CI=-0.41-1.28; males: 
mean=0.10, sd=0.28, 89%CI=-0.35-0.56; Figure 6).
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Figure 6. Distance (log meters) to a human food source and its association with $\lambda$ 
(standardized so it is centered on zero) in females (blue triangles), but not males (black circles).

Females (n=6) that have higher $\lambda$ (less flexible) and males (n=21) that have higher $\
lambda$ (less flexible) and $\phi$ (more flexible) have a higher **number of human food 
sources in their home ranges**, whereas there is no relationship with $\phi$ in females ($\phi$ 
females: mean=0.47, sd=0.31, 89%CI=-0.02-0.98; males: mean=0.23, sd=0.08, 89%CI=0.10-
0.36; $\lambda$ females: mean=0.80, sd=0.26, 89%CI=0.39-1.23; males: mean=0.70, sd=0.08,
89%CI=0.58-0.83; Figure 7). Males (n=16) that are faster to switch between options on the 
multiaccess box (more flexible) have a lower number of human food sources in their home 
ranges, but there was no strong relationship in females (n=4) (females: mean=-0.04, sd=0.34, 
89%CI=-0.58-0.50; males: mean=0.40, sd=0.08, 89%CI=0.28-0.53).
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Figure 7. The number of human food sources inside the home range and its association with A) 
$\phi$ and B) $\lambda$ (standardized so they are centered on zero) in females (blue triangles)
and males (black circles).

## P4: Flexibility and social bonds
We obtained social data between banded grackles (Figure 8), as well as banded and unbanded 
grackles in both populations. The sample sizes for our analyses were limited to those individuals
for whom we had flexibility data.
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Figure 8. Illustration of the social networks for the Arizona (gray, left) and California (blue, 
bottom right) grackles. Each circle (node) represents an individual and the thickness of the line 
(edge) connecting two nodes is the strength of the social association, calculated using the half-
weight index. The arrangement of nodes and edges in the plot does not represent geographic 
distance.

There were **no strong relationships between flexibility and the strength of the strongest bond**,
which supports prediction 4 alternative 1 ($\phi$: mean=0.00, sd=0.02, 89%CI=-0.03-0.03; $\
lambda$: mean=-0.02, sd=0.02, 89%CI=-0.05-0.01; n=13 males, n=6 females; latency: mean=-
0.01, sd=0.70, 89%CI=-1.12-1.10; n=11 males, n=5 females).
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The **more flexible individuals** that were faster to switch between options on the multiaccess 
box had **stronger individual strength** (the sum of the strengths of all of the bonds they have), 
which supports prediction 4, while there were no strong relationships with $\phi$ or $\lambda$, 
which supports prediction 4 alternative 1 ($\phi$: mean=-0.01, sd=0.06, 89%CI=-0.10-0.09; $\
lambda$: mean=0.01, sd=0.06, 89%CI=-0.08-0.12; n=13 males, n=6 females; latency: mean=-
0.10, sd=0.05, 89%CI=-0.17 - -0.02; n=11 males, n=5 females). 

The **more flexible individuals** that were faster to switch on the multiaccess box had a 
**higher degree** (the total number of affiliates an individual has) in the analyses where degree 
was the maximum group size at the end of a focal follow as a proxy for degree, which supports 
prediction 4, while there were no strong relationships with $\phi$ or $\lambda$ or the other 
measures of degree, which supports prediction 4 alternative 1 (*banded to banded interactions 
only*: $\phi$: mean=0.02, sd=0.18, 89%CI=-0.28-0.30; $\lambda$: mean=0.23, sd=0.17, 
89%CI=-0.04-0.51; n=13 males, n=6 females; latency: mean=-0.10, sd=0.16, 89%CI=-0.36-
0.14; n=11 males, n=5 females; *group size as a proxy for degree*: $\phi$: mean=-0.15, 
sd=0.11, 89%CI=-0.32-0.02; $\lambda$: mean=-0.03, sd=0.10, 89%CI=-0.18-0.13; n=7 
females, n=15 males; latency: mean=-0.19, sd=0.11, 89%CI=-0.37 - -0.01; n=6 females, n=13 
males). In contrast, the **less flexible individuals** that had higher $\lambda$ values had a 
**higher degree* in the analysis where degree included interactions between banded and 
unbanded birds, which supports prediction 4 alternative 2, while there were no strong 
relationships with $\phi$ or latency, which supports prediction 4 alternative 1 (*banded and 
unbanded interactions*: $\phi$: mean=-0.01, sd=0.08, 89%CI=-0.14-0.11; $\lambda$: 
mean=0.12, sd=0.07, 89%CI=0.00-0.23; n=8 females, n=17 males; latency: mean=-0.03, 
sd=0.07, 89%CI=-0.15-0.08; n=6 females, n=13 males). 

All three measures of flexibility did not strongly relate with the **relatedness with the individual 
with whom they had the strongest bond** ($\phi$: mean=0.02, sd=0.03, 89%CI=-0.02-0.07; $\
lambda$: mean=0.01, sd=0.03, 89% CI=-0.04-0.06; n=7 females, n=15 males; latency: mean=-
0.01, sd=0.03, 89% CI=-0.06-0.04; n=6 females, n=13 males), or the **percentage of territory a 
male shares** with another male, which supports prediction 4 alternative 1 ($\phi$: mean=0.05, 
sd=0.06, 89%CI=-0.06-0.15; $\lambda$: mean=-0.01, sd=0.07, 89% CI=-0.12-0.10; n=26 
males; latency: mean=0.03, sd=0.03, 89% CI=-0.02-0.07; n=21 males).

## P5 Flexibility and immigration
We found no association between the probability that an individual might be an immigrant, 
measured as their average relatedness to the remaining members of their population, and any 
of our measures of flexibility ($\phi$: mean=0.01, sd=0.01, 89% CI=-0.01-0.03, n=38 individuals;
$\lambda$: mean=0.01, sd=0.01, 89% CI=-0.01-0.03, n=38 individuals; latency: mean=0.01, 
sd=0.01, 89% CI=-0.02-0.03, n=28 individuals). 
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## P6: Flexibility and microhabitat diversity
For both sexes, the Shannon Diversity Index, a measure of the **proportion of time spent in 
each habitat, does not have a strong relationship** (as indicated by the compatibility interval 
crossing zero) **with $\phi$ or $\lambda$** (n=9 females, average follows=4.2, range=1-6; n=26
males, average follows=4.6, range=1-8; $\phi$ females: mean=-0.26, sd=0.64, 89%CI=-1.37-
0.65; males: mean=0.15, sd=0.63, 89%CI=-0.85-1.13; $\lambda$ females: mean=-0.32, 
sd=0.63, 89%CI=-1.34-0.71; males: mean=0.06, sd=0.55, 89%CI=-0.88-0.87), **or with 
latency** (females: n=7 birds, mean=0.35, sd=0.66, 89%CI=-0.81-1.34; males: n=21 birds, 
mean=0.11, sd=0.49, 89%CI=-0.74-0.79; Figure 9). As such, prediction 6 (the more flexible 
individuals have a higher diversity index) and prediction 6 alternative (the more flexible 
individuals have a low diversity index indicating that they are specialists) are not supported.
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Figure 9. Scatterplots showing the lack of relationship between the Shannon DIversity Index 
(microhabitat diversity) and $\phi$ (learning rate of attraction) and $\lambda$ (rate of deviating 
from learned attractions) for both sexes. Variables are standardized (std), meaning that the 
mean is centered on zero.

## P7: Human population density across sites
Human population density (population per square mile) is higher in Sacramento, California 
(mean=4,895, sd=185) than in Tempe, Arizona (mean=4,283, sd=187), and the latter is higher 
than Woodland, California (mean=3,710, sd=140) (Table 3).
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Table 3. Contrasts showing that the human population density at each trap site is different from 
the others.

## P8: Flexibility and microhabitat types
Females with the **higher $\phi$ values (more flexible) had fewer focal follows in the tree 
microhabitat**. Outside of this, there is **not a strong relationship between $\phi$, $\lambda$** 
(n=7 females; n=26 males), **or the latency to switch between options on a multiaccess box** 
(n=5 females; n=21 males) (all measures of flexibility) **and the proportion of focal follows in a 
given microhabitat** type: the compatibility intervals for the slopes cross zero (Figure 10, Table 
SM3).
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Figure 10. Scatterplots for females (top row) and males (bottom row) showing the relationship 
between the proportion of follows in a particular microhabitat and $\phi$ (learning rate of 
attraction; left column) or $\lambda$ (rate of deviating from learned attractions; right column). 
Larger diameter circles indicate a larger $\phi$ or $\lambda$.

# DISCUSSION
We investigated the relationships between flexibility, measured as performance in a reversal 
learning task and the latency to switch options on a multiaccess box, and foraging, social, and 
habitat use behaviors in two populations of grackles. In the following, we discuss whether our 
predictions are generally supported or not by looking at the combined evidence across the 
different analyses we used to assess each prediction.
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Flexibility did not relate to foraging habits when using data from all individuals from both 
populations. We found support for an even number of negative, positive, and no relationships 
between flexibility (reversal 1) and the number of food types taken and foraging techniques 
used depending on the sex of the bird and the flexibility measure (Prediction 1). For the flexible 
individuals who used fewer food types, this was not due to their being selective of higher value 
food types (indicated by more calories; Prediction 1 alternative 2). Note that, while calories are a
common measure of the energy value of food [@merrill1955energy], other measures of value 
might be interesting to investigate in the future, for example nutrient content. However, when 
comparing the individuals who underwent a flexibility manipulation using serial reversal learning 
with the control group, there was an effect (Prediction 2). The more flexible manipulated 
individuals used **more food types and foraging techniques** than control individuals, indicating
that manipulating flexibility had a causal effect on foraging habits. This pattern parallels previous
findings in this species that showed flexibility is not strongly related to innovativeness [measured
as innovating stick tool use and string pulling; @logan2016far]. However, after undergoing a 
flexibility manipulation using serial reversal learning, manipulated individuals solved more loci 
on a puzzlebox than the control individuals, indicating that an increase in flexibility was related 
to a subsequent increase in innovativeness [@logan2023flexmanip]. Indeed, grackle flexibility is
itself flexible - it changes across multiple color reversals to match the reliability and stability of 
the environment they experience [@lukas2024flexmanip]. Taken together, these results suggest
that it requires a manipulative experiment to be able to reduce the noise from correlational 
studies enough to make robust conclusions about the relationship between flexibility and 
foraging/foraging technique breadth. Such studies could capitalize on natural experiments as a 
manipulator of flexibility. For example, @chaby2015chronic found that rats who grew up in a 
stressful environment were more flexible (measured as reversal learning) than those who grew 
up in a less stressful environment. If this was validated in other systems and in the wild, it would
be a useful way to use a natural experimental design. Future studies could also manipulate 
flexibility in the wild, which makes logistics potentially more feasible for more researchers. See 
the replicable research program, ManyIndividuals [@logan2022manyindividuals], for two 
different study designs, analysis plans, and R code for how to conduct such a study.

The finding that the manipulated birds used more foraging techniques led us to conduct an 
unregistered analysis, which showed that the manipulated individuals switched among the 
various food types and foraging techniques at higher rates - an effect that continued for at least 
eight months after the manipulation occurred. This discovery was unexpected and has some 
implications. We can use this as a **new measure of flexibility** because it involves switching 
behaviors in response to environmental change. This flexibility measure is much more feasible 
to collect than measuring flexibility in a controlled experiment like reversal learning because this 
data is easily extracted from focal follows, which involve the observation of identifiable 
individuals in the wild. The different measures that can be collected from foraging focal follow 
data are similar to the innovativeness and flexibility tests on the multiaccess puzzle box where 
the total number of loci solved is the measure of innovativeness and is similar to the total 
number of foraging techniques used in focal follows [@logan2023flexmanip]. Whereas the 
latency to switch to attempting to solve a new locus on the multiaccess box is the measure of 
flexibility and is similar to switching among different foraging techniques in focal follows. 
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Therefore, where we previously only used this kind of foraging data to measure innovativeness 
(i.e., number of food types and foraging techniques), we can now also use this data to measure 
flexibility (i.e., number of switches among food types and foraging techniques per minute).

We found support for eight negative relationships, one positive relationship, and nine instances 
of no strong relationship between flexibility (reversal 1) and the **proportion of the diet that was 
human food**, and negative or no relationships with **distance to a human food source** or 
**number of human food sources** within their home range depending on the sex of the bird 
and the flexibility measure used (Prediction 3). Because of this mixed support, we conducted an
unregistered analysis to evaluate whether, overall, the prediction was supported or not and, if 
so, in which direction. Overall, results indicate that human foods are disproportionately used 
more by the less flexible individuals. This is consistent with the result above that the flexibility 
manipulated individuals ate more food types, thus having a more diverse diet than the less 
flexible individuals. We originally thought that the more flexible individuals would use more 
human foods because they might stay near their parent’s home range or move around to seek 
out new opportunities. We found that individuals in the Arizona population did not disperse very 
far [@sevchik2021dispersal], and individuals in the California population moved large distances 
across daily and annual time periods [@mccune2020spaceuse in prep.]. Despite this, flexibility 
was overall negatively related to the proportion of human foods taken and the number of human
food sources within a home range, potentially because the less flexible individuals might 
specialize on human foods. Because this species is highly associated with human modified 
landscapes, we predicted they would likely rely on human foods as part of the reason for this 
association. However, an alternative possibility is that this species’ shift toward using more 
urban and arid environments [@summers2023xpop] might not be due to grackles relying more 
heavily on human foods, but rather urban water sources. Grackles eat a variety of natural foods 
(e.g., insects, worms, fruit), which are present in urban and non-urban habitats. The water 
available in an urban area via fountains, sprinklers, human-made ponds, lakes, and waterways 
can provide a stark contrast to the surrounding natural areas, which might be dominated by 
deserts (as in both grackle populations), forests, or agriculture (as in the California population).

We found support for one negative relationship, four positive relationships, and 18 instances of 
no strong relationship between flexibility (reversal 1) and the sociality variables in Predictions 4 
and 5. Overall, we did not find support for a strong relationship between flexibility and **strength
of the strongest bond**, **average bond strength**, **degree** (the number of individuals one 
associates with), whether a **male shares his territory** with another male, **relatedness of the 
strongest bond** (Prediction 4), or the **probability of being an immigrant** (Prediction 5). This 
is perhaps because all individuals, not only the flexible ones, are able to form bonds with a 
variety of individuals. Even though 94 individuals in Arizona and 35 individuals in California were
banded, they did not often exhibit affiliative behaviors with other individuals in their focal follows,
which means that there was not much social data. It was also difficult to meet the two focal 
follows in the non-breeding season minimum criterion despite the thousands of hours spent 
searching for banded individuals (many of whom had radio tags). Perhaps these difficulties are 
why there is a lack of literature on empirical studies of flexibility as it relates to social behaviors. 
This topic will become more accessible when technology becomes functional enough to track 
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individuals throughout their home ranges. However, the technology we have tried so far does 
not have the capacity to collect data at this scale. Additionally, selecting species that exhibit 
more affiliative behaviors than grackles would help in terms of collecting more data per unit of 
time.

Aside from the more flexible females using trees less than other habitat types, there were no 
strong relationships between flexibility as measured in the aviaries and **microhabitat diversity**
measured after their release back to the wild (Predictions 6 and 8). This suggests that flexibility 
is not associated with foraging strategy specialization or generalization at the microhabitat level.
In contrast, a cross-species meta-analysis by @maclean2017species found that habitat 
breadth, but not diet breadth, was associated with geographic range shifts. Even if our habitat 
categories were at too small of a resolution to be able to detect differences, grackles exist 
almost exclusively in human-modified habitats. Therefore there would likely not be enough 
variation at the individual or population level to evaluate hypotheses about variation in habitats 
as it relates to other variables.  Human population density varied within and between the grackle
populations: it was the highest and lowest at the Woodland trap sites (both trap sites were 
experienced by some of the same individuals), which were different from each other and from 
Tempe (Prediction 7). This confirmed our prediction that grackle populations are highly 
associated with human modified landscapes. The wide variation in human population densities 
at the Woodland site leads us to wonder if there is a lower threshold of human population 
density below which is too small to attract grackles. It would be interesting to explore differences
and similarities between cities above and below this threshold to identify which urban features 
are more attractive for grackles.

We found relationships between flexibility and foraging, but not social or habitat use behaviors. 
This could suggest that social and habitat use behaviors are potentially formed early in life and 
individuals are less likely to change these behaviors when circumstances change. Another 
explanation is that we did not have enough power to detect potentially weak relationships. With 
our sample sizes for the social and habitat use behaviors, we had the power to detect large 
effects and sometimes also medium effects. Even if relationships do exist, they would be so 
weak that the social and habitat use behaviors could not serve as reliable proxies for flexibility.

In conclusion, grackles who were manipulated to be more flexible used a wider variety of foods 
and foraging techniques. Given that this species is rapidly expanding its geographic range 
[@wehtje2003range] and shifting more toward urban and arid environments 
[@summers2023xpop], our finding could suggest that foraging breadth is a factor in facilitating 
such an expansion. To understand whether flexibility is directly involved in facilitating 
adaptations to new environments, manipulative experiments are needed. Manipulating one 
variable of interest to determine whether it has an effect on one or more other variables reduces
the noise in correlations enough to resolve relationships between flexibility and foraging 
behavior when the variables are measured directly, rather than via proxies, at the individual 
level. This evidence indicates that cross-species correlations between flexibility and foraging, 
social, and habitat use behaviors based on proxies have a high degree of uncertainty, resulting 
in an insufficient ability to draw conclusions.
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# SUPPLEMENTARY MATERIAL 1: interobserver reliability
To be able to conduct focal follows [methods as in @altmann1974observational], a coder must 
pass interobserver reliability before the data they collect is used in the data set. To pass, coders
must have an intra-class correlation [ICC; @hutcheon2010random] of 0.90 or greater based on 
at least six 10-min focal follows where both coders recorded the behavior of the same focal 
individual at the same time.

Bergeron was the first person to conduct focal follows, therefore she trained McCune and 
Folsom until they passed interobserver reliability (on 10 June 2019) for each of the 6 variables 
listed in the preregistration. In March 2021, Rolls passed interobserver reliability (training with 
McCune) in the California population.

**Scores for McCune (n=6 focal follows, Bergeron=baseline):**

Different Foods Eaten: ICC = 1.00

Different Foraging Techniques: ICC = 0.97 (95% confidence interval=0.823-1.00)

Number of Affiliative Interactions: ICC = 0.96 (95% confidence interval=0.794-1.00)

Number of Aggressive Interactions: ICC = 1.00 (95% confidence interval=0.986-1.00)

Number of Initiated Aggressive Interactions: ICC = 1.00 (95% confidence interval=0.974-1.00)

Microhabitat: Cohen's unweighted kappa = 1.00

**Scores for Folsom (n=6 focal follows, Bergeron=baseline):**

Different Foods Eaten: ICC = 1.00

Different Foraging Techniques: ICC = 1.00

Number of Affiliative Interactions: ICC = 1.00

Number of Aggressive Interactions: ICC = 0.96 (95% confidence interval=0.779-0.994)

Number of Initiated Aggressive Interactions: ICC = 0.94 (95% confidence interval=0.696-0.991)

Microhabitat: Cohen's unweighted kappa = 1.00

NOTE: the ICCs for the variable Different Foods Eaten for these focal follows was originally 0.63
(Folsom) and 0.64 (McCune) because Folsom and McCune recorded a "bug" being eaten while 
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Bergeron recorded no food type because she couldn't identify it to a more specific category. At 
this point, we decided that we would prefer to enter a general category for food type rather than 
having no information about what was eaten. Therefore, this data point was removed from the 
interobserver reliability analysis. This resulted in ICCs of 1.00 for both McCune and Folsom on 
the Different Foods Eaten variable because they matched Bergeron in the other food type data 
points.

**Scores for Rolls (n=17 focal follows, McCune=baseline):**

Different Foods Eaten: ICC = 0.92 (95% confidence interval=0.791-0.971)

Different Foraging Techniques: ICC = 0.91 (95% confidence interval=0.758-0.966)

Number of Affiliative Interactions: ICC = 0.90 (95% confidence interval=0.751-0.965)

Number of Aggressive Interactions: ICC = 0.94 (95% confidence interval=0.830-0.977)

Number of Initiated Aggressive Interactions: ICC = 0.95 (95% confidence interval=0.874-0.983)

Microhabitat: Cohen's unweighted kappa = 1.00

Group size = 1.00

**Unregistered reliability analysis for data entry (Jun 2022):** The focal follow data were 
transferred from the Prim8 auto-generated data sheets and transcribed (from focals that were 
recorded using audio files) to two analyzable data sheets (one for social behavior and one for 
foraging behavior) containing data for all variables in this preregistration. During the data 
cleaning process, several data entry/transcription errors were found, which prompted us to 
conduct a reliability analysis on the data. We did not record who the data entry person / 
transcriber was, so we could not conduct an interoberver analysis. Instead, we conducted an 
intraobserver reliability analysis. Ten percent (37) of the focal follows (total 367) were randomly 
selected (using RAND() in MS Excel) and recoded by Christa Rolls in 2022. Rolls recorded for 
each focal follow whether one or more errors in the original data set were made (1) or not (0), 
and this vector was compared with a vector from the original data set where the assumption 
wsa that no errors were made (all data points were 0). The Cohen's kappa between the recoded
and the original data set was 0.89 (confidence boundary 0.79-0.99), indicating that the data 
cleaning process corrected enough errors such that the rest of the data did not need to be 
recoded.
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# SUPPLEMENTARY MATERIAL 2: additional analyses for P2

##  2.1 Accounting for undersampling in the main P2 model

If a bird has only been observed for a short period of time, we might not have had a chance to 
see a given behavior that it actually uses. This is called undersampling. We adapted a model 
that McElreath developed 
(https://github.com/rmcelreath/cg_vocal_repertoires/blob/main/model_ulam_covariates.r) that 
better accounts for undersampling than the model we used in the Results section for P2. We 
applied the model to Prediction 2 where we examine whether there are differences between 
control and manipulated birds in the number of food types and foraging techniques they use. 
We omitted food types and foraging techniques that none of these individuals used, which 
resulted in 14 food types and 9 foraging techniques.

We found that these models came to the same conclusion that manipulated birds ate 1.6 more 
food types and used 1.1 more foraging techniques, however the model was much less certain 
about the results given that most individuals were not observed using very many food types and
foraging techniques (Table SM2.1). As such, all of the 89% compatibility intervals crossed zero. 
The model also revealed that there are some foods and foraging techniques that the 
manipulated birds were less likely to use, suggesting that they ate different food types and used 
different techniques, rather than more of the same.

**Table SM2.1.** Contrasts showing that, for each food type and each foraging technique as 
well as across food types and foraging techniques, whether manipulated birds are more likely to
use them than control birds.
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# SUPPLEMENTARY MATERIAL 3: P8 model outputs
**Table SM3.** Model output showing that $\phi$ (learning rate of attraction) and $\lambda$ 
(rate of deviating from learned attractions) did not have a strong relationship with the proportion 
of focal follows in a given microhabitat type for either sex as indicated by the slopes ($\beta$). 
n_eff is the effective sample size and Rhat4 is an indicator of model convergence (1.00 is ideal).
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# SUPPLEMENTARY MATERIAL 4: Ethogram
Table SM4. Ethogram used for the great-tailed grackle focal follow research. For state 
behaviors, if the bird pauses the behavior for up to 10 sec, keep the state going. If it pauses for 
>10 sec, end the state.

Behavior 
Type

Sub-type Behavior Description

Foraging HOW is the 
bird 
searching 
for food? 
(foraging 
technique)

Flip Flipping over objects

Lift / nudge Lifting or nudging objects with bill 

Pick up Pick up object

Dig Digging in ground with bill or feet

Sweep Sweeping head back and forth (i.e., actually 
sweeping the bill across the substrate)

Gape Using gaping bill to search through substrate

Extract Extracting from a substrate

Stalk / catch Lowers body posture to be parallel to ground to 
stalk/catch prey from air, from ground, from tree, 
etc.

Share Food is shared with the focal bird by another bird

Break Break object into pieces

Dunk Dunk object in water or other liquid substance

Theft Steal object from another bird’s bill/feet or near its
body

WHAT are 
they 
eating?

Food type
(22 
categories; 
add more if 
needed)

Fry, lizard, unknown, grains, insect, rock, cat food,
worm, seed, food crumbs, vegetation, fruit, bird 
poop, candy, vomit, misc. trash, soil, condiment, 
carcass, chicken, peanut, mulch

Foraging 
(state)

When the bird is searching for food (have to be 
touching what they are searching through), 
pecking in the ground, and/or eating food

Affiliation Proximity Within 1 body length of another individual
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(state)

Vicinity 
(state)

Within 2m (+/-1m) of another individual, but 
farther than 1 body length

Food share Give food to another individual by placing it in 
their mouth or on the ground in front of the 
recipient. Include food type if observed

Tolerated 
theft

Takes material from another individual’s bill, feet, 
or nest that does not result in an aggressive 
response

Solicitation 
male

"Resembles Ruff-Out, except feathers more 
fluffed, tail more widely fanned, bill pointed down, 
and wings strongly quivered above horizontal. On 
ground, male rapidly circles female. Typically 
accompanied by a high intensity call" (Johnson & 
Peer 2001)

Solicitation 
female

"holds wings still and away from body. At 
moderate intensity, wings vibrate, chattering notes
given; at highest intensity, female solicits by 
cocking tail, leaning forward, and giving series of 
high-pitched che notes." (Johnson & Peer 2001)

Copulation Male mounts female for approximately 2 sec 
(Johnson & Peer 2001)

Aggression Peck One bird pecks at another individual with their bill

Displace One bird retreats at the approach of another bird 
who locates itself in the retreating bird's original 
spatial position

Fight or 
chase

Fight: Two or more individuals grapple with feet, 
bite, can be locked in a rolling, grappling fight on 
the ground (Johnson & Peer 2001). 
Chase: A prolonged continuous approach by one 
bird toward another while the other continuously 
moves away. The interaction has a longer 
duration than displacement

Ruff out "Displaying bird erects contour feathers and wing-
marginals, opens bill, fans tail. Head may be held 
level or angled up or down. At low intensity, wings
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drooped and held motionless or weakly quivered. 
At high intensity, wings held away from body, 
level with back. Display may be synchronized with
song." (Johnson & Peer 2001)

Head up "Bill tilted upward; head, neck, and body-feathers 
sleek; bill closed. At low intensity, bill is flicked up 
briefly then lowered or held briefly at vertical. At 
highest intensity, neck extended until top of head 
touches back, then bill returned to vertical." 
(Johnson & Peer 2001). Display begins when bird 
lifts head at a 90 degrees angle, and ends when 
bird's head is parallel to ground or lower. If bird 
lowers head for >5 sec, then raises it vertical 
again, enter new behavior

Attempted 
theft

An unsuccessful move (because the other bird 
reacted with aggression or retreated with the 
food) to take material from another individual's bill,
feet, or nest

Theft Takes material from another individualÍs bill, feet, 
or nest resulting in an aggressive response

Other Other Write what the social or foraging behavior is, or 
whether you observed a copulation (male mounts 
female for approx 2 sec (Johnson & Peer 2001) 
and who the other individual is

Object 
manipulation

Holding or manipulating a non-food object with the
bill and/or feet. Write what the object is in the 
notes. Do not record if related to collecting nest 
material.

Out of view 
(state)

Focal individual is not currently visible. If the focal 
bird is out of view for >5 min, end the follow. 
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