IUCN RED LIST

ECOSYSTEMS ASSESSMENTS

www.iucnrle.org

Mangroves of the South Kuroshio

Tomomi Inoue¹, Shigeyuki Baba², Yasuaki Akaji¹, Shingo Miura¹, Nozomi Oshiro², Mio Kezuka² & Ena L. Suárez³

¹ Biodiversity Division, National Institute for Environmental Studies, Japan, 305-8506, Japan

² International Society for Mangrove Ecosystems,903-0129 Japan

³ International Union for Conservation of Nature IUCN HQ, Gland, Switzerland.

Abstract

Mangroves of the South Kuroshio is a regional ecosystem subgroup (level 4 unit of the IUCN Global Ecosystem Typology). It includes the marine ecoregions of the Central Kuroshio Current and South Kuroshio. In 2020, the mapped extent of the South Kuroshio mangrove province was 8.0 km², representing less than 0.01% of the global mangrove area; the biota is characterized by 19 true mangrove species.

Mangroves in this province are now well conserved, and their distribution is tending to expand through natural processes. Because this province is close to the northern limit of mangrove distribution, mangrove flora and fauna are adapted to low temperatures and distinct seasonality. Many of the effects of climate warming on the organisms living among mangroves remain unclear and need to be monitored.

In 2020, the South Kuroshio mangroves cover 43% more area than our estimate for 1970. Since 1996, there has been a net increase in mangrove area of 0.39%. Although this trend might continue linearly over the next 50 years, in reality, the mangrove area should plateau when the maximum potential growth area of mangroves is reached. In contrast, spatially isolated and small-scale mangrove ecosystems are vulnerable in the event of a severe disruption impacting a wide area. Under a high sea-level rise scenario (IPCC RCP8.5) \approx 8.2% of the South Kuroshio mangroves would be submerged by 2060. Moreover, 0.43% of the province's mangrove ecosystem is undergoing degradation, with the potential to increase to 1.26% within a 50-year period, based on a vegetation index decay analysis.

Overall, the South Kuroshio mangrove ecosystem is assessed as Least Concern (LC).

Citation:

Inoue, T., Baba, S., Akaji, Y., Miura, S., Oshiro, N., Kezuka, M., & Suárez, E. L. (2024). '*IUCN Red List of Ecosystems, Mangroves of the South Kuroshio'*. EcoEvoRxiv.

Corresponding author:

Email: ena.suarez@iucn.org

Keywords:

Mangroves; Red List of ecosystems; ecosystem collapse; threats.

Ecosystem classification:

MFT1.2 Intertidal forests and shrublands Assessment's distribution: South Kuroshio province Summary of the assessment:

Criterion	Α	В	С	D	E	Overall
Subcriterion 1	LC	LC	DD	DD	NE	
Subcriterion 2	LC	LC	LC	LC	NE	LC
Subcriterion 3	DD	LC	DD	DD	NE	
LC: Least Concern, DD Data Deficient, NE: Not Evaluated						

Mangroves of the South Kuroshio

1. Ecosystem Classification

IUCN Global Ecosystem Typology (version 2.1, Keith et al. 2022):

Transitional Marine-Freshwater-Terrestrial realm

MFT1 Brackish tidal biome

MFT1.2 Intertidal forests and shrublands

MFT1.2_4_MP_28 Mangroves of the South Kuroshio

IUCN Habitats Classification Scheme (version 3.1, IUCN 2012):

1 Forest

1.7 Forest – Subtropical/tropical mangrove vegetation above high tide level *below water level ¹

12 Marine Intertidal

12.7 Mangrove Submerged Roots

Figure 1. The mangroves of South Kuroshio province.

¹ Note on the original classification scheme. This habitat should include mangrove vegetation below water level. Mangroves have spread into warm temperate regions to a limited extent and may occasionally occur in supratidal areas. However, the vast majority of the world's mangroves are found in tropical/subtropical intertidal areas.

2. Ecosystem Description

Spatial distribution

The mangroves of South Kuroshio province include intertidal forests and shrublands of the marine ecoregions of the Central Kuroshio Current and South Kuroshio that extend across the southern part of Japan, southern Taiwan, and Calayan Island in the Philippines, however, mangroves are restricted almost entirely to southern Japan (Figure 1). Mangroves are distributed in Kagoshima and Okinawa Prefectures in southern Japan, with more than 90% of them occurring in Okinawa Prefecture. In 2020, the mangrove extent in Japan was 7.97 km², representing less than 0.01% of global mangrove area. However, these mangroves are significant because they are at the northern limit of mangrove distribution in the Indo-Pacific region. The largest concentration of mangrove forest (1.22 km²) is in the Nakama River basin on Iriomote Island in Okinawa Prefecture.

According to the Global Mangrove Watch dataset (Bunting *et al.*, 2022), based on satellite imagery, the mangrove area of South Kuroshio was 10.4 km^2 in 2020. However, because the national data are based on analyses of aerial photographs and satellite imagery, and both were supported by ground truthing, they were selected in the present analysis of mangrove area change (Figure 2a and b).

Mangroves of the Urauchi River on Iriomote Island (Okinawa Prefecture, Japan) (Photo credit: Shigeyuki Baba)

The mangroves in this province are expanding naturally because most are well-conserved. All areas with mangroves on Iriomote Island have been designated as part of a national park, and in 2021 the entire island was designated as a Natural World Heritage Site (UNESCO World Heritage Centre, 2021). Since 1996, the mangrove extent of these marine ecoregions has increased by a net 0.39% (ISME, 2004; Inoue *et al.*, 2022a).

Biotic components of the ecosystem (characteristic native biota)

The mangroves of the South Kuroshio province are biologically diverse with 19 recorded true mangrove plant species (IUCN, 2022; Appendix 1). There are at least 174 species within the Actinopterygii, Aves, Bivalvia, Chondrichthyes, Gastropoda, Insecta, Magnoliopsida, Mammalia and Reptilia, associated with mangrove habitats in the IUCN Red List of Threatened Species (IUCN, 2022; Appendix 2). Among these species, the Green sawfish (*Pristis zijsron*) is critically endangered (CR); four species are endangered (EN): *Himantura uarnak, Negaprion acutidens, Maculabatis macrura, Neophocaena asiaeorientalis*); nine are Vulnerable (VU): *Albula glossodonta, Carcharhinus amblyrhynchoides, Carcharhinus amboinensis Carcharhinus melanopterus, Dugong dugon, Egretta eulophotes, Himantura leoparda, Pastinachus ater, Pteropus dasymallus*; and four are Near Threatened (NT): *Anhinga melanogaster, Brownlowia tersa, Numenius Arquata, Terpsiphone atrocaudata* (IUCN, 2022).

The mangroves in Japan are comprised of the following true mangrove species: three species of Rhizophoraceae (*Rhizophora stylosa*, *Bruguiera gymnorhiza*, and *Kandelia obovata*), one species of Acanthaceae (*Avicennia marina*), one species of Lythraceae (*Sonneratia alba*), and one species of Combretaceae (*Lumnitzera racemosa*). This province is phytogeographically important as the northern limit of the native distribution of *Nypa fruticans*, *R. stylosa*, *B. gymnorhiza*, *K. obovata*, *S. alba*, *L. racemosa*, *Excoecaria agallocha*, and *Heritiera littoralis* (IUCN, 2022).

Abiotic components of the ecosystem

Regional distributions of mangroves are influenced by interactions among landscape position, rainfall, hydrology, sea level, ground level, sediment dynamics, and storm-driven processes. Rainfall and sediment supply from rivers and currents promote mangrove establishment and persistence, while waves and large tidal currents destabilise and erode mangrove substrata, mediating local-scale dynamics in ecosystem distributions. The inorganic components of mangrove sediment consist of terrestrial-derived sand and coral-derived sand (main component: calcium carbonate) depending on processes such as river inflow and coral sand deposition. Many mangrove soils in this province are low in nutrients, especially nitrogen and phosphorus, particularly where there is less inflow from residential land, farmlands, or pastures.

Mangroves in this province are near the northern limit of their distribution; thus, low winter temperatures and extreme cold snaps sometimes affect mangrove growth. In the northernmost part of this province, in Kagoshima Prefecture, there are populations of dwarf *K. obovata*, which may be partly due to the combination of low temperatures and high salinities.

Key processes and interactions

Mangroves act as structural engineers, with traits such as aerial roots, salt tolerance, vivipary, and propagule buoyancy that promote survival and recruitment in saline, mobile, poorly aerated, and tidally inundated substrata. They exhibit high efficiency in nitrogen use and nutrient resorption. Species of Acanthaceae and Rhizophoraceae are known to achieve high levels of nitrogen fixation via diazotrophs

around their roots (Inoue *et al.*, 2019; 2020; 2024). Around the roots of smaller and therefore likely younger trees, the diazotrophic community most closely resembles that found in unvegetated mudflats, but as the trees grow and develop higher root biomass, it evolves to recruit plant-growth-promoting bacteria (Inoue *et al.*, 2020). The relationship between Rhizophoraceae mangroves and arbuscular mycorrhizal fungi are formed depending on salinity (Akaji *et al.*, 2022; 2024).

Even on low-nutrient tidal flats, mangroves produce large amounts of detritus (e.g., leaves, twigs, and bark), which are buried in waterlogged sediments, consumed by crabs and gastropods, and then decomposed further by meiofauna, fungi and bacteria, thereby mobilising carbon and nutrients to other trophic levels in the mangrove and coastal food web.

Mangrove ecosystems also serve as major blue carbon sinks, incorporating organic matter into sediments and living biomass. Mangrove soils tend to be saline and anaerobic due to repeated tidal flooding, which slows the rate of decomposition of organic matter, and this can contribute to the high accumulation of carbon in mangrove soils. Field measurements of soil carbon storage to a depth of 100 cm in this province showed 195–497 Mg C ha⁻¹ in mangroves of Iriomote Island (Fujimoto *et al.*, 2000; Fujimoto *et al.*, 2002) and 123 Mg C ha⁻¹ in mangroves of Amami-oshima (Ishihara *et al.*, 2004).

2. Ecosystem Threats and Vulnerabilities

Main threatening process and pathways to degradation

Drifted trash from neighbouring countries in a small mangrove stream on Iriomote Island (Photo credit: Shigeyuki Baba)

Very few mangroves in the South Kuroshio province have been harvested for charcoal-making or building materials, or converted to aquaculture ponds. Mangroves in this province were partly cut in the 1950s (after the Pacific War) due to development of coastal areas, construction of coastal roads and concrete revetment works, and river rehabilitation; however, the remaining mangroves are now well conserved, and their

distribution is tending to expand through natural processes, such as habitat expansions by sedimentation and reproductive dispersal.

The mangroves are regarded as a tourist attraction, with the annual number of people visiting mangrove areas for tourism being more than a hundred times the number of residents. Care has been taken to minimise the impact of tourism on the ecosystem, such as limiting the speed of tourist boats and providing guidance to tourists not to harm plants and animals. Another impact is the garbage washed ashore by the Kuroshio Current. In some areas, regular cleaning has been carried out by local groups, but not everything can be cleaned.

Although there is little direct human impact, many of the coastal areas in this province are close to mountains and thus have only small areas of tidal flats, which means that mangrove habitats will be affected by sea-level rise (see photograph). Because this province is close to the northern limit of mangrove distribution, mangrove flora and fauna have adapted to low temperatures and distinct seasonality. Many of the effects of climate warming on these cold-adapted mangrove organisms, such as changes in seasonality and increased temperature, remain unclear and need to be monitored. Moreover, it is becoming clear that mangrove plant responses to temperature, and their survival temperature ranges, differ among species (Inoue *et al.*, 2022b; Inoue *et al.*, 2023).

Many of the coastal areas in South Kuroshio province are close to mountains and thus have small areas of tidal flats (Photo credit: Tomomi Inoue)

Definition of the collapsed state of the ecosystem

The alteration of the topography of the land itself, and the disappearance of the flora as primary producers, can lead to the destruction of ecosystems. Located in the interface between land and sea, mangrove ecosystems are formed under the influence of a balance of physical, chemical, and biological processes both

terrestrial and marine; this balance may be affected by changes in these processes. Large-scale physical destruction can be identified visually as a change in the landscape of the ecosystem itself. In addition, the restricted distribution of mangroves within warm regions of the world suggests that mangrove ecosystems are significantly affected by temperature.

Widespread dieback after a big typhoon (Iriomote Island, Japan) (Photo credit: Tomomi Inoue)

On the basis of the global pattern of mangrove distribution, it has been suggested that mangroves occur in habitats where the mean winter temperature of the water surface is above 20 °C (Duke *et al.*, 1998). Extreme freezing events may determine the poleward limits of mangrove distribution (Osland *et al.*, 2014; 2015; 2017). The effects of extreme cold snaps can be seen in leaf damage and defoliation of trees. Defoliation due to extreme cold snaps are sometimes observed in Kagoshima Prefecture (see photograph). Dieback due to a big typhoon is also observed in this province (see photograph). Changes in the frequency and intensity of these extreme events, as a results of climate warming, could affect the growth and distribution of mangroves. In contrast, the effects of gradual climate change are difficult to detect visually, but the physiology and growth of flora and fauna are affected.

Threat classification

IUCN Threat Classification (version 3.3, IUCN-CMP, 2022) relevant to mangroves of the South Kuroshio province:

1. Residential & commercial development

1.3 Tourism & recreation areas

6. Human intrusions & disturbance

• 6.1 Recreational activities

9. Pollution

- 9.1 Domestic & urban waste water
 - 9.1.2 Run-off
- 9.3 Agricultural & forestry effluents
 - 9.3.1 Nutrient loads
 - 9.3.2 Soil erosion, sedimentation
- 9.4 Garbage & solid waste
 - 9.5 Air-borne pollutants
 - 9.5.3 Ozone

10. Geological events

- 10.1 Volcanoes
- 10.2 Earthquakes/tsunamis
- 10.3 Avalanches/landslides

11. Climate change & severe weather

- 11.1 Habitat shifting & alteration
- 11.2 Droughts
- 11.3 Temperature extremes
- 11.4 Storms & flooding
- 11.5 Other impacts (Sea-Level Rise)

3. Ecosystem Assessment

Criterion A: Reduction in geographic distribution

Subcriterion A1 measures the trend in ecosystem extent during the last 50-year time window. Unfortunately, there is currently no common regional dataset that provides information for the entire target area in 1970. However, there are mangrove area estimates for Okinawa Prefecture in 1977 and 1997 based on an aerial photo analysis with ground truth data. The mangrove area in Okinawa is equivalent to ~90% of the entire mangrove area of this province. In addition to those data, we have estimated the mangrove area in

2020 with the satellite image analysis. The estimates of mangrove extent can be used to extrapolate the trend between 1970 and 2020. The estimated values for 1970 should be considered only indicative (see Appendix 3 for further details of the methods and limitations).

Results from the analysis of subcriterion A1 (Appendix 3) show that the area of mangroves in the South Kuroshio mangrove province increased approximately 43% over the last 50 years (1970–2020) because the mangroves in this province have been well conserved. Given that the geographic distribution is expanding naturally, the ecosystem is assessed as **Least Concern (LC)** under subcriterion A1.

Mangroves of the South Kuroshio**	Area 2020* (km ²)	Area 1970* (km²)	Net Area Change (km²)	% Net Area Change	Rate of Change (%/year)
	7.3	5.1	2.2	43.0	0.87

* Details on the methods and references used to estimate the mangrove area in 1970 and 2020 are listed in appendix 3. **The area in this table represents mangrove extent in Okinawa Prefecture, which correspond to ~90% of the entire mangrove area of the South Kuroshio

Subcriterion A2 assesses changes in ecosystem extent over 50-year periods, spanning from the present to the future. According to data from the Global Mangrove Watch time series (Bunting et al., 2022), the mangroves in South Kuroshio experienced a net area change of -0.6% between 1996 and 2020 (Figure 2b), with the largest decline occurring between 2007 and 2015. However, due to its non-linear nature, it is not appropriate to predict future mangrove extent or to assume a linear trend over the next 50 years with this dataset and therefore won't be considered for criteria A2.

Conversely, according to the national data for Okinawa Prefecture (Appendix 3), the mangrove area in the South Kuroshio province has increased at a net rate of 0.86%/year from 1977 to 2020, a net increase of 37% (Figure 2a). Although a linear projection using these data shows a large increase of 31.7% from 2020 to 2070, in reality the mangrove area should plateau when the maximum potential growth area of mangroves is reached. Thus, the South Kuroshio mangrove ecosystem is assessed as **Least Concern (LC)** under subcriterion A2.

Subcriterion A3 measures changes in mangrove area since 1750. Unfortunately, there are no reliable data on the mangrove extent for the entire province during this period, and therefore the South Kuroshio mangrove ecosystem is classified as **Data Deficient (DD)** for this subcriterion.

Overall, the ecosystem is assessed as Least Concern (LC) under criterion A.

Rate of change: 0.86 % / Year

a. Net Mangrove Area

Area estimates based on National Dataset for Japan and Bunting et al., (2022) for Cayland Islands(Philippines)

Figure 2. South Kuroshio mangrove ecosystem area a). between 1977 and 2020 (circles) with projections to 2027 and 2070 (squares). The solid line and shaded area show the linear trend and 95% confidence intervals. Estimated areas are based on national datasets for the Japanese portion of the ecosystems (Appendix 3) and Bunting et al., 2022 for the Caylan Islands (Philippines). Although a linear increase has been projected for 2070, in reality, the mangrove area should plateau when the maximum potential growth area of mangroves is reached. The solid line and shaded area are the linear regression and 95% confidence intervals. b). between 1996 and 2020 (circles) based on the GMW v3.0 dataset and equations in Bunting et al., (2022). The solid line shows a loess regression and shaded area represents 95% confidence interval.

Criterion B: Restricted Geographic Distribution

Criterion B measures the risk of ecosystem collapse associated with restricted geographical distribution, based on standard metrics (Extent of Occurrence EOO, Area of Occupancy AOO, and Threat-defined locations). These parameters were calculated based on the mangrove extent in South Kuroshio province in 2020 by the Global Mangrove Watch Version 3 (GMW v3.0) dataset (Bunting *et al.*, 2022).

Province Extent of Occurrence EOO (km ²)		Area of Occupancy (AOO ≥ 1 %)	Criterion B
The South Kuroshio	170767.0	24	LC

For 2020, AOO and EOO were measured as 24 grid cells 10 x 10 km and 170767.0 km², respectively (Figure 3). After excluding from total of 36 those grid cells that collectively contain small patches covering less than 1% of the total mapped area of the ecosystem, the AOO is estimated as 24 grid cells (10 x 10 km) (Figure 3, red grids).

The status of well-managed ecosystems including marine areas, does not allow to comply with any of the sub-criteria (a-c), considering there is no continuous decline or plausible threat of causing continuous decline in the next 20 years. As a result, the ecosystem is considered LC for B1 and B2. There are no plausible threats allowing identification of Threat Defined Locations, resulting in LC for B3. Thus, the South Kuroshio mangrove ecosystem is assessed as **Least Concern (LC)** under criterion B.

Figure 3. The South Kuroshio mangrove Extent Of Occurrence (EOO) and Area Of Occupancy (AOO) in 2020. Estimates based on 2020 GMW v3.0 spatial layer (Bunting *et al.*, 2022). The red 10 x 10 km grids (n = 24) cover 99% of the ecosystem, accumulated area and the black grids 0 - 1% (n = 12).

Criterion C: Environmental Degradation

Criterion C measures the environmental degradation of abiotic variables necessary to support the ecosystem.

Subcriterion C1 measures environmental degradation over the past 50 years: There are no reliable data to evaluate this subcriterion for the entire province, and therefore the South Kuroshio mangrove ecosystem is classified as **Data Deficient (DD)** for subcriterion C1.

Subcriterion C2 measures environmental degradation in the future, or over any 50-year period, including from the present. In this context, the impact of future sea level rise (SLR) on mangrove ecosystems was assessed by adopting the methodology presented by Schuerch *et al.* (2018). The published model was designed to calculate both absolute and relative change in the extent of wetland ecosystems under various regional SLR scenarios (i.e., medium: RCP 4.5 and high: RCP 8.5), with consideration for sediment accretion. Therefore, Schuerch *et al.* (2018) model was applied to the South Kuroshio mangrove ecosystem boundary, with spatial extent based on Giri *et al.*, (2011) and assuming mangrove landward migration was not possible.

According to the results, under an extreme sea-level rise scenario of a 1.1-meter rise by 2100, the projected submerged area is ~ -8.2% by 2060, which remains below the 30% risk threshold. Therefore, considering that no mangrove recruitment can occur in a submerged system (100% relative severity), but that -8.2% of the ecosystem extent will be affected by SLR, the South Kuroshio mangrove ecosystem is assessed as **Least Concern (LC)** for subcriterion C2.

Subcriterion C3 measures change in abiotic variables since 1750. There is a lack of reliable historic data on environmental degradation covering the entire province, and therefore the South Kuroshio province is classified as Data Deficient (DD) for this subcriterion.

Overall, the ecosystem is assessed as Least Concern (LC) under criterion C.

Criterion D: Disruption of biotic processes or interactions

The global mangrove degradation map developed by Worthington and Spalding (2018) was used to assess the level of biotic degradation in the South Kuroshio province. This map is based on degradation metrics calculated from vegetation indices (NDVI, EVI, SAVI, NDMI) using Landsat time series (\approx 2000 and 2017). These indices represent vegetation greenness and moisture condition.

Mangrove degradation was calculated at a pixel scale (30m resolution), on areas intersecting with the 2017 mangrove extent map (GMW v2). Mangrove pixels were classified as degraded if two conditions were met: 1) at least 10 out of 12 degradation indices showed a decrease of more than 40% compared to the previous period; and 2) all twelve indices did not recover to within 20% of their pre-2000 value (detailed methods and data are available at: maps.oceanwealth.org/mangrove-restoration/). The decay in vegetation indices has been used to identify mangrove degradation and abrupt changes, including mangrove die-back events, clear-cutting, fire damage, and logging; as well as to track mangrove regeneration (Lovelock *et al.*, 2017; Santana,

2018; Murray *et al.*, 2020; Aljahdali *et al.*, 2021; Lee *et al.*, 2021). However, it is important to consider that changes observed in the vegetation indices can also be influenced by data artifacts (Akbar *et al.*, 2020). Therefore, a relative severity level of more than 50%, but less than 80%, was assumed.

The results from this analysis show that over a period of 17 years (~2000 to 2017), 0.43% of the South Kuroshio mangrove area is classified as degraded, resulting in an average annual rate of degradation of 0.03%. Assuming this trend remains constant, 1.26% of the South Kuroshio mangrove area will be classified as degraded over a 50-year period. Since less than 30% of the ecosystem will meet the category thresholds for criterion D, the South Kuroshio mangrove province is assessed as **Least Concern (LC)** under subcriterion D2.

No data were found to assess the disruption of biotic processes and degradation over the past 50 years (subcriterion D1) or since 1750 (subcriterion D3). Thus, both subcriteria are classified as **Data Deficient** (**DD**).

Overall, the South Kuroshio ecosystem remains Least Concern (LC) under criterion D.

Criterion E: Quantitative Risk

No model was used to quantitatively assess the risk of ecosystem collapse for this ecosystem; hence criterion E was **Not Evaluated (NE)**.

CRITERION			
A. Reduction in Geographic	A1 Past 50 years	A2 Future or any 50year period	A3 Historical (1750)
Distribution	LC	LC	DD
	B1	B2	B3
B. Restricted Geo. Distribution	Extent of Occurrence	Area of Occupancy	# Threat-defined Locations < 5?
	LC	LC	LC
	C1	C2	С3
C. Environmental	Past 50 years (1970)	Future or any 50year period	Historical (1750)
Degradation	DD	LC	DD
	D1	D2	D3
D. DISRUPTION OF	Past 50 years (1970)	Future or Any 50year period	Historical (1750)
BIOLIC PROCESSES	DD	LC	DD
E. Quantitative Risk Analysis		NE	
OVERALL RISK CATEGORY		LC	

5. Summary of the Assessment

DD = Data Deficient; LC = Least Concern; NE = Not Evaluated

Overall, the status of the South Kuroshio mangrove ecosystem is assessed as Least Concern (LC).

6. References

- Akaji, Y., Inoue, T., Taniguchi, T., & Baba S. (2022). Arbuscular mycorrhizal fungal communities of a mangrove forest along a salinity gradient on Iriomote Island. *Plant and Soil*, 472, 145–159. https://doi.org/10.1007/s11104-021-05193-4
- Akaji, Y., Inoue, T., Kohzu, A., Taniguchi, T., & Baba, S. (2024). Bruguiera gymnorhiza forms mycorrhizal associations but Rhizophora stylosa does not: A pot experiment using mangrove soil and Rhizophoraceae seedlings. Aquatic Botany, 192, 103748. https://doi.org/10.1016/j.aquabot.2023.103748
- Akbar, M. R., Arisanto, P. A. A., Sukirno, B. A., Merdeka, P. H., Priadhi, M. M., & Zallesa, S. (2020). Mangrove vegetation health index analysis by implementing NDVI (normalized difference vegetation index) classification method on sentinel-2 image data case study: Segara Anakan, Kabupaten Cilacap. *IOP Conference Series: Earth and Environmental Science*, 584(1), 012069. https://doi.org/10.1088/1755-1315/584/1/012069.
- Aljahdali, M. O., Munawar, S., & Khan, W. R. (2021). Monitoring Mangrove Forest Degradation and Regeneration: Landsat Time Series Analysis of Moisture and Vegetation Indices at Rabigh Lagoon, Red Sea. *Forests*, 12(1), 52. https://doi.org/10.3390/f12010052
- Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., Worthington, T. A., Spalding, M.D., Murray, N. J., & Rebelo, L.-M. (2022). Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. *Remote Sensing*, 14(15), 3657. https://doi.org/10.3390/rs14153657
- Duke, N. C., Ball, M. C., & Ellison, J. C. (1998). Factors influencing biodiversity and distributional gradients in mangroves. *Global Ecology and Biogeography Letters*, 7(1), 27–47. https://doi.org/10.1111/j.1466-8238.1998.00269.x
- Fujimoto, K., Ishihara, S., Yukino, I., et al. (2000). Evaluation of carbon sequestration in mangrove ecosystem with its habitat dynamics in Iriomote Island, Southwestern Japan. In Proceedings of the general meeting of the Association of Japanese Geographers, 58, p 60–61. [In Japanese]
- Fujimoto, K., Miyagi, T., Kawaguchi, S., et al. (2002). Carbon sequestration in mangrove ecosystems with its habitat dynamics in Iriomote Island, Southwestern Japan. In: Research Institute for Subtropical Regions (ed) Research report on mangroves. Naha, p 309–319. [In Japanese]
- Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. *Global Ecology and Biogeography*, 20(1), 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x
- Inoue, T., Kohzu, A., & Shimono, A. (2019). Tracking the route of atmospheric nitrogen to diazotrophs colonizing buried mangrove roots. *Tree Physiology*, *39*(11), 1896–1906. https://doi.org/10.1093/treephys/tpz088
- Inoue, T., Shimono, A., Akaji, Y., Baba, S., Takenaka, A., & Chan, H. T. (2020). Mangrove-diazotroph relationships at the root, tree and forest scales: diazotrophic communities creates high soil nitrogenase activities in *Rhizophora stylosa* rhizospheres. *Annals of Botany*, 125(1), 131–144. https://doi.org/10.1093/aob/mcz164
- Inoue, T., Kohzu, A., Akaji, Y., Miura, S., & Baba, S. (2022a). Mangroves of Japan. In T. Pullaiah (ed) A book on Mangroves: Biodiversity, livelihoods and conservation, Springer.
- Inoue, T., Akaji, Y., & Noguchi, K. (2022b). Distinct responses of growth and respiration to growth temperatures in two mangrove species. *Annals of Botany*, *129*(1), 15–28. https://doi.org/10.1093/aob/mcab117

- Inoue, T., Akaji, Y., Baba, S., & Noguchi, K. (2023). Temperature dependence of O₂ respiration in mangrove leaves and roots: implications for seedling dispersal phenology. *New Phytologist*, 237(1), 100–112. https://doi.org/10.1111/nph.18513
- Inoue, T., Kohzu, A., Akaji, Y., Miura, S., & Baba, S. (2024). Diazotrophic nitrogen fixation through aerial roots occurs in *Avicennia marina*: implications for adaptation of mangrove plant growth to low-nitrogen tidal flats. *New Phytologist*, 241(4), 1464–1475. https://doi.org/10.1111/nph.19442
- Ishihara, S., Fujimoto, K., Kawanishi, M., et al. (2004). Relationship between mangrove vegetation and micro-topography and carbon storage of *Kandelia candel* (L.) Druce forests in Amani-ohshima Island, southwestern Japan. *Japanese Journal of Forest Environment*, 46, 9–14. [In Japanese]
- ISME (2004). Mangrove distribution survey in Okinawa prefecture for the purpose of monitoring coastal ecosystems and sea level rise. Okinawa prefecture commissioned survey research in fiscal year 2003. International Society for Mangrove Ecosystems, Okinawa, p 153. [In Japanese]
- IUCN (2012). *IUCN Habitats classification scheme* (3.1). [Data set]. https://www.iucnredlist.org/resources/habitat-classification-scheme.
- IUCN (2022). *The IUCN Red List of Threatened Species*. (Version 2022-2) [Data set]. https://www.iucnredlist.org
- IUCN-CMP (2022). Unified Classification of Direct Threats (3.3) [Data set]. https://www.iucnredlist.org/resources/threat-classification-scheme.
- Keith, D. A., Ferrer-Paris, J. R., Nicholson, E., & Kingsford, R. T. (Eds.) (2020). IUCN Global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups. IUCN, International Union for Conservation of Nature. https://doi.org/10.2305/IUCN.CH.2020.13.en
- Lee, C. K. F., Duncan, C., Nicholson, E., Fatoyinbo, T. E., Lagomasino, D., Thomas, N., Worthington, T. A., & Murray, N. J. (2021). Mapping the Extent of Mangrove Ecosystem Degradation by Integrating an Ecological Conceptual Model with Satellite Data. *Remote Sensing*, 13(11), 2047. https://doi.org/10.3390/rs13112047
- Lovelock, C. E., Feller, I. C., Reef, R., Hickey, S., & Ball, M. C. (2017). Mangrove dieback during fluctuating sea levels. *Scientific Reports*, 7(1), 1680. https://doi.org/10.1038/s41598-017-01927-6
- Murray, N. J., Keith, D. A., Tizard, R., Duncan, A., Htut, W. T., Oo, A. H., Ya, K. Z., & Grantham, M. (2020). *Threatened ecosystems of Myanmar: An IUCN Red List of Ecosystems Assessment. Version 1*. Wildlife Conservation Society. https://doi.org/10.19121/2019.Report.37457
- Osland, M. J., Day, R. H., Larriviere, J. C., & From, A. S. (2014). Aboveground allometric models for freeze-affected black mangroves (*Avicennia germinans*): Equations for a climate sensitive mangrovemarsh ecotone. *PLoS ONE*, 9(6), e99604. https://doi.org/10.1371/journal.pone.0099604
- Osland, M. J., Day, R. H., From, A. S., McCoy, M. L., McLeod, J. L., & Kelleway, J. J. (2015). Life stage influences the resistance and resilience of black mangrove forests to winter climate extremes. *Ecosphere*, 6(9), 160. http://dx.doi.org/10.1890/ES15-00042.1
- Osland, M. J., Day, R. H., Hall, C. T., Brumfield, M. D., Dugas, J. L., & Jones, W. R. (2017). Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients. *Ecology*, 98(1), 125–137. https://doi.org/10.1002/ecy.1625
- Santana, N. (2018). Fire Recurrence and Normalized Difference Vegetation Index (NDVI) Dynamics in Brazilian Savanna. *Fire*, 2(1), 1. https://doi.org/10.3390/fire2010001
- Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D., McOwen, C. J., Pickering, M. D., Reef, R., Vafeidis, A. T., Hinkel, J., Nicholls, R. J., & Brown, S. (2018). Future response of

global coastal wetlands to sea-level rise. *Nature*, 561(7722), 231–234. https://doi.org/10.1038/s41586-018-0476-5

- Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A., & Robertson, J. (2007). Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. *BioScience*, 57(7), 573–583. https://doi.org/10.1641/B570707
- UNESCO World Heritage Center (2021) Four natural and three cultural sites added to UNESCO's World Heritage List. https://whc.unesco.org/en/news/2318/
- Worthington, T.A., & Spalding, M. D. (2018). Mangrove Restoration Potential: A global map highlighting a critical opportunity. Apollo - University of Cambridge Repository. https://doi.org/10.17863/CAM.39153

Authors:

Inoue, T., Baba, S., Akaji, Y., Miura, S., Oshiro, N., Kezuka, M., & Suárez, E. L.

Acknowledgments

The development of the South Kuroshio Mangrove Red List of Ecosystems we would like to thank the IUCN SSC Mangrove Specialist Group and the Global Mangrove Alliance Science Working group, for their support in the delineation of the level 4 mangrove units that were the basis for this analysis. Special thanks to José Rafael Ferrer-Paris for his contribution to the production of the general ecosystem description template for the RLE mangrove assessments. We also wish to acknowledge Thomas Worthington for kindly providing the spatial data on mangrove degradation.

Peer revision:

Marcos Valderrábano Donald Macintosh

Web portal:

http://iucnrle.org/

Disclaimer:

The designation of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The views expressed in this publication do not necessarily reflect those of IUCN or other participating organisations.

7. Appendices

1. List of Key Mangrove Species

List of plant species considered true mangroves according to Red List of Threatened Species (RLTS) spatial data (IUCN, 2022). We included species whose range maps intersected with the boundary of the marine provinces/ecoregions described in the distribution section.

Class	Order	Family	Scientific name	RLTS category
Polypodiopsida	Polypodiales	Pteridaceae	Acrostichum aureum	Least Concern
Magnoliopsida	Ericales	Primulaceae	Aegiceras corniculatum*	Least Concern
Magnoliopsida	Lamiales	Acanthaceae	Avicennia marina	Least Concern
Magnoliopsida	Lamiales	Acanthaceae	Avicennia officinalis*	Least Concern
Magnoliopsida	Lamiales	Acanthaceae	Avicennia rumphiana*	Vulnerable
Magnoliopsida	Malpighiales	Rhizophoraceae	Bruguiera gymnorhiza	Least Concern
Magnoliopsida	Malpighiales	Rhizophoraceae	Ceriops tagal	Least Concern
Magnoliopsida	Malpighiales	Euphorbiaceae	Excoecaria agallocha	Least Concern
Magnoliopsida	Malpighiales	Rhizophoraceae	Kandelia obovata	Least Concern
Magnoliopsida	Myrtales	Combretaceae	Lumnitzera littorea*	Least Concern
Magnoliopsida	Myrtales	Combretaceae	Lumnitzera racemosa	Least Concern
Liliopsida	Arecales	Arecaceae	Nypa fruticans	Least Concern
Magnoliopsida	Malpighiales	Rhizophoraceae	Rhizophora apiculata*	Least Concern
Magnoliopsida	Malpighiales	Rhizophoraceae	Rhizophora mucronata*	Least Concern
Magnoliopsida	Malpighiales	Rhizophoraceae	Rhizophora stylosa	Least Concern
Magnoliopsida	Myrtales	Lythraceae	Sonneratia alba	Least Concern
Magnoliopsida	Myrtales	Lythraceae	Sonneratia caseolaris*	Least Concern
Magnoliopsida	Sapindales	Meliaceae	Xylocarpus granatum*	Least Concern
Magnoliopsida	Malvales	Malvaceae	Heritiera littoralis	Least Concern

*These species are distributed in the Philippines.

2. List of Associated Species

List of taxa that are associated with mangrove habitats in the Red List of Threatened Species (RLTS) database (IUCN, 2022). We included only species with entries for Habitat 1.7: "Forest - Subtropical/Tropical Mangrove Vegetation Above High Tide Level" or Habitat 12.7 for "Marine Intertidal - Mangrove Submerged Roots", and with presence recorded as "Extant", "Possibly Extant" or "Possibly Extinct", Origin recorded as "Native" or "Reintroduced", with any value of Seasonality except "Passage", suitability recorded as "Suitable", and with "Major Importance" recorded as "Yes". The common names are those shown in the RLTS, except common names in brackets, which are from other sources.

Class	Order	Family	Scientific name	RLTS category	Common name
Actinopterygii	Albuliformes	Albulidae	Albula glossodonta	Vulnerable	Shortjaw bonefish
Actinopterygii	Anguilliformes	Muraenidae	Gymnothorax monochrous	Least concern	
Actinopterygii	Anguilliformes	Muraenidae	Gymnothorax punctatofasciatus	Least concern	Bars'n spots moray
Actinopterygii	Anguilliformes	Muraenidae	Uropterygius concolor	Least concern	Brown moray eel
Actinopterygii	Anguilliformes	Ophichthidae	Scolecenchelys macroptera	Least concern	
Actinopterygii	Atheriniformes	Atherinidae	Atherinomorus lacunosus	Least concern	Hardyhead silverside

Class	Order	Family	Scientific name	RLTS	Common
	A	Comedentidee	Couri da costrulora	category	name
Actinopterygu	Autopiformes	Synodontidae	Sauriaa nebulosa	Least	Liouded
Actinontervaji	Beloniformes	Zenarchonteridae	Zenarchonterus dispar	Least	Feathered river-
nethopterygn	Detointornies	Zenarenopterrade	Zenar enopier as aispar	concern	garfish
Actinoptervgii	Clupeiformes	Clupeidae	Anodontostoma	Least	Indonesian
111,0	<u>-</u>		selangkat	concern	gizzard shad
Actinopterygii	Clupeiformes	Clupeidae	Nematalosa nasus	Least	Bloch's gizzard
				concern	shad
Actinopterygii	Clupeiformes	Clupeidae	Sardinella albella	Least	White
				concern	sardinella
Actinopterygii	Clupeiformes	Clupeidae	Sardinella melanura	Least	Blacktip
	<u> </u>	D 111		concern	sardinella
Actinopterygii	Clupeiformes	Engraulidae	Encrasicholina	Least	Buccaneer
Actinontomaii	Floriformas	Elopidea	<i>punctifer</i>	Data	Cient horring
Actinopterygn	Elophormes	Elopidae	<i>Elops nawalensis</i>	Dala	Giant nerring
Actinontervaii	Floniformes	Flopidae	Flons machnata	Least	
nethopterygn	Liophonnes	Liopidue	Liops machnaia	concern	
Actinoptervgii	Elopiformes	Megalopidae	Megalops cyprinoides	Data	Indo-pacific
111,8		- 0 - 1	o	deficient	tarpon
Actinopterygii	Gobiiformes	Eleotridae	Bostrychus sinensis	Least	Four-eyed
				concern	sleeper
Actinopterygii	Gobiiformes	Eleotridae	Butis amboinensis	Least	Ambon
				concern	gudgeon
Actinopterygii	Gobiiformes	Eleotridae	Butis butis	Least	Crimson-tipped
A	0.1.11	F1 (1		concern	gudgeon
Actinopterygii	Gobiiformes	Eleotridae	Butis koilomatodon	Least	Marblecheek
Actinontomaii	Gobiiformas	Flootridoo	Flootris fused	Losst	Brown
Actinopterygn	Goomormes	Lieouiuae	Lieoiris juscu	concern	spinecheek
				concern	gudgeon
Actinoptervgii	Gobiiformes	Eleotridae	Eleotris melanosoma	Least	Broadhead
1 10				concern	sleeper
Actinopterygii	Gobiiformes	Eleotridae	Eleotris oxycephala	Least	
				concern	
Actinopterygii	Gobiiformes	Eleotridae	Ophiocara	Least	Spangled
	0.1.11	0.1.1.1	porocephala	concern	gudgeon
Actinopterygu	Gobiiformes	Gobiidae	Amblygobius linki	Least	Link's goby
Actinontorygii	Gobiiformes	Gobiidae	Astarrontary	Least	
Actinopterygn	Goomornes	Goondae	seminunctata	concern	
Actinoptervgii	Gobiiformes	Gobiidae	Caragobius urolepis	Least	Scaleless worm
				concern	goby
Actinopterygii	Gobiiformes	Gobiidae	Cryptocentrus	Least	Pink-speckled
			leptocephalus	concern	shrimpgoby
Actinopterygii	Gobiiformes	Gobiidae	Feia nympha	Least	Nymph goby
				concern	
Actinopterygii	Gobiiformes	Gobiidae	Glossogobius	Least	Circumspect
A - 4° 4 °°	Cabilformera	Cabiidaa	<i>circumspectus</i>	concern	goby
Actinopterygii	Goomormes	Gobiidae	Gnatholepis	Least	
Actinontervaji	Gobiiformes	Gobiidae	Mahidolia mystacina	Least	Flagfin prawn
A comopter ygn	Goomornies	Goondae	manuona mysiaema	concern	gohv
Actinoptervgii	Gobiiformes	Gobiidae	Mangarinus waterousi	Data	Uchiwahaze
Jerro Proci Jerro				deficient	
Actinopterygii	Gobiiformes	Gobiidae	Mugilogobius cavifrons	Least	Bandfin
				concern	mangrove goby
Actinopterygii	Gobiiformes	Gobiidae	Oligolepis acutipennis	Least	Paintedfin goby
	<u>a</u> 1	a		concern	DI L
Actinopterygii	Gobiiformes	Gobiidae	Oligolepis stomias	Data	Plain teardrop

Class	Order	Family	Scientific name	RLTS	Common
				category	name
	Cabilformera	Cabildae	Omenial the Law shates	Least	gody
Actinopterygii	Gobiiformes	Gobiidae	Oxyuricnthys lonchotus	concern	mudgoby
Actinopterygii	Gobiiformes	Gobiidae	Oxyurichthys ophthalmonema	Least	Eyebrow goby
Actinopterygii	Gobiiformes	Gobiidae	Parachaeturichthys polynema	Least concern	Lancet-tail goby
Actinopterygii	Gobiiformes	Gobiidae	Paratrypauchen microcephalus	Least concern	Comb goby
Actinopterygii	Gobiiformes	Gobiidae	Psammogobius biocellatus	Least concern	Sleepy goby
Actinopterygii	Gobiiformes	Gobiidae	Redigobius balteatus	Least concern	Girdled goby
Actinopterygii	Gobiiformes	Gobiidae	Stenogobius ophthalmoporus	Least concern	
Actinopterygii	Gobiiformes	Gobiidae	Taenioides cirratus	Data deficient	Whiskered eel goby
Actinopterygii	Gobiiformes	Gobiidae	Trypauchen vagina	Least concern	Burrowing goby
Actinopterygii	Gobiiformes	Gobiidae	Trypauchenopsis intermedia	Least concern	Bearded eel goby
Actinopterygii	Mugiliformes	Mugilidae	Planiliza subviridis	Least concern	Greenback mullet
Actinopterygii	Ophidiiformes	Carapidae	Encheliophis homei	Least concern	Silver pearlfish
Actinopterygii	Perciformes	Ambassidae	Ambassis vachellii	Least concern	Vachell's glassfish
Actinopterygii	Perciformes	Apogonidae	Apogonichthyoides melas	Least concern	Black cardinalfish
Actinopterygii	Perciformes	Apogonidae	Fowleria variegata	Least concern	Variegated cardinalfish
Actinopterygii	Perciformes	Apogonidae	Ostorhinchus kiensis	Least concern	Short-line rifle cardinal
Actinopterygii	Perciformes	Apogonidae	Pseudamia amblyuroptera	Least concern	White-jawed cardinalfish
Actinopterygii	Perciformes	Apogonidae	Sphaeramia orbicularis	Least concern	Orbiculate cardinalfish
Actinopterygii	Perciformes	Apogonidae	Yarica hyalosoma	Least concern	Mangrove cardinalfish
Actinopterygii	Perciformes	Caesionidae	Caesio cuning	Least concern	Redbelly yellowtail fusilier
Actinopterygii	Perciformes	Carangidae	Atule mate	Least concern	Yellowtail scad
Actinopterygii	Perciformes	Ephippidae	Platax orbicularis	Least concern	Orbiculate batfish
Actinopterygii	Perciformes	Epinephelidae	Epinephelus coeruleopunctatus	Least concern	Whitespotted grouper
Actinopterygii	Perciformes	Epinephelidae	Epinephelus coioides	Least concern	Orange-spotted grouper
Actinopterygii	Perciformes	Epinephelidae	Epinephelus malabaricus	Least concern	~ ^
Actinopterygii	Perciformes	Epinephelidae	Epinephelus miliaris	Least concern	Netfin grouper
Actinopterygii	Perciformes	Epinephelidae	Epinephelus polystigma	Least concern	White-dotted grouper
Actinopterygii	Perciformes	Epinephelidae	Epinephelus tauvina	Data deficient	Greasy grouper
Actinopterygii	Perciformes	Gerreidae	Gerres erythrourus	Least concern	Deep-bodied mojarra

Class	Order	Family	Scientific name	RLTS	Common
	D if	TT 1'1		category	name
Actinopterygii	Perciformes	Haemulidae	Plectorhinchus	Least	Brown
	D :C	XX 1'1	gibbosus	concern	sweetlips
Actinopterygii	Perciformes	Haemulidae	Plectorhinchus pictus	Least	Trout sweetlips
A	D :0	XX 1'1		concern	<u> </u>
Actinopterygii	Perciformes	Haemulidae	Pomadasys argenteus	Least	Silver javelin
A 4 • 4 ••	D'C	TT 1' 1		concern	T. 1'
Actinopterygii	Perciformes	Haemulidae	Pomaaasys kaakan	Least	Javelin grunter
A	Densiferment	I sie snethides	Care a minuta	Least	Teethed
Actinopterygn	Perchormes	Leiognathidae	Gazza minuta	Least	roouted
Actinontomoii	Danaiformas	Laigenethidee	I sis on athus a surfus	Loost	Common
Actinopterygn	reichonnes	Leiognatilitae	Leiognainus equuius	concern	nonvfish
Actinontorygii	Derciformes	Lethrinidae	Lathrinus harak	Least	Thumborint
Actinopterygn	referiorities	Letininuae	Lemmus narak	concern	amperor
Actinontervaii	Perciformes	Lethrinidae	Lethrinus nebulosus	Least	Spangled
Actinopterygn	referiorities	Letinmidae	Leint mus neoutosus	concern	emperor
Actinontervgij	Perciformes	Lethrinidae	Lethrinus ornatus	Least	Ornate emperor
Actinopterygn	referiorities	Letinmidae	Lemmus ornanis	concern	Officie emperor
Actinontervgij	Perciformes	Lethrinidae	Lethrinus semicinctus	Least	Black-spot
nethopterygn	referiorities	Letin indue	Lenn mus semienterus	concern	emperor
Actinontervgij	Perciformes	Lutianidae	Lutianus fulviflamma	Least	Dory snapper
nethopterygn	renementes	Dutjumuue		concern	Dory shupper
Actinoptervgij	Perciformes	Lutianidae	Lutianus fulvus	Least	Blacktail
	1 010111105	Daganicae		concern	snapper
Actinoptervgii	Perciformes	Microdesmidae	Parioglossus formosus	Least	
J8			, i i i i i i i i i i i i i i i i i i i	concern	
Actinoptervgii	Perciformes	Microdesmidae	Parioglossus lineatus	Data	
1			0	deficient	
Actinopterygii	Perciformes	Microdesmidae	Parioglossus palustris	Least	
1.0				concern	
Actinopterygii	Perciformes	Microdesmidae	Parioglossus rainfordi	Least	
				concern	
Actinopterygii	Perciformes	Microdesmidae	Parioglossus raoi	Least	Yellow dartfish
				concern	
Actinopterygii	Perciformes	Mullidae	Parupeneus barberinus	Least	Dash-and-dot
				concern	goatfish
Actinopterygii	Perciformes	Nemipteridae	Scolopsis ciliata	Least	Saw-jawed
				concern	monocle bream
Actinopterygii	Perciformes	Pomacentridae	Dascyllus trimaculatus	Least	Threespot
	2.10			concern	damselfish
Actinopterygii	Perciformes	Pomacentridae	Dischistodus	Least	White damsel
A 4 • 4 ••	D :C	D (11	perspicillatus	concern	
Actinopterygi	Perciformes	Pomacentridae	Dischistodus	Least	Monarch
	Danaiformaa	Domocontridoo	<i>pseudocnrysopoeciius</i>	Loost	Vallowtail
Acunopterygn	rerenormes	romacentridae	neopomacentrus	Least	demsel
Actinontorygii	Doroiformos	Domacantridaa	Naopomacontrus	Data	Freehwater
Actinopterygn	referiorities	romacentituae	taeniurus	deficient	damsel
Actinontervaii	Perciformes	Sciaenidae	Nibea coibor	Data	uanisei
1 comopuer y gil	i cicitorines	Selacindae	111000 001001	deficient	
Actinontervgij	Perciformes	Siganidae	Siganus guttatus	Least	Golden
incomopter y Su	. cremornico	Siguindue	Southo Sutterio	concern	rabbitfish
Actinoptervoii	Perciformes	Siganidae	Siganus vermiculatus	Least	Vermiculated
		Significatio		concern	spinefoot
Actinoptervgii	Perciformes	Terapontidae	Mesopristes	Least	Tapiroid
T. F. J. S.		T	cancellatus	concern	grunter
Actinoptervgii	Pleuronectiformes	Cynoglossidae	Cynoglossus	Data	Three-lined
1 10-			abbreviatus	deficient	tongue sole
Actinopterygii	Pleuronectiformes	Cynoglossidae	Cynoglossus puncticeps	Least	
				concern	

Class	Order	Family	Scientific name	RLTS	Common
				category	name
Actinopterygii	Pleuronectiformes	Cynoglossidae	Cynoglossus sibogae	Data	
Actinontowaii	Plauropactiformas	Daralichthyidaa	Psaudorhombus arsius	Losst	Largatooth
Actinopterygn	rieuronecurornies	Farancinityluae	1 seudornomous arsius	concern	flounder
Actinontervgii	Pleuronectiformes	Soleidae	Brachirus aspilos	Least	Dusky sole
incomo pror y gin	1 iouroneeurormes	Solelaae	Brachin us aspiros	concern	Dusity sole
Actinoptervgii	Pleuronectiformes	Soleidae	Rhinosolea	Data	
1 10			microlepidota	deficient	
Actinopterygii	Scorpaeniformes	Platycephalidae	Cymbacephalus	Least	Crocodile fish
			beauforti	concern	
Actinopterygii	Syngnathiformes	Syngnathidae	Hippichthys penicillus	Least	Beady pipefish
				concern	
Actinopterygii	Tetraodontiformes	Tetraodontidae	Arothron manilensis	Least	Narrow-lined
.	T. (T . (1 (1		concern	puffer
Actinopterygii	Tetraodontiformes	Tetraodontidae	Arothron reticularis	Least	Reticulated
Actinontorvaji	Tetraodontiformes	Tetraodontidae	Arothron stallatus	Least	Stellate puffer
Actinopterygn	retraodontiformes	Tetraodolitidae	Alomion sienans	concern	Stenate puner
Aves	Charadriiformes	Charadriidae	Charadrius mongolus	Least	Lesser
11,00	Churuannonnes	Characteria		concern	sandplover
Aves	Charadriiformes	Charadriidae	Pluvialis fulva	Least	Pacific golden
				concern	plover
Aves	Charadriiformes	Scolopacidae	Actitis hypoleucos	Least	Common
				concern	sandpiper
Aves	Charadriiformes	Scolopacidae	Numenius arquata	Near	Eurasian curlew
				threatened	-
Aves	Coraciiformes	Alcedinidae	Alcedo atthis	Least	Common
	Compelliference	Alasdinidas	II al anna a san an da	concern	kingfisher
Aves	Coraciiiormes	Alcedinidae	Halcyon coromanaa	Least	kingfishor
Avec	Coracijformas	Alcedinidae	Todiramphus chloris	Least	Collared
Avts	Coracinornies	Alcounidae	10urumpnus chioris	concern	kingfisher
Aves	Galliformes	Megapodiidae	Megapodius cumingii	Least	Philippine
		0.1		concern	scrubfowl
Aves	Passeriformes	Campephagidae	Lalage nigra	Least	Pied triller
				concern	
Aves	Passeriformes	Campephagidae	Pericrocotus	Least	Ashy minivet
			divaricatus	concern	
Aves	Passeriformes	Campephagidae	Pericrocotus tegimae	Least	Ryukyu minivet
	Descrifteren	Con 11.	C	concern	01
Aves	Passeriformes	Corvidae	Corvus enca	Least	Slender-billed
Aves	Passeriformes	Corvidae	Corvus macrorhynchos	Least	L arge_billed
Arts	1 assernormes	Corvidae	corvas nacrornyncnos	concern	crow
Aves	Passeriformes	Monarchidae	Terpsiphone	Near	Japanese
			atrocaudata	threatened	paradise-
					flycatcher
Aves	Passeriformes	Muscicapidae	Cyornis rufigastra	Least	Mangrove blue-
		- · · ·	_	concern	flycatcher
Aves	Passeriformes	Paridae	Parus major	Least	Great tit
	Desseife	Dha-11	DIII.	concern	F actor
Aves	Passeriformes	Phylloscopidae	Pnylloscopus coronatus	Least	Eastern
				concern	warbler
Aves	Passeriformes	Sturnidae	Aplonis panavensis	Least	Asian glossy
11103	i usseritorines	Starmaae		concern	starling
Aves	Passeriformes	Turdidae	Turdus obscurus	Least	Eyebrowed
				concern	thrush
Aves	Pelecaniformes	Ardeidae	Ardea purpurea	Least	Purple heron
				concern	-

Class	Order	Family	Scientific name	RLTS	Common
Awag	Poloconiformos	Ardaidaa	Rutoridas striata	Logst	name Green backed
Aves	relecannormes	Aldeldae	Duionaes sinaia	concern	heron
Aves	Pelecaniformes	Ardeidae	Egretta eulophotes	Vulnerable	Chinese egret
Aves	Pelecaniformes	Ardeidae	Egretta garzetta	Least concern	Little egret
Aves	Pelecaniformes	Ardeidae	Egretta sacra	Least concern	Pacific reef-
Aves	Pelecaniformes	Ardeidae	Ixobrychus cinnamomeus	Least	Cinnamon
Aves	Pelecaniformes	Ardeidae	Ixobrychus sinensis	Least	Yellow bittern
Aves	Suliformes	Anhingidae	Anhinga melanogaster	Near threatened	Oriental darter
Aves	Suliformes	Fregatidae	Fregata ariel	Least	Lesser frigatebird
Aves	Suliformes	Fregatidae	Fregata minor	Least	Great
Bivalvia	Venerida	Cyrenidae	Polymesoda	Least	Bengali geloina
		-	bengalensis	concern	
Chondrichthyes	Carcharhiniformes	Carcharhinidae	Carcharhinus amblyrhynchoides	Vulnerable	Graceful shark
Chondrichthyes	Carcharhiniformes	Carcharhinidae	Carcharhinus amboinensis	Vulnerable	Pigeye shark
Chondrichthyes	Carcharhiniformes	Carcharhinidae	Carcharhinus melanopterus	Vulnerable	Blacktip reef shark
Chondrichthyes	Carcharhiniformes	Carcharhinidae	Negaprion acutidens	Endangered	Sharptooth lemon shark
Chondrichthyes	Myliobatiformes	Dasyatidae	Himantura leoparda	Vulnerable	Leopard whipray
Chondrichthyes	Myliobatiformes	Dasyatidae	Himantura uarnak	Endangered	Coach whipray
Chondrichthyes	Myliobatiformes	Dasyatidae	Maculabatis macrura	Endangered	Sharpnose whipray
Chondrichthyes	Myliobatiformes	Dasyatidae	Pastinachus ater	Vulnerable	Broad cowtail ray
Chondrichthyes	Rhinopristiformes	Pristidae	Pristis zijsron	Critically endangered	Green sawfish
Gastropoda	Cycloneritida	Neritidae	Clithon faba	Least concern	Kanokogai
Gastropoda	Cycloneritida	Neritidae	Neritodryas subsulcata	Data deficient	Weakly cut nerite
Gastropoda	Ellobiida	Ellobiidae	Auriculastra elongata	Least concern	
Gastropoda	Ellobiida	Ellobiidae	Auriculastra subula	Least concern	
Gastropoda	Ellobiida	Ellobiidae	Cassidula crassiuscula	Least concern	
Gastropoda	Ellobiida	Ellobiidae	Cassidula multiplicata	Least concern	
Gastropoda	Ellobiida	Ellobiidae	Cylindrotis quadrasi	Least concern	
Gastropoda	Ellobiida	Ellobiidae	Laemodonta bella	Least concern	
Gastropoda	Ellobiida	Ellobiidae	Laemodonta punctigera	Least	
Gastropoda	Ellobiida	Ellobiidae	Melampus sulculosus	Least	
Gastropoda	Littorinimorpha	Clenchiellidae	Clenchiella microscopica	Least	
Gastropoda	Littorinimorpha	Littorinidae	Littoraria undulata	Least	

Class	Order	Family	Scientific name	RLTS category	Common
Gastropoda	Neogastropoda	Conidae	Conus frigidus	Least	Frigid cone
Gastropoda	Neogastropoda	Conidae	Conus furvus	Least	
Gastropoda	Neogastropoda	Conidae	Conus insculptus	Least concern	
Gastropoda	Neogastropoda	Conidae	Conus varius	Least concern	
Gastropoda	Sorbeoconcha	Potamididae	Cerithidea ornata	Least concern	
Gastropoda	Sorbeoconcha	Thiaridae	Sermyla riqueti	Least concern	
Insecta	Odonata	Coenagrionidae	Ceriagrion cerinorubellum	Least concern	
Magnoliopsida	Fabales	Fabaceae	Dalbergia candenatensis	Least concern	Trắc một hột
Magnoliopsida	Lamiales	Acanthaceae	Acanthus ebracteatus	Least concern	
Magnoliopsida	Malvales	Malvaceae	Brownlowia argentata	Data deficient	
Magnoliopsida	Malvales	Malvaceae	Brownlowia tersa	Near threatened	
Magnoliopsida	Malvales	Malvaceae	Heritiera littoralis	Least concern	
Magnoliopsida	Myrtales	Lythraceae	Pemphis acidula	Least concern	
Mammalia	Carnivora	Felidae	Prionailurus bengalensis	Least concern	Mainland leopard cat
Mammalia	Cetartiodactyla	Phocoenidae	Neophocaena asiaeorientalis	Endangered	Narrow-ridged finless porpoise
Mammalia	Cetartiodactyla	Suidae	Sus scrofa	Least concern	Wild boar
Mammalia	Chiroptera	Pteropodidae	Pteropus dasymallus	Vulnerable	Ryukyu flying fox
Mammalia	Sirenia	Dugongidae	Dugong dugon	Vulnerable	Dugong
Reptilia	Squamata	Scincidae	Emoia atrocostata	Least concern	Littoral whiptail-skink

3. National Estimates for Subcriterion A1

To estimate the South Kuroshio mangrove ecosystem extent in 1970, we gathered reliable information on the mangrove area for each country within the province that can be used for an extrapolation (Table b). There are mangrove area estimates for Okinawa Prefecture in 1977 and 1997 based on aerial photo analysis with ground truth data (ISME, 2004; Inoue *et al.*, 2022a). The mangrove areas in Okinawa Prefecture are equivalent to ~90% of the entire mangrove area of South Kuroshio. In addition to these datasets, we added estimates for 2020 based on satellite image analysis (mostly the same method as ISME, 2004) on mangrove areas of Okinawa Prefecture. We then estimated the mangrove area in 1970 for this province, assuming a linear relationship between mangrove extent and time (Table a). Using mangrove area estimates from different sources can lead to uncertainty (Friess and Webb 2014)² and there were no regional statistics or

² Friess, D. A., & Webb, E. L. (2014). Variability in mangrove change estimates and implications for the assessment of ecosystem service provision: Variability in mangrove ecosystem loss. *Global Ecology and Biogeography*, 23(7), 715–725. https://doi.org/10.1111/geb.12140

global studies available for this time period. Thus, the estimates for 1970 should be considered only indicative.

Table a. Estimated mangrove area (km²) by country in 1970 and 2020. Estimates for 2020* mangrove area in Calayan Island are based on the Global Mangrove Watch Version 3 (GMW v3.0) dataset and area in Okinawa Prefecture are based on the newly assessed data in this report. The references used to calculate mangrove area in 1970** are listed below in Table b.

Year	Country total 2020*	Within province 2020*	Country total 1970**	Within province 1970**
Okinawa prefecture (Japan)	7.3	7.3	5.1	5.1
Calayan Island (Philippines)		0.09	dd	dd
The South Kuroshio		7.4		5.1
dd: data deficient				

dd: data deficient

 Table b. List of selected studies considered to have reliable information on mangrove area for the period around 1970 in each country of the South Kuroshio province.

Country	Year	Mangrove Area (ha)	Reference
Japan	1980	400	Nakasuga (1980). Personal communication Cited in: Snedaker, S.C. 1984. The mangroves of Asia and Oceania: status and research planning. In: Proceedings of the Asian Mangrove Symposium, eds: Soepadmo, E Rao, AN; McIntosh, DJ. p. 5-15. Percetakan Ardyas Sdn Bhd. Kuala Lumpur, 25-29 August 1980, Kuala Lumpur, Malaysia. Expert estimate.
Japan (Okinawa)	1977	540.1	ISME (2004). Mangrove distribution survey in Okinawa prefecture for the purpose of monitoring coastal ecosystems and sea level rise. Okinawa prefecture commissioned survey research in fiscal year 2003. International Society for Mangrove Ecosystems, Okinawa, p 153.
Japan (Okinawa)	1997	643.5	ISME (2004). Mangrove distribution survey in Okinawa prefecture for the purpose of monitoring coastal ecosystems and sea level rise. Okinawa prefecture commissioned survey research in fiscal year 2003. International Society for Mangrove Ecosystems, Okinawa, p 153.
Japan (Okinawa)	2020	730.9	This assessment
Japan (Kagoshima)	2020	66.1	This assessment
For all countries.			FAO (2003). Status and trends in mangrove area extent worldwide. By Wilkie, M.L. and Fortuna, S. Forest Resources Assessment Working Paper No. 63. Forest Resources Division.