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Abstract

Thousands of scientists and practitioners conduct research on infectious diseases of
wildlife. Rapid and comprehensive data sharing is vital to the transparency and actionability
of their work, but unfortunately, most eorts designed to publically share these data are
focused on pathogen determination and genetic sequence data. Other facets of existing
surveillance data – particularly negative results – are often withheld or, at best, summarized
in a descriptive table with limitedmetadata. As a result, very few datasets onwildlife disease
dynamics over space and time are publicly available for synthesis research or applied uses in
conservation or public health. Here, we propose aminimum data andmetadata reporting
standard for wildlife disease studies. Our checklist identifies aminimum set of 30 fields
required to standardize and document a dataset consisting of records disaggregated to the
finest possible spatial, temporal, and taxonomic scale. We illustrate how this standard is
applied to an example study, which documented a novel alphacoronavirus found in bats in
Belize. Finally, we outline best practices for how data should be formaed for optimal re-use,
and how researchers can navigate potential safety concerns around data sharing.



Introduction

Infectious disease is a widely studied topic in wildlife biology and ecosystem science �1�.
Every year, countless scientific studies report new data on the prevalence of macroparasites
(e.g., ticks and tapeworms) andmicroparasites (e.g., bacteria, viruses, and other classically
defined "pathogens"), hereafter “parasites” for simplicity �2�, in wild animals. These datasets
can be used to test and reveal ecological principles, monitor the impacts of climate change
and biodiversity loss, and even track emerging threats to human and ecosystem health.

Unfortunately, of the thousands of datasets produced every year, very few are shared
publicly, and those that are often have limited potential for reuse. Many researchers still
discard negative data, or focus almost exclusively on positive results: for example, a study
might focus on the characterization of a single novel virus, while briefly acknowledging
hundreds of samples that tested negative in a single sentence of theMethods or Results.
Sometimes, raw data are at least summarized in a table that reports parasite prevalence for
dierent combinations of host taxon, parasite taxon, and sampling location or period; these
data often cannot be disaggregated back to the level of individual animals or test results.
Many studies also fail to report essential metadata, such as primer sequences, sampling
eort over space, time, or host taxa, or biologically-meaningful host characteristics such as
body size �3,4�. Collectively, these practices reduce the quality of the limited data that do
become available for reuse and reanalysis, posing a significant challenge for synthesis
research on infectious diseasemacroecology �5–7� or on the risks posed by emerging
zoonotic and vector-borne diseases �8–10�. In this regard, wildlife disease research has
started to lag substantially behind other areas of the biological sciences, where open
sharing of reusable primary data has becomewidely expected.

Building on a set of similar templates for sharing datasets related to arthropod disease
vectors �11–13�, we developed aminimum standard for wildlife infectious disease data that
avoids unnecessary jargon, and that balances eort with detail and standardization with
flexibility. Here, we document the standard’s development; show how the standard can be
applied to a simple dataset; and suggest additional best practices for data sharing.

Methods

Our goal in this project was to develop guidelines for how researchers can share
standardized andwell-documentedwildlife disease datasets, with a focus on capturing how
sampling happened andwhat was found.We developed our data standard based on: (i)
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experience conducting and publishing wildlife disease research, and collaborating with
government programs doing the same; (ii) common practices already followed bymost
scientists in the literature when sharing disaggregated data, including the decisionsmade by
major data sources such as the USAID PREDICT 2 project’s data release �14�; (iii) best
practices for sharing ecological data that minimize room for error or loss of data �15–20�; and
(iv) interoperability with standards used by other platforms, such as the Global Biodiversity
Informatics Facility �GBIF� �20�. We also assumed that pathogen genetic sequence data and
associated types (e.g., metatranscriptomes) are already widely archived on platforms like
NCBI’s GenBank and Sequence Read Archive �SRA�, following a dierent set of best
practices, and are unlikely to be stored in the same data structure as we describe here.

The guiding philosophy of the data standard is that researchers should share their raw data
in a format that data scientists refer to as “rectangular data” or “tidy data” �21�, where each
row corresponds to a singlemeasurement, heremeaning the outcome of a diagnostic test.
Tests, samples, and individual animals can each havemany-to-many relationships due to
common practices such as repeated sampling of the same animal, confirmatory tests or
deeper sequencing of samples that test positive, and pooling of samples (sometimes from
multiple animals and locations) for a single test. Based on this, there are threemain
categories of information collected: samplemetadata, host animal metadata, and the
parasite data itself, including both test results and anymetadata characterizing a parasite
once it has been detected (e.g., GenBank accession). The authors developed the fields
associated with each of these categories through a process of iteration with real-world data,
as part of the ongoing development of a new dedicated platform called the Pathogen
Harmonized Observatory database �PHAROS� pharos.viralemergence.org). The PHAROS
platformwill be comprehensively documented in a separatemanuscript.

Results

When to use the data standard

Before applying this standard, we encourage researchers to verify that their dataset
describes wild animal samples that were examined for parasites, accompanied bymetadata
on the diagnostic methods used and the date and location of sampling. Some closely-related
types of data are beer stored in another format: for example, records of free-living
macroparasites (e.g., tick dragging data) can be stored in Darwin Core format like any other
biodiversity dataset �20,22�, or can adhere to theMIReAD data standard for arthropod
abundance data, which was designedwith disease vector surveillance inmind �13�. Similarly,
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arthropod bloodmeal datasets can follow another recently-published data standard �12�.
Finally, environmental monitoring datasets (e.g., soil, water, or air microbiome
metagenomics) not associated with a specific animal under direct or indirect observation
should also be handled following other best practices �23,24�.

The data standard

Our proposed data standard includes 30 core fields (nine related to sampling, 12 related to
the host organism being sampled, and nine related to the parasite itself). The contents of
these fields and their interpretation are described in Tables 1�3.

To illustrate how other scientists can use theminimum data standard, we present an
example using a previously published dataset �25�. The example dataset captures two
records associated with a single vampire bat �BZ19�114� tested for coronaviruses in Belize in
2019: a rectal swab tested negative, while an oral swab tested positive, leading to the
identification of a novel alphacoronavirus (Table 4�. All mandatory and relevant fields are
shown, and cells are only left blank if they do not apply (i.e., parasite identity and GenBank
accession are always empty for negative test results). The data in Table 4 are only a subset
of the full dataset, which is shared in full on the PHAROS platform (project: prjRPayEvMecN).

Removing and adding fields

Some datasets will not be able tomeet a comprehensive standard for documentation.
Wherever possible, we encourage researchers to leave fields blank, rather than remove them.
For example, in some projects, limited funding or study protocols may preclude all captured
animals from being sampled, or all samples from being tested. Researchersmight therefore
include amix of records of animals or samples with no aached test data (i.e., leaving
“Detection outcome” blank). Similarly, archival samples that are rescued from old projects, or
older museum specimens that are sampled for parasites �26�, may not always have complete
date information, leading “Collection day” and “Collectionmonth” to be left blank. We
encourage researchers to adapt our data standard to their purposes, and as appropriate, to
consider sharing their data inmultiple applicable formats. For example, in the previous
example, researchersmight share their test results on the PHAROS platform, but share a
more comprehensive record of all sampling in the study’s supplemental materials.

Some datasets will also need to include additional fields capturing other kinds of information.
For example, researchersmight use an all-purpose “Notes” column to flag unusual records or
non-standardized information about sampling (e.g., the circumstances under which a dead
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animal was found, such as opportunistic roadkill collection). Similarly, in cases where findings
are particularly sensitive for public health or economic reasons, researchersmight even
consider including some guidance for how to interpret them in the data itself: for example,
the data shared by the USAID PREDICT 2 project includes a field called “Interpretation,” which
provides guidance such as this disclaimer on a positive test result: “[The virus detected in
this sample] is the known ebolavirus, Bombali virus, detected in an Angolan free-tailed bat.
This virus has previously been found in bats in Sierra Leone as part of the PREDICT project.
Further characterization is ongoing to understand the zoonotic potential of this virus.”

Best practices for sharing (andwithholding) data

When using the data standard, we suggest that researchers should follow scientific
conventions and best practices for data science, such as: reportingmeasurements inmetric
units; reporting taxonomic information at themost granular level possible for both the host
and parasite; and leaving empty and non-applicable cells blank, rather than assigning a
placeholder such as “NA” �27�. Researchers should also ensure that their manuscript
comprehensively describes all important aspects of samplingmethodology, such as the
circumstances (e.g., systematic and planned sampling versus opportunistic collection of
unusual carcasses), how animals were identified (e.g., expert opinion versus barcoding), and
how samples were prepared (e.g., specific products or kits used, or specific details about the
methods used in parasitological dissections). None of these are likely to dier for each
individual row of data, and sowe exclude these from the template, but interpreting a study’s
data correctly may still depend on these data being available. Researchers should alsomake
sure that their study documents any relevant epidemiological observations (e.g., unusual
disease presentation, or sewage discharge or farms nearby). Finally, whenever possible,
researchers should also share all sequence data in an open repository.

As with other kinds of biodiversity data �28,29�, sharing high-resolution wildlife disease data
can sometimes be unsafe or inadvisable. For example, sharing the location of a bat roost
where viruses have been detectedmay lead to culling, which in turn puts local communities
at greater risk of exposure �30,31�. Theremay also be biosafety or biosecurity risks
associated with location data, depending on the characteristics of the parasite in question:
for example, anthrax spores can persist at a carcass site for several years �32,33�. In sensitive
cases, researchers could consider truncating longitude and latitude values, or potentially,
jiering records with random noise, and should then carefully and clearly document the
obfuscation process; guidance on this practice exists for other kinds of biodiversity data
�34�. In some cases, this may still be insuicient to preventmalicious use �35�. In high-risk
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cases, journal editors should work closely with authors to ensure that neither themanuscript
itself nor any supplementary data have a significant potential to cause harm.

Discussion

Here, we propose a data standard for wildlife infectious disease studies. Withminimal
modifications, the same template could also be used for related types of data, such as
records of plant diseases, or infections in captive animal populations such as zoos and
wildlife sanctuaries. However, other types of spatiotemporal disease datamay already have
associated best practices and dedicated or otherwise well-suited repositories. For example,
disaggregated but carefully de-identified human infectious disease data can be shared in
epidemic seings on the Global.health platform �36�; host, vector, and parasite occurrence
data can also all be documented in Darwin Core format and shared in GBIF �37–39�.

We encourage researchers to consider adopting this minimum standard when publishing
research that uses wildlife disease data. To encourage this practice, blank templates (in both
.xlsx and .csv format) are available both as supplementary files to this manuscript and on a
public GitHub repository (github.com/viralemergence/pharos-standard). We suggest that
researchers should share their formaed data as a supplemental file accompanying a
publication, or beer yet, deposit their data in a repository such as Figshare, Dryad, or
Zenodo. Amodified version of this data standard is also implemented in the PHAROS
platform, which allows researchers tomanage and publish their data on a platform built
specifically for wildlife disease research and surveillance. Sharing datasets on this dedicated
platformmakes themmore findable than on all-purpose repositories, while still providing a
system for data citations based on dataset- and download-specific identifiers. Researchers
are also encouraged to share data on PHAROS before or independent of publication,
especially in cases where negative datamight not be publishable, or where timely sharing of
findingsmight be particularly relevant to public health or conservation.

Whether or not researchers share their data on the PHAROS platform, we hope they will
consider using this minimum data standard to ensure their data are findable, accessible,
interoperable, and reusable �FAIR� by other scientists �40�. Doing sowill also help studies
meet theminimum requirements for data sharing now adopted bymost journals and
scientific funders (fromwhich a surprising number of studies still actively seek exception).
Progress toward open sciencewill make wildlife disease research a richer andmore rigorous
field, leading to beer insights about emerging threats to human and animal health.
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Data Availability

The example dataset and blank templates are available fromGithub.

Code Availability

No code is used in this manuscript.
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Figures and Tables

Table 1. Samplingmetadata.

Variable Descriptor

Sample ID A researcher-generated unique ID for the sample: usually a unique string of both characters and
integers (e.g., “OS BZ19�114” to indicate an oral swab taken from animal BZ19�114; see worked
example below), to avoid conflicts that can arise when datasets aremergedwith number-only
notation for samples. Ideally, sample names should be kept consistent across all online
databases and physical resources (e.g., museum collections or project-specific sample
archives).

Animal ID A researcher-generated unique ID for the individual animal fromwhich the sample was collected:
usually a unique string of both characters and integers (e.g., “BZ19�114” to indicate animal 114
sampled in 2019 in Belize). Ideally, animal names should again be kept consistent across online
databases and physical resources.

Latitude Latitude of the collection site in decimal format.

Longitude Longitude of the collection site in decimal format.

Spatial uncertainty
(optional)

Coordinate uncertainty fromGPS recordings, post-hoc digitization, or systematic alterations
(e.g., jiering or rounding) expressed inmeters.

Collection day The day of themonth onwhich the specimenwas collected.

Collectionmonth The numeric month in which the specimenwas collected.

Collection year The year in which the specimenwas collected.

Collectionmethod
and/or tissue

The technique used to extract the sample and/or the tissue fromwhich the sample was extracted
(e.g., “oropharyngeal swab”)



Table 2.Host identification and traits.

Variable Descriptor

Host identification The Linnaean classification of the animal fromwhich the sample was collected, reported at the
lowest possible level (ideally, species binomial name: e.g., “Odocoileus virginianus” or “Ixodes
scapularis”). As necessary, researchersmay also include an additional field indicating when
uncertainty exists in the identification of the host organism (see “Adding new fields”).

Organism sex
(optional)

The sex of the individual animal fromwhich the sample was collected.

Dead or alive
(optional)

The state of the individual animal fromwhich the sample was collected, at the time of sample
collection.

Health notes
(optional)

Any additional (unstructured) notes about the state of the animal, such as disease presentation.

Life stage
(optional)

The life stage of the animal fromwhich the sample was collected (as appropriate for the
organism) (e.g., “juvenile”, “adult”).

Age
(optional)

The numeric age of the animal fromwhich the sample was collected, at the time of sample
collection, if known (e.g., in monitored populations).

Age units
(optional)

The units in which age is measured (usually years).

Mass
(optional)

Themass of the animal fromwhich the sample was collected, at the time of sample collection.

Mass units
(optional)

The units that mass is recorded in (e.g., “kg”).

Length
(optional)

The numeric length of the animal fromwhich the sample was collected, at the time of sample
collection.

Lengthmeasurement
(optional)

The axis of measurement for the organism beingmeasured (e.g., “snout-vent length” or just “SVL”;
“wing length”; “primary feather”).

Length units
(optional)

The units that length is recorded in (e.g., “mm”).



Table 3.Detectionmethods and parasite identification.

Variable Descriptor

Detection target The taxonomic identity of the parasite being screened for in the sample. This will often be coarser
than the identity of a specific parasite identified in the sample: for example, in a study screening
for novel bat coronaviruses, the entire family Coronaviridaemight be the target; in a parasite
dissection, the targetsmight be Acanthocephala, Cestoda, Nematoda, and Trematoda. For deep
sequencing approaches (e.g., metagenomic andmetatranscriptomic viral discovery), researchers
should report each alignment target used as a new “test” tomaximize reporting of negative data,
or alternatively, select a subset that reflect specific study objectives and the focus of analysis
(e.g., specific viral families).

Detectionmethod The type of test performed to detect the parasite or parasite-specific antibody (e.g., 'qPCR',
‘ELISA’).

Primer sequence
(optional)

The sequence of both forward and reverse primers used to identify the sample (e.g., “forward 5’
CDCAYGARTTYTGYTCNCARC 3' ; reverse 5’ RHGGRTANGCRTCWATDGC 3'”) or just the name of a
commonly used gene target (particularly if citation information is given).

Primer citation
(optional)

Citation for the primer being used.

Detection outcome The test result (i.e., “positive”, “negative”, or “inconclusive”). To avoid ambiguity, these specific
values are suggested over numeric values (“0” or “1”).

Detection
measurement
(optional)

Any numeric measurement of parasite detection that is more detailed than simple positive or
negative results (e.g., viral titer, parasite counts, sequence reads).

Detection
measurement units
(optional)

Units for quantitativemeasurements of parasite intensity or test results (e.g., “Ct”, “TCID50/mL”,
or “parasite count”).

Parasite identification The identity of a parasite detected by the test, if any, reported to the lowest possible taxonomic
level, either as a Linnaean binomial classification or within the convention of a relevant taxonomic
authority (e.g., “Borrelia burgdorferi” or “Zika virus”). Parasite identificationmay bemore specific
than detection target.

GenBank accession
(optional)

The GenBank accession for any parasite genetic sequence(s), if appropriate. Researchersmay
also add additional / other fields as appropriate, such as for other genomic sequence data
platforms (e.g., GISAID�.



Table 4. An example of wildlife disease records following theminimum data standard.

Sample ID Animal ID Latitude Longitude Collection
day

Collection
month

Collection
year

Collection
method

OS BZ19�95 BZ19�114 17.76425974 -88.65209879 23 04 2019 Oral swab

RS BZ19�95 BZ19�114 17.76425974 -88.65209879 23 04 2019 Rectal swab

Host identification Organism sex Dead or alive Life stage Mass Mass units

Desmodus rotundus male alive subadult 0.023 kg

Desmodus rotundus male alive subadult 0.023 kg

Detection
target

Detection
method

Primer
sequence Primer citation Detection

outcome
Parasite
identification

GenBank
accession

Coronaviridae semi-nested PCR RdRp doi:10.3390/v9120364 positive Alphacoronavirus OM240578

Coronaviridae semi-nested PCR RdRp doi: 10.3390/v9120364 negative
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