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ABSTRACT 

 

Ecologists seek to understand the intermediary ecological processes through which 

changes in one attribute in a system affect other attributes. A causal understanding of 

mediating processes is important for testing theory and developing resource 

management and conservation strategies. Yet, quantifying the causal effects of these 

mediating processes in ecological systems is challenging, because it requires defining 

what we mean by a ‘mediated effect’, determining what assumptions are required to 

estimate mediation effects without bias, and assessing whether these assumptions are 

credible in a study. To address these challenges, scholars have made significant 

advances in research designs for mediation analysis. Here, we review these advances 

for ecologists. To illustrate both the advances and the challenges in quantifying 

mediation effects, we use a hypothetical ecological study of drought impacts on 

grassland productivity. With this study, we show how common research designs used in 

ecology to detect and quantify mediation effects may have biases and how these biases 

can be addressed through alternative designs. Throughout the review, we highlight how 

causal claims rely on causal assumptions, and we illustrate how different designs or 

definitions of mediation effects can relax some of these assumptions. In contrast to 

statistical assumptions, causal assumptions are not verifiable from data, and so we also 

describe procedures that we can use to assess the sensitivity of a study’s results to 

potential violations of its causal assumptions. The advances in causal mediation 

analyses reviewed herein equip ecologists to communicate clearly the causal 

assumptions necessary for valid inferences, and to examine and address potential 

violations to these assumptions using suitable experimental and observational designs, 

which will enable rigorous and reproducible explanations of intermediary processes in 

ecology. 

 

Key words: ecological mechanisms, causality, confounding, mediator, indirect effects, causal 

explanation, causal knowledge. 

 



 

1 

1 

I. INTRODUCTION 

 

Ecologists seek a causal understanding of ecosystems. A key part of this understanding is 

obtained by quantifying the effects of ecological processes that act as intermediaries between 

a cause and its effect. We refer to these intermediary ecological processes as ‘mediators’, but 

they are sometimes called ecological ‘mechanisms’ (Heger, 2022; Poliseli et al., 2022). 

Quantifying their effects involves decomposing the overall effect of a cause into its 

constituent mediation effects (i.e. the causal pathways through which the overall effect 

arises). For example, scientists may be interested in the causal effect of drought on tree 

mortality and whether this effect is mediated by changes in carbohydrate reserves. Similarly, 

conservation scientists and practitioners may seek to understand whether and by how much 

changes in poaching may mediate the causal effect of protected areas on species abundance. 

The challenges to quantifying causal mediator effects are different from the challenges to 

quantifying overall causal effects, and thus the required empirical approaches are also 

different. 

Although recent publications have reviewed causal inference concepts to ecologists (Arif 

& MacNeil, 2023, 2022b; Grace & Irvine, 2020; Larsen, Meng & Kendall, 2019; Ramsey et 

al., 2019; Ribas, Pressey & Bini, 2021), they have neither described the challenges in 

estimating causal mediation effects nor presented solutions to address these challenges. 

Estimating mediation effects and ensuring that these estimates can be interpreted as causal 

requires careful attention to eliminating the effects of other variables that can introduce 

spurious relationships. Even in ecological experiments  that use randomisation, estimating 

mediation effects is challenging because randomisation often does not specifically isolate the 

part of the causal effect that operates through a mediator. Without additional research design 

strategies to isolate the mediator’s effect, other variables can still obscure how much of the 

treatment’s effect truly flows through the mediator.  

Here, we review recent conceptual advances in statistical designs for causal mediation 

analysis that have been developed in statistics, social science, biostatistics, and computer 

science (e.g., MacKinnon, 2012; VanderWeele, 2015; Pearl, 2014). These methods have seen 

broad application across disciplines but remain largely unadopted in ecology despite their 

potential for elucidating intermediary ecological processes.  

To introduce the terminology that is commonly used in the causal mediation literature, we 

use a hypothetical ecological study. We also use this study to describe how common designs 

in ecology for detecting or quantifying mediation effects may have biases, that is, systematic 

deviations between the estimated effect and the true underlying causal effect. We show how 

the biases in common designs used in ecology can be addressed through alternative 

experimental or observational designs, each of which relies on different causal assumptions to 

make causal claims about the signs and magnitudes of mediation effects.  

The mantra that credible causal inferences are not possible without explicit causal 

assumptions is one of the most important insights from the field of causal inference in the last 

three decades (Rubin, 2006; Pearl, 2009; Shipley, 2000). Significant developments have been 

made in extending these assumptions to methods for mediation analyses (MacKinnon, 2012; 

VanderWeele, 2015) which we can leverage to address questions about ecological mediating 

processes. Throughout our review, we focus on transparently describing the foundational 
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causal assumptions required for all mediation designs, discussing when these assumptions 

may be violated for ecological studies, and offering alternative experimental and 

observational designs to address these violations. At the end of our review, we demonstrate 

how these assumptions can be articulated and understood using the potential outcomes 

framework (Holland, 1986, 1988; Rubin, 2005), one of several analogous causal inference 

frameworks available for defining and estimating causal effects in experimental and 

observational studies (Dawid, 2000, 2021; Pearl, 2009; Rubin, 1974, 2006). The potential 

outcomes framework extends classical approaches to mediation analysis by providing a 

unifying and rigorous structure that can be flexibly applied across ecological settings and data 

distributions.  

We conclude with a summary table that synthesises the key concepts from this review, 

providing a set of practical steps to guide the design of mediation analyses in ecological 

research. Our review is not intended to provide a detailed guide for implementing specific 

estimation approaches for mediation analysis. For readers who wish to learn more about 

implementing these approaches, we provide citations to key references. Instead, our review 

synthesises the vast literature in causal mediation analysis, including prior work in ecology. 

We focus on describing the major threats to causal inferences about ecological mediation 

effects in experimental and observational studies and the designs and methods for mitigating 

these threats. By providing greater clarity about these threats, designs, and methods, we hope 

to advance our causal and mechanistic knowledge of ecological processes. 

 

 

II. MOTIVATING EXAMPLE 

 

We illustrate the concepts, methods, and challenges associated with quantifying mediation 

effects in ecological systems using a hypothetical example of an experimental study in which 

researchers aim to quantify how meteorological drought (as opposed to agricultural or 

ecological drought; see Wright & Collins, 2024) affects productivity in grassland ecosystems 

(e.g. Hoover, Wilcox & Young, 2018; Pennisi, 2022; Smith et al., 2024). The researchers 

hypothesise that one way that drought reduces productivity in grasslands is by changing soil 

moisture. In other words, they hypothesise that soil moisture is a mediator through which 

drought affects productivity in grasslands (Fig. 1A). The researchers are not only interested in 

determining whether changes in soil moisture induced by drought lead to changes in 

productivity. They also want to quantify how much of the influence of drought on 

productivity comes from this change in soil moisture: “On average, about 𝑋% of the effect of 

a drought treatment on productivity arises from the effect of drought treatment on soil 

moisture.” The researchers are aware that soil moisture may not be the sole mediator [other 

mediators could include species compositional changes or the amount, quality, and 

decomposition rate of surface organic litter (see Joos et al., 2010; Schuster, 2016; Seres et al., 

2022)], but they choose soil moisture as the mediation effect to quantify in the study. 

Estimating the effects of multiple mediating variables within one study can bring additional 

challenges that are discussed briefly in Section 5 of Appendix S1 (see online Supporting 

Information). 



 

3 

3 

 
Fig. 1. (A) The hypothesis for our hypothetical drought study expressed as a causal diagram in which arrows 

imply causal relationships between variables. For visual simplicity, the continuous variables soil moisture and 

productivity are represented as binary. (B) Results from the hypothetical experiment on 12 grassland plots, 

where six plots have been randomly assigned treatment with a rainout shelter. Rainout shelters reduce soil 

moisture by blocking precipitation, which in turn reduces plot productivity. (C) Photograph of a drought 

experiment with rainout shelters in Boulder, Colorado, USA. Photograph credit: Meghan Hayden.  
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In this experiment, researchers randomly assign grassland plots to a rainfall exclusion 

treatment, which mimics meteorological drought conditions by preventing access to rainfall 

using overhead shelters (Fig. 1B, C), as in the International Drought Experiment (Smith et al., 

2024). Sometime after random assignment of the treatment, the researchers measure soil 

moisture and productivity on each plot. Thus, the drought treatment is binary and soil 

moisture and productivity are continuous variables. We assume that the idealised 

experimental conditions for a randomised controlled trial are met (Cox, 1958; Neyman, 

Iwaszkiewicz & Kolodziejczyk, 1935; Rubin, 1974; reviewed in Kimmel et al., 2021). At the 

end of the experiment, the plots randomly assigned to the drought treatment are found to 

exhibit, on average, decreased productivity in comparison to the control plots (Fig. 1B). 

By using an illustrative example in which researchers randomly assign the treatment, we 

can focus on the key issues that arise in all study designs aimed at estimating the effects of 

mediators, whether the treatment is randomised or not. Although the drought treatment was 

randomised across plots, the mediator, soil moisture, was not. This feature is common in 

experimental designs in ecology, because randomising intermediary ecological processes is 

challenging (see Section V.1). 

When estimating the causal effect of a mediator in a design that does not randomise the 

mediator, we face the same challenges that must be addressed in any observational design, 

particularly the challenge of eliminating the effects of other variables that influence both soil 

moisture and productivity, such as the influence of grazing by herbivores (Eldridge et al., 

2017; Sitters & Olde Venterink, 2015; Veldhuis et al., 2014). Variables like herbivory and the 

challenges they pose for estimating the effects of mediation are described in more detail in 

Sections III, IV, and V. Even if it were possible to conduct a follow-up experiment in which 

soil moisture was randomised, or both soil moisture and drought were randomised, drawing 

inferences about the mediation effects in the original experiment can be challenging (see 

Section V.1). 

 

 

III. CONCEPTS 

 

In this section, we introduce terminology that is used to distinguish the roles of key variables 

in a system, define the causal effects to be estimated, determine how to estimate these effects 

without bias, and communicate the results. Familiarity with this terminology is useful for 

articulating and verifying the assumptions required to make causal claims in a study. 

 

 

(1) Causal graphs 

 
To identify hypothesised causal relationships in a study, communicate the underlying 

assumptions required for causal inference, and obtain guidance on appropriate statistical 

analyses, researchers often use a causal directed acyclic graph (DAG), like the graph in Fig. 

1A (Digitale, Martin & Glymour, 2022; Greenland, Pearl & Robins, 1999; Pearl, 2000). In 

DAGs, arrows between variables imply causal dependence between the variables but do not 

specify a functional relationship (i.e. they are ‘non-parametric’). DAGs are directed, meaning 
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that arrows defining causal relationships go in only one direction between two variables; there 

are no bidirectional arrows. The absence of an arrow between two variables implies that the 

researchers assume no causal relationship between the variables. Additionally, DAGs do not 

allow for feedback loops or paths of directed arrows that create a closed loop, hence they are 

‘acyclic’. Bidirectional and feedback relationships usually reflect unresolved temporally 

ordered effects or the presence of unmeasured causes (Hernán & Robins, 2006; Murray & 

Kunicki, 2022; Pearce & Lawlor, 2017). A complete DAG includes all known or hypothesised 

causes that are shared by any pair of variables represented in the causal diagram. For 

example, a complete DAG representing the natural drought system on which our hypothetical 

experiment is based should include all variables that causally influence both drought and soil 

moisture, along with all variables that causally influence both soil moisture and productivity, 

plus all variables that causally influence drought and productivity (i.e. all ‘common causes’). 

Path diagrams of structural equation models (SEMs) are a special case of DAGs that include 

additional parametric and distributional assumptions (Kunicki, Smith & Murray, 2023; Pearl, 

2000; Shipley, 2000). 

 

 

(2) Variables in mediation analysis 

 

Before designing or conducting the hypothetical drought experiment, ecologists may use a 

DAG to describe their hypothesis about the natural drought system and identify the relevant 

variables in the study. We begin with an incomplete DAG that does not yet include all 

relevant variables in the drought study (Fig. 2A). In experimental designs, the manipulated 

causal variable is typically referred to as the treatment or exposure. In our hypothetical study, 

the treatment is drought, which is represented by two possible states: a treated state in which 

drought conditions are applied through rainout shelters and a control state in which no 

drought conditions are applied. This treatment is binary, but it could be discrete (e.g. ‘low’, 

‘medium’, ‘high’) or continuous (e.g. millimetres of precipitation). The treatment is 

randomised across units, which are plots in our example study (Fig. 1B). The variable 

hypothesised to be causally affected by a change in the treatment is referred to as the 

outcome, which in the case of our example study is aboveground grassland productivity in a 

plot. 

Since soil moisture is hypothesised to act as a causal intermediary between the treatment 

and outcome in the drought study, it is referred to as a mediator. A mediator is always on the 

causal path, that is, the path between a treatment and an outcome (indicated in red in Fig. 2). 

The process through which the treatment’s effect arises via one or multiple mediators is called 

mediation, and the set of methodologies by which the magnitudes of the mediating effects are 

estimated is known as mediation analysis. In an ecological system, there can be multiple 

mediators by which a treatment can affect an outcome, and multiple mediators can be on the 

same causal path (Fig. 2B). 
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Fig. 2. Causal diagrams of potential hypotheses for the hypothetical drought system with (A) only the treatment 

𝐷, mediator 𝑀, and outcome 𝑃 [an incomplete directed acyclic graph (DAG)]; (B) multiple mediators between 

the treatment and the outcome; (C) a moderator 𝐿 that interacts with the drought treatment to affect the 

relationship between treatment and outcome; (D) treatment–mediator confounder 𝑊, mediator–outcome 

confounder 𝐺, and treatment–outcome confounder 𝐾; (E) an alternative exposure of interest 𝐽 that relabels the 

original treatment 𝐷 as a mediator; and (F) the causal path of the incomplete DAG in A labelled to indicate the 

total effect 𝑐′, direct effect 𝑐, and indirect effect composed of 𝑎 and 𝑏. 𝐷 = drought, 𝑀 = soil moisture, 𝑀2 = 

secondary mediator (e.g. photosynthesis), 𝑀3 = alternative mediator (e.g. surface organic litter), 𝑃 = 

productivity, 𝐿 = soil type, 𝑊 = topography, 𝐾 = temperature, 𝐺 = historical grazing, 𝐽 = cloud seeding. Causal 

paths are in red. 

 

Mediators are often confused with moderators, which leads to misconceptions and 

misinterpretations in causal analyses (Ferraro & Hanauer, 2015; Holmbeck, 2019; Kraemer et 

al., 2008; Wu & Zumbo, 2008). Mediators and moderators play very different roles in the 

effect of a treatment on an outcome, and thus the distinction between the two is important for 

valid causal mediation analyses (Baron & Kenny, 1986; MacKinnon, 2011). Moderators do 

not lie on the causal path but instead affect or ‘moderate’ the strength or direction of a causal 
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effect. Moderators interact with treatments and mediators to alter their effects on the outcome, 

a phenomenon known as interaction or ‘effect modification’. In the drought system, for 

instance, soil type or texture in each plot can modify the effect of drought on productivity 

(Fig. 2C). For example, drought may have a different effect on soil moisture in clay soil than 

in sandy soil, because clay soil can retain moisture for longer periods. The moderation of the 

effect of drought on soil moisture would thus modify the overall effect of drought on 

productivity across different soil types, creating heterogeneous treatment effects. If 

distinguishing the heterogeneous effects of drought on productivity for different soil types is 

of interest, moderator or subgroup analysis can be used (VanderWeele, 2012a; Wu & Zumbo, 

2008). Moderator analysis can also be combined with mediation analysis (VanderWeele, 

2012a, 2014; Wu & Zumbo, 2008). While we focus on methods for estimating causal 

mediation effects, interactions created by moderators introduce heterogeneity that must be 

handled appropriately to estimate mediation effects without bias (see Sections IV and VI and 

Section 3 in Appendix S1). 

Factors that influence at least two variables along the causal path are known as 

confounders, or ‘common causes’. Confounding is a major concern for estimation of causal 

effects, as confounders induce dependence between treatment, mediator, and outcome that 

may not be due to true causal relationships. Confounders can therefore mask or mimic causal 

relationships among treatment, mediator, and outcome. Hence, failure to account for 

confounders leads to bias in the estimation of causal effects (Addicott et al., 2022). Consider 

the potential confounders W, K, and G in the drought system (Fig. 2D). Treatment–mediator 

confounders, such as topographic features or climate zones, influence both drought and soil 

moisture (W in Fig. 2D). Treatment–outcome confounders, like temperature (K in Fig. 2D), 

can affect grassland productivity as well as the frequency and duration of drought. Mediator–

outcome confounders, such as historical grazing (G in Fig. 2D), affect both soil moisture and 

productivity. Like moderators, confounders do not lie on the causal path. 

The labels ‘treatment’, ‘mediator’, and ‘outcome’ are context dependent. Drought, for 

example, could be viewed as a mediator if we consider an expanded version of the drought 

system where the manipulated treatment is cloud seeding, which is hypothesised to influence 

grassland productivity through drought and soil moisture (Fig. 2E). While these labels may be 

somewhat artificial when describing an ecological system, adhering to causal terminology is 

helpful for clearly identifying key parts of a study and their respective roles when estimating 

causal effects. This nomenclature has not been used in a standardised manner in ecology and 

related fields like conservation science, which makes it difficult to identify the roles of the 

variables under investigation in a study and the assumptions that researchers presume are met 

when estimating mediation effects, including which confounders are accounted for and which 

are not (Arif & MacNeil, 2023; Kimmel et al., 2021). Having identified the relevant 

components of a causal DAG that represents a study system, we next describe the effects to 

be estimated in mediation analysis. 
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(3) Effects in mediation analysis 

 
In mediation analysis, we are interested in breaking down the overall effect of a treatment on 

an outcome into its constituent parts through one or more mediators in the system (Fig. 2F). 

The overall effect of a treatment on an outcome is known as the total effect, which includes 

the effects of all conceivable mediators along all possible paths from the treatment to the 

outcome (path 𝑐′ in Fig. 2F). The total effect represents the change in the outcome when the 

treatment is changed from control to treated (if the treatment variable is binary), or when the 

treatment is changed by one unit value (in the case of a discrete or continuous treatment) 

while holding all other variables not on the causal path constant. The total effect provides no 

information on the contribution of individual mediating pathways to the effect of the 

treatment on the outcome. 

The effect of the treatment on the outcome that operates through an observed mediator is 

known as an indirect effect, which captures the magnitude of the relationship between the 

treatment and outcome that is attributable to the mediator. Hence, an indirect effect is 

sometimes referred to as a ‘mediated effect’ (VanderWeele & Vansteelandt, 2014; 

MacKinnon, Fairchild & Fritz, 2007a). An indirect effect is influenced by both the magnitude 

and direction of the relationship between the treatment and mediator (path 𝑎 in Fig. 2F) and 

by the magnitude and direction of the relationship between the mediator and the outcome 

(path 𝑏 in Fig. 2F). 

The causal effect of the treatment on the outcome that is not transmitted through the 

mediator of interest is referred to as the direct effect (path 𝑐 in Fig. 2F). The direct effect is 

not equivalent to an unmediated effect, although some texts refer to it as such. Indeed, there is 

no such thing as a truly unmediated causal effect (Le Poidevin, 2007; Mellor, 1995). The 

direct effect represents the effect through all other pathways from the treatment to the 

outcome that are not of interest or are unobservable to the researchers. We therefore think of 

the direct effect as the part of the total effect that does not pass through the mediator of 

interest. In many causal diagrams, the direct effect is not drawn but is implied (e.g. Fig. 2A, 

B, D and E). 

In our hypothetical drought study, the total effect of drought 𝐷 on grassland productivity 

𝑃 represents the causal effect that would occur if we could change drought in a grassland plot 

from the control state (no rainout shelter), 𝐷 = 0, to the treated state (with rainout shelter), 

𝐷 = 1. Hence, the total effect for a given plot is often referred to as the individual treatment 

effect.  

In an idealised version of our hypothetical study in which no confounders, moderators, or 

interactions exist (Fig. 2A), a highly unlikely scenario in most experimental and observational 

ecological studies, we could estimate the total effect of drought on productivity using the 

equation 

 𝑃𝑖 = 𝛽0 + 𝛽1𝐷𝑖 + 𝜀𝑖1,   𝑖 = 1, … , 𝑛 , (1) 

where 𝐷𝑖 is the treatment indicator for plot 𝑖, 𝑃𝑖 is the plot-level productivity, 𝛽0 represents 

the mean productivity across all control plots, 𝛽1 represents the total effect of drought on 

productivity averaged over all 𝑖 plots, and 𝜀𝑖1 are plot-level random errors. 
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In our example drought study, the total effect is hypothesised to be mediated, at least in 

part, by soil moisture M, which means that the total effect is composed of (1) the indirect 

effect, which is the effect that would occur if 𝐷 were fixed at 1 and the value of soil moisture 

were changed from the value it takes when 𝐷 = 0 to the value it takes when 𝐷 = 1, and (2) 

the direct effect, which is the effect that would occur if 𝐷 were changed from 0 to 1 but the 

value of soil moisture were held to the value it takes when 𝐷 = 0.  

To estimate the average direct and indirect effects across all plots in the idealised version 

of our hypothetical study in which no confounders exist, we would use the following two 

equations: 

 𝑀𝑖 = 𝜃0 + 𝜃1𝐷𝑖 + 𝜀𝑖2 (2) 

 𝑃𝑖 = 𝛿0 + 𝛿1𝐷𝑖 + 𝛿2𝑀𝑖 + 𝜀𝑖3 ,   𝑖 = 1, … , 𝑛 , (3) 

where 𝐷𝑖 and 𝑃𝑖 are defined as in Equation (1), 𝑀𝑖 is the soil moisture on plot 𝑖, 𝜃0 and 𝛿0 are 

intercepts, and 𝜀𝑖2 and 𝜀𝑖3 are plot-level random errors. The direct effect of drought on 

productivity not going through soil moisture averaged over all plots would be represented by 

𝛿1. The indirect effect of drought on productivity that operates through soil moisture averaged 

over all plots would be calculated as θ1δ2 using the product method (Baron & Kenny, 1986; 

see Section 2 of Appendix S1 for details and for indirect effects defined when the mediator 

and outcome are not continuous). In Section VI, we introduce other definitions of mediation 

effects that may also be of interest to ecologists.  

In real-world studies, Equations (1) – (3) are rarely sufficient for estimating the direct, 

indirect, and total effects without bias because the prevalence of confounders, moderators, 

and interactions in most ecological contexts can obscure the true causal effects (for details on 

how confounding can introduce bias into the effects defined with Equations (1) – (3), see 

Section 1 in Appendix S1). These empirical challenges are present regardless of whether the 

studies are conducted in experimental or observational settings.  

To address these challenges effectively, we need a systematic approach to mediation 

analysis that clearly specifies the necessary criteria for drawing valid conclusions about 

causal relationships. In the next section, we outline the causal and statistical assumptions 

necessary for estimating effects in mediation analysis without bias. In subsequent sections, we 

examine approaches to quantifying effects in mediation analysis and discuss the conditions 

under which these approaches may or may not satisfy key causal assumptions. 

 

 

IV. CAUSAL ASSUMPTIONS FOR ESTIMATING EFFECTS IN MEDIATION 

ANALYSES 

 
To draw causal inferences about effects in mediation analysis using experimental or 

observational data, we must make several causal and statistical assumptions (Pearl, 2001b, 

2009; VanderWeele, 2015). In this section, we describe the foundational causal assumptions 

common to all mediation analyses (VanderWeele, 2015), and we distinguish them from the 

statistical assumptions that are often of focus in ecological analyses. These causal 
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assumptions are required to guide the selection of designs in ecological mediation studies. 

The foundational causal assumptions are as follows: 

Assumption A1 No unmeasured treatment–outcome confounders, i.e. no unmeasured variables 

that influence both the treatment and the outcome. 

Assumption A2 No unmeasured treatment–mediator confounders, i.e. no unmeasured variables 

that influence both the treatment and the mediator. 

Assumption A3 No unmeasured mediator–outcome confounders, i.e. no unmeasured variables 

that influence both the mediator and the outcome. 

Assumption A4 No mediator–outcome confounders (measured or unmeasured) that are 

influenced by the treatment. 

Assumption A5 No interaction between the treatment and mediator. 

Assumption A6 Mediation effect is not influenced by moderators. 

Assumption A7 No hidden variation (multiple versions) of treatment or mediators. 

Assumption A8 No interference among units (i.e. the treatment condition of one unit does not 

influence the mediator or outcome of other units). 

Assumption A9 Treatment temporally precedes the mediator, and mediator temporally precedes 

the outcome (i.e. no reverse causality). 

As we describe in subsequent sections, ecologists interested in quantifying mediation 

effects must find ways to satisfy these causal assumptions or relax them. Assumptions A1–A4 

address confounding variables that can introduce bias in mediation analysis (Fig. 3). In our 

hypothetical drought study, if we expect temperature, topography, and historical grazing to be 

confounders (as in Fig. 3A–C, respectively), all three variables must be measured during the 

study to satisfy Assumptions A1–A3. Assumption A4 means that drought (i.e. the presence or 

absence of the rain shelters) should not influence historical grazing (as in Fig. 3D). A 

violation of this assumption is not possible in our hypothetical study, because historical 

grazing occurred before application of the drought treatment. Assumptions A5–A8 address 

other factors that can introduce bias and create challenges for interpretation of mediation 

effects. For example, Assumption A5 means that the effect of drought on productivity is not 

affected by the level of soil moisture. This assumption would be violated if the effect of 

drought on productivity was more severe or pronounced when soil moisture was already low. 

Assumption A6 means that effect of drought on the soil moisture and the effect of soil 

moisture on productivity are the same across all soil types. If soil type alters either of these 

relationships, Assumption A6 is violated (as in Fig. 2C). Assumption A7 requires that the 

researchers use exactly the same rain shelter for all treatment plots – if some rain shelters 

have perforated plastic to block rainfall while others have plastic slats, this assumption is 

violated. Assumption A8 means that applying the rain shelter on one plot should not influence 

soil moisture or productivity in a different plot. One way to satisfy this assumption would be 

to space the experimental plots far enough apart. 
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(A) Assumption 1: The treatment–outcome 

confounder 𝐾 cannot be unmeasured. 

(B) Assumption 2: The treatment–mediator 

confounder 𝑊 cannot be unmeasured. 

  

  
(C) Assumption 3: The mediator–outcome 

confounder 𝐺 cannot be unmeasured. 

(D) Assumption 4: The mediator–outcome 

confounder 𝐺 cannot be influenced by the 

treatment 𝐷, regardless of whether 𝐺 is 

measured or unmeasured. 

 

Fig. 3. Causal diagrams illustrating four causal assumptions related to confounding variables that could exist in 

our hypothetical drought study. Labels are as in Fig. 2. The confounder addressed by each assumption is shown 

in orange. 

 

Causal assumptions are distinct from statistical assumptions, which permit valid 

population-level statistical inferences from available sample data (Berry, 1993). Statistical 

assumptions primarily focus on correct model specification (e.g. additive relationships 

between measured variables) and model-specific assumptions about the distribution of the 

data and properties of the residuals (e.g. constant variance, independent errors, normality). 

Statistical assumptions are theoretically valid with sufficiently large data sets, and much work 

has gone into developing methods to obtain valid inference in the presence of violations to 

many common statistical assumptions (Wilcox, 2010). 

Unlike statistical assumptions, causal assumptions cannot be expressed using probability 

calculus, and they cannot be verified without extensive experimental controls, even with 

unlimited data, because these assumptions reflect conceptual beliefs about unobserved, and 

therefore unmeasured, variables (Pearl, 2001a; Stone, 1993). Thus, determining whether 

causal assumptions have been satisfied is subjective, and their plausibility in a specific 

context is ascertained by a mix of theory, field knowledge, and indirect tests. 

Without an explicit description and justification of the causal assumptions on which a 

mediation study relies, the scientific community cannot assess the credibility of any causal 

claims in the study. Notably, half of the causal assumptions (Assumptions A1–A4) explicitly 

address confounders, underscoring the numerous ways in which confounding can distort 

relationships among treatment, mediator, and outcome in ecological mediation analyses. 

Ecologists are often aware of the threat of confounding in ecological studies and attempt to 

address it through experimental designs in which the treatment is randomised. For example, 
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since the drought treatment in our hypothetical study is randomised, Assumptions A1 and A2 

can be satisfied by statistical theory. In the absence of treatment randomisation, we would 

need to account explicitly for all treatment–outcome and treatment–mediator confounders, 

increasing the challenge of estimating mediation effects without bias (Imai, Keele & Tingley, 

2010; Pearl, 2014; VanderWeele, 2015). 

Importantly, randomisation of the treatment does not imply that Assumptions A3 or A4 are 

satisfied (for further explanation of the intuition for this claim using our drought study, see 

Section 2 in Appendix S1). Mediator–outcome confounders are ubiquitous but are often 

overlooked in studies of ecological processes like our hypothetical drought study. When 

unaccounted for, mediator–outcome confounders can introduce bias into estimated effects of 

mediated pathways.  

Addressing mediator–outcome confounding is therefore essential for ensuring that 

observed relationships between treatments and outcomes truly reflect ecological mechanisms 

rather than the influences of confounders. To satisfy Assumptions A3 and A4 in an experiment 

in which the treatment was randomised, researchers must either measure these confounders or 

eliminate their effects through specific research designs or statistical techniques (see Sections 

V.1–V.4). If violations to Assumptions A3 or A4 are still suspected in a study, researchers 

should quantify how robust the estimated effects are to such violations (Section V.5).  

Confounders are not the only concern in studies aiming to quantify the effects of 

ecological mechanisms. If ecologists are unable to satisfy Assumptions A5–A8, such as in 

studies with heterogeneous treatment effects and interactions between the treatment and 

mediator, they may have to use a causal inference framework (Section VI) or change their 

definitions of indirect and direct mediation effects (Section 6 in Appendix S1). Therefore, 

ecological mediation analyses must address a variety of threats to estimate accurately the 

effects of ecological mechanisms. The causal assumptions for mediation analysis 

(Assumptions A1–A9) serve as a comprehensive list of conditions necessary for valid 

inferences and, just like statistical assumptions, cannot be ignored.  

In the next section, we presume Assumptions A1 and A2 are satisfied (e.g. via 

randomisation, as in our drought experiment example), and we explore ways in which we can 

address mediator–outcome confounders to satisfy Assumptions A3 and A4 and assess the 

robustness of the estimated mediation effects to violations of these assumptions. In Section 

VI, we introduce the potential outcomes causal inference framework that can help us address 

potential violations to Assumptions A5–A8. Overcoming violations to temporal precedence is 

fundamentally difficult (Pearl & Verma, 1995); thus, we presume Assumption A9 can be met 

for all mediation analyses discussed herein. 

 

 

V. ADDRESSING MEDIATOR–OUTCOME CONFOUNDERS 

 
Even in studies where we have satisfied Assumptions A1 and A2, we must also eliminate the 

effects of mediator–outcome confounders (i.e. satisfy Assumptions A3 and A4) to estimate 

mediation effects without bias (James & Brett, 1984). For example, consider again our 

hypothetical drought study, but imagine that, prior to the experimental stage, some plots 

experienced heavy grazing by herbivores while other plots had little to no grazing activity 
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(Fig. 4). Suppose that plots with historically more grazing are also, on average, less 

productive and have less soil moisture in the current period, perhaps through soil compaction 

by grazers (Eldridge et al., 2017; Sitters & Olde Venterink, 2015; Veldhuis et al., 2014). The 

correlation of historical grazing with both soil moisture and productivity introduces bias into 

the estimation of the effect of drought on productivity and the effect of soil moisture on 

productivity (see Section 2 in Appendix S1 for details). Thus, when the assumption of no 

unmeasured mediator–outcome confounding is violated, estimated mediation effects cannot 

be imbued with causal interpretations, even in experimental designs in which the treatment is 

randomised (Holland, 1988; MacKinnon, 2012; VanderWeele & Vansteelandt, 2009). 

Although the assumption of no unmeasured mediator–outcome confounding is likely violated 

in practice, it is typically not explicitly stated or interrogated in ecological studies. 

In the next five subsections, we describe approaches that can address mediator–outcome 

confounders and can be implemented using linear regression models. For each approach, we 

describe when and how it can mitigate the effects of mediator–outcome confounders and the 

challenges faced in implementing the approach. 

 

 

(1) Experimental manipulation of mediators 

 

One way to eliminate the effects of mediator–outcome confounders is to randomise the 

mediator in an experimental design, i.e. a ‘manipulation-of-mediator’ design (Carnevale et 

al., 1988; Pirlott & MacKinnon, 2016). Although these designs are less common in ecology, 

there are some examples of ecological experiments that randomised a suspected mediator. For 

instance, to quantify how productivity reduces plant species richness through shading, studies 

have manipulated ground light availability directly (Eskelinen et al., 2022; Hautier, Niklaus & 

Hector, 2009). 

In manipulation-of-mediator approaches, direct manipulation of the mediator typically 

requires at least two experiments with separate, independent manipulations of the treatment 

and mediator to isolate the treatment’s effect from the mediator’s effect on the outcome (Imai, 

Tingley & Yamamoto, 2013; Pirlott & MacKinnon, 2016). For example, a double-

randomisation design splits the sample into two subsamples. In the first subsample the 

treatment assignment is randomised, and both the mediator and outcome are measured. In the 

second subsample, the assignment to different mediator values is randomised (disregarding 

the treatment variable) and the outcome is measured (Pirlott & MacKinnon, 2016). Other 

experimental designs that manipulate the mediator are also available, such as parallel designs, 

cross-over designs, and blockage and enhancement manipulation designs (Jacoby & 

Sassenberg, 2011; Pirlott & MacKinnon, 2016). These designs provide experimental design-

based solutions for ecologists interested in quantifying mediating effects in a wide range of 

contexts. 
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Fig. 4. (A) A revised causal directed acyclic graph (DAG) of the hypothesis for our hypothetical drought study 

with the addition of a mediator–outcome confounder, historical grazing. For visual simplicity, the continuous 

variables soil moisture and productivity are represented as binary. The effect of historical grazing cannot be 

eliminated through randomisation of the drought treatment. (B) Results from the hypothetical experiment on 12 

grassland plots, where six plots have been randomly assigned treatment with a rainout shelter. The historical 

presence of herbivores also reduces soil moisture through compaction of substrate and reduces productivity 

through grazing. Historical grazing is not manipulated or randomised, but it could be measured during the 

experimental phase: herbivores grazed on four of the plots, with no preference towards treated or control plots 

(as expected from randomisation of the rainout shelters). 

 

While manipulation-of-mediator designs eliminate mediator–outcome confounders, other 

considerations must be addressed when estimating mediation effects in these designs 

(Bullock, Green & Ha, 2010). Choosing meaningful values for manipulating the mediator in a 

way that accurately represents natural changes in the mediator as caused by the treatment can 

prove difficult. Additionally, manipulating the mediator, if it is indeed a process or 

consequence of the treatment, requires either the manipulation of the treatment or of another 

cause of the mediator. For example, in our hypothetical drought study, inducing values of soil 

moisture that occur when drought is present (𝐷 = 1) in plots that are assigned to the no-
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drought condition (𝐷 = 0) may be impossible without manipulating another causal factor, say 

𝑍, to induce changes in soil moisture. 

Manipulation-of-mediator designs also create challenges for quantifying the effects of the 

treatment and mediator on an outcome. Experimental manipulation of a mediator can affect 

the outcome in ways that are undesirable for capturing the effect of treatment on outcome 

through the mediator (Bullock et al., 2010), leading to difficulty in separating the direct and 

indirect effects of treatment on the outcome (Imai et al., 2010). Returning to our hypothetical 

drought study, if 𝑍 is manipulated for drought-absent (𝐷 = 0) plots to obtain values of soil 

moisture (𝑀) that would occur in drought-treated (𝐷 = 1) plots without actually changing 

drought (𝐷), then productivity under 𝐷 = 0 is likely no longer being influenced by changes in 

𝐷 through 𝑀, producing misleading estimates of indirect effects through soil moisture. Thus, 

directly manipulating the mediator may result in violations to the causal assumption of no 

multiple versions of the treatment (Assumption A7; Kimmel et al., 2021). It may therefore be 

preferable to encourage or discourage experimental units to take on particular mediator 

values, resulting in imperfect manipulation of the mediator that can still be informative. Such 

designs include parallel encouragement designs and crossover encouragement designs (Imai 

et al., 2013; Pirlott & MacKinnon, 2016). 

Even if we could address the quantification and interpretation challenges of manipulation-

of-mediator designs, mediating variables in ecology are often ecological processes that are 

difficult to manipulate. For instance, carbohydrate reserves are a hypothesised mediator of 

drought’s effect on tree mortality (Adams et al., 2017); and local adaptation and functional 

diversity are hypothesised mediators of biodiversity’s effect on productivity in decomposers 

(Keiser et al., 2014). Carbohydrate reserves, local adaptation in decomposers, and 

decomposers’ functional diversity are challenging ecological variables to manipulate directly. 

Thus, many ecological experiments are similar to our hypothetical drought experiment in 

which the mediator is not randomised but instead measured for each plot (i.e. a 

‘measurement-of-mediator’ designs; Spencer, Zanna & Fong, 2005). In the next four 

subsections, we explore approaches in measurement-of-mediator designs either to eliminate 

the effects of mediator–outcome confounders or to quantify the degree to which the estimates 

of mediation effects would change if the effects of all mediator–outcome confounders have 

not been eliminated in a study. 

 

 

(2) Measured mediator–outcome confounders 

 

In the absence of experimental manipulation of the mediator, we must eliminate the effects of 

mediator–outcome confounders through other means. The assumption that a study’s research 

design has controlled for all possible confounders is a strong assumption that is unstated in 

many mediation analyses (Bollen & Pearl, 2013; Grace, Scheiner & Schoolmaster, 2015; 

Kunicki et al., 2023; VanderWeele, 2012b; VanderWeele & Rothman, 2021). In our 

hypothetical drought study, we assume that historical grazing (G) is a mediator–outcome 

confounder that influences both soil moisture and productivity (Fig. 4). If historical grazing 

had been measured for each of the plots, we would estimate the mediation effects using the 

following three equations: 
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 𝑃𝑖 = 𝛽0 + 𝛽1𝐷𝑖 + 𝜀𝑖1 (4) 

 𝑀𝑖 = 𝜃0 + 𝜃1𝐷𝑖 + 𝜀𝑖2 (5) 

 𝑃𝑖 = 𝛿0 + 𝛿1𝐷𝑖 + 𝛿2𝑀𝑖 + 𝛿3𝐺𝑖 + 𝜀𝑖3 ,   𝑖 = 1, … , 𝑛 , (6) 

where 𝐷𝑖  is the treatment assigned to plot 𝑖; 𝑃𝑖 is the plot-level productivity; 𝑀𝑖 is the plot-

level soil moisture; 𝐺𝑖 is the amount of historical grazing on plot 𝑖; 𝛽0, 𝜃0, and 𝛿0 are 

intercepts; 𝛽1, 𝜃1, 𝛿1, 𝛿2, and 𝛿3 are regression coefficients; and 𝜀𝑖1, 𝜀𝑖2, and 𝜀𝑖3 are plot-level 

error terms (e.g. 𝜀𝑖3 represents all other plot-level variation not accounted for by drought, soil 

moisture, or historical grazing). The average productivity of all plots under the no-drought 

control is represented by 𝛽0, while 𝛽1 represents the average change in productivity across all 

plots when going from the control state (𝐷 = 0) to the drought-treated state (𝐷 = 1). 

Some mediation studies in ecology use only Equations (4) and (5) to estimate a 

dependence between the treatment and the outcome and between the treatment and the 

mediator, respectively. If the dependencies are statistically significant, the studies claim to 

have detected a mediator in the system (Borer et al., 2014; Cadotte, 2017; Fornara & Tilman, 

2009; Liu et al., 2018; Oliveira, Moore & Dong, 2022; Tian et al., 2016). This ‘two-part 

estimation approach’ has two important limitations: (1) the indirect effect cannot be 

quantified, i.e. we cannot estimate the proportion of the effect of drought on productivity that 

is mediated by soil moisture; and (2) multiple conclusions can be drawn from the results, 

including a conclusion that the hypothesised mediator plays no mediating role at all (see 

Section 1 in Appendix S1 for details). 

By including historical grazing in a regression equation of productivity as a function of 

both the treatment and mediator (Equation 6), we eliminate the part of the effect of soil 

moisture on productivity that is due to the correlation with historical grazing (Fig. 5A). If we 

further assume that that no other mediator–outcome confounders exist (Assumption A3), then 

Equation (6) will produce estimates of both 𝛿1 and 𝛿2 without bias. If the estimated total 

effect of drought on productivity is negative (β1̂ < 0, where ̂  denotes an estimated quantity) 

then drought reduces productivity on average across plots (Fig. 5B). If the estimated effect of 

drought on soil moisture is negative (𝜃1̂ < 0) and the estimated effect of drought on 

productivity increases when both soil moisture and historical grazing are included in the 

model (𝛿1̂ > 𝛽1̂), then drought reduces productivity by reducing soil moisture on average. In 

other words, after controlling for the mediator–outcome confounder (historical grazing), the 

negative effect of drought on productivity is smaller in magnitude (i.e. smaller in absolute 

value) when the effect of soil moisture on productivity is held constant. This procedure is 

characteristic of analyses using SEMs in ecology (e.g. Grace et al., 2016), although such 

analyses are not typically framed in these terms. To estimate the effect of drought on 

productivity through soil moisture using Equations (5) and (6), we can use the product 

method, in which the indirect effect is θ1δ2 (see Section 2 in Appendix S1 for details and for 

indirect effects defined using the three-part procedure when the mediator and outcome are not 

continuous). 
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Fig. 5. Mediation analysis of the hypothetical drought study is subject to bias arising from confounders. (A) If a 

mediator–outcome confounder exists, such as historical grazing 𝐺, and is measured in the study, bias from 𝐺 can 

be eliminated by including the variable as in Equation (6). (B) The three-part procedure estimates four 

components of the relationship between 𝐷 and 𝑃. (C) The procedure assumes no mediator–outcome 

confounders, but the effect of drought can operate through other mediators, such as 𝑀2, in addition to soil 

moisture. However, 𝑀 must not be affected by any other mediators; e.g. 𝑀2 becomes a mediator–outcome 

confounder that is influenced by the treatment if the dashed red path exists (a violation of Assumption A4). 

Labels are as in Fig. 2. 

 

Regardless of how the indirect effect is quantified, the effect is only estimated without 

bias if all mediator–outcome confounders are accounted for (Fig. 5A and C) and if the effect 

of soil moisture on productivity is homogeneous across different levels of drought, i.e. there 

is no interaction between drought and soil moisture (Valeri & Vanderweele, 2013). For a 

detailed explanation of the bias that arises in the presence of heterogeneous effects using the 

hypothetical drought study, see Section 3 in Appendix S1, but see Section VI for options to 

relax Assumption A5.  

In real ecological systems, there will likely be many mediator–outcome confounders, and 

identifying and measuring them all will be challenging. Additionally, many confounders (e.g. 

historical grazing patterns, weather, soil composition) are multi-dimensional, and identifying 

and measuring the relevant dimensions can be difficult. In the next three subsections, we 

describe approaches for mediation analysis that do not rely on measuring every potential 

mediator–outcome confounder in all their relevant dimensions. 

 

 

(3) Unmeasured mediator–outcome confounders: instrumental variable designs 

 
Suppose that the mediator–outcome confounder historical grazing cannot be measured in our 

hypothetical drought experiment. Suppose also that there exists another variable that affects 

productivity only through its effect on soil moisture and is unrelated to the treatment (𝑉 in 

Fig. 6). For example, 𝑉 could be the presence of a sudden flooding event on some of the 

experimental plots due to nearby farms emptying their irrigation ponds, which would not be 

caused by the randomised application of drought treatments and would likely only affect 

productivity through its influence on soil moisture. When measured, 𝑉 can be used as an 

instrumental variable to estimate the effect of the mediator without bias, even in the presence 
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of mediator–outcome confounders. If we assume that 𝑉 only affects productivity through its 

effect on soil moisture (Fig. 6A), an untestable causal assumption known as the ‘exclusion 

restriction’, we can replace Equations (5) and (6) with  

 𝑀𝑖 = 𝜃0 + 𝜃1𝐷𝑖 + 𝜃2𝑉𝑖 + 𝜀𝑖2 (7) 

 𝑃𝑖 = 𝛿0 + 𝛿1𝐷𝑖 + 𝛿2�̂�𝑖 + 𝜀𝑖3 , (8) 

where 𝑉𝑖 is the presence or absence of the sudden flooding event at each plot 𝑖 and �̂�𝑖 is the 

fitted value of soil moisture estimated from Equation (7) (Chen et al., 2023; Dippel, Ferrara 

& Heblich, 2020). As in Section V.2, we can use the product method to estimate the indirect 

effect from Equations (7) and (8) as 𝜃1𝛿2. If the exclusion restriction assumption is violated 

(Fig. 6B), one cannot use Equations (7) and (8) to estimate the effect of soil moisture on 

productivity, 𝛿2, without bias.  

 

 
 

Fig. 6. Causal diagrams illustrating instrumental variable designs for mediation analysis. (A) In the presence of 

the unmeasured mediator–outcome confounder 𝐺, an instrumental variable 𝑉, e.g. a sudden flooding event, can 

be leveraged to estimate the effects of 𝐷 on 𝑃 that occur through 𝑀. (B) 𝑉 is not a valid instrumental variable if 

it affects 𝑃 through any other pathways, such as the dashed red path (a violation of the exclusion restriction). 

Labels 𝐷, 𝑀, 𝑃, and 𝐺 are as defined in Fig. 2. 

 

Finding and measuring instrumental variables that do not violate the exclusion restriction 

is challenging in ecological systems (Grace, 2021; Kendall, 2015; Rinella, Strong & 

Vermiere, 2020), although, in some cases, the assumption can be made more plausible after 

eliminating the effects of measured confounders (Section V.2). Furthermore, instrumental 

variable designs have interpretation challenges: unless the average effect of soil moisture is 

constant across plots, we can only estimate the indirect effect for a subgroup of plots (Angrist 

& Imbens, 1995; Frölich & Huber, 2017; Rudolph, Sofrygin & van der Laan, 2021; Wang & 

Tchetgen Tchetgen, 2018). 

 

 

(4) Unmeasured mediator–outcome confounders: longitudinal data designs 

 

The effects of unmeasured mediator–outcome confounders can also be eliminated if clustered 

longitudinal data on soil moisture and productivity have been collected. By ‘clustered’ 
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longitudinal data, we mean data on productivity and soil moisture from 𝑖 = 1, … , 𝑛 plots 

clustered within multiple sites 𝑠 = 1, … , 𝑆 and measured across multiple time points 𝑡 =

1, … , 𝑇 both before and after the drought treatment is randomly assigned (Fig. 7). In a 

randomised experiment, data from time points before random assignment of the drought 

treatment are not necessary to estimate the effect of drought on productivity without bias, but 

such data can be helpful for estimating the effects of a mediator like soil moisture by 

eliminating the effects of unobserved mediator–outcome confounders. While two time points 

(pre- and post-treatment) might allow for basic insights, more time points improve accuracy 

in mediation analysis by capturing the dynamics of change in ecological processes (Maxwell 

& Cole, 2007). The benefits of collecting such data for mediation studies in ecology will need 

to be balanced with the increased time and expense required for data collection. 

 

 
Fig. 7. Causal diagram for a longitudinal version of the hypothetical drought study for plot 𝑖 at site 𝑠. For 

simplicity, time is represented by two periods: 𝑡 and 𝑡 + 1. The diagram can be extended to include all times 𝑡 =

1, … , 𝑇. 𝐺𝑡 is the unmeasured mediator–outcome confounder at time 𝑡, and 𝐺𝑡+1 is the same unmeasured 

mediator–outcome confounder at the next time point 𝑡 + 1. All other labels are as defined in Fig. 2. 

 

Below, we describe two widely used approaches for eliminating mediator–outcome 

confounding effects: multilevel modelling and autoregressive modelling designs (Gelman & 

Hill, 2006; VanderWeele, 2015; Wooldridge, 2010). For a review of additional approaches to 

leveraging clustered longitudinal designs for causal inference, see Wooldridge (2010). As we 

will highlight in the following subsections, valid inference from clustered longitudinal data 

designs requires additional attention to modelling the structure of the data correctly (e.g. 

serial correlation of the errors). 

 

 

(a) Multilevel modelling approach 

 
Ecologists often analyse clustered longitudinal data using a multilevel model structure, which 

captures the clustered structure of the data by specifying at least two levels of equations: (1) 

first-level equations which model the observation-level data (e.g. productivity on each plot at 

each time period); and (2) higher-level equations, which include sets of equations for each 

grouping (e.g. productivity on each plot averaged over all time periods) (Gelman & Hill, 

2006). In this context, we use ‘clusters’ to refer to naturally occurring nested structures, such 
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as plots within sites, and ‘groupings’ to indicate arbitrary or model-driven structures. 

Modelling clustered longitudinal data with the classical multilevel structure, which is often 

referred to as mixed-effects modelling in ecology, includes error terms in each of the higher-

level equations and allows us to quantify the variation within and among various groupings 

(Bolker et al., 2009). To use mixed-effects modelling to estimate mediation effects without 

bias, we must assume that the unmeasured differences in the outcome among plots or among 

sites, including differences that arise from the effects of confounders, are uncorrelated with 

the model’s predictors (i.e. the drought treatment and the soil moisture mediator) (Gelman, 

2006; Seber & Lee, 2003). Even in ecological settings where the treatment is randomised, this 

assumption is likely violated. For a discussion on how bias arises in estimating mediation 

effects using mixed-effects modelling for the hypothetical drought experiment, see Section 4 

in Appendix S1. 

An alternative multilevel modelling approach can accommodate correlations between 

unmeasured differences among groupings and predictors in the model. This approach, 

sometimes called the Mundlak regression approach (Mundlak, 1978) or multilevel modelling 

for causal inference (Gelman & Hill, 2006), adds group-averaged predictors from the 

observation-level equations as predictors in the higher-level (i.e. plot level and site–time 

level) equations (Gelman, 2006; Gelman & Hill, 2006). These group-averaged predictors 

remove the effect of unmeasured plot-level and site-level confounding variables that do not 

vary over time or change very slowly, as well as unmeasured site-level confounding variables 

that change over time (for details, see Section 4 in Appendix S1 and Byrnes & Dee, 2024).  

To implement the multilevel approach for our hypothetical drought study, we include 

intercepts at the plot level and the site–time group level to account for unmeasured 

confounding at both levels. We provide the full set of multilevel equations for our 

hypothetical drought study in Section 4 of Appendix S1, but the primary difference between a 

traditional mixed-effects modelling approach and a multilevel modelling approach for causal 

inference lies in the inclusion of plot-averaged and site–time-averaged soil moisture terms in 

the higher-level equations. Recall that in the clustered longitudinal version of our drought 

study, a plot 𝑖 is observed at multiple time points 𝑡 = 1, … , 𝑇. We will represent an individual 

observation on plot 𝑖 at time 𝑡 as an observation ℎ. Thus, for an observation ℎ measured at 

time 𝑡 and belonging to plot 𝑖 within site 𝑠, we describe the effect of drought and soil 

moisture on productivity as 

 𝑃ℎ = 𝜙3,𝑖[ℎ] + 𝜇3,𝑠𝑡[ℎ] + 𝛿1𝐷ℎ + 𝛿2𝑀ℎ + 𝜀3,ℎ , 
(9) 

 𝑖 = 1, … , 𝑛; 𝑠 = 1, … , 𝑆; 𝑡 = 1, … , 𝑇; ℎ = 1, … , 𝑛𝑆𝑇 , 

where each site is composed of 𝑛𝑠 plots, for a total of 𝑛 = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑠 plots, and each 

plot is repeatedly measured over 𝑇 time points; 𝑖[ℎ] is the plot 𝑖 containing observation ℎ; 

𝑠𝑡[ℎ] is the site–time group containing ℎ; 𝑃ℎ, 𝐷ℎ, and 𝑀ℎ are the productivity, drought, and 

soil moisture values measured for an observation ℎ; 𝛿1 and 𝛿2 represent the effects of drought 

and soil moisture on productivity; 𝜙3,𝑖[ℎ] is the plot-level intercept; 𝜇3,𝑠𝑡[ℎ] is the site-time 

group-level intercept; and 𝜀3,ℎ is the error term. 
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To eliminate the effects of unmeasured mediator–outcome confounders, we must specify 

second-level equations for Equation (9) that include group-averaged soil moisture as 

predictors of the group-level intercepts. These equations are 

 𝜙3,𝑖 = 𝜙3• + 𝜈𝑀𝑖 + 𝜂3,𝑖 (10) 

 𝜇3,𝑠𝑡 = 𝜇3• + 𝜅𝑀𝑠𝑡 + 𝜂3,𝑠𝑡 , (11) 

where 𝜙3• is the average of the plot-varying intercepts 𝜙3,𝑖[ℎ]; 𝜇3• is the average of the site–

time group-varying intercepts 𝜇3,𝑠𝑡[ℎ]; 𝜈 is the coefficient for the predictor 𝑀𝑖 representing 

plot-level averages of soil moisture; 𝜅 is the coefficient for the predictor 𝑀𝑠𝑡 representing the 

site-time grouped means of soil moisture; 𝜂3,𝑖 is the plot-level error; and 𝜂3,𝑠𝑡 is the site-time 

group-level error. We can again use the product method to estimate the indirect effect as 𝜃1𝛿2 

(see Section 4 in Appendix S1 for details). 

In addition to assuming that time-varying, plot-level confounding variables are observed 

or do not exist, the multilevel modelling approach also requires three additional assumptions: 

(1) linearity and additivity of the effects; (2) the effects of the treatment and mediator do not 

change across groupings or over time; and (3) the outcome variable for the treated and control 

plots would have the same mean trend over time in the absence of treatment, conditional on 

𝜙𝑖 and 𝜇𝑠𝑡  (called the parallel trend assumption; Imai & Kim, 2021). These assumptions, 

particularly the parallel trends assumption, may not hold in long-term ecological experiments. 

More recent advances for multilevel models provide options for relaxing the assumptions of 

linearity (Imai & Kim, 2019), homogeneous treatment effects (de Chaisemartin & 

D’Haultfœuille, 2020), and parallel trends (Rüttenauer & Ludwig, 2023). 

 

 

(b) Autoregressive approach 

 
The multilevel modelling approach described in Section V.4.a assumes that the unmeasured 

mediator–outcome confounders are unchanging attributes of the system or time-varying site-

level attributes. Alternative approaches to modelling clustered longitudinal data require 

alternative assumptions about the potential sources of confounding. For example, 

autoregressive models with fixed effects, sometimes called ‘dynamic panel models’ in 

econometrics (Arellano & Bond, 1991; Blundell & Bond, 1998), can be used if the most 

likely sources of confounding are time-varying, plot-level attributes that are correlated with 

values of the outcome variable at previous time points (e.g. prior values of productivity affect 

current values of soil moisture). Autoregressive models with fixed effects can incorporate 

lagged effects and between-cluster effects over time, but like all approaches to mediation 

analysis, they rely on untestable causal assumptions (Bellemare, Masaki & Pepinsky, 2017). 

Some of these assumptions can be relaxed when these models are used within the SEM 

setting (Allison, Williams & Moral-Benito, 2017), but no autoregressive approach can address 

all potential sources of mediator–outcome confounders simultaneously. 
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(5) Sensitivity analyses for unmeasured mediator–outcome confounders 

 
The assumption of no unmeasured mediator–outcome confounders (Assumption A3) is not 

verifiable using data, but we can quantify uncertainty over potential violations of the 

assumption by drawing on a range of recent advances to (1) explore how the results change 

after using multiple estimation approaches that rely on different causal assumptions about the 

nature of mediator–outcome confounders (e.g., compare the estimated mediation effects from 

an instrumental variable design with the estimates from a multilevel model); or (2) assess the 

degree to which the sign or magnitude of the estimated effects could change if the assumption 

of no unmeasured mediator–outcome confounders is violated. Sensitivity analyses explore 

how much the estimated mediation effects can change in the presence of a specific source of 

confounding (Ding & VanderWeele, 2016; Imai et al., 2010; Hong, Qin & Yang, 2018; 

Sullivan & VanderWeele, 2021; VanderWeele, 2010). By contrast, partial identification 

approaches estimate mediation effects under the least restrictive or weakest causal 

assumptions to obtain the widest bounds for each effect and then explore how the bounds 

shrink as the causal assumptions are strengthened (Flores & Flores-Lagunes, 2013; Huber, 

2020; Miles et al., 2017; Richardson et al., 2014). 

The assessment of the sensitivity of estimated mediation effects to potential violations in 

the causal assumptions is an important step in mediation analyses (MacKinnon & Pirlott, 

2015; VanderWeele, 2015). Causal assumptions are almost certainly violated to some degree 

in most real-world systems. Rather than discard causal analyses altogether, every mediation 

study should be supplemented by analyses that assess the implications of potential violations 

to causal assumptions (Hafeman, 2011; Imai et al., 2010; MacKinnon & Pirlott, 2015; 

Tchetgen Tchetgen & Shpitser, 2012; VanderWeele & Ding, 2017). Such analyses allow us to 

evaluate our level of confidence for causal claims and provide avenues for addressing gaps in 

satisfying causal assumptions in future studies. 

 

 

VI. ADDRESSING OTHER CAUSAL ASSUMPTIONS: CAUSAL INFERENCE 

FRAMEWORKS FOR MEDIATION ANALYSIS 

 
In this section, we introduce the potential outcomes causal inference framework, which we 

can use to define and estimate direct and indirect effects that systematically incorporate the 

complexities that we ignored in Section V. These complexities include heterogeneous 

mediation effects and interference among units (i.e. violations of causal assumptions A5–A8) 

as well as conditions such as non-linearity (i.e. violations of statistical assumptions).  

Without a formal causal inference framework, the assumptions and interpretations of any 

analyses that aim to estimate causal effects from data are opaque and difficult to evaluate or 

reproduce (Ferraro & Hanauer, 2015). Causal inference frameworks provide clearly defined 

terminology for the roles that key variables play in an ecological system and supply a 

language to describe the relationships between these variables. The potential outcomes 

framework is one of several well-developed causal inference frameworks for mediation 

analysis and is commonly employed in epidemiology, behavioural sciences, econometrics, 

and public health. The potential outcomes framework allows us to define direct and indirect 
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effects in the absence of any parametric assumptions about the data or specific functional 

forms that describe the relationships between variables, and it also allows us to decompose 

total effects into interpretable components under conditions in which some of the causal 

assumptions in Section IV are not satisfied. For example, when mediation effects are 

heterogeneous because of treatment–mediator interactions or mediator–mediator interactions, 

the potential outcomes framework illustrates how one can decompose and separate the 

contributions of the interactions and the mediation to the total effect (see Section 6 of 

Appendix S1 for details). 

Using our hypothetical drought study, we introduce the potential outcomes notation for 

direct and indirect effects (also called ‘counterfactuals’ notation). Recall that we are interested 

in measuring the effect of drought on productivity while considering the mediating effect of 

soil moisture. A plot can potentially be under the drought-treated condition, 𝐷 = 1, or the no-

drought control condition, 𝐷 = 0. Imagine that researchers assigned a plot to the control 

condition and recorded the productivity after some time. At the same time in a parallel world 

in which all other conditions are identical, the same researchers assigned the same plot to the 

drought-treated condition instead and recorded the productivity. If they were able to monitor 

both worlds simultaneously, the researchers would have a measure of productivity for the 

same plot under both the control condition, which we can define as the plot’s potential 

outcome 𝑃0, and under the treated condition, which we can define as the plot’s potential 

outcome 𝑃1. The difference in productivity between the two potential states of the same plot 

is the total effect (TE) of drought on productivity in that plot: 

 TE = 𝑃1 − 𝑃0 . (12) 

In the potential outcomes framework, the total effect can be decomposed into two 

components: one that represents the indirect effect of drought on productivity through soil 

moisture, and another that represents the effect of drought on productivity that goes through 

other mediators that are not the focus of our hypothetical drought study (Robins & Greenland, 

1992; VanderWeele, 2014). Continuing with our parallel worlds thought experiment, we 

define two potential outcomes for the mediator: 𝑀0 is the potential value that soil moisture 

would take in the plot’s no-drought control condition (𝐷 = 0), while 𝑀1 is the potential value 

that soil moisture would take in the same plot’s drought-treated condition (𝐷 = 1). Thus, the 

plot has four potential outcomes: 𝑃1𝑀1
, 𝑃1𝑀0

, 𝑃0𝑀1
, and 𝑃0𝑀0

 (e.g. 𝑃1𝑀0
 is the plot’s 

productivity in the drought-treated condition with soil moisture held to its values in the no-

drought control condition). 

The effect of drought on productivity through soil moisture is represented by the total 

indirect effect (TIE), which describes the amount by which productivity would change in a 

plot if drought were fixed at 𝐷 = 1 and soil moisture changed from the value it would be at 

𝐷 = 0 to the value it would be at 𝐷 = 1, 

 TIE = 𝑃1𝑀1
− 𝑃1𝑀0

 . (13) 

The remaining effect of drought on productivity that does not go through soil moisture, the 

pure direct effect (PDE), describes how much productivity would change if drought were 
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changed from 𝐷 = 0 to 𝐷 = 1 and soil moisture were kept at the value it would have been 

when 𝐷 = 0 (i.e. 𝑀0), 

 PDE = 𝑃1𝑀0
− 𝑃0𝑀0

 . (14) 

Although we can imagine parallel worlds and define these effects in terms of potential 

outcomes, in our one world, we cannot observe the same plot under both the treated condition 

and the control condition simultaneously. This dilemma is known as the ‘fundamental 

problem’ of causal inference (Holland, 1986). For a treated plot, we can observe only one of 

the potential outcomes – the potential outcome under the drought-treated condition (𝑃1𝑀1
=

𝑃1). We cannot observe the potential outcomes of the treated plot as it would be under control 

conditions (𝑃1𝑀0
, 𝑃0𝑀1

, or 𝑃0𝑀0
). These are counterfactual potential outcomes (counter to 

fact). Similarly, for a control plot, we can only observe one potential outcome (𝑃0𝑀0
= 𝑃0). 

We cannot observe the counterfactual potential outcomes 𝑃0𝑀1
, 𝑃1𝑀0

, or 𝑃1𝑀1
. Thus, the 

individual plot-level causal effects in Equations (12) – (14) cannot be estimated. 

While we cannot observe all potential outcomes for a plot in our drought experiment, we 

can combine the potential outcomes framework with statistical theory and assumptions to 

obtain from data a population-level approximation of our hypothetical parallel worlds 

(VanderWeele, 2015). When the treatment is completely randomised, the observed average 

productivity of the plots under the control condition provides an estimate of the population-

level productivity had all plots been under the control condition, i.e. 𝐸[𝑃0], where 𝐸[⋅] is the 

expectation operator. Similarly, the average productivity of the plots under the drought-treated 

condition provides an estimate of the population-level productivity had all plots been under 

the drought-treated condition, i.e. 𝐸[𝑃1]. The difference between these two quantities 

provides us with an estimate of the average total effect of drought on productivity when 

changing from the control condition to the treated condition (sometimes called the ‘average 

treatment effect’, ATE): 

 ATE = 𝐸[𝑃1 − 𝑃0]  = 𝐸[𝑃1] − 𝐸[𝑃0] 
(15) 

  = 𝐸[𝑃1𝑀1
] − 𝐸[𝑃0𝑀0

] . 

We can also estimate two components of the ATE: the average pure direct effect 

(𝐸[𝑃1𝑀1
− 𝑃1𝑀0

]) and average total indirect effect (𝐸[𝑃1𝑀0
− 𝑃0𝑀0

]), where the ATE is the 

sum of the average PDE and the average TIE: 

 𝐸[𝑃1 − 𝑃0] = 𝐸[𝑃1𝑀1
] − 𝐸[𝑃0𝑀0

] 

(16)   = (𝐸[𝑃1𝑀1
] − 𝐸[𝑃1𝑀0

]) + (𝐸[𝑃1𝑀0
] − 𝐸[𝑃0𝑀0

]) 

  = 𝐸[𝑃1𝑀1
− 𝑃1𝑀0

] + 𝐸[𝑃1𝑀0
− 𝑃0𝑀0

] . 

In our drought study with its binary treatment, we could use Equations (4) – (6) to estimate 

the ATE, which would be equal to 𝛽1, the average PDE, which would be equal to 𝛿1, and the 

average TIE, which would be equal to 𝜃1𝛿2 (Fig. 8). These estimates would only be valid if 

Assumptions A1 – A9 were satisfied and the statistical assumptions of the regression 
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estimators were satisfied. In many ecological systems, however, one or more of these 

assumptions may not be valid, and, in such cases, a conceptual framework like the potential 

outcomes framework is valuable for decomposing the total effect into interpretable 

components and suggesting appropriate estimation procedures. 

 

 
Fig. 8. Mediation effects defined using the potential outcomes framework and the three-part estimation 

procedure for the hypothetical drought study. The three-part procedure estimates four components of the 

relationship between 𝐷 and 𝑃. If Assumptions A1–A9 and relevant statistical assumptions are satisfied for 

regression estimators, then we can use Equations (4) – (6) to estimate the ATE and average PDE and TIE. The 

estimate of the ATE is 𝛽1, shown in red. The estimate of the average PDE is 𝛿1, shown in green. The estimate of 

the average TIE is 𝜃1𝛿2, shown in orange. Labels 𝐷, 𝑀, and 𝑃 are as in Fig. 2. ATE, average treatment effect; 

PDE, pure direct effect; TIE, total indirect effect. 

 

The causal assumptions of no heterogeneous mediator effects (Assumptions A5 and A6) 

will be routinely violated in ecological systems. For example, in our drought experiment, the 

effect of soil moisture on productivity may be functionally different in the presence of 

drought than in the absence of drought, which would suggest an interaction between the 

treatment and mediator in violation of Assumption A5 (VanderWeele, 2009; VanderWeele & 

Robins, 2007). The estimation procedures in Sections V.1–V.4 will not generate estimates of 

the direct and mediated effects of drought on productivity without bias when treatment–

mediator interactions are present, even if both drought and soil moisture were randomised 

(Bullock et al., 2010; Glynn, 2012; Pearl, 2001b; for a detailed justification, see Section 3 in 

Appendix S1). To address treatment–mediator interactions, direct and indirect effects 

estimators have been developed using traditional regression-based approaches, including 

SEM (MacKinnon, Valente & Gonzalez, 2020; Rijnhart et al., 2017, 2021; VanderWeele & 

Vansteelandt, 2010), but these estimators are only valid under certain conditions (e.g. for 

continuous outcomes and continuous or binary mediators). The potential outcomes 

framework has been used to develop more general approaches that allow for treatment–

mediator interactions and both continuous and non-continuous mediators and outcomes (e.g. 

Loh et al., 2022, 2020; Xue et al., 2022). For example, in the presence of treatment–mediator 

interactions, the total effect can be decomposed into four component effects instead of just a 

PDE and a TIE (VanderWeele, 2014; see Section 6 in Appendix S1 for details). Moreover, in 

observational studies or randomised studies with non-compliance, other mediation effects not 

defined in traditional regression-based approaches may be more plausibly estimated with 

available data. Causal inference frameworks can help to differentiate these mediation effects 

clearly from others and suggest appropriate estimation strategies (e.g. Ferraro & Hanauer, 

2014; see also Section 6 in Appendix S1 for other mediation effects of potential interest to 

ecologists). 
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A key advantage of causal inference frameworks is that they allow us to separate the 

definitions of the mediation effects from the estimation procedures for those effects (Pearl, 

2001b; Robins & Greenland, 1992; VanderWeele, 2015). In that way, the relevant 

assumptions that must be invoked to estimate a particular effect can be transparently 

evaluated or, when those assumptions are not likely to hold, the study aims can be 

transparently redefined to focus on more plausible assumptions under which mediation effects 

can be estimated. For example, mediation effects obtained using the regression-based 

approaches in Sections V.2–V.4 require assumptions of additivity and linearity. However, 

direct and indirect effects can be defined for more flexible semi- and non-parametric models. 

Bootstrapping can be used to estimate direct and indirect effects non-parametrically (Imai et 

al., 2010) and is particularly useful when the sample size is small or the distribution of the 

mediator or outcome is non-Gaussian. Semiparametric methods have also been used to 

estimate direct and indirect effects (Tchetgen Tchetgen, 2011; Tchetgen Tchetgen & Shpitser, 

2012), and more recent work has extended these methods to settings with multiple mediators 

and confounding (Miles et al., 2020; Zhou, 2021). To accommodate non-linear relationships 

and interactions between the treatment, mediator and outcome, kernel-based approaches can 

be used (Carter et al., 2020; Devick et al., 2022; Singh, Xu & Gretton, 2022) and have also 

been applied in SEM settings (Shen, Baingana & Giannakis, 2017). For data with non-

Gaussian distributions or non-linear relationships between treatment, mediator, and outcome 

variables, Bayesian non-parametric models have been shown to be effective for estimating 

direct and indirect causal effects (Kim et al., 2017, 2019; Linero & Antonelli, 2023). More 

recently, machine learning methods have been incorporated into mediation analyses with 

high-dimensional data to provide a data-driven approach for handling large sets of measured 

confounders (Farbmacher et al., 2022; Linero & Zhang, 2022; Xu, Liu & Liu, 2022). 

The potential outcomes framework is not the only causal inference framework that we 

could use. Several publications in ecology have promoted various methodologies or 

frameworks for causal inference, such as SEMs (Grace, 2006; Grace et al., 2012; Shipley, 

2016), structural causal models (SCMs) (Arif & MacNeil, 2022a, 2023; Laubach et al., 

2021), and the potential outcomes framework (Clough, 2012; Larsen et al., 2019; Ramsey et 

al., 2019). These approaches to causal inference, along with the decision theoretic approach 

to statistical causality (Dawid, 2000, 2003, 2021), are equivalent under identical causal 

assumptions. For example, SEMs can be expressed mathematically using the do-calculus of 

Pearl (2009) (Bollen, 1989; Mulaik, 2009) and have been shown to be equivalent to SCMs 

(Pearl, 2009, 2023), the potential outcomes framework (Hernán & Robins, 2006), and the 

decision theoretic approach to statistical causality (Dawid, 2015). Thus, SEM methodologies 

with which ecologists may be familiar can be used to estimate mediation effects if the 

required causal assumptions are transparently described and plausibly satisfied in the analysis 

(Bollen, 1989; Bollen & Pearl, 2013; Hernán & Robins, 2006; Mulaik, 2009; Pearl, 2009, 

2023; VanderWeele, 2012b). 

Regardless of the causal inference framework used, the focus of any mediation analysis 

should be on clearly articulating and satisfying causal assumptions, thereby reducing potential 

bias that arises from violations of these assumptions (Larsen et al., 2019). Including 

sensitivity analyses (Section V.5) in mediation analyses to quantify potential bias from 
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violations to causal assumptions also allows us further to assess the plausibility of causal 

claims made in studies of mediation. 

 

 

VII. CONCLUSIONS 

 
(1) Quantifying the effects of intermediary ecological processes is challenging and requires 

careful attention to study designs, including defining the causal effects to be estimated and 

explicitly describing the untestable causal assumptions on which causal inferences rely. Those 

definitions and descriptions allow us to identify and eliminate rival explanations for observed 

patterns in data and to explore rigorously the implications of potential hidden biases. 

(2) Although ecological studies often describe and justify statistical assumptions, they have 

given less attention to describing and justifying causal assumptions (Section IV). The 

credibility of these causal assumptions determines the credibility of mediation studies in 

ecology, regardless of the causal inference framework used (Dawid, 2021; Pearl, 2000; Rubin, 

2006). 

(3) In our review, we highlighted challenges in quantifying the effects of ecological 

mediators, but we do not view these challenges as insurmountable. Rather than viewing these 

challenges as reasons to avoid making inferences about ecological mediators, we instead view 

them as reasons for being transparent when making causal claims about mediation and for 

using more advanced techniques for estimating mediation effects. 

(4) To address these challenges and advance the empirical literature on ecological mediators, 

we described tools and a conceptual framework for causal inferences that emphasise 

transparency, and we described many of the steps that every empirical mediation study should 

include (summarised in Table 1). Although we have emphasised how methodological 

innovations in other fields can contribute to advances in ecology, we also believe that well-

executed mediation analyses in ecology have the potential to contribute innovations to other 

fields. Ecologists’ extensive experience in modelling heterogeneous spatial and temporal 

dynamics, decades of development of mechanistic theories of ecological processes, deep 

knowledge of natural history, and vast collections of field data provide unique opportunities 

to address challenges of causal inferences for mediation in observational settings and 

complex systems (Clough, 2012; Larsen et al., 2019; Laubach et al., 2021; Schlüter et al., 

2023). 

(5) Advancing both methodological approaches and ecological theory in the study of 

mediators requires carefully considering and explicitly stating the causal and statistical 

assumptions involved when estimating the effects of intermediate ecological processes from 

data. Further, clearly communicating the assumptions necessary for valid inferences and 

examining potential violations to these assumptions are key for providing rigorous and 

reproducible mediation analyses that explain important intermediary processes in ecology. 
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Table 1. Essential steps in mediation analysis. 

Steps Reference 

1. Define the mediation effect(s) of interest using a conceptual framework for causal 

inferences. 

Section VI 

2. Identify the likely confounding variables using theory and field knowledge, including 

all hypothesised treatment–outcome, treatment–mediator, and mediator–outcome 

confounders. 

Section III 

3. Pre-register the mediation hypotheses, including how treatments mediators, and 

moderators will be measured.‡ 

Kimmel et al. (2023) 

4. For each mediation effect of interest, develop a strategy for estimating the effect 

and mitigating the biases that confounding variables may introduce. 

Section V 

5. Select a mode of statistical inference that is appropriate for the data-generating 

process.  

6. Assess the presence of treatment–mediator interactions, i.e. heterogeneity. Section VI 

7. Estimate mediation effects. Section V.5 

8. Perform sensitivity analyses of how the estimated effect(s) would change if 

assumptions A1–A4 in Section IV were violated. 

 

9. Assess the likelihood that causal assumptions A5–A8 in Section IV are violated and 

discuss the implications of potential violations for the estimation procedures on the 

interpretation of the estimated effects. 

 

‡The set of treatments, mediators, and moderators should be kept small given the challenges of 

satisfying the assumptions in Section IV for multiple treatments and mediators and the dangers of 

detecting spurious relationships through multiple comparisons (i.e. data mining). 
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Appendix S1. Methodological details and extensions for mediation 

analysis 

(1) Limitations of the two-part estimation approach for mediation analyses 

Some ecological studies attempt to detect mediators in experiments by first manipulating 

the treatment and then estimating the dependence between the treatment and outcome and 

between the treatment and mediator. In our hypothetical study, this approach would be 

represented by two equations, where the effect of drought (𝐷) on soil moisture (𝑀) and the 

effect of drought on productivity (𝑃) are estimated by 

 𝑃𝑖 = 𝛽0 + 𝛽1𝐷𝑖 + 𝜀𝑖1 (S1) 

 𝑀𝑖 = 𝜃0 + 𝜃1𝐷𝑖 + 𝜀𝑖2 , (S2) 

where 𝐷𝑖 is the treatment assigned to plot 𝑖, 𝑃𝑖 is the plot-level productivity, 𝑀𝑖 is the plot-level 

soil moisture, 𝛽0  and 𝜃0  are intercepts, 𝛽1  and 𝜃1  are regression coefficients, and 𝜀𝑖1  and 𝜀𝑖2 

are plot-level error terms. The average productivity of all plots under the no-drought control is 

represented by 𝛽0, while 𝛽1 represents the average change in productivity across all plots when 

going from the control state (𝐷 = 0) to the drought-treated state (𝐷 = 1). 

Complete randomisation of the drought treatment allows us to assume that the plot-level 

observations are independent and identically distributed and that the effects of any treatment–

mediator and treatment–outcome confounders have been removed. Thus, ordinary least squares 

(OLS) estimation of Equation (S1) yields an unbiased estimator of 𝛽1.  

Under complete randomisation, if the OLS-estimated coefficient 𝛽1̂ < 0 , the drought 

treatment reduces productivity on average across plots. Likewise, using OLS regression to 

estimate Equation (S2) yields an unbiased estimator of 𝜃1. If the estimated coefficient 𝜃1̂ < 0, 

then, on average, the drought treatment induces a reduction in soil moisture across plots. If 

𝛽1̂ < 0 and 𝜃1̂ < 0 and both are statistically significant, some studies may conclude that there 

is sufficient evidence to claim that the effect of drought on productivity is mediated by soil 

moisture (Fig. S1A–C). However, the two-part estimation procedure does not quantify the 

indirect effect; that is, the proportion of the effect of drought on productivity that is mediated 

by soil moisture is not estimated (Fig. S1D). Thus, other possible conclusions can also be drawn 

from the results of the two-part estimation approach, including a conclusion that the 

hypothesised mediator plays no mediating role at all (Fig. S1E, F). 
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Fig. S1. The two-part estimation procedure for the hypothetical drought study can result in multiple conclusions. 

A two-part estimation process in which (A) drought 𝐷 is found to relate to productivity 𝑃, and (B) drought is found 

to be related to soil moisture 𝑀 , leads to (C) the conclusion that drought influences productivity though soil 

moisture. However, the two-part procedure does not estimate the effects of soil moisture and drought on 

productivity (D), which means that alternative conclusions (E) and (F) are also possible from the evidence given 

by A and B alone. 𝐷  = drought, 𝑀  = soil moisture, 𝑀2  = secondary mediator (e.g. photosynthesis), 𝑃  = 

productivity. 

 

 

(2) Effect of mediator–outcome confounders on mediation effects in 

randomised controlled trials 

 

Here, we answer a question that many readers may have: why, exactly, is the three-part 

estimation procedure invalid for identifying and estimating the effect of drought on productivity 

through soil moisture when drought was randomised but there exist mediator–outcome 

confounders? 

Consider our hypothetical drought experiment in which some plots experienced heavy 

grazing by herbivores (Fig. 4). Because drought was randomised across plots, researchers may 

incorrectly believe that historical grazing (𝐺), which is correlated with both soil moisture and 

productivity, need not be added to Equation (6). Thus, the researcher would instead estimate 

the following three equations: 

 𝑃𝑖 = 𝛽0 + 𝛽1𝐷𝑖 + 𝜀𝑖1 (S1) 

 𝑀𝑖 = 𝜃0 + 𝜃1𝐷𝑖 + 𝜀𝑖2 (S2) 

 𝑃𝑖 = 𝛿0 + 𝛿1𝐷𝑖 + 𝛿2𝑀𝑖 + 𝜀𝑖3,  𝑖 = 1, … , 𝑛 . (S3) 

With randomisation of the drought treatment, the distribution of historical grazing across all 

plots is, on average, the same in the drought-treated plots as it is in the control plots. This 

property ensures that 𝜃1  in Equation (S2) is an unbiased estimator of the average effect of 

drought on soil moisture when changing 𝐷  from 0 to 1, as detailed in Section 1 above. In 



 

42 

42 

Equation (S2), we do not need to control for any other variables that may affect productivity – 

the variation in 𝑃 resulting from those factors is included in the error term 𝜀𝑖2. Of course, we 

still have sampling variability, represented by 𝜀𝑖2 , but modes of statistical inference (e.g. 

confidence intervals) have been developed to quantify the uncertainty that the differences in 

treatment and control plots have arisen by chance. However, sampling variability is different 

from bias: as the sample size grows, the sampling variability of the 𝜃1 estimates will converge 

around the true value of 𝜃1. 

By contrast, randomisation of the treatment does not render Equation (S3) unbiased in the 

estimation of 𝛿1, nor is it unbiased in the estimation of 𝛿2. For estimation of 𝛿2, Equation (S3) 

is biased, because it does not control for historical grazing 𝐺, which is positively correlated 

with both 𝑀 and 𝑃; i.e. 𝜀𝑖3 is correlated with 𝑀. In contrast to the effect suggested by Fig. 4, 

we suppose here that plots with historically more grazing are, on average, more productive and 

have more soil moisture, possibly through nutrient addition by grazers’ waste (Sitters & Olde 

Venterink, 2015; Veldhuis et al., 2014). If plots that have been historically free of grazing are, 

on average, less productive and have less soil moisture, then the estimate of 𝛿2 includes both 

the effect of 𝑀 on 𝑃 and some of the effect of 𝐺 on 𝑃. In other words, the estimate includes the 

unconfounded effect of soil moisture on productivity caused by drought, but also includes the 

effect of soil moisture confounded by historical grazing. Thus, the estimate of 𝛿2 is positively 

biased, because it is a weighted average of the uncounfounded and confounded effects of soil 

moisture. 

Bias also enters the estimation of 𝛿1 – specifically, the estimate is also positively biased. 

The sign of the bias in estimating 𝛿1 is the same as the sign of the correlation between 𝑀 and 

𝑃 in the absence of a randomised experiment, which is positive in our drought study. Recall 

that researchers declare mediation to be present if the estimated effect of drought on 

productivity is less negative when controlling for 𝑀, i.e., 𝛿1̂ > 𝛽1̂ (see Section 1 above). Also 

recall that 𝜀𝑖3  in Equation (S3) is positively correlated with 𝑀  and 𝑃  – if 𝐺  increases, 𝑀 

increases and 𝑃 increases. So, for estimation of 𝛿1, Equation (S3) will be upwardly biased. The 

direction of bias implies that we would detect mediation when soil moisture is not, in fact, a 

mediator at all (i.e. when there is no arrow from 𝑀 to 𝑃 in Fig. 5 and the detection of mediation 

only reflects the non-causal correlation between 𝑀  and 𝑃  that comes from 𝐺 ). Thus, soil 

moisture will appear more influential on productivity than it is. 

To illustrate the intuition behind these claims without referring to equations, consider a 

prediction made by a researcher for the hypothetical drought experiment: the drought treatment, 

on average, lowers soil moisture, and lower soil moisture, on average, reduces grassland 

productivity. In addition, the researcher predicts that plots with more historical grazing are more 

productive and have more soil moisture. Imagine we selected at random a drought-treated plot 

and a no-drought control plot from the field experiment and told the researcher only the 

treatment status of each plot. The researcher would anticipate that the control plot has higher 

average productivity, based on their initial experimental prediction. This prediction step is akin 

to Equation (S1), which is answering the question, “For a randomly selected plot from the study 

population, what is the expected effect of the drought treatment?” 

Now, suppose that before revealing each plot’s measured productivity, we tell the researcher 

that the two plots were randomly selected from a subgroup of plots that all had identical soil 
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moisture levels. In light of the new information, the researcher is given the opportunity to revise 

their initial guess of which plot has higher measured productivity. They might wonder why the 

drought-treated plot had the same soil moisture as the no-drought control plot, despite the 

control plot not being exposed to drought. Based on the researcher’s original predictions about 

the effect of historical grazing on soil moisture, one possible explanation for the control and 

treated plots to have identical soil moisture is that the treated group experienced more historical 

grazing. Greater historical grazing is associated with higher productivity, independent of soil 

moisture. Based on this insight, the researcher would update their first guess and instead predict 

that the drought-treated plot has higher productivity. This adjustment step is akin to using 

Equation (S3) in the presence of an unmeasured mediator–outcome confounder. In the case of 

the drought study, the adjustment includes unmeasured differences in historical grazing across 

plots, making the effect of soil moisture appear more influential than it really is. 

If the effects of all mediator–outcome confounders have been appropriately eliminated, 

researchers can estimate the magnitude of the effect of drought on productivity through soil 

moisture using the three-part procedure in one of two ways: by taking the difference between 

𝛽1 and 𝛿1, or by taking the product of 𝜃1 and 𝛿2. Both of these traditional regression-based 

approaches have been commonly applied and studied in many other scientific fields. The 

traditional regression approach to mediation analysis used in fields such as epidemiology and 

public health relies on Equations (S1) and (S3) and is known as the ‘difference method’. With 

this method, the magnitude of the indirect effect of drought on productivity through soil 

moisture is 𝛽1 − 𝛿1, while the coefficient 𝛿1 represents the magnitude of the direct effect. The 

presence of mediation is thus determined if soil moisture explains some of the effect of drought 

on productivity, i.e. |𝛽1 − 𝛿1| > 𝜖, 𝜖 > 0. By contrast, the traditional regression approach to 

mediation used in social sciences and psychology is known as the ‘product method’ 

(popularised by Baron & Kenny, 1986) and uses Equations (S2) and (S3). With the product 

method, 𝛿1 again represents the direct effect, while the indirect effect is 𝜃1𝛿2. If |𝜃1𝛿2| > 𝜖, 

𝜖 > 0, then mediation is determined to be present. The product method is typically how the 

direct and indirect effects from Equations (S2) and (S3) are represented in SEM (Muthén & 

Asparouhov, 2015). It should be noted, however, that the product and difference methods only 

coincide when the outcome and mediator are continuous and the regression equations are fit 

using OLS estimation, provided the statistical assumptions for OLS are satisfied. For a binary 

outcome that is not a rare event, the difference and product methods do not give identical results 

(MacKinnon & Dwyer, 1993; MacKinnon et al., 1995), and the estimates from both methods 

are not directly interpretable as indirect effects (VanderWeele & Vansteelandt, 2010; Valeri & 

Vanderweele, 2013). In such cases, the product method using log-linear models is typically 

preferred for binary outcomes (MacKinnon et al., 2007b; Rijnhart et al., 2019, 2023). 
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(3) Effect of heterogeneity on mediation effects estimated using traditional 

regression-based approaches 

 

For the hypothetical drought study (Section II, Fig. 1), suppose we fit the models 

 𝑀𝑖 = 𝜔0 + 𝜔1𝑖𝐷𝑖 + 𝜀2𝑖 (S4) 

 𝑃𝑖 = 𝛼0 + 𝛼1𝑖𝐷𝑖 + 𝛼2𝑖𝑀𝑖 + 𝜀3𝑖 (S5) 

instead of Equations (S2) and (S3), where the regression coefficients 𝜔1𝑖 and 𝛼1𝑖 are allowed 

to vary for each plot 𝑖. If both drought (𝐷) and soil moisture (𝑀) are randomly assigned to plots 

(e.g. a manipulation-of-mediator design), the average effect of 𝐷 on 𝑀 is 𝜔1, and the average 

effect of 𝑀 on 𝑃 (productivity) is 𝛼2. If each of these effects are homogeneous across all plots, 

then using the product method of defining the indirect effect as 𝜔1𝛼2  would provide an 

unbiased estimator of the effect of drought on productivity through soil moisture. Conversely, 

suppose the effects of 𝐷 on 𝑀 and the effects of 𝑀 on 𝑃 are heterogeneous across plots. For 

one set of plots, the effect of 𝐷  on 𝑀  is negative, 𝜔1 < 0 , and the effect of 𝑀  on 𝑃  is also 

negative, 𝛼2 < 0 . The average effect of 𝐷  on 𝑃  through 𝑀  for this group of plots would be 

positive (Fig. S2A). For a different set of plots, the effect of 𝐷 on 𝑀 is small but positive, 𝜔1 >

0, and the effect of 𝑀 on 𝑃 is also positive 𝛼2 > 0. The mediated effect of 𝐷 on 𝑃 through 𝑀 

for this different set of plots would again be positive (Fig. S2B). If we averaged across all 𝑖 

plots, the indirect effect of 𝐷 on 𝑃, 𝜔1, could be negative or zero, while the effect of 𝑀 on 𝑃, 

𝛼2, could be negative, zero, or positive. Thus, the indirect effect of drought on productivity 

through soil moisture averaged across all plots could also be negative, zero, or positive, despite 

the indirect effect in both subsets of plots being positive. 

 

 
Fig. S2. The effect of 𝐷 on 𝑃 through 𝑀 can be identical in magnitude and size for two different plots where (A) 

the effects of 𝐷 on 𝑀 and 𝑀 on 𝑃 are negative or (B) the effects of 𝐷 on 𝑀 and 𝑀 on 𝑃 are positive. In both A 

and B, the indirect effect of 𝐷 on 𝑃 through 𝑀 is positive: 𝜔1𝛼2. Labels are as defined in Fig. S1. 

 

 

(4) Multilevel models for clustered longitudinal data 

 

A multilevel model typically captures distinct groupings of clustered data by specifying an 

observation-level equation with group-level intercepts in concert with higher-level equations 

that describe the group-level intercepts for each for each grouping of the data (Gelman & Hill, 
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2006). In mixed-effects modelling, a variant of multilevel modelling commonly applied in 

ecology, error terms are included in the higher-level equations (Bolker et al., 2009). Modelling 

clustered longitudinal data with error terms in each of the higher-level equations allows 

researchers to quantify the variation within and among various groupings (Bolker et al., 2009) 

and has the benefit of partial pooling which reduces the effect of outlying groups on parameter 

estimation without eliminating their effect entirely. 

To estimate mediation effects without bias using a mixed-effects model for our hypothetical 

drought study, researchers must assume that the differences in productivity among plots or 

among sites are uncorrelated with other predictors in the model (Seber & Lee, 2003). This 

assumption is likely violated in many ecological settings, leading to estimates that are biased 

(Gelman, 2006). To see how the violation of this assumption could occur, let us consider the 

problem from the perspective of our drought study (Section II, Fig. 1). In a mixed-effects 

model, for an observation ℎ that is measured at time 𝑡 and belongs to plot 𝑖 within site 𝑠, we 

replace Equations (S1) to (S3) with 

 𝑃ℎ = 𝜙1,𝑖[ℎ] + 𝜇1,𝑠𝑡[ℎ] + 𝛽1𝐷ℎ + 𝜀1,ℎ (S6) 

 𝑀ℎ = 𝜙2,𝑖[ℎ] + 𝜇2,𝑠𝑡[ℎ] + 𝜃1𝐷ℎ + 𝜀2,ℎ (S7) 

 𝑃ℎ = 𝜙3,𝑖[ℎ] + 𝜇3,𝑠𝑡[ℎ] + 𝛿1𝐷ℎ + 𝛿2𝑀ℎ + 𝜀3,ℎ , 
(S8) 

 𝑖 = 1, … , 𝑛; 𝑠 = 1, … , 𝑆; 𝑡 = 1, … , 𝑇; ℎ = 1, … , 𝑛𝑆𝑇, 

where each site is composed of 𝑛𝑠 plots, for a total of 𝑛 = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑠 plots, and each 

plot is repeatedly measured over 𝑇  time points; 𝑖[ℎ]  is the plot 𝑖  containing observation ℎ ; 

𝑠𝑡[ℎ] is the site–time group containing ℎ; 𝑃ℎ, 𝐷ℎ, and 𝑀ℎ are the productivity, drought, and soil 

moisture values measured for an observation ℎ; 𝛽1 represents the overall effect of drought on 

productivity; 𝜃1  represents the effect of drought on soil moisture; 𝛿1  and 𝛿2  represent the 

effects of drought and soil moisture on productivity; 𝜙1,𝑖[ℎ] , 𝜙2,𝑖[ℎ] , 𝜙3,𝑖[ℎ]  are plot-level 

intercepts; 𝜇1,𝑠𝑡[ℎ], 𝜇2,𝑠𝑡[ℎ], 𝜇3,𝑠𝑡[ℎ] are site–time group-level intercepts; and 𝜀1,ℎ, 𝜀2,ℎ, 𝜀3,ℎ are 

the error terms. Note that Equation (S8) was introduced in Section V.4.a as Equation (9). 

For a mixed-effects model, we must also specify higher-level equations that include group-

averaged intercepts. These equations are 

 𝜙1,𝑖 = 𝜙1• + 𝜂1,𝑖 (S9) 

 𝜙2,𝑖 = 𝜙2• + 𝜂2,𝑖 (S10) 

 𝜙3,𝑖 = 𝜙3• + 𝜂3,𝑖 (S11) 

 𝜇1,𝑠𝑡 = 𝜇1• + 𝜂1,𝑠𝑡 (S12) 

 𝜇2,𝑠𝑡 = 𝜇2• + 𝜂2,𝑠𝑡 (S13) 

 𝜇3,𝑠𝑡 = 𝜇3• + 𝜂3,𝑠𝑡 , (S14) 

where 𝜙1• , 𝜙2• , 𝜙3•  are the averages of the plot-varying intercepts 𝜙1,𝑖[ℎ] , 𝜙2,𝑖[ℎ] , 𝜙3,𝑖[ℎ] , 

respectively; 𝜇1•, 𝜇2•, 𝜇3• are the averages of the site–time group-varying intercepts 𝜇1,𝑠𝑡[ℎ], 

𝜇2,𝑠𝑡[ℎ], 𝜇3,𝑠𝑡[ℎ], respectively; 𝜂1,𝑖, 𝜂2,𝑖, 𝜂3,𝑖 are plot-level errors; and 𝜂1,𝑠𝑡, 𝜂2,𝑠𝑡, 𝜂3,𝑠𝑡 are site–

time group-level errors. 
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For simplicity when discussing how mediation effects can be estimated with bias when 

mediator–outcome confounding exists, we will focus on the effect of drought and soil moisture 

on productivity described by Equations (S8), (S11) and (S14). 

In a large-scale regional or global set of drought experiments where one might expect to 

obtain clustered longitudinal data, some sites could be in regions with low soil moisture, 

resulting in the differences in productivity between those sites and others in the study to be 

correlated with soil moisture. This would result in a correlation between soil moisture and the 

site–time groupings which, if not explicitly modelled in Equation (S14), would be included in 

the error term 𝜂3,𝑠𝑡. Let us substitute Equation (S11) and Equation (S14) into Equation (S8), 

which gives us 

 𝑃ℎ = 𝜙3• + 𝜇3• + 𝛿1𝐷ℎ + 𝛿2𝑀ℎ + 𝜂3,𝑖 + 𝜂3,𝑠𝑡

+ 𝜀3,ℎ . 

(S15) 

As 𝜂3,𝑖, 𝜂3,𝑠𝑡, and 𝜀3,ℎ are all error terms, we can combine them into a new error term 𝑒′ and 

rewrite the model as 

 𝑃ℎ = 𝜙3• + 𝜇3• + 𝛿1𝐷ℎ + 𝛿2𝑀ℎ + 𝑒′ . (S16) 

Since 𝜂3,𝑠𝑡 is correlated with soil moisture, and 𝜂3,𝑠𝑡 is now part of the new error term, then 𝑒′ 

is correlated with 𝑀ℎ, thus violating the assumption that the errors should be independent of 

predictors in the regression model. 

One way around this issue is to allow instead for group-level effects where error terms are 

not estimated at the group-level (Gelman, 2006). The observation-level model describing the 

effect of drought and soil moisture on productivity would remain the same as in Equation (S8), 

but the second-level equations for 𝜙3,𝑖 and 𝜇3,𝑠𝑡 would instead be given as 

 𝜙3,𝑖 ∼ 𝑁(𝜙3•, ∞) (S17) 

 𝜇3,𝑠𝑡 ∼ 𝑁(𝜇3•, ∞) (S18) 

where the infinite variances allow for maximum variation in the plot-level and site–time group-

level effects from the data. This is equivalent to fitting separate regression models for each plot 

and each site–time grouping, where estimates that vary across groups are completely unpooled 

(Bafumi & Gelman, 2006; Gelman & Hill, 2006). The same effect could be achieved by using 

dummy variables for plot and site–time groupings (Bollen & Brand, 2010). The coefficient 

estimates will thus be unbiased even in the presence of unmodelled correlation between the 

differences among plots or among sites and soil moisture, such as in the presence of unmeasured 

mediator–outcome confounding (Fitzmaurice et al., 2012). 

Unfortunately, fitting separate models requires a large number of parameters to fit separate 

intercepts for each plot and each site–time grouping. Instead, an alternative multilevel 

modelling approach described in Section V.4.a can accommodate the presence of correlation 

between differences among groups and predictors in the model without the need for separate 

models for each grouping. We would use the same observation-level models specified in 

Equations (S6)–(S8) above, however we must specify different higher-level equations from 

those specified in mixed-effects modelling to accommodate correlation introduced by 

mediator–outcome confounders. 
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To account for mediator–outcome confounders, we must specify second-level equations that 

include group-averaged soil moisture as predictors of the group-level intercepts. We use the 

same second-level equations for 𝜙1,𝑖, 𝜙2,𝑖, 𝜇1,𝑠𝑡, and 𝜇2,𝑠𝑡 as in Equations (S9), (S10), (S12) 

and (S13), but the second-level equation for 𝜙3,𝑖  would instead be specified with a plot-

averaged soil moisture term, 𝜈𝑀𝑖, in Equation (S19) and the second-level equation for 𝜇3,𝑠𝑡 

would be specified with a site–time group-averaged soil moisture term, 𝜅𝑀𝑠𝑡 , in Equation 

(S20), as we showed in Section V.4.a with Equations (10) and (11). The full set of second-level 

equations are 

 𝜙1,𝑖 = 𝜙1• + 𝜂1,𝑖 (S9) 

 𝜙2,𝑖 = 𝜙2• + 𝜂2,𝑖 (S10) 

 𝜙3,𝑖 = 𝜙3• + 𝜈𝑀𝑖 + 𝜂3,𝑖 (S19) 

 𝜇1,𝑠𝑡 = 𝜇1• + 𝜂1,𝑠𝑡 (S12) 

 𝜇2,𝑠𝑡 = 𝜇2• + 𝜂2,𝑠𝑡 (S13) 

 𝜇3,𝑠𝑡 = 𝜇3• + 𝜅𝑀𝑠𝑡 + 𝜂3,𝑠𝑡 , (S20) 

where 𝜈 is the coefficient for the predictor 𝑀𝑖 representing plot-level averages of soil moisture 

and 𝜅 is the coefficient for the predictor 𝑀𝑠𝑡 representing the site–time grouped means of soil 

moisture.  

By including 𝑀𝑖  in Equation (S19) and 𝑀𝑠𝑡  in Equation (S20), we explicitly model any 

potential correlation between soil moisture and differences in productivity at the plot or site–

time group levels. We do not need to include group-averaged terms for drought, since drought 

being randomised allows us to assume no unmodelled correlation between drought and the 

differences in productivity among plots or among sites. Thus, we arrive at the formulations for 

obtaining unbiased estimators of mediation effects using multilevel models as given in 

Equations (9)–(11) in Section V.4.a, and the indirect effect can be estimated as 𝜃1𝛿2 using the 

product method.  

Including plot-level effects 𝜙𝑖[ℎ] , which are intercepts estimated for each plot 𝑖  in site 𝑠 

where the plot-level differences over time are averaged, allows us to account for unmeasured 

differences between plots that do not change over time, such as differences associated with 

unmeasured mediator–outcome confounders that occur at the plot level. Likewise, including 

site–time group-level effects 𝜇𝑠𝑡[ℎ], which are intercepts estimated for each site–time group 𝑠𝑡 

where the differences across plots at each site and time point are averaged, allows us to account 

for unmeasured differences between sites that change over time, including differences 

associated with unmeasured mediator–outcome confounders that vary over time at the site level 

but do not vary across plots within the same site. Further, including the plot-level (𝑀𝑖) and site–

time group-level (𝑀𝑠𝑡) averages of the mediator in the higher-level equations eliminates any 

potential correlation between soil moisture and the plot or site–time groupings. As long as plot-

level, time-varying confounders (e.g. microclimate) do not exist, or they are observed and 

included in the multilevel model, then 𝜂𝑖 and 𝜂𝑠𝑡  are not correlated with soil moisture, and the 

assumption of independence between the levels or groupings (i.e. plot and site–time) and the 

mediator in the model is not violated (Greenland & Robins, 1985; Robins et al., 2000; Roth & 
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MacKinnon, 2012). Longitudinal data can also be used to control for unmeasured, plot-level 

confounding variables that vary over time, but we do not consider those methods here 

(Greenland & Robins, 1985; Roth & MacKinnon, 2012). 

When observations are only collected for two points in time, multilevel modelling for causal 

inference is equivalent to a difference-in-differences analysis (Abadie, 2005; Wooldridge, 

2021), which has been recommended for observational ecological studies (Butsic et al., 2017; 

Larsen et al., 2019). Multilevel models without group-level error terms and with group-

averaged variables as predictors in the higher-level regression equations (as in Section V.4.a) 

can be estimated using SEMs (Allison, 2009; Andersen, 2022; Bollen & Brand, 2010). 

 

 

(5) Estimating effects for multiple mediator pathways 

 

In the hypothetical drought study, we declared that the researchers were only interested in 

the mediating effect of soil moisture (Section II). However, researchers may also be interested 

in additional mediators through which drought affects productivity. In the analyses outlined in 

previous sections, the effect of other mediators is lumped into the direct effect, which is 

interpreted as the effect of drought on productivity through mediators other than soil moisture. 

If we are interested in measuring the effect of drought on productivity through multiple 

mediating variables separately (Fig. S3), we require additional causal assumptions to estimate 

effects for each mediator without bias. 

To identify individual indirect effects for each of m mediators, which is a common objective 

in SEM analyses, one might presume that the traditional approach could be repeated for each 

mediator separately by replacing 𝑀  with 𝑀𝑗 , 𝑗 = 1, 2, … , 𝑚 , in Equations (S2) and (S3) to 

estimate the effect of drought on productivity through 𝑀𝑗. This approach, however, requires at 

least three more causal assumptions. First, we must assume that there are no mediator–outcome 

confounders for each of the measured mediators. In other words, Assumption A3 must be 

satisfied for each measured mediator. Second, we must assume that there are no unmeasured 

mediator–mediator confounders, i.e. there are no common causes between two mediators that 

have not been accounted for in the regression equations (Grace et al., 2015; Loh et al., 2022; 

VanderWeele & Vansteelandt, 2014). If we have an unmeasured confounder 𝑈 between two 

mediators 𝑀1 and 𝑀2 as in Fig. S3A, 𝑈 acts as an unmeasured confounder between 𝑀1 and 𝑃 

through its effect on 𝑀2, resulting in correlation between 𝑀1 and 𝑃 not due to the treatment 𝐷 

and biasing the coefficient estimates in Equation (S3). Similarly, 𝑈  acts as an unmeasured 

confounder between 𝑀2  and 𝑃  through its effect on 𝑀1 , again producing bias. To satisfy 

Assumption A3 when using the instrumental variable approach described in Section V.3, we 

must either assume that no other mediators are observed or obtain an instrumental variable for 

each mediator. Third, we must assume that the mediators are independent from each other, i.e. 

the values of one mediator do not depend on the presence or values of another mediator, which 

is to satisfy Assumption A4 for each mediator. If interdependencies between mediating 

variables exist (Fig. S3B), then individual direct and indirect effects of multiple mediators 

cannot be estimated (VanderWeele & Vansteelandt, 2014). 
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Fig. S3. Additional dependencies among variables can introduce bias when estimating the effects of more than 

one mediator; for example, (A) an unmeasured common cause 𝑈 of 𝑀1 and 𝑀2, or (B) a dependency of 𝑀2 on 

𝑀1. Labels are as defined in Fig. S1. 

 

If the assumptions of no unmeasured mediator–mediator confounders or independence of 

the mediators are unlikely to hold, one could instead estimate the effect of drought on 

productivity through the entire set of mediators {𝑀1, 𝑀2, … , 𝑀𝑚}  jointly. Joint direct and 

indirect effects are defined for continuous outcomes with binary or continuous mediators and 

for binary outcomes with continuous mediators (VanderWeele & Vansteelandt, 2014). To 

estimate the joint direct and indirect effects when mediator–mediator interactions exist, one 

must make additional statistical assumptions, and when exposure–mediator interactions are 

present, the formulae become increasingly complicated (VanderWeele & Vansteelandt, 2014). 

Further, if the mediators are time-varying, estimating direct and indirect effects typically 

requires a different class of estimation procedures, different definitions of direct and indirect 

effects, and additional causal assumptions (MacKinnon, 2012; VanderWeele, 2015; 

VanderWeele & Tchetgen Tchetgen, 2017). 

 

 

(6) Decomposition of causal effects 

 

We can decompose the total effect of drought on productivity derived from Equations (4) 

and (5) given in Section V.2 into the direct and indirect effects. We assume that the drought 

treatment is binary and soil moisture and productivity are continuous variables, as we have 

done in Section II. We also assume that there is no interaction between the drought treatment 

and the soil moisture mediator. The average effect of drought on productivity operating through 

the soil moisture mediator, called the average total indirect effect (TIE), is given by 𝛿2𝜃1. More 

specifically, 𝛿2𝜃1 describes the average change in productivity if drought was implemented on 

all plots (𝐷 = 1) but soil moisture changed from the value it would be under the no-drought 

control condition (𝑀0) to the value it would be under the drought-treated condition (𝑀1). The 

remaining effect of drought on productivity not operating through soil moisture, but possibly 

going through other mediated causal paths not explicitly denoted in the directed acyclic graph 

(DAG), is described by the average pure direct effect (PDE) and is given by 𝛿1. That is, 𝛿1 

describes the average amount by which productivity would change if drought were changed 

from control (𝐷 = 0) to treated (𝐷 = 1) on all plots but soil moisture remained at the level it 
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would have been under no-drought conditions (𝑀0 ). Combining the average PDE  and the 

average TIE gives us the average total effect TE = 𝛿1 + 𝛿2𝜃1. 

In ecological studies, it is often more realistic to expect an interaction between the treatment 

and mediator. Indeed, a common recommendation for mediation analyses is to include 

interactions between the treatment and mediator if an interaction cannot be ruled out, since 

interactions are often difficult to detect with significance tests and not accounting for 

interactions can bias the estimates of direct and indirect effects (VanderWeele, 2015). If we 

wish to include an interaction between drought and soil moisture, an interaction term 𝛿4𝐷𝑖𝑀𝑖 

is added to Equation (5). When defining direct and indirect effects that include treatment–

mediator interactions, the potential outcomes framework provides clear intuition for where an 

interaction coefficient should appear. Thus, the average PDE and average TIE are given as 

 PDE = 𝛿1 + 𝛿4(𝜃0 + 𝜃1) (S21) 

 TIE = (𝛿2𝜃1 + 𝛿4𝜃1) + 𝛿4𝜃1 . (S22) 

As with a mediation analysis that does not include a treatment–mediator interaction, combining 

the average TIE and average PDE give us the average total effect: 

 TE = PDE + TIE = [𝛿1 + 𝛿4(𝜃0 + 𝜃1)] + [(𝛿2𝜃1 + 𝛿4𝜃1) + 𝛿4𝜃1] . (S23) 

In many ecological studies, the treatment variable may be continuous. Drought, for 

example, could be specified using one of several possible drought indices. For a continuous 

drought treatment with an interaction term between the treatment and mediator, we can instead 

define the average PDE  and average TIE  in terms of the difference between the treated and 

control drought values: 

 PDE = 𝛿1(𝑑 − 𝑑∗) + 𝛿4(𝜃0 + 𝜃1𝑑∗)(𝑑 − 𝑑∗) (S24) 

 TIE = (𝛿2𝜃1 + 𝛿4𝜃1𝑑∗)(𝑑 − 𝑑∗)

+ 𝛿4𝜃1(𝑑 − 𝑑∗)(𝑑 − 𝑑∗) , 
(S25) 

where 𝑑 is the treated value of drought and 𝑑∗ is the untreated value of drought. The total effect 

can be derived again as a combination of the average PDE and average TIE: 

 TE = [𝛿1(𝑑 − 𝑑∗) + 𝛿4(𝜃0 + 𝜃1𝑑∗)(𝑑 − 𝑑∗)]

+ [(𝛿2𝜃1 + 𝛿4𝜃1𝑑∗)(𝑑 − 𝑑∗)

+ 𝛿4𝜃1(𝑑 − 𝑑∗)(𝑑 − 𝑑∗)] . 

(S25) 

In some cases, it may be desirable to break down the direct and indirect effects to obtain 

further interpretations of mediation effects (Fig. S4). We now describe these alternative 

mediation effects using our hypothetical drought study with the outcome productivity 𝑃 

influenced by a drought treatment 𝐷 and soil moisture mediator 𝑀, but these can be generalised 

to any outcome 𝑌 with treatment 𝐴 and mediator 𝑀. 
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Fig. S4. Two decompositions of mediation effects. Adapted from VanderWeele (2014). CDE, controlled direct 

effect; INTmed, mediated interaction term; INTref, reference interaction term; PDE, pure direct effect; PIE, pure 

indirect effect; TDE, total direct effect; TE, total effect; TIE, total indirect effect.  

 

Using the potential outcomes notation, the PDE can be split into two parts: a controlled 

direct effect (CDE) in which the mediator can be set to specific values not necessarily 

determined by the state of the drought treatment, and a reference interaction term (INTref; Fig. 

S4). The CDE  captures the average amount by which productivity would change if drought 

were changed from 𝐷 = 0 to 𝐷 = 1 across all plots and soil moisture were fixed at a specified 

level 𝑀 = 𝑚 for all plots. The CDE is given by 

 CDE(𝑚) = 𝐸[𝑃1𝑚 − 𝑃0𝑚] . (S27) 

We only need to satisfy Assumptions A3 and A5 to estimate the CDE . The average CDE  of 

drought on productivity for all plots in the hypothetical drought experiment is the difference in 

the average productivity for treated and control plots if soil moisture were held (controlled) at 

a single level across all plots. For each possible soil moisture level that could be fixed across 

all plots, there is a different average CDE. 

Why would an ecologist be interested in CDEs? Let us say that an ecosystem manager wants 

to reduce the effects of drought on productivity and determines some values of soil moisture 

for which the controlled direct effect of drought on productivity is small and thus less of a 

management concern. The manager would then have the option of reducing the effect of 

drought on productivity by externally increasing the soil moisture, say, through a ground-level 

irrigation system, to the levels implied by the favourable CDE estimates. 

The reference interaction (INTref) represents an additive interaction of the effect of drought 

and soil moisture on productivity that only occurs when soil moisture remains at the value it 

would be under the no-drought control condition (𝑀0). This interaction effect is given by 

 INTref = 𝐸[(𝑃1𝑀1
− 𝑃1𝑀0

− 𝑃0𝑀1
+ 𝑃0𝑀0

)(𝑀0)] . (S28) 

If there exists no interaction between drought and soil moisture, the average CDE(𝑚) = PDE =

𝛿1 for our drought study represented by Equation (6). The equivalence of the average CDE and 

the average PDE  is generally true for all regression-based approaches without mediator–

outcome interactions, i.e. no 𝛿4𝐷𝑖𝑀𝑖  term in Equation (6). If an interaction between the 
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treatment and mediator is present, the CDE(𝑚) must be redefined to include 𝛿4 (VanderWeele 

& Vansteelandt, 2009). 

The TIE can also be separated into two components: a pure indirect effect (PIE) in which 

the mediator changes while the treatment is fixed at 𝐷 = 0 (instead of 𝐷 = 1 as in the TIE), 

and a mediated interaction term (INTmed; Fig. S4). The PIE  captures the amount by which 

productivity changes if 𝑀 were changed from the level it was under the no-drought control 

condition (𝑀0) to the level it was under the drought-treated condition (𝑀1) while fixing drought 

to the control condition (𝐷 = 0), 

 PIE = 𝐸[𝑃0𝑀1
− 𝑃0𝑀0

] . (S29) 

The INTmed represents the additive effect of both drought and soil moisture on productivity 

and the effect of drought on soil moisture. The mediated interaction is given as 

 INTmed = 𝐸[(𝑃1𝑀1
− 𝑃1𝑀0

− 𝑃0𝑀1
+ 𝑃0𝑀0

)(𝑀1

− 𝑀0)] . 

(S30) 

Combining the INTmed with the PDE gives us the total direct effect (TDE), which describes the 

amount by which productivity changes if drought were changed from 𝐷 = 0 to 𝐷 = 1 but soil 

moisture was fixed to the value it would be under the drought-treated condition (𝑀1): 

 TDE = INTmed + PDE = 𝐸[𝑃1𝑀1
− 𝑃0𝑀1

] . (S31) 

Note that, in contrast to the TDE, the PDE fixes soil moisture to the value it would be under the 

no-drought control condition (𝑀0 ). Adding INTmed  to PDE  captures additional information 

about the effect of soil moisture under the drought treatment to give the TDE (Fig. S4). 

The decomposition of causal effects can be extended to cases of two or more mediators that 

can potentially interact with both the treatment and each other, but doing so requires the 

researcher to define more potential outcomes and more decomposable components of the total 

effect and to designate which contrasts among the many potential outcomes one wants to 

consider (e.g. Bellavia & Valeri, 2017). The researcher would also have to eliminate the effects 

of mediator–outcome confounders for all mediators in the analyses (as detailed in Section 5 

above). 
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