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Abstract

Ecologists seek to understand the intermediary ecological processes through which
changes in one attribute in a system affect other attributes. Yet, quantifying the causal
effects of these mediating processes in ecological systems is challenging. Researchers
must define what they mean by a “mediated effect”, determine what assumptions are
required to estimate mediation effects without bias, and assess whether these assump-
tions are credible for a study. To address these challenges, scholars in fields outside
of ecology have made significant advances in mediation analysis over the past three
decades. Here, we bring these advances to the attention of ecologists, for whom under-
standing mediating processes and deriving causal inferences are important for testing
theory and developing resource management and conservation strategies. To illustrate
both the challenges and the advances in quantifying mediation effects, we use a hy-
pothetical ecological study. With this study, we show how common research designs
used in ecology to detect and quantify mediation effects may have biases and how
these biases can be addressed through alternative designs. Throughout the review, we
highlight how causal claims rely on causal assumptions, and we illustrate how different
designs or definitions of mediation effects can relax some of these assumptions. In con-
trast to statistical assumptions, causal assumptions are not verifiable from data, so we
also describe procedures that researchers can use to assess the sensitivity of a study’s
results to potential violations of its causal assumptions. The advances in causal me-
diation analyses reviewed herein will provide ecological researchers with approaches to
clearly communicate the causal assumptions necessary for valid inferences and examine
potential violations to these assumptions, which will enable rigorous and reproducible
explanations of intermediary processes in ecology.
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1 Introduction
Ecologists seek a causal understanding of ecosystem dynamics. A key part of this under-
standing is obtained by identifying and quantifying the intermediary ecological processes
through which changes in one variable produce changes in other variables. The study of
these intermediary processes, which we refer to as “mediators” but are sometimes also re-
ferred to as ecological “mechanisms” (Heger, 2022; Poliseli et al., 2022), involves decomposing
overall effects into their constituent mediation effects. For example, scientists may be in-
terested in the effect of drought on tree mortality and whether this effect is mediated by
changes in carbohydrate reserves. Similarly, conservation scientists and practitioners may
seek to understand whether and by how much changes in poaching may mediate the effect
of protected areas on species abundance.

Although ecological studies frequently make implicit or explicit causal claims about medi-
ation effects in experimental and observational studies, the substantial challenges in making
such claims have not been clearly addressed in the ecology literature. To address these
challenges, ecologists require a standardised language that can guide the development of
appropriate empirical designs and articulate the causal assumptions necessary for drawing
causal inferences about mediating variables. Although recent publications have introduced
causal inference concepts to ecologists (Arif and MacNeil, 2023, 2022b; Grace and Irvine,
2020; Larsen et al., 2019; Ramsey et al., 2019; Ribas et al., 2021), they have not described
the challenges in estimating mediation effects. Moreover, the literature has inadequately em-
phasised the importance of causal assumptions and has not clearly distinguished them from
statistical assumptions (e.g., linearity, additivity, homoscedasticity, and normality). The
mantra that credible causal inferences are not possible without explicit causal assumptions
is one of the most important insights from the last three decades of advances in methods
for causal inference (Rubin, 2006; Pearl, 2009; Shipley, 2000), and significant developments
have been made in extending these methods for mediation analyses (MacKinnon, 2012; Van-
derWeele, 2015) of which ecologists can take advantage.

Here, we review important conceptual and methodological advances in mediation analysis
that have been made in statistics, social science, biostatistics, and computer science but
which have remained largely unadopted in ecology despite their potential for elucidating
intermediary ecological processes. To introduce the terminology that is commonly used in
the causal mediation literature, we use a hypothetical ecological study. We also use this study
to describe how common designs in ecology for detecting or quantifying mediation effects
may have biases, that is, systematic deviations between the estimated effect and the true
underlying causal effect. We then show how these biases can be addressed through alternative
experimental or statistical designs. Each design relies on different causal assumptions to
make causal claims about the signs and magnitudes of mediation effects. Throughout our
review, we focus on transparently describing these assumptions and discussing when they
may be violated for ecological studies. At the end of our review, we demonstrate how these
assumptions can be articulated and understood using the potential outcomes framework
(Holland, 1986, 1988; Rubin, 2005), one of several analogous causal inference frameworks
available for defining and estimating causal effects in experimental and observational studies
(Dawid, 2000, 2021; Pearl, 2009; Rubin, 1974, 2006). The potential outcomes framework
extends classical approaches to mediation analysis by providing a unifying and rigorous
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structure that can be flexibly applied across ecological settings and data distributions.

2 Motivating example
We illustrate the concepts, methods, and challenges associated with studying mediators
in ecological systems using a hypothetical example of an experimental study in which re-
searchers aim to quantify how drought affects productivity in grassland ecosystems (e.g.
Hoover et al. 2018; Pennisi 2022; Wilkins et al. 2022). The researchers hypothesise that one
way that drought reduces productivity in grasslands is by changing soil moisture. In other
words, they hypothesise that soil moisture is a mediator through which drought affects pro-
ductivity in grasslands (Figure 1a). The researchers are not only interested in determining
whether changes in soil moisture induced by drought lead to changes in productivity. They
also want to quantify how much of the influence of drought on productivity comes from this
change in soil moisture: “On average, about X% of the effect of a drought treatment on
productivity arises from the effect of drought treatment on soil moisture.” The researchers
are aware that soil moisture may not be the sole mediator, but they choose soil moisture
as the mediation effect to quantify in the study. Estimating the effects of multiple mediat-
ing variables within one study can bring additional challenges that are discussed briefly in
Supplement S.5.

In the experiment, researchers randomly assign grassland plots to a rainfall exclusion
treatment, which mimics drought conditions by preventing access to rainfall using overhead
shelters (Figure 1b and 1c). Some time after random assignment of the treatment, the
researchers measure soil moisture and productivity on each plot. Thus, the drought treat-
ment is binary and soil moisture and productivity are continuous variables. We assume that
the idealised experimental conditions for a randomised controlled trial are met (Cox 1958;
Neyman et al. 1935; Rubin 1974, and reviewed in Kimmel et al. 2021). At the end of the
experiment, the plots randomly assigned to the drought treatment are found to exhibit, on
average, decreased productivity in comparison to the control plots (Figure 1b).

By using an illustrative example in which researchers randomly assign the treatment, we
can focus on the key issues that arise in all study designs aimed at estimating the effects
of mediators, whether the treatment is randomised or not. Although the drought treatment
was randomised across plots, the mediator, soil moisture, was not. This is a common feature
in experimental designs in ecology, because randomising intermediary ecological processes is
challenging (see Section 5.1).

When estimating the causal effect of a mediator in a design that does not randomise the
mediator, researchers face the same challenges that must be addressed in any observational
design, particularly the challenge of eliminating the effects of other variables that influence
both soil moisture and productivity, such as the influence of grazing by herbivores (Eldridge
et al., 2017; Sitters and Olde Venterink, 2015; Veldhuis et al., 2014). Variables like herbivory
and the challenges they pose for estimating the effects of mediation are described in more
detail in Sections 3 to 5. Even if it were possible to conduct a follow-up experiment in which
soil moisture was randomised, or both soil moisture and drought were randomised, drawing
inferences about the mediation effects in the original experiment can be challenging (see
Section 5.1).
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Figure 1: (a) The hypothesis for our hypothetical drought study expressed as a causal
diagram in which arrows imply causal relationships between variables. For visual simplicity,
the continuous variables soil moisture and productivity are represented as binary. (b) Results
from the hypothetical experiment on 12 grassland plots, where 6 plots have been randomly
assigned treatment with a rainout shelter. Rainout shelters reduce soil moisture by blocking
precipitation, which in turn reduces plot productivity. (c) Photo of a drought experiment
with rainout shelters in Boulder, Colorado, USA (Photo credit: Meghan Hayden).
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3 Concepts
In this section, we introduce causal inference terminology that is used to distinguish the
roles of key variables in a system, define the causal effects to be estimated, determine how
to estimate these effects without bias, and communicate the results. Familiarity with this
terminology is useful for articulating and verifying the assumptions required to make causal
claims in a study.

3.1 Causal graphs

A tool often used by researchers to identify hypothesised causal relationships in a study, com-
municate the underlying assumptions required for causal inference, and obtain guidance on
appropriate statistical analyses is a causal directed acyclic graph (DAG) (Digitale et al., 2022;
Greenland et al., 1999; Pearl, 2000). In DAGs (e.g., Figure 1a), arrows between variables
imply causal dependence between the variables but do not specify a functional relationship
(i.e., they are ‘non-parametric’). DAGs are directed, meaning that arrows defining causal re-
lationships go in only one direction between two variables; there are no bidirectional arrows.
The absence of an arrow between two variables implies that the researchers assume no causal
relationship between the variables. Additionally, DAGs do not allow for feedback loops or
paths of directed arrows that create a closed loop, hence they are "acyclic." Bidirectional and
feedback relationships usually reflect unresolved temporally ordered effects or unmeasured
common causes (Hernán and Robins, 2006; Murray and Kunicki, 2022; Pearce and Lawlor,
2017). A complete DAG includes all known or hypothesised common causes of any pair of
variables represented in the causal diagram. Path diagrams of structural equation models
(SEMs) are a special case of DAGs that include additional parametric and distributional
assumptions (Kunicki et al., 2023; Pearl, 2000; Shipley, 2000).

3.2 Variables in mediation analysis

Before designing or conducting the hypothetical drought experiment, researchers may de-
scribe their hypothesis with a DAG to identify the relevant variables in the study. We begin
with an incomplete DAG that does not yet include all common causes in the drought study
(Figure 2a). In experimental designs, the manipulated causal variable is typically referred to
as the treatment or exposure. In our hypothetical study, the treatment is drought, which
is represented by two possible states: a treated state in which drought conditions are applied
through rainout shelters and a control state in which no drought conditions are applied. This
treatment is binary, but it could be discrete (e.g., "low", "medium", "high") or continuous
(e.g., millimeters of precipitation). The treatment is randomised across units, which are
plots in our example study (Figure 1b). The variable hypothesised to be causally affected by
a change in the treatment is referred to as the outcome, which in the case of our example
study is aboveground grassland productivity in a plot.

Since soil moisture is hypothesised to act as an intermediary between the treatment and
outcome in the drought study, it is referred to as a mediator. A mediator is always on the
causal path, that is, the path between a treatment and an outcome (indicated in red in
Figure 2). The process through which the treatment’s effect arises through one or multiple
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mediators is called mediation, and the set of methodologies by which the magnitudes of the
mediating effects are estimated is known as mediation analysis. In an ecological system,
there can be multiple mediators by which a cause can influence an outcome, and multiple
mediators can be on the same causal path (Figure 2b).

Mediators are often confused with moderators, which leads to misconceptions and mis-
interpretations in causal analyses (Ferraro and Hanauer, 2015; Holmbeck, 2019; Kraemer
et al., 2008; Wu and Zumbo, 2008). Mediators and moderators play very different roles
in the effect of a treatment on an outcome, and thus the distinction between the two is
important for valid causal mediation analyses (Baron and Kenny, 1986; MacKinnon, 2011).
Moderators do not lie on the causal path but instead affect or “moderate” the strength or
direction of a causal effect. Moderators interact with treatments and mediators to alter their
effects on the outcome, a phenomenon known as interaction or “effect modification”. In our
hypothetical study, soil type or texture in each plot may modify the effect of drought on
productivity (Figure 2c). For example, drought may have a different effect on soil moisture
in clay soil than in sandy soil, because clay soil can retain moisture for longer periods. The
moderation of the effect of drought on soil moisture would thus modify the overall effect
of drought on productivity across different soil types, creating heterogeneous treatment ef-
fects. If distinguishing the heterogeneous effects of drought on productivity for different
soil types is of interest, moderator or subgroup analysis can be used (VanderWeele, 2012a;
Wu and Zumbo, 2008). Moderator analysis can also be combined with mediation analysis
(VanderWeele, 2012a, 2014; Wu and Zumbo, 2008). While we primarily focus on methods
for directly estimating mediation effects, interactions created by moderators introduce het-
erogeneity that must be handled appropriately to estimate causal effects without bias (see
Sections 4 and 6 and Supplement S.3).

Factors that influence at least two variables along the causal path are known as con-
founders, or sometimes “common causes”. Confounding is a key concern for estimation of
causal effects, as confounders induce dependence between treatment, mediator, and outcome
that may not be due to true causal relationships. Confounders can therefore mask or mimic
causal relationships among treatment, mediator, and outcome. Hence, failure to account for
confounders leads to bias in the estimation of causal effects (Addicott et al., 2022). Consider
the potential confounders W , K, and G in the hypothetical drought system (Figure 2d).
Treatment-mediator confounders, such as topographic features or climate zones, influences
both drought and soil moisture (W in Figure 2d). Treatment-outcome confounders, like
temperature (K in Figure 2d) or air pollution, can affect grassland productivity as well
as the frequency and duration of drought. Mediator-outcome confounders, such as histori-
cal grazing (G in Figure 2d), affect both soil moisture and productivity. Like moderators,
confounders do not lie on the causal path.

The labels “treatment”, “mediator”, and “outcome” are context dependent. Drought, for
example, could be viewed as a mediator if we consider an expanded version of our hypothet-
ical drought study where the manipulated treatment is cloud seeding, which is hypothesised
to influence grassland productivity through drought, soil moisture, and other processes (Fig-
ure 2e). While these labels may be somewhat artificial when describing an ecological system,
adhering to causal terminology is helpful for clearly identifying key parts of a study and their
respective roles when estimating causal effects. This nomenclature has not been used in a
standardised manner in ecology and related fields like conservation science (e.g., Cinner et al.

5



D M P

(a)

D M M2 P

M3

(b)

D M P

L

(c)

W D M P

K

G

(d)

J D M P

(e)

D P
c1

D P

M

c

a b

(f)

Figure 2: Causal diagrams of potential hypotheses for the hypothetical drought system
with (a) only the treatment D, mediator M , and outcome P (an incomplete DAG); (b)
multiple mediators between the treatment and the outcome; (c) a moderator L that interacts
with the drought treatment to affect the relationship between treatment and outcome; (d)
treatment-mediator confounder W , mediator-outcome confounder G, and treatment-outcome
confounder K; (e) an alternative exposure of interest J that relabels the original treatment
D as a mediator; and (f) the causal path of the incomplete DAG in panel (a) labelled
to indicate the total effect c1, direct effect c, and indirect effect composed of a and b. D
= drought, M = soil moisture, M2 = secondary mediator (e.g., photosynthesis), M3 =
alternative mediator (e.g., frequency of wildfires), P = productivity, L = soil type, W =
topography, K = temperature, G = historical grazing, J = cloud seeding. Causal paths are
in red.
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2018), which makes it difficult to identify the roles of the variables under investigation in
a study and the assumptions that researchers presume are met when estimating mediation
effects, including which confounders are accounted for and which are not (Arif and MacNeil,
2023; Kimmel et al., 2021). Having identified the relevant components of a causal DAG that
represents a study system, we next describe the effects to be estimated in mediation analysis.

3.3 Effects in mediation analysis

In mediation analysis, we are interested in breaking down the total effect of a treatment on an
outcome into its constituent parts through one or more mediators in the system (Figure 2f).
The overall effect of a treatment on an outcome is known as the total effect, which includes
the effects of all conceivable mediators along all possible paths from the treatment to the
outcome (path c1 in Figure 2f). The total effect represents the change in the outcome when
the treatment is changed from control to treated (if the treatment variable is binary), or
when the treatment is changed by one unit value (in the case of a discrete or continuous
treatment) while holding all other variables not on the causal path constant. The total effect
provides no information on how the effect on the outcome is achieved through changes in
mediators.

The effect of the treatment on the outcome that operates through an observed mediator
is known as an indirect effect, which captures the magnitude of the relationship between
the treatment and outcome that is attributable to the mediator. Hence, an indirect effect is
sometimes referred to as a “mediated effect” (VanderWeele and Vansteelandt, 2014; MacK-
innon et al., 2007). An indirect effect is influenced by both the magnitude and direction
of the relationship between the treatment and mediator (path a in Figure 2f) and by the
magnitude and direction of the relationship between the mediator and the outcome (path b
in Figure 2f).

The causal effect of the treatment on the outcome that is not transmitted through the
mediator of interest is referred to as the direct effect (path c in Figure 2f). The direct effect
is not equivalent to an unmediated effect, although some texts refer to it as such. Indeed,
there is no such thing as a truly unmediated causal effect (Le Poidevin, 2007; Mellor, 1995).
The direct effect represents the effect through all other pathways from the treatment to the
outcome that are not of interest or are unobservable to the researchers. We therefore think
of the direct effect as the part of the total effect that does not pass through the mediator
of interest. In many causal diagrams, the direct effect is not drawn but is implied (e.g.,
Figures 2a, 2b, 2d and 2e).

In our hypothetical drought study, the total effect of drought D on grassland productivity
P represents the causal effect that would occur if we could change drought from the control
state (no rainout shelter), D “ 0, to the treated state (with rainout shelter), D “ 1, in a
grassland plot. Hence, the total effect for a given plot is often referred to as the individual
treatment effect. In our example study, the total effect is hypothesised to be mediated, at
least in part, by soil moisture M , which means that the total effect is composed of (1) the
indirect effect, which is the effect that would occur if D were fixed at 1 and the value of soil
moisture were changed from the value it takes when D “ 0 to the value it takes when D “ 1,
and (2) the direct effect, which is the effect that would occur if D were changed from 0 to 1
but the value of soil moisture were held to the value it takes when D “ 0. In Section 6, we
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will discuss how mediation effects can be defined in other ways that may also be of interest
to ecologists.

In the next section, we outline the causal and statistical assumptions necessary for esti-
mating effects in mediation analysis without bias. In subsequent sections, we will examine
approaches to quantifying effects in mediation analysis and discuss the conditions under
which these approaches may or may not satisfy key causal assumptions.

4 Causal assumptions for estimating effects in mediation
analyses

To draw causal inferences about effects in mediation analysis using experimental or obser-
vational data, researchers must make several causal and statistical assumptions. In this
section, we describe the requisite causal assumptions and distinguish them from the statis-
tical assumptions that are often addressed in ecological analyses of mediators. The causal
assumptions typically required for causal mediation analyses are as follows:

Assumption A1 No unmeasured treatment-outcome confounders, i.e., no unmeasured vari-
ables that influence both the treatment and the outcome.

Assumption A2 No unmeasured treatment-mediator confounders, i.e., no unmeasured vari-
ables that influence both the treatment and the mediator.

Assumption A3 No unmeasured mediator-outcome confounders, i.e., no unmeasured vari-
ables that influence both the mediator and the outcome.

Assumption A4 No mediator-outcome confounders (measured or unmeasured) that are in-
fluenced by the treatment.

Assumption A5 No interaction between the treatment and mediator.

Assumption A6 Mediation effect is not influenced by moderators.

Assumption A7 No hidden variation (multiple versions) of treatment or mediators.

Assumption A8 No interference among units.

Assumption A9 Treatment temporally precedes the mediator, and mediator temporally pre-
cedes the outcome (i.e., no reverse causality).

Assumptions A1 to A4 address confounding variables that can introduce bias in mediation
analysis (Figure 3), while Assumptions A5 to A8 address other factors that can introduce
bias and create challenges for interpretation of mediation effects.

As we describe in subsequent sections, researchers interested in quantifying mediation
effects must find ways to satisfy these causal assumptions or relax them. For example, in
an experimental design in which the treatment is randomised, such as in our hypothetical
drought study, Assumptions A1 and A2 can be satisfied by statistical theory. In the absence
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of treatment randomisation, we would need to explicitly account for all treatment-outcome
and treatment-mediator confounders, increasing the challenge of estimating mediation effects
without bias (Imai et al., 2010; Pearl, 2014; VanderWeele, 2015). However, randomisation
of the treatment does not imply that Assumptions A3 or A4 are satisfied (for a detailed
explanation of the intuition for this claim using our drought study, see Supplement S.2). To
satisfy Assumptions A3 and A4 in an experiment in which the treatment was randomized,
researchers must either measure the confounders or eliminate their effects through specific
research designs or statistical techniques (Sections 5.1 to 5.4). If violations to Assumptions
A3 or A4 are still suspected in a study, researchers should quantify how robust the estimated
effects are to such violations (Section 5.5). If Assumptions A5 or A6 cannot be satisfied in a
study, researchers may have to use a conceptual framework for causal inferences (Section 6)
or change their definitions of indirect and direct mediation effects (Supplement S.6).

D M P

K

(a) Assumption 1: The treatment-outcome
confounder K cannot be unmeasured.

W D M P

(b) Assumption 2: The treatment-mediator
confounder W cannot be unmeasured.

D M P

G

(c) Assumption 3: The mediator-outcome
confounder G cannot be unmeasured.

D M P

G

(d) Assumption 4: The mediator-outcome
confounder G cannot be influenced by the
treatment D, regardless of whether G is mea-
sured or unmeasured.

Figure 3: Causal diagrams illustrating four causal assumptions related to confounding vari-
ables that could exist in our hypothetical drought study. Labels are as in Figure 2. The
confounder addressed by each assumption is shown in orange.

Causal assumptions are distinct from statistical assumptions, which permit valid population-
level statistical inferences from available sample data (Berry, 1993). Examples include as-
sumptions about the distribution of the data, the forms of the relationships between mea-
sured variables, and properties of the residuals. We generalise these statistical assumptions
as follows:

Assumption B1 Model is correctly specified (e.g., parametric, non-parametric, additive).

Assumption B2 Model-specific assumptions are satisfied (e.g., linearity, constant variance,
independent errors, normality).
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Statistical assumptions are theoretically valid with sufficiently large data, and much work
has gone into developing methods to obtain valid inference in the presence of violations to
many common statistical assumptions (Wilcox, 2010).

Unlike statistical assumptions, causal assumptions cannot be expressed using probability
calculus, and they cannot be verified without extensive experimental controls, even with
unlimited data, because these assumptions reflect conceptual beliefs about unobserved, and
therefore unmeasured, variables (Pearl, 2001a; Stone, 1993). Thus, determining whether
causal assumptions have been satisfied is subjective, and their plausibility in a specific context
is ascertained by a mix of theory, field knowledge, and indirect tests.

Without an explicit description and justification of the causal assumptions on which a
study relies, the scientific community cannot assess the credibility of any causal claims in
the study. Researchers can quantify how robust their estimated effects are to violations of
Assumptions A1 to A4 (Section 5.5). If researchers are unable to satisfy Assumptions A5
to A8, such as in studies with heterogeneous treatment effects and interactions between
the treatment and mediator, alternative definitions of direct and indirect mediation effects
are available using conceptual frameworks for causal inferences (see Section 6). But, just
like statistical assumptions, causal assumptions cannot be ignored. In the next section, we
presume Assumptions A1 and A2 are satisfied (e.g., via randomisation, as in our drought
experiment example), and we explore ways in which ecologists can satisfy Assumptions A3
and A4 and assess the robustness of the estimated mediation effects to violations of these
assumptions. In Section 6, we introduce the potential outcomes causal inference framework
that can help ecologists address potential violations to Assumptions A5 to A8. Overcoming
violations to temporal precedence is fundamentally difficult (Pearl and Verma, 1995); thus,
we presume Assumption A9 can be met for all mediation analyses discussed herein.

5 Addressing mediator-outcome confounders
In studies where Assumptions A1 and A2 have been satisfied, researchers must also elimi-
nate the effects of mediator-outcome confounders to estimate mediation effects without bias
(James and Brett, 1984). For example, consider again our hypothetical drought study, but
imagine that, prior to the experimental stage, some plots experienced heavy grazing by her-
bivores while other plots had little to no grazing activity (Figure 4). Suppose that plots with
historically more grazing are also, on average, less productive and have less soil moisture
in the current period, perhaps through soil compaction by grazers (Eldridge et al., 2017;
Sitters and Olde Venterink, 2015; Veldhuis et al., 2014). The correlation of historical grazing
with both soil moisture and productivity introduces bias into the estimation of the effect of
drought on productivity and the effect of soil moisture on productivity (see Supplement S.2
for details). Thus, when the assumption of no unmeasured mediator-outcome confounding
is violated, estimated mediation effects cannot be imbued with causal interpretations, even
in experimental designs in which the treatment is randomised (Holland, 1988; MacKinnon,
2012; VanderWeele and Vansteelandt, 2009). The assumption of no unmeasured mediator-
outcome confounding is typically not explicitly stated or interrogated in ecological studies,
and this assumption is likely violated in practice.

In this section, we describe approaches that can address mediator-outcome confounders
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Figure 4: (a) A revised causal DAG of the hypothesis for our hypothetical drought study
with the addition of a mediator-outcome confounder, historical grazing. For visual simplicity,
the continuous variables soil moisture and productivity are represented as binary. The effect
of historical grazing cannot be eliminated through randomisation of the drought treatment.
(b) Results from the hypothetical experiment on 12 grassland plots, where 6 plots have been
randomly assigned treatment with a rainout shelter. The historical presence of herbivores
also reduces soil moisture through compaction of substrate and reduces productivity through
grazing. Historical grazing is not manipulated or randomised, but it could be measured
during the experimental phase: herbivores grazed on four of the plots, with no preference
towards treated or control plots (as expected from randomisation of the rainout shelters).
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and can be implemented using linear regression models. For each approach, we describe when
and how it can mitigate the effects of mediator-outcome confounders and the challenges faced
in implementing the approach.

5.1 Experimental manipulation of mediators

One way to eliminate the effects of mediator-outcome confounders is to randomise the me-
diator in an experimental design, i.e., a “manipulation-of-mediator” design (Carnevale et al.,
1988; Pirlott and MacKinnon, 2016). Although these designs are less common in ecology,
there are some examples of ecological experiments that randomised a suspected mediator.
For instance, to quantify how productivity reduces plant species richness through shading,
studies have manipulated ground light availability directly (Eskelinen et al., 2022; Hautier
et al., 2009).

In manipulation-of-mediator approaches, direct manipulation of the mediator typically
requires at least two experiments with staged manipulations of the treatment and mediator to
separate the treatment’s effect from the mediator’s effect on the outcome (Imai et al., 2013;
Pirlott and MacKinnon, 2016). For example, the double randomisation design splits the
sample into two subsamples, randomises treatment assignment while measuring the mediator
and outcome in the first subsample, then randomises assignment to different mediator values
in the second subsample (Pirlott and MacKinnon, 2016). Other experimental designs that
manipulate the mediator are also available, such as parallel designs, cross-over designs, and
blockage and enhancement manipulation designs (Jacoby and Sassenberg, 2011; Pirlott and
MacKinnon, 2016). These designs provide experimental design-based solutions for ecologists
interested in quantifying mediating effects in a wide range of contexts.

While manipulation-of-mediator designs eliminate mediator-outcome confounders, other
considerations must be addressed in these designs to be able to estimate mediation effects
(Bullock et al., 2010). Choosing meaningful values for manipulating the mediator in a way
that accurately represents natural changes in the mediator as caused by the treatment can
prove difficult. Additionally, manipulating the mediator, if it is indeed a process or conse-
quence of the treatment, requires either the treatment to be manipulated or the manipulation
of another cause of the mediator to induce a change in the mediator. For example, in our hy-
pothetical drought study, inducing values of soil moisture that occur when drought is present
(D “ 1) in plots that are assigned to the no-drought condition (D “ 0) may be impossible
without manipulating another causal factor, say Z, to induce changes in soil moisture.

Manipulation-of-mediator designs also create challenges for quantifying the effects of the
treatment and mediator on an outcome. Experimental manipulation of a mediator can affect
the outcome in ways that are undesirable for capturing the effect of treatment on outcome
through the mediator (Bullock et al., 2010), leading to difficulty in separating the direct
and indirect effects of treatment on the outcome (Imai et al., 2010). Returning to our
hypothetical drought study, if Z is manipulated for drought-absent (D “ 0) plots to obtain
values of soil moisture that would occur in drought-treated (D “ 1) plots without actually
changing drought (D), then productivity under D “ 0 is likely no longer being influenced by
changes in D, producing misleading estimates of indirect effects through the mediator. Thus,
directly manipulating the mediator may result in violations to the causal assumption of no
multiple versions of the treatment (Assumption A7; Kimmel et al. 2021). It may therefore
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be preferable to encourage or discourage experimental units to take on particular mediator
values, resulting in imperfect manipulation of the mediator that can still be informative.
Such designs include parallel encouragement designs and crossover encouragement designs
(Imai et al., 2013; Pirlott and MacKinnon, 2016).

Even if researchers could address the quantification and interpretation challenges of
manipulation-of-mediator designs, mediating variables in ecology are often ecological pro-
cesses that are difficult to manipulate. For instance, carbohydrate reserves are a hypothe-
sised mediator of drought’s effect on tree mortality (Adams et al., 2017); and local adaptation
and functional diversity are hypothesised mediators of biodiversity’s effect on productivity
in decomposers (Keiser et al., 2014). Carbohydrate reserves, local adaptation in decom-
posers, and decomposers’ functional diversity are challenging ecological variables to directly
manipulate. Thus, many ecological experiments are similar to our hypothetical drought ex-
periment in which the mediator is not randomised but instead measured for each plot (i.e.,
a “measurement-of-mediator” designs, Spencer et al. 2005). In the next four subsections,
we explore approaches to either eliminate the effects of mediator-outcome confounders in
measurement-of-mediator designs or quantify the degree to which mediation effects would
change if the effects of all mediator-outcome confounders have not been eliminated in a study.

5.2 Measured mediator-outcome confounders

In the absence of experimental manipulation of the mediator, a researcher must eliminate the
effects of mediator-outcome confounders through other means. In our hypothetical drought
study, we assume that historical grazing (G) is a mediator-outcome confounder that influ-
ences both soil moisture and productivity (Figure 4). If historical grazing had been measured
for each of the plots, we would estimate the mediation effects using the following three equa-
tions:

Pi “ β0 ` β1Di ` εi1(1)
Mi “ θ0 ` θ1Di ` εi2 ,(2)
Pi “ δ0 ` δ1Di ` δ2Mi ` δ3Gi ` εi3 , i “ 1, . . . , n ,(3)

where Di is the treatment assigned to plot i; Pi is the plot-level productivity; Mi is the
plot-level soil moisture; Gi is the amount of historical grazing on plot i; β0, θ0, and δ0 are
intercepts; β1, θ1, δ1, δ2, and δ3 are coefficients; and εi1, εi2, and εi3 are plot-level error terms
(e.g., εi3 represents all other plot-level variation not accounted for by drought, soil moisture,
or historical grazing). The average productivity of all plots under the no-drought control
is represented by β0, while β1 represents the average change in productivity across all plots
when going from the control state (D “ 0) to the drought-treated state (D “ 1).

Some mediation studies in ecology use only Equations (1) and (2) to estimate a depen-
dence between the treatment and the outcome and between the treatment and the mediator,
respectively. If the dependencies are statistically significant, the studies claim to have de-
tected a mediator in the system (Borer et al., 2014; Cadotte, 2017; Fornara and Tilman,
2009; Liu et al., 2018; Oliveira et al., 2022; Tian et al., 2016). This “two-part estimation
approach” has two important limitations: (1) the indirect effect cannot be quantified, i.e.,
researchers cannot estimate the proportion of the effect of drought on productivity that
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is mediated by soil moisture; and (2) multiple conclusions can be drawn from the results,
including a conclusion that the hypothesised mediator plays no mediating role at all (see
Supplement S.1 for details).

By including historical grazing in a regression equation of productivity as a function of
both the treatment and mediator (Equation (3)), we eliminate the part of the effect of soil
moisture on productivity that is due to the correlation with historical grazing (Figure 5a). If
we further assume that that no other mediator-outcome confounders exist (Assumption A3),
then Equation (3) will produce estimates of both δ1 and δ2 without bias. If the estimated
total effect of drought on productivity is negative ( pβ1 ă 0) then drought reduces productivity
on average across plots (Figure 5b). If the estimated effect of drought on soil moisture is
negative ( pθ1 ă 0) and the estimated effect of drought on productivity increases when both
soil moisture and historical grazing are included in the model (pδ1 ą pβ1), then drought
reduces productivity by reducing soil moisture on average. In other words, after controlling
for the mediator-outcome confounder (historical grazing), the negative effect of drought on
productivity is smaller in magnitude (i.e., smaller in absolute value) when the effect of soil
moisture on productivity is held constant. This procedure is characteristic of analyses using
SEMs in ecology (e.g., Grace et al. 2016), although such analyses are not typically framed in
these terms. To estimate the effect of drought on productivity through soil moisture using
Equations (2) and (3), researchers can use the product method, in which the indirect effect
is θ1δ2 (see Supplement S.2 for details and for indirect effects defined using the three-part
procedure when the mediator and outcome are not continuous).
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D P
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θ1 δ2
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Figure 5: Mediation analysis of the hypothetical drought study is subject to bias arising
from confounders. (a) If a mediator-outcome confounder exists, such as historical grazing
G, and is measured in the study, bias from G can be eliminated by including the variable
as in Equation (3).(b) The three-part procedure estimates four components of the relation-
ship between D and P . (c) The procedure assumes no mediator-outcome confounders, but
the effect of drought can operate through other mediators, such as M2, in addition to soil
moisture. However, M must not be affected by any other mediators; e.g., M2 becomes a
mediator-outcome confounder that is influenced by the treatment if the dashed red path
exists (a violation of Assumption A4). Labels are as in Figure 2.

Regardless of how the indirect effect is quantified, the effect is only estimated without bias
if all mediator-outcome confounders are accounted for (Figures 5a and 5c) and if the effect
of soil moisture on productivity is homogeneous across different levels of drought, i.e., there
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is no interaction between drought and soil moisture (Valeri and Vanderweele, 2013). For a
detailed explanation of the bias that arises in the presence of heterogeneous effects using
the hypothetical drought study, see Supplement S.3, but see Section 6 for options to relax
Assumption A5. The assumption that a study’s research design has controlled for all possible
confounders is a strong assumption that is unstated in many mediation analyses (Bollen and
Pearl, 2013; Grace et al., 2015; Kunicki et al., 2023; VanderWeele, 2012b; VanderWeele and
Rothman, 2021).

In real ecological systems, there will likely be many mediator-outcome confounders, and
identifying and measuring them all will be challenging. Additionally, many confounders (e.g.,
historical grazing patterns, weather, soil composition) are multi-dimensional, and measuring
the relevant dimensions can be challenging. In the next three subsections, we describe
approaches for mediation analysis that do not rely on measuring every potential mediator-
outcome confounder in all their relevant dimensions.

5.3 Unmeasured mediator-outcome confounders: instrumental vari-
able designs

Suppose that the mediator-outcome confounder historical grazing cannot be measured in
our hypothetical drought experiment. Suppose also that there exists another variable that
affects productivity only through its effect on soil moisture (V in Figure 6), i.e., there exist
no other pathways from V to productivity except through the effect of V on soil moisture.
When measured, this variable can be used as an instrumental variable to estimate the effect
of the mediator without bias, even in the presence of mediator-outcome confounders. If V
only affects productivity through its effect on soil moisture (Figure 6a), an untestable causal
assumption known as the “exclusion restriction”, we can replace Equations (2) and (3) with

Mi “ θ0 ` θ1Di ` θ2Vi ` εi2(4)

Pi “ δ0 ` δ1Di ` δ2 xMi ` εi3(5)

where Vi is the instrumental variable measured at each plot i and xMi is the fitted value
of soil moisture estimated from Equation (4) (Chen et al., 2023; Dippel et al., 2020). As
in Section 5.2, researchers can use the product method to estimate the indirect effect from
Equations (4) and (5) as θ1δ2. If the exclusion restriction assumption is violated (Figure 6b),
one cannot estimate the effect of soil moisture on productivity, δ2, without bias using Equa-
tions (4) and (5).

Finding and measuring instrumental variables that do not violate the exclusion restric-
tion is challenging in ecological systems (Grace, 2021; Kendall, 2015; Rinella et al., 2020),
although, in some cases, the assumption can be made more plausible after eliminating the
effects of measured confounders (Section 5.2). Furthermore, instrumental variable designs
have interpretation challenges: unless the average effect of the mediator is constant across
units, we can only estimate the indirect effect for a subgroup of plots (Angrist and Imbens,
1995; Frölich and Huber, 2017; Rudolph et al., 2021; Wang and Tchetgen Tchetgen, 2018).
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Figure 6: Causal diagrams illustrating instrumental variable designs for mediation analysis.
(a) In the presence of the unmeasured mediator-outcome confounder G, an instrumental
variable V can be leveraged to estimate the effects of D on P that occur through M . (b) V
is not a valid instrumental variable if it affects P through any other pathways (a violation
of the exclusion restriction). Labels D, M , P , and G are as defined in Figure 2.

5.4 Unmeasured mediator-outcome confounders: longitudinal data
designs

The effects of unmeasured mediator-outcome confounders can also be eliminated if clustered
longitudinal data on soil moisture and productivity have been collected. By “clustered”
longitudinal data, we mean data on productivity and soil moisture from i “ 1, . . . , n plots
clustered within multiple sites s “ 1, . . . , S and measured across multiple time points t “

1, . . . , T both before and after the drought treatment is randomly assigned (Figure 7). In a
randomised experiment, data from time points before random assignment of the treatment
are not necessary to estimate the effect of drought on productivity without bias, but such data
can be helpful for estimating the effects of a mediator by eliminating the effects of unobserved
mediator-outcome confounders. The benefits of collecting such data for mediation studies
in ecology will need to be balanced with the increased time and expense required for data
collection.

Below, we describe two popular approaches for eliminating mediator-outcome confound-
ing effects: multilevel modelling and autoregressive modelling designs. For a review of ad-
ditional approaches to leveraging clustered longitudinal designs for causal inference, see
Wooldridge (2010). As we will show, valid inference from clustered longitudinal data designs
requires additional attention to correctly modelling the structure of the data (e.g., serial
correlation of the errors).

5.4.1 Multilevel modelling approach

Ecologists often analyse clustered longitudinal data using a multilevel model structure, which
captures the groupings of clustered data by specifying at least two levels of equations: (1)
first level equations which model the observation-level data (e.g., productivity on each plot
at each time period); and (2) higher-level equations, which include sets of equations for
each cluster or grouping (e.g., productivity on each plot averaged over all time periods)
(Gelman and Hill, 2006). Modelling clustered longitudinal data with the classical multilevel
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Figure 7: Causal diagram for a longitudinal version of the hypothetical drought study for
plot i at site s. For simplicity, time is represented by two periods: t and t` 1. The diagram
can be extended to include all times t “ 1, . . . , T . Gt is the unmeasured mediator-outcome
confounder at time t, and Gt`1 is the same unmeasured mediator-outcome confounder at the
next time point t ` 1. All other labels are as defined in Figure 2.

structure, which is often referred to as mixed effects modelling in ecology, includes error
terms in each of the higher-level equations and allows researchers to quantify the variation
within and among various groupings (Bolker et al., 2009). To use mixed effects modelling
to estimate mediation effects without bias, researchers must assume that the unmeasured
differences in the outcome among plots or among sites, including differences that arise from
the effects of confounders, are uncorrelated with the model’s predictors (i.e., the treatment
and mediator) (Gelman, 2006; Seber and Lee, 2003). Even in ecological settings where the
treatment is randomised, this assumption is likely violated. For a discussion on how bias
arises in estimating mediation effects using mixed effects modelling for the hypothetical
drought experiment, see Supplement S.4.

An alternative multilevel modelling approach can accommodate correlations between un-
measured differences among groups and predictors in the model. This approach, sometimes
called the Mundlak regression approach (Mundlak, 1978) or multilevel modelling for causal
inference (Gelman and Hill, 2006), adds group-averaged predictors from the observation-level
equations as predictors in the higher-level equations (Gelman, 2006; Gelman and Hill, 2006).
These group-averaged predictors remove the effect of unmeasured plot-level and site-level
confounding variables that do not vary over time or change very slowly. As explained below,
the clustered structure of the data can also be used to eliminate unmeasured confounders
that vary over time (see also Byrnes and Dee, 2024).

To implement the multilevel approach for our hypothetical drought study, we include
intercepts at the plot-level and the site-time group level to account for unmeasured con-
founding at both levels. We provide the full set of multilevel equations in Supplement S.4,
but the primary difference between a traditional mixed effects modelling approach and a
multilevel modelling approach for causal inference for our hypothetical drought study lies in
the inclusion of plot-averaged and site-time-averaged soil moisture terms in the higher level
equations. Recall that in the clustered longitudinal version of our drought study, a plot i
is observed at multiple time points t “ 1, . . . , T . We represent an individual observation
on plot i at time t as an observation h. Thus, for an observation h measured at time t
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and belonging to plot i within site s, we describe the effect of drought and soil moisture on
productivity as

Ph “ ϕ3,irhs ` µ3,strhs ` δ1Dh ` δ2Mh ` ε3,h ,(6)
i “ 1, . . . , n ; s “ 1, . . . , S ; t “ 1, . . . , T ;h “ 1, . . . , nST

where each site is composed of ns plots, for a total of n “ n1 ` n2 ` ¨ ¨ ¨ ` ns plots, and each
plot is repeatedly measured over T time points; irhs is the plot i containing observation h;
strhs is the site-time group containing h; Ph, Dh, and Mh are the productivity, drought, and
soil moisture values measured for an observation h; δ1 and δ2 represent the effects of drought
and soil moisture on productivity; ϕ3,irhs is the plot-level intercept; µ3,strhs is the site-time
group-level intercept; and ε3,h is the error term.

To eliminate the effects of unmeasured mediator-outcome confounders, we must specify
second-level equations for Equation (6) that include group-averaged soil moisture as predic-
tors of the group-level intercepts. These equations are

ϕ3,i “ ϕ3‚ ` νĎMi ` η3,i(7)
µ3,st “ µ3‚ ` κĎMst ` η3,st(8)

where ϕ3‚ is the average of the plot-varying intercepts ϕ3,irhs; µ3‚ is the average of the site-
time group-varying intercepts µ3,strhs; ν is the coefficient for the predictor ĎMi representing
plot-level averages of soil moisture; κ is the coefficient for the predictor ĎMst representing the
site-time grouped means of soil moisture; η3,i is the plot-level error; and η3,st is the site-time
group-level error. Researchers can again use the product method to estimate the indirect
effect as θ1δ2 (see Supplement S.4 for details).

Including plot-level effects ϕirhs, which are intercepts estimated for each plot i in site s
where the plot-level differences over time are averaged, allows us to account for unmeasured
differences between plots that do not change over time, such as differences associated with
unmeasured mediator-outcome confounders that occur at the plot level. Likewise, including
site-time group-level effects µstrhs, which are intercepts estimated for each site-time group
st where the differences across plots at each site and time point are averaged, allows us to
account for unmeasured differences between sites that change over time, including differences
associated with unmeasured mediator-outcome confounders that vary over time at the site
level but do not vary across plots within the same site. Further, including the plot-level
(ĎMi) and site-time group-level (ĎMst) averages of the mediator in the higher-level equations
eliminates any potential correlation between soil moisture and the plot or site-time groupings.
As long as plot-level, time-varying confounders (e.g., micro-climate) do not exist, or they
are observed and included in the multilevel model, then ηi and ηst are not correlated with
soil moisture, and the assumption of independence between the levels or groupings (i.e., plot
and site-time) and the mediator in the model is not violated (Greenland and Robins, 1985;
Robins et al., 2000; Roth and MacKinnon, 2012). Longitudinal data can also be used to
control for unmeasured, plot-level confounding variables that vary over time, but we do not
consider those methods here (Greenland and Robins, 1985; Roth and MacKinnon, 2012).

In addition to assuming that time-varying, plot-level confounding variables are observed
or do not exist, the multilevel modelling approach also requires three additional assumptions:
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(1) linearity and additivity of the effects, (2) the effects of the treatment and mediator do
not change across groupings or over time, and (3) the outcome variable for the treated and
control plots would have the same mean trend over time in the absence of treatment, con-
ditional on ϕi and µst (called the parallel trend assumption; Imai and Kim 2021). These
assumptions, particularly the parallel trends assumption, may not hold in long-term ecologi-
cal experiments. More recent advances for multilevel models provide options for relaxing the
assumptions of linearity (Imai and Kim, 2019), homogeneous treatment effects (de Chaise-
martin and D’Haultfœuille, 2020), and parallel trends (Rüttenauer and Ludwig, 2023).

5.4.2 Autoregressive approach

The multilevel modelling approach described in Section 5.4.1 assumes that the mediator-
outcome confounders are unchanging attributes of the system or time-varying site-level at-
tributes. Alternative approaches to modelling clustered longitudinal data require alternative
assumptions about the potential sources of confounding. For example, autoregressive models
with fixed effects, sometimes called “dynamic panel models” in econometrics (Arellano and
Bond, 1991; Blundell and Bond, 1998), can be used if the most likely sources of confound-
ing are time-varying, plot-level attributes that are correlated with values of the outcome
variable at previous time points (e.g., prior values of productivity affect current values of
soil moisture). Autoregressive models with fixed effects can incorporate lagged effects and
between-cluster effects over time, but like all approaches to mediation analysis, they rely on
untestable causal assumptions (Bellemare et al., 2017). Some of these assumptions can be
relaxed when these models are used within the SEM setting (Allison et al., 2017), but no
autoregressive approach can address all potential sources of mediator-outcome confounders
simultaneously.

5.5 Sensitivity analyses for unmeasured mediator-outcome confounders

The assumption of no unmeasured mediator-outcome confounders (Assumption A3) is not
verifiable using data, but researchers can quantify their uncertainty over potential violations
of the assumption by drawing on a range of recent advances to (1) explore how the results
change after using multiple estimation approaches that rely on different causal assumptions
about the nature of mediator-outcome confounders (e.g., compare the estimated mediation
effects from an instrumental variable design with the estimates from a multilevel model); or
(2) assess the degree to which the sign or magnitude of the estimated effects could change
if the assumption of no unmeasured mediator-outcome confounders is violated. Sensitivity
analyses explore how much the estimated mediation effects can change in the presence of a
specific source of confounding (Ding and VanderWeele, 2016; Imai et al., 2010; Hong et al.,
2018; Sullivan and VanderWeele, 2021; VanderWeele, 2010). In contrast, partial identifi-
cation approaches estimate mediation effects under the least restrictive or weakest causal
assumptions to obtain the widest bounds for each effect and then explore how the bounds
shrink as the causal assumptions are strengthened (Flores and Flores-Lagunes, 2013; Huber,
2020; Miles et al., 2017; Richardson et al., 2014).

The assessment of the sensitivity of estimated mediation effects to potential violations in
the causal assumptions is an important step in mediation analyses (MacKinnon and Pirlott,
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2015; VanderWeele, 2015). Causal assumptions are almost certainly violated to some degree
in most real-world systems. Rather than discard causal analyses altogether, every mediation
study should be supplemented by analyses that assess the implications of potential violations
to causal assumptions (Hafeman, 2011; Imai et al., 2010; MacKinnon and Pirlott, 2015;
Tchetgen Tchetgen and Shpitser, 2012; VanderWeele and Ding, 2017). Such analyses allow
researchers to evaluate their level of confidence for causal claims and provide avenues for
addressing gaps in satisfying causal assumptions in future studies.

6 Addressing other causal assumptions: causal inference
frameworks for mediation analysis

In this section, we introduce the potential outcomes causal inference framework, which re-
searchers can use to define and estimate direct and indirect effects that systematically in-
corporate the complexities that we ignored in Section 5. These complexities include hetero-
geneous mediation effects and interference among units (i.e., violations of causal assump-
tions A5 to A8) as well as conditions such as nonlinearity (i.e., violations of statistical
assumptions assumptions B1 and B2). The potential outcomes framework is one of sev-
eral well-developed causal inference frameworks for mediation analysis and is commonly
employed in epidemiology, behavioural sciences, econometrics, and public health. Causal in-
ference frameworks provide clearly defined terminology for the roles that key variables play
in an ecological system and supply a language to describe the relationships between these
variables. Without a formal causal inference framework, the assumptions and interpretations
of any analyses that aim to estimate causal effects from data are opaque and difficult to eval-
uate or reproduce (Ferraro and Hanauer, 2015). The potential outcomes framework allows
researchers to define direct and indirect effects in the absence of any parametric assumptions
about the data or specific functional forms that describe the relationships between variables,
and it also allows researchers to decompose total effects into interpretable components under
conditions in which some of the causal assumptions in Section 4 are not satisfied. For exam-
ple, when mediation effects are heterogeneous because of treatment-mediator interactions or
mediator-mediator interactions, the potential outcomes framework illustrates how one can
decompose and separate the contributions of the interactions and the mediation to the total
effect (see Supplement S.6 for details).

Using our hypothetical drought study, we introduce the potential outcomes notation
for direct and indirect effects (also called “counterfactuals” notation). Recall that we are
interested in measuring the effect of drought on productivity while considering the mediating
effect of soil moisture. A plot can potentially be under the drought-treated condition, D “ 1,
or the no-drought control condition, D “ 0. Imagine that researchers assigned a plot to the
control condition and recorded the productivity after some time. At the same time in a
parallel world in which all other conditions are identical, the same researchers assigned the
same plot to the drought-treated condition instead and recorded the productivity. If they
were able to monitor both worlds simultaneously, the researchers would have a measure of
productivity for the same plot under both the control condition, which we can define as the
plot’s potential outcome P0, and under the treated condition, which we can define as the
plot’s potential outcome P1. The difference in productivity between the two potential states
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of the same plot is the total effect (TE) of drought on productivity in that plot:

(9) TE “ P1 ´ P0 .

In the potential outcomes framework, the total effect can be decomposed into two com-
ponents: one that represents the indirect effect of drought on productivity through soil mois-
ture, and another that represents the effect of drought on productivity that goes through
other mediators that are not the focus of our hypothetical drought study (Robins and Green-
land, 1992; VanderWeele, 2014). Continuing with our parallel worlds thought experiment, we
define two potential outcomes for the mediator: M0 is the potential value that soil moisture
would take in the plot’s no-drought control condition (D “ 0), while M1 is the potential
value that soil moisture would take in the same plot’s drought-treated condition (D “ 1).
Thus, the plot has four potential outcomes: P1M1 , P1M0 , P0M1 , and P0M0 (e.g., P1M0 is the
plot’s productivity in the drought-treated condition with soil moisture held to its values in
the no-drought control condition).

The effect of drought on productivity through soil moisture is represented by the total
indirect effect (TIE), which describes the amount by which productivity would change in
a plot if drought were fixed at D “ 1 and soil moisture changed from the value it would be
at D “ 0 to the value it would be at D “ 1,

(10) TIE “ P1M1 ´ P1M0 .

The remaining effect of drought on productivity that does not go through soil moisture, the
pure direct effect (PDE), describes how much productivity would change if drought were
changed from D “ 0 to D “ 1 and soil moisture were kept at the value it would have been
when D “ 0 (i.e., M0),

(11) PDE “ P1M0 ´ P0M0 .

Although we can imagine parallel worlds and define these effects in terms of poten-
tial outcomes, in our one world, we cannot observe the same plot under both the treated
condition and the control condition simultaneously. This dilemma is known as the “funda-
mental problem” of causal inference (Holland, 1986). For a treated plot, we can observe only
one of the potential outcomes – the potential outcome under the drought-treated condition
(P1M1 “ P1). We cannot observe the potential outcomes of the treated plot as it would be
under control conditions (P1M0 , P0M1 , or P0M0). These are counterfactual potential outcomes
(counter to fact). Similarly, for a control plot, we can only observe one potential outcome
(P0M0 “ P0). We cannot observe the counterfactual potential outcomes P0M1 , P1M0 , or P1M1 .
Thus, the individual plot-level causal effects in Equations (9) to (11) cannot be estimated.

While we cannot observe all potential outcomes for a plot in our drought experiment,
we can combine the potential outcomes framework with statistical theory and assumptions
to obtain from data a population-level approximation of our hypothetical parallel worlds
(VanderWeele, 2015). When the treatment is completely randomised, the observed average
productivity of the plots under the control condition provides an estimate of the population-
level productivity had all plots been under the control condition, i.e., ErP0s, where Er¨s is the
expectation operator. Similarly, the average productivity of the plots under the drought-
treated condition provides an estimate of the population-level productivity had all plots
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been under the drought-treated condition, i.e., ErP1s. The difference between these two
quantities provides us with an estimate of the average total effect of drought on productivity
when changing from the control condition to the treated condition (sometimes called the
“average treatment effect”, ATE):

ATE “ ErP1 ´ P0s “ ErP1s ´ ErP0s

“ ErP1M1s ´ ErP0M0s .(12)

We can also estimate two components of the ATE: the average pure direct effect (ErP1M1´

P1M0s) and average total indirect effect (ErP1M0 ´ P0M0s), where the ATE is the sum of the
average PDE and the average TIE:

ErP1 ´ P0s “ ErP1M1s ´ ErP0M0s

“ pErP1M1s ´ ErP1M0sq ` pErP1M0s ´ ErP0M0sq

“ ErP1M1 ´ P1M0s ` ErP1M0 ´ P0M0s .(13)

In our drought study with its binary treatment, we could use Equations (1) to (3) to
estimate the ATE, which would be equal to β1, the average PDE, which would be equal
to δ1, and the average TIE, which would be equal to θ1δ2 (Figure 8), but only if Assump-
tions A1 to A9 were satisfied and the statistical assumptions of the regression estimators
were satisfied (Assumptions B1 and B2). In many ecological systems, however, one or more
of these assumptions may not be valid, and, in such cases, a conceptual framework like the
potential outcomes framework is valuable for decomposing the total effect into interpretable
components and suggesting appropriate estimation procedures.

D P
ATE “ β1

D P

M

Average TIE “ θ1δ2

Average PDE “ δ1

θ1 δ2

Figure 8: Mediation effects defined using the potential outcomes framework and the three-
part estimation procedure for the hypothetical drought study. The three-part procedure
estimates four components of the relationship between D and P . If Assumptions A1 to A9
and Assumptions B1 to B2 are satisfied for regression estimators, then we can use Equa-
tions (1) to (3) to estimate the ATE and average PDE and TIE. The estimate of the ATE
is β1, shown in red. The estimate of the average PDE is δ1, shown in teal. The estimate of
the average TIE is θ1δ2, shown in orange. Labels D, M , and P are as in Figure 2.

The causal assumptions of no heterogeneous mediator effects (Assumptions A5 and A6)
will be routinely violated in ecological systems. For example, in our drought experiment, the
effect of soil moisture on productivity may be functionally different in the presence of drought
than in the absence of drought, which would suggest an interaction between the treatment
and mediator in violation of Assumption A5 (VanderWeele, 2009; VanderWeele and Robins,
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2007). The estimation procedures in Sections 5.1 to 5.4 will not generate estimates of the di-
rect and mediated effects of drought on productivity without bias when treatment-mediator
interactions are present, even if both drought and soil moisture were randomised (Bullock
et al., 2010; Glynn, 2012; Pearl, 2001b; for a detailed justification, see Supplement S.3).
To address treatment-mediator interactions, direct and indirect effects estimators have been
developed using traditional regression-based approaches, including SEM (MacKinnon et al.,
2020; Rijnhart et al., 2017, 2021; VanderWeele and Vansteelandt, 2010), but these estima-
tors are only valid under certain conditions (e.g., for continuous outcomes and continuous
or binary mediators). The potential outcomes framework has been used to develop more
general approaches that allow for treatment-mediator interactions and both continuous and
non-continuous mediators and outcomes (e.g., Loh et al. 2022, 2020; Xue et al. 2022). For
example, in the presence of treatment-mediator interactions, the total effect can be decom-
posed into four component effects instead of just a PDE and a TIE (VanderWeele, 2014;
see Supplement S.6 for details). Moreover, in observational studies or randomised studies
with non-compliance, other mediation effects not defined in traditional regression-based ap-
proaches may be more plausibly estimated with available data. Causal inference frameworks
can help to clearly differentiate these mediation effects from others and suggest appropriate
estimation strategies (e.g., Ferraro and Hanauer 2014; see also Supplement S.6 for other
mediation effects of potential interest to ecologists).

A key advantage of causal inference frameworks is that they allow researchers to sepa-
rate the definitions of the mediation effects from the estimation procedures for those effects
(Pearl, 2001b; Robins and Greenland, 1992; VanderWeele, 2015). In that way, the rele-
vant assumptions that must be invoked to estimate a particular effect can be transparently
evaluated or, when those assumptions are not likely to hold, the study aims can be transpar-
ently redefined to focus on more plausible assumptions under which mediation effects can be
estimated. For example, mediation effects obtained using the regression-based approaches
in Sections 5.2 to 5.4 require assumptions of additivity and linearity. However, direct and
indirect effects can be defined for more flexible semi- and non-parametric models. Bootstrap-
ping can be used to nonparametrically estimate direct and indirect effects (Imai et al., 2010)
and is particularly useful when the sample size is small or the distribution of the mediator
or outcome is non-Gaussian. Semiparametric methods have also been used to estimate di-
rect and indirect effects (Tchetgen Tchetgen, 2011; Tchetgen Tchetgen and Shpitser, 2012),
and more recent work has extended these methods to settings with multiple mediators and
confounding (Miles et al., 2020; Zhou, 2021). To accommodate nonlinear relationships and
interactions between the treatment, mediator and outcome, kernel-based approaches can be
used (Carter et al., 2020; Devick et al., 2022; Singh et al., 2022) and have also been applied
in SEM settings (Shen et al., 2017). For data with non-Gaussian distributions or nonlinear
relationships between treatment, mediator, and outcome variables, Bayesian nonparametric
models have been shown to be effective for estimating direct and indirect causal effects (Kim
et al., 2017, 2019; Linero and Antonelli, 2023). More recently, machine learning methods
have been incorporated into mediation analyses with high-dimensional data to provide a
data-driven approach for handling large sets of measured confounders (Farbmacher et al.,
2022; Linero and Zhang, 2022; Xu et al., 2022).

The potential outcomes framework is not the only causal inference framework that ecol-
ogists could use. Several publications in ecology have promoted various methodologies or
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frameworks for causal inference, such as SEMs (Grace, 2006; Grace et al., 2012), struc-
tural causal models (SCMs) (Arif and MacNeil, 2022a, 2023; Laubach et al., 2021), and
the potential outcomes framework (Clough, 2012; Larsen et al., 2019; Ramsey et al., 2019).
These approaches to causal inference, along with the decision theoretic approach to statisti-
cal causality (Dawid, 2000, 2003, 2021), are equivalent under identical causal assumptions.
For example, SEMs can be expressed mathematically using the do-calculus of Pearl (2009)
(Bollen, 1989; Mulaik, 2009) and have been shown to be equivalent to SCMs (Pearl, 2009,
2023), the potential outcomes framework (Hernán and Robins, 2006), and the decision theo-
retic approach to statistical causality (Dawid, 2015). Thus, SEM methodologies with which
ecologists may be familiar can be used to estimate mediation effects if the required causal
assumptions are transparently described and plausibly satisfied in the analysis (Bollen, 1989;
Bollen and Pearl, 2013; Hernán and Robins, 2006; Mulaik, 2009; Pearl, 2009, 2023; Vander-
Weele, 2012b).

Regardless of the causal inference framework used, the focus of any mediation analysis
should be on clearly articulating and satisfying causal assumptions, thereby reducing poten-
tial bias that arises from violations of these assumptions (Larsen et al., 2019). Including
sensitivity analyses (Section 5.5) in mediation analyses to quantify potential bias from viola-
tions to causal assumptions also allows researchers to further assess the plausibility of causal
claims made in studies of mediation.

7 Conclusion
Quantifying the effects of intermediary ecological processes is challenging and requires careful
attention to study designs, including defining the causal effects to be estimated and explicitly
describing the untestable causal assumptions on which causal inferences rely. Those defini-
tions and descriptions allow ecologists to better identify and eliminate rival explanations for
observed patterns in data and rigorously explore the implications of potential hidden biases.

Although ecological studies often describe and justify statistical assumptions, they have
given less attention to describing and justifying causal assumptions (Section 4). The credi-
bility of these causal assumptions determines the credibility of mediation studies in ecology,
regardless of the causal inference framework used (Dawid, 2021; Pearl, 2000; Rubin, 2006).

In our review, we highlighted challenges in quantifying the effects of ecological mediators,
but we do not view these challenges as insurmountable. Rather than view these challenges
as reasons to avoid making inferences about ecological mediators, we instead view them as
reasons for being transparent when making causal claims about mediation and for using
more advanced techniques for estimating mediation effects.

To address these challenges and advance the empirical literature on ecological mediators,
we described tools and a conceptual framework for causal inferences that emphasise trans-
parency, and we described many of the steps that every empirical mediation study should
include (summarised in Table 1). Although we have emphasised how methodological innova-
tions in other fields can contribute to advances in ecology, we also believe that well-executed
mediation analyses in ecology have the potential to contribute innovations to other fields.
Ecologists’ extensive experience in modelling heterogeneous spatial and temporal dynamics,
decades of development of mechanistic theories of ecological processes, and vast collections
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of field data provide unique opportunities to address challenges of causal inferences for me-
diation in observational settings and complex systems (Clough, 2012; Larsen et al., 2019;
Laubach et al., 2021; Schlüter et al., 2023).

For researchers in ecology to make meaningful contributions to both methodological
advancements and ecological theory through the study of mediators, they must carefully
consider and explicitly state the causal and statistical assumptions they make when esti-
mating the effects of intermediate ecological processes from data. Clearly communicating
the assumptions necessary for valid inferences and examining potential violations to these
assumptions are key for providing rigorous and reproducible mediation analyses that explain
important intermediary processes in ecology.

Table 1: Essential steps in mediation analysis.

Steps Reference

1. Define the mediation effect(s) of interest using a conceptual
framework for causal inferences.

Section 6

2. Identify the likely confounding variables using theory and field
knowledge, including all hypothesised treatment-outcome,
treatment-mediator, and mediator outcome confounders.

Section 3

3. Pre-register the mediation hypotheses, including how
treatments mediators, and moderators will be measured.;

Kimmel et al. 2023

4. For each mediation effect of interest, develop a strategy for
estimating the effect and mitigating the biases that
confounding variables may introduce.

Section 5

5. Select a mode of statistical inference that is appropriate for the
data generating process.

6. Assess the presence of treatment-mediator interactions, i.e.,
heterogeneity.

Section 6

7. Estimate mediation effects.

8. Perform sensitivity analyses of how the estimated effect(s)
would change if assumptions A1 to A4 in Section 4 were
violated.

Section 5.5

9. Assess the likelihood that causal assumptions A5 to A8 in
Section 4 are violated and discuss the implications of potential
violations for the estimation procedures of the interpretation of
the estimated effects.

;The set of treatments, mediators, and moderators should be kept small given the challenges of
satisfying the assumptions in Section 4 for multiple treatments and mediators and the dangers of
detecting spurious relationships through multiple comparisons (i.e., data mining).
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Supplementary Material

S.1 Limitations of the two-part estimation approach for mediation
analyses

Some ecological studies attempt to detect mediators in experiments by first manipulating
the treatment and then estimating the dependence between the treatment and outcome and
between the treatment and mediator. In our hypothetical study, this approach would be
represented by two equations, where the effect of drought (D) on soil moisture (M) and the
effect of drought on productivity (P ) are estimated by

Pi “ β0 ` β1Di ` εi1(S1)
Mi “ θ0 ` θ1Di ` εi2 , i “ 1, . . . , n ,(S2)

where Di is the treatment assigned to plot i, Pi is the plot-level productivity, Mi is the
plot-level soil moisture, β0 and θ0 are intercepts, β1 and θ1 are coefficients, and εi1 and εi2
are plot-level error terms. The average productivity of all plots under the no-drought control
is represented by β0, while β1 represents the average change in productivity across all plots
when going from the control state (D “ 0) to the drought-treated state (D “ 1).

Complete randomisation of the drought treatment allows us to assume that the plot-
level observations are independent and identically distributed and that the effects of any
treatment-mediator and treatment-outcome confounders have been removed. Thus, ordinary
least squares (OLS) estimation of Equation (S1) yields an unbiased estimator of β1. Under
complete randomisation, if the OLS-estimated coefficient pβ1 ă 0, the drought treatment
reduces productivity on average across plots. Likewise, using OLS regression to estimate
Equation (S2) yields an unbiased estimator of θ1. If the estimated coefficient pθ1 ă 0, then,
on average, the drought treatment induces a reduction in soil moisture across plots. If pβ1 ă 0
and pθ1 ă 0 and both are statistically significant, some studies may conclude that there is
sufficient evidence to claim that the effect of drought on productivity is mediated by soil
moisture (Figures S1a to S1c). However, the two-part estimation procedure does not quantify
the indirect effect; that is, the proportion of the effect of drought on productivity that is
mediated by soil moisture is not estimated (Figure S1d). Thus, other possible conclusions can
also be drawn from the results of the two-part estimation approach, including a conclusion
that the hypothesised mediator plays no mediating role at all (Figures S1e and S1f).

S.2 Effect of mediator-outcome confounders on mediation effects in
randomised controlled trials

Here, we answer a question that many readers may have: why, exactly, is the three-part
estimation procedure invalid for identifying and estimating the effect of drought on produc-
tivity through soil moisture when drought was randomised but there exist mediator-outcome
confounders?

Consider our hypothetical drought experiment in which some plots experienced heavy
grazing by herbivores (Figure 4). Because drought was randomised across plots, researchers
may incorrectly believe that historical grazing (G), which is correlated with both soil moisture
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Figure S1: The two-part estimation procedure for the hypothetical drought study can result
in multiple conclusions. A two-part estimation process in which (a) drought D is found to
relate to productivity P , and (b) drought is found to be related to soil moisture M , leads to
(c) the conclusion that drought influences productivity though soil moisture. However, the
two-part procedure does not estimate the effects of soil moisture and drought on productivity
(d), which means that alternative conclusions (e) and (f) are also possible from the evidence
given by (a) and (b) alone. D = drought, M = soil moisture, M2 = secondary mediator
(e.g., photosynthesis), P = productivity.

and productivity, need not be added to Equation (3). Thus, the researcher would instead
estimate the following three equations:

Pi “ β0 ` β1Di ` εi1(S1)
Mi “ θ0 ` θ1Di ` εi2 ,(S2)
Pi “ δ0 ` δ1Di ` δ2Mi ` εi3 , i “ 1, . . . , n .(S3)

With randomisation of the drought treatment, the distribution of historical grazing across
all plots is, on average, the same in the drought-treated plots as it is in the control plots.
This property ensures that θ1 in Equation (S2) is an unbiased estimator of the average effect
of drought on soil moisture when changing D from 0 to 1, as detailed in Supplement S.1. In
Equation (S2), we do not need to control for any other variables that may affect productivity
– the variation in P resulting from those factors is included in the error term εi2. Of course,
we still have sampling variability, represented by εi2, but modes of statistical inference (e.g.,
confidence intervals) have been developed to quantify the uncertainty that the differences in
treatment and control plots have arisen by chance. However, sampling variability is different
from bias: as the sample size grows, the sampling variability of the θ1 estimates will converge
around the true value of θ1.

In contrast, randomisation of the treatment does not render Equation (S3) unbiased in the
estimation of δ1, nor is it unbiased in the estimation of δ2. For estimation of δ2, Equation (S3)
is biased, because it does not control for historical grazing G, which is positively correlated
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with both M and P ; i.e., εi3 is correlated with M . In contrast to the effect suggested by
Figure 4, we suppose here that plots with historically more grazing are, on average, more
productive and have more soil moisture, possibly through nutrient addition by grazers’ waste
(Sitters and Olde Venterink, 2015; Veldhuis et al., 2014). If plots that have been historically
free of grazing are, on average, less productive and have less soil moisture, then the estimate
of δ2 includes both the effect of M on P and some of the effect of G on P . In other words,
the estimate includes the unconfounded effect of soil moisture on productivity caused by
drought, but also includes the effect of soil moisture confounded by historical grazing. Thus,
the estimate of δ2 is positively biased, because it is a weighted average of the uncounfounded
and confounded effects of soil moisture.

Bias also enters the estimation of δ1 – specifically, the estimate is also positively biased.
The sign of the bias in estimating δ1 is the same as the sign of the correlation between M
and P in the absence of a randomised experiment, which is positive in our drought study.
Recall that researchers declare mediation to be present if the estimated effect of drought on
productivity gets less negative when controlling for M , i.e., pδ1 ą pβ1 (see Supplement S.1).
Also recall that εi3 in Equation (S3) is positively correlated with M and P – if G increases,
M increases and P increases. So, for estimation of δ1, Equation (S3) will be upwardly biased.
The direction of bias implies that we would detect mediation when soil moisture is not, in
fact, a mediator at all (i.e., when there is no arrow from M to P in Figure 5 and the detection
of mediation only reflects the non-causal correlation between M and P that comes from G).
Thus, soil moisture will appear more influential on productivity than it is.

To illustrate the intuition behind these claims without referring to equations, consider
a prediction made by a researcher for the hypothetical drought experiment: the drought
treatment, on average, lowers soil moisture, and lower soil moisture, on average, reduces
grassland productivity. In addition, the researcher predicts that plots with more historical
grazing are more productive and have more soil moisture. Imagine we selected at random
a drought-treated plot and a no-drought control plot from the field experiment and told
the researcher only the treatment status of each plot. The researcher would anticipate
that the control plot has higher average productivity, based on their initial experimental
prediction. This prediction step is akin to Equation (S1), which is answering the question,
“For a randomly selected plot from the study population, what is the expected effect of the
drought treatment?”

Now, suppose that before revealing each plot’s measured productivity, we tell the re-
searcher that the two plots were randomly selected from a subgroup of plots that all had
identical soil moisture levels. In light of the new information, the researcher is given the
opportunity to revise their initial guess of which plot has higher measured productivity.
They might wonder why the drought-treated plot had the same soil moisture as the no-
drought control plot, despite the control plot not being exposed to drought. Based on the
researcher’s original predictions about the effect of historical grazing on soil moisture, one
possible explanation for the control and treated plots to have identical soil moisture is that
the treated group experienced more historical grazing. Greater historical grazing is asso-
ciated with higher productivity, independent of soil moisture. Based on this insight, the
researcher would update their first guess and instead predict that the drought-treated plot
has higher productivity. This adjustment step is akin to using Equation (S3) in the pres-
ence of an unmeasured mediator-outcome confounder. In the case of the drought study, the
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adjustment includes unmeasured differences in historical grazing across plots, making the
effect of soil moisture appear more influential than it really is.

If the effects of all mediator-outcome confounders have been appropriately eliminated,
researchers can estimate the magnitude of the effect of drought on productivity through soil
moisture using the three-part procedure in one of two ways: by taking the difference between
β1 and δ1, or by taking the product of θ1 and δ2. Both of these traditional regression-based
approaches have been commonly applied and studied in many other scientific fields. The
traditional regression approach to mediation analysis used in fields such as epidemiology and
public health relies on Equations (S1) and (S3) and is known as the “difference method”.
With this method, the magnitude of the indirect effect of drought on productivity through
soil moisture is β1 ´ δ1, while the coefficient δ1 represents the magnitude of the direct effect.
The presence of mediation is thus determined if soil moisture explains some of the effect
of drought on productivity, i.e., |β1 ´ δ1| ą ϵ, ϵ ą 0. In contrast, the traditional regres-
sion approach to mediation used in social sciences and psychology is known as the “product
method” (popularised by Baron and Kenny 1986) and uses Equations (S2) and (S3). With
the product method, δ1 again represents the direct effect, while the indirect effect is θ1δ2.
If |θ1δ2| ą ϵ, ϵ ą 0, then mediation is determined to be present. The product method is
typically how the direct and indirect effects from Equations (S2) and (S3) are represented in
SEM (Muthén and Asparouhov, 2015). It should be noted, however, that the product and
difference methods only coincide when the outcome and mediator are continuous and the
regression equations are fit using OLS estimation, provided the statistical assumptions for
OLS are satisfied. For a binary outcome that is not a rare event, the difference and product
methods do not give identical results (Mackinnon and Dwyer, 1993; MacKinnon et al., 1995),
and the estimates from both methods are not directly interpretable as indirect effects (Van-
derWeele and Vansteelandt, 2010; Valeri and Vanderweele, 2013). In such cases, the product
method using log-linear models is typically preferred for binary outcomes (MacKinnon et al.,
2007; Rijnhart et al., 2019, 2023).

S.3 Effect of heterogeneity on mediation effects estimated using
traditional regression-based approaches

For the hypothetical drought study, suppose we fit the models

Mi “ ω0 ` ω1iDi ` ε2i(S4)
Pi “ α0 ` α1iDi ` α2iMi ` ε3i(S5)

instead of Equations (S2) and (S3), where the coefficients ω1i and α1i are allowed to vary
for each plot i. If both drought and soil moisture are randomly assigned to plots (e.g., a
manipulation-of-mediator design), the average effect of D on M is Ďω1, and the average effect
of M on P is Ďα2. If each of these effects are consistent across all plots, then using the product
method of defining the indirect effect as Ďω1Ďα2 would provide an unbiased estimator of the
effect of drought on productivity through soil moisture. Conversely, suppose the effects of
D on M and the effects of M on P are heterogeneous across plots. For one set of plots, the
effect of D on M is negative, Ďω1 ă 0, and the effect of M on P is also negative, Ďα2 ă 0. The
average effect of D on P through M for this group of plots would be positive (Figure S2a).

42



For a different set of plots, the effect of D on M is small but positive, Ďω1 ą 0, and the effect of
M on P is also positive Ďα2 ą 0. The mediated effect of D on P through M for this different
set of plots would again be positive (Figure S2b). If we averaged across all i plots, the
indirect effect of D on P , Ďω1, could be negative or zero, while the effect of M on P , Ďα2, could
be negative, zero, or positive. Thus, the indirect effect of drought on productivity through
soil moisture averaged across all plots could also be negative, zero, or positive, despite the
indirect effect in both subsets of plots being positive.

D P

M

´
ω 1

´
α
2

(a)

D P

M

`
ω 1

`
α
2

(b)

Figure S2: The effect of D on P through M can be identical in magnitude and size for two
different plots where (a) the effects of D on M and M on P are negative or (b) the effects
of D on M and M on P are positive. In both (a) and (b), the indirect effect of D on P
through M is positive: ω1α2. Labels are as defined in Figure S1.

S.4 Multilevel models for clustered longitudinal data

A multilevel model typically captures distinct groupings of clustered data by specifying an
observation-level equation with group-level intercepts in concert with higher-level equations
that describe the group-level intercepts for each for each grouping of the data (Gelman
and Hill, 2006). In mixed effects modelling, a variant of multilevel modelling commonly
applied in ecology, error terms are included in the higher-level equations (Bolker et al.,
2009). Modelling clustered longitudinal data with error terms in each of the higher-level
equations allows researchers to quantify the variation within and among various groupings
(Bolker et al., 2009) and has the benefit of partial pooling which reduces the effect of outlying
groups on parameter estimation without eliminating their effect entirely.

To estimate mediation effects without bias using a mixed effects model for our hypo-
thetical drought study, researchers must assume that the differences in productivity among
plots or among sites are uncorrelated with other predictors in the model (Seber and Lee,
2003). This assumption is likely violated in many ecological settings, leading to estimates
that are biased (Gelman, 2006). To see how the violation of this assumption could occur,
let us consider the problem from the perspective of our drought study. In a mixed effects
model, for an observation h that is measured at time t and belongs to plot i within site s,

43



we replace Equations (S1) to (S3) with

Ph “ ϕ1,irhs ` µ1,strhs ` β1Dh ` ε1,h(S6)
Mh “ ϕ2,irhs ` µ2,strhs ` θ1Dh ` ε2,h(S7)
Ph “ ϕ3,irhs ` µ3,strhs ` δ1Dh ` δ2Mh ` ε3,h ,(S8)

i “ 1, . . . , n ; s “ 1, . . . , S ; t “ 1, . . . , T ;h “ 1, . . . , nST ,

where each site is composed of ns plots, for a total of n “ n1`n2`¨ ¨ ¨`ns plots, and each plot
is repeatedly measured over T time points; irhs is the plot i containing observation h; strhs

is the site-time group containing h; Ph, Dh, and Mh are the productivity, drought, and soil
moisture values measured for an observation h; β1 represents the overall effect of drought
on productivity; θ1 represents the effect of drought on soil moisture; δ1 and δ2 represent
the effects of drought and soil moisture on productivity; ϕ1,irhs, ϕ2,irhs, ϕ3,irhs are plot-level
intercepts; µ1,strhs, µ2,strhs, µ3,strhs are site-time group-level intercepts; and ε1,h, ε2,h, ε3,h are
the error terms. Note that Equation (S8) was introduced in Section 5.4.1 as Equation (6).

For a mixed effects model, we must also specify higher-level equations that include group-
averaged intercepts. These equations are

ϕ1,i “ ϕ1‚ ` η1,i(S9)
ϕ2,i “ ϕ2‚ ` η2,i(S10)
ϕ3,i “ ϕ3‚ ` η3,i(S11)
µ1,st “ µ1‚ ` η1,st(S12)
µ2,st “ µ2‚ ` η2,st(S13)
µ3,st “ µ3‚ ` η3,st ,(S14)

where ϕ1‚, ϕ2‚, ϕ3‚ are the averages of the plot-varying intercepts ϕ1,irhs, ϕ2,irhs, ϕ3,irhs, respec-
tively; µ1‚, µ2‚, µ3‚ are the averages of the site-time group-varying intercepts µ1,strhs, µ2,strhs,
µ3,strhs, respectively; η1,i, η2,i, η3,i are plot-level errors; and η1,st, η2,st, η3,st are site-time
group-level errors.

For simplicity when discussing how mediation effects can be estimated with bias when
mediator-outcome confounding exists, we will focus on the effect of drought and soil moisture
on productivity described by Equations (S8), (S11) and (S14).

In a large-scale regional or global set of drought experiments where one might expect
to obtain clustered longitudinal data, some sites could be in regions with low soil moisture,
resulting in the differences in productivity between those sites and others in the study to
be correlated with soil moisture. This would result in a correlation between soil moisture
and the site-time groupings which, if not explicitly modelled in Equation (S14), would be
included in the error term η3,st. Let us substitute Equation (S11) and Equation (S14) into
Equation (S8), which gives us

(S15) Ph “ ϕ3‚ ` µ3‚ ` δ1Dh ` δ2Mh ` η3,i ` η3,st ` ε3,h .

As η3,i, η3,st, and ε3,h are all error terms, we can combine them into a new error term e1 and
rewrite the model as

(S16) Ph “ ϕ3‚ ` µ3‚ ` δ1Dh ` δ2Mh ` e1 .

44



Since η3,st is correlated with soil moisture, and η3,st is now part of the new error term, then e1

is correlated with Mh, thus violating the assumption that the errors should be independent
of predictors in the regression model.

One way around this issue is to instead allow for group-level effects where error terms
are not estimated at the group-level (Gelman, 2006). The observation-level model describ-
ing the effect of drought and soil moisture on productivity would remain the same as in
Equation (S8), but the second-level equations for ϕ3,i and µ3,st would instead be given as

ϕ3,i „ Npϕ3‚,8q(S17)
µ3,st „ Npµ3‚,8q(S18)

where the infinite variances allow for maximum variation in the plot-level and site-time group-
level effects from the data. This is equivalent to fitting separate regression models for each
plot and each site-time grouping, where estimates that vary across groups are completely
unpooled (Bafumi and Gelman, 2006; Gelman and Hill, 2006). The same effect could be
achieved by using dummy variables for plot and site-time groupings (Bollen and Brand,
2010). The coefficient estimates will thus be unbiased even in the presence of unmodelled
correlation between the differences among plots or among sites and soil moisture, such as in
the presence of unmeasured mediator-outcome confounding (Fitzmaurice et al., 2012).

Unfortunately, fitting separate models requires a large number of parameters to fit sepa-
rate intercepts for each plot and each site-time grouping. Instead, an alternative multilevel
modelling approach described in Section 5.4.1 can accommodate the presence of correlation
between differences among groups and predictors in the model without the need for sepa-
rate models for each grouping. We would use the same observation-level models specified
in Equations (S6) to (S8) above, however we must specify different higher level equations
from those specified in mixed effects modelling to accommodate correlation introduced by
mediator-outcome confounders.

To account for mediator-outcome confounders, we must specify second-level equations
that include group-averaged soil moisture as predictors of the group-level intercepts. We
use the same second-level equations for ϕ1,i, ϕ2,i, µ1,st, and µ1,st as in Equations (S9), (S10),
(S12) and (S13), but the second-level equation for ϕ3,i would instead be specified with a
plot-averaged soil moisture term, νĎMi, in Equation (S19) and the second-level equation
for µ3,st would be specified with a site-time group-averaged soil moisture term, κĎMst, in
Equation (S20), as we showed in Section 5.4.1 with Equations (7) and (8). The full set of
second-level equations are

ϕ1,i “ ϕ1‚ ` η1,i(S9)
ϕ2,i “ ϕ2‚ ` η2,i(S10)
ϕ3,i “ ϕ3‚ ` νĎMi ` η3,i(S19)
µ1,st “ µ1‚ ` η1,st(S12)
µ2,st “ µ2‚ ` η2,st(S13)
µ3,st “ µ3‚ ` κĎMst ` η3,st ,(S20)

where ν is the coefficient for the predictor ĎMi representing plot-level averages of soil moisture
and κ is the coefficient for the predictor ĎMst representing the site-time grouped means of soil
moisture.
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By including ĎMi in Equation (S19) and ĎMst in Equation (S20), we explicitly model any
potential correlation between soil moisture and differences in productivity at the plot or site-
time group levels. We do not need to include group-averaged terms for drought, since drought
being randomised allows us to assume no unmodelled correlation between drought and the
differences in productivity among plots or among sites. Thus we arrive at the formulations
for obtaining unbiased estimators of mediation effects using multilevel models as given in
Equations (6) to (8) in Section 5.4.1, and the indirect effect can be estimated as θ1δ2 using
the product method. When observations are only collected for two points in time, multilevel
modelling for causal inference is equivalent to a difference-in-differences analysis (Abadie,
2005; Wooldridge, 2021), which has been recommended for observational ecological studies
(Butsic et al., 2017; Larsen et al., 2019). Multilevel models without group-level error terms
and with group-averaged variables as predictors in the higher level regression equations (as
in Section 5.4.1) can be estimated using SEMs (Allison, 2009; Andersen, 2022; Bollen and
Brand, 2010).

S.5 Estimating effects for multiple mediator pathways

In the hypothetical drought study, we declared that the researchers were only interested in
the mediating effect of soil moisture (Section 2). However, researchers may also be interested
in additional mediators through which drought affects productivity. In the analyses outlined
in previous sections, the effect of other mediators are lumped into the direct effect, which
is interpreted as the effect of drought on productivity through mediators other than soil
moisture. If we are interested in measuring the effect of drought on productivity through
multiple mediating variables separately (Figure S3), we require additional causal assumptions
to estimate effects for each mediator without bias.

To identify individual indirect effects for each of m mediators, which is a common objec-
tive in SEM analyses, one might presume that the traditional approach could be repeated
for each mediator separately by replacing M with Mj, j “ 1, 2, . . . ,m, in Equations (S2)
and (S3) to estimate the effect of drought on productivity through Mj. This approach,
however, requires at least three more causal assumptions. First, we must assume that there
are no mediator-outcome confounders for each of the measured mediators. In other words,
Assumption A3 must be satisfied for each measured mediator. Second, we must assume
that there are no unmeasured mediator-mediator confounders, i.e., there are no common
causes between two mediators that have not been accounted for in the regression equations
(Grace et al., 2015; Loh et al., 2022; VanderWeele and Vansteelandt, 2014). If we have an
unmeasured confounder U between two mediators M1 and M2 as in Figure S3a, U acts as an
unmeasured confounder between M1 and P through its effect on M2, resulting in correlation
between M1 and P not due to the treatment D and biasing the coefficient estimates in Equa-
tion (S3). Similarly, U acts as an unmeasured confounder between M2 and P through its
effect on M1, again producing bias. To satisfy Assumption A3 when using the instrumental
variable approach described in Section 5.3, we must either assume that no other mediators
are observed or obtain an instrumental variable for each mediator. Third, we must assume
that the mediators are independent from each other, i.e., the values of one mediator do not
depend on the presence or values of another mediator, which is to satisfy Assumption A4 for
each mediator. If interdependencies between mediating variables exist (Figure S3b), then in-
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dividual direct and indirect effects of multiple mediators cannot be estimated (VanderWeele
and Vansteelandt, 2014).

D M1 P

M2

U

(a)

D M1 M2 P

(b)

Figure S3: Additional dependencies among variables can introduce bias when estimating the
effects of more than one mediator; for example, (a) an unmeasured common cause U of M1

and M2, or (b) a dependency of M2 on M1. Labels are as defined in Figure S1.

If the assumptions of no unmeasured mediator-mediator confounders or independence
of the mediators are unlikely to hold, one could instead estimate the effect of drought on
productivity through the entire set of mediators tM1,M2, . . . ,Mmu jointly. Joint direct and
indirect effects are defined for continuous outcomes with binary or continuous mediators
and for binary outcomes with continuous mediators (VanderWeele and Vansteelandt, 2014).
To estimate the joint direct and indirect effects when mediator-mediator interactions exist,
one must make additional statistical assumptions, and when exposure-mediator interactions
are present, the formulae become increasingly complicated (VanderWeele and Vansteelandt,
2014). Further, if the mediators are time-varying, estimating direct and indirect effects
typically requires a different class of estimation procedures, different definitions of direct
and indirect effects, and additional causal assumptions (MacKinnon, 2012; VanderWeele,
2015; VanderWeele and Tchetgen Tchetgen, 2017).

S.6 Decomposition of causal effects

We can decompose the total effect of drought on productivity derived from Equations (2)
and (3) given in Section 5.2 into the direct and indirect effects. We assume that the drought
treatment is binary and soil moisture and productivity are continuous variables, as we have
done in Section 2. We also assume that there is no interaction between the drought treatment
and the soil moisture mediator. The average effect of drought on productivity operating
through the soil moisture mediator, called the average total indirect effect (TIE), is given
by δ2θ1. More specifically, δ2θ1 describes the average change in productivity if drought was
implemented on all plots (D “ 1) but soil moisture changed from the value it would be under
the no-drought control condition (M0) to the value it would be under the drought-treated
condition (M1). The remaining effect of drought on productivity not operating through soil
moisture, but possibly going through other mediated causal paths not explicitly denoted in
the DAG, is described by the average pure direct effect (PDE) and is given by δ1. That is, δ1
describes the average amount by which productivity would change if drought were changed
from control (D “ 0) to treated (D “ 1) on all plots but soil moisture remained at the level
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it would have been under no drought conditions (M0). Combining the average PDE and
the average TIE gives us the average total effect TE “ δ1 ` δ2θ1.

In ecological studies, it is often more realistic to expect an interaction between the treat-
ment and mediator. Indeed, a common recommendation for mediation analyses is to include
interactions between the treatment and mediator if an interaction cannot be ruled out, since
interactions are often difficult to detect with significance tests and not accounting for inter-
actions can bias the estimates of direct and indirect effects (VanderWeele, 2015). If we wish
to include an interaction between drought and soil moisture, an interaction term δ4DiMi is
added to Equation (3). When defining direct and indirect effects that include treatment-
mediator interactions, the potential outcomes framework provides clear intuition for where
an interaction coefficient should appear. Thus, the average PDE and average TIE are given
as

PDE “ δ1 ` δ4pθ0 ` θ1q(S21)
TIE “ pδ2θ1 ` δ4θ1q ` δ4θ1 .(S22)

As with a mediation analysis that does not include a treatment-mediator interaction, com-
bining the average TIE and average PDE give us the average total effect:

(S23) TE “ PDE ` TIE “ rδ1 ` δ4pθ0 ` θ1qs ` rpδ2θ1 ` δ4θ1q ` δ4θ1s .

In many ecological studies, the treatment variable may be continuous. Drought, for
example, could be specified using one of several possible drought indices. For a continuous
drought treatment with an interaction term between the treatment and mediator, we can
instead define the average PDE and average TIE in terms of the difference between the
treated and control drought values:

PDE “ δ1pd ´ d˚
q ` δ4pθ0 ` θ1d

˚
qpd ´ d˚

q(S24)
TIE “ pδ2θ1 ` δ4θ1d

˚
qpd ´ d˚

q ` δ4θ1pd ´ d˚
qpd ´ d˚

q ,(S25)

where d is the treated value of drought and d˚ is the untreated value of drought. The total
effect can be derived again as a combination of the average PDE and average TIE:

TE “ rδ1pd ´ d˚
q ` δ4pθ0 ` θ1d

˚
qpd ´ d˚

qs(S26)
` rpδ2θ1 ` δ4θ1d

˚
qpd ´ d˚

q ` δ4θ1pd ´ d˚
qpd ´ d˚

qs .

In some cases, it may be desirable to break down the direct and indirect effects to obtain
further interpretations of mediation effects (Figure S4). We now describe these alterna-
tive mediation effects using our hypothetical drought study with the outcome productivity
P influenced by a drought treatment D and soil moisture mediator M , but these can be
generalized to any outcome Y with treatment A and mediator M .

Using the potential outcomes notation, the pure direct effect can be split into two parts:
a controlled direct effect in which the mediator can be set to specific values not necessarily
determined by the state of the drought treatment, and a reference interaction term (Fig-
ure S4). The controlled direct effect (CDE) captures the average amount by which
productivity would change if drought were changed from D “ 0 to D “ 1 across all plots
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Figure S4: Two decompositions of mediation effects. Adapted from VanderWeele (2014).

and soil moisture were fixed at a specified level M “ m for all plots. The controlled direct
effect is given by

(S27) CDEpmq “ ErP1m ´ P0ms .

We only need to satisfy Assumptions A3 and A5 to estimate the controlled direct effect. The
average CDE of drought on productivity for all plots in the hypothetical drought experiment
is the difference in the average productivity for treated and control plots if soil moisture were
held (controlled) at a single level across all plots. For each possible soil moisture level that
could be fixed across all plots, there is a different average controlled direct effect.

Why would an ecologist be interested in controlled direct effects? Let’s say that an
ecosystem manager wants to reduce the effects of drought on productivity and determines
some values of soil moisture for which the controlled direct effect of drought on productivity
is small and thus less of a management concern. The manager would then have the option of
reducing the effect of drought on productivity by externally increasing the soil moisture, say,
through a ground-level irrigation system, to the levels implied by the favourable controlled
direct effect estimates.

The reference interaction (INTref ) represents an additive interaction of the effect of
drought and soil moisture on productivity that only occurs when soil moisture remains at
the value it would be under the no-drought control condition (M0). This interaction effect
is given by

(S28) INTref “ ErpP1M1 ´ P1M0 ´ P0M1 ` P0M0qpM0qs .

If there exists no interaction between drought and soil moisture, the average CDEpmq “

PDE “ δ1 for our drought study represented by Equations (2) and (3). The equivalence of
the average controlled direct effect and the average pure direct effect is generally true for all
regression-based approaches without mediator-outcome interactions, i.e., no δ4DiMi term in
Equation (3). If an interaction between the treatment and mediator is present, the CDEpmq

must be redefined to include δ4 (VanderWeele and Vansteelandt, 2009).
The total indirect effect can also be separated into two components: a pure indirect effect

in which the mediator changes while the treatment is fixed at D “ 0 (instead of D “ 1 as in
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the TIE), and a mediated interaction term (Figure S4). The pure indirect effect (PIE)
captures the amount by which productivity changes if M were changed from the level it was
under the no-drought control condition (M0) to the level it was under the drought-treated
condition (M1) while fixing drought to the control condition (D “ 0),

(S29) PIE “ ErP0M1 ´ P0M0s .

The mediated interaction (INTmed) represents the additive effect of both drought and
soil moisture on productivity and the effect of the drought on soil moisture. The mediated
interaction is given as

(S30) INTmed “ ErpP1M1 ´ P1M0 ´ P0M1 ` P0M0qpM1 ´ M0qs .

Combining the mediated interaction with the pure direct effect gives us the total direct
effect (TDE), which describes the amount by which productivity changes if drought were
changed from D “ 0 to D “ 1 but soil moisture were fixed to the value it would be under
the drought-treated condition (M1):

(S31) TDE “ INTmed ` PDE “ ErP1M1 ´ P0M1s .

Note that, in contrast to the TDE, the PDE fixes soil moisture to the value it would be
under the no-drought control condition (M0). Adding INTmed to PDE captures additional
information about the effect of soil moisture under the drought treatment to give the TDE
(Figure S4).

The decomposition of causal effects can be extended to cases of two or more mediators
that can potentially interact with both the treatment and each other, but doing so requires
the researcher to define more potential outcomes and more decomposable components of the
total effect and to designate which contrasts among the many potential outcomes one wants
to consider (e.g., Bellavia and Valeri, 2017). The researcher would also have to eliminate
the effects of mediator-outcome confounders for all mediators in the analyses (as detailed in
Supplement S.5).
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