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Abstract  46 

Characterising biodiversity using environmental DNA (eDNA) represents a paradigm shift in our 47 

capacity for biomonitoring complex environments, both aquatic and terrestrial. However, eDNA 48 

biomonitoring is limited by biases towards certain species and the low taxonomic resolution of 49 

current metabarcoding approaches. Shotgun metagenomics of eDNA enables the collection of whole 50 

ecosystem data by sequencing all molecules present, allowing characterisation and identification. 51 

CRISPR-Cas based methods have the potential to improve the efficiency of eDNA metagenomic 52 

sequencing of low abundant target organisms and simplify data analysis by enrichment of target 53 

species or non-target DNA depletion prior to sequencing. Implementation of CRISPR-Cas in eDNA has 54 

been limited due to a lack of interest and support in the past. This perspective synthesizes current 55 

approaches of CRISPR-Cas to study underrepresented taxa and advocate for further application and 56 

optimization of depletion and enrichment methods of eDNA using CRISPR-Cas, holding promise for 57 

eDNA biomonitoring.  58 
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Introduction 59 

Assessing the health of the vast marine and terrestrial biomes poses a significant challenge. 60 

Currently, most biomonitoring techniques rely on visual identification of species or measurements of 61 

physico-chemical quality attributes as a proxy for ecosystem health. While visual methods provide 62 

valuable estimates of population health and size, they often miss or underestimate cryptic taxa, 63 

juveniles, “damaged” specimens, or camouflaged animals, rely on specialised equipment (SCUBA, 64 

video, or camera traps) and require taxonomic expertise 1-4. Likewise, physico-chemical properties 65 

offer valuable real-time insights into ecosystem health but are not capable of measuring organism 66 

presence or abundance 5,6. With the ever pressing need for faster, more comprehensive, and 67 

consistent monitoring of marine environments driven by challenges such as habitat loss and 68 

degradation; and unsustainable anthropogenic activities such as overfishing and pollution 7-10, 69 

advancements in molecular-based monitoring techniques are needed to address these challenges 70 

more effectively and monitor environments across the blue-green interface. 71 

Molecular-based monitoring techniques using environmental DNA (eDNA) from water 11-13, sediment 72 

14, and air 15 for biodiversity detection have grown rapidly over the past decade offering increased 73 

reliability, accuracy, and species interaction detection 16-18. Environmental DNA biomonitoring can 74 

surpass traditional methods in efficiency and species detection 19-22, with health indices developed 75 

for routine monitoring of bacterial assemblages from various sources 23 and freshwater health 24 and 76 

best practise guidelines applied for consistent eDNA sampling and analysis from water and sediment 77 

samples 14,25-27.  78 

Metabarcoding is a widely adopted technique that uses taxonomically broad eDNA assays to target 79 

specific groups, such as arthropods 28, fish and elasmobranchs29, or corals 30, or broader ‘universal’ 80 

targets such as eukaryotes 31,32 or vertebrates 33. However, metabarcoding relies on PCR amplification 81 

of barcoding gene regions for species detection, thereby introducing PCR amplification bias through 82 

variable thermodynamic binding affinities of primers for different taxonomic groups, leading to 83 

incomplete or unrepresentative results, at worst, causing false-negative species detections, with no 84 

correlation to species relative abundance 19,21. Primer set and bioinformatic pipeline choice can 85 

further influence the accuracy of metabarcoding results, causing variable results from the same data 86 

based on the complexity of an eDNA sample and the different criteria the data is tested against 87 

12,20,21,25,34,35. While metabarcoding holds promise for rapid ecosystem monitoring, reliance on PCR 88 

amplification presents challenges for widespread adoption as a monitoring method for management 89 

and the knowledge-transfer to end-users 19,36. 90 
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Metagenomics, or shotgun sequencing of native eDNA, sequences the genomic DNA of all species in 91 

a sample, which avoids the limitations of PCR amplification. It enables monitoring of species at the 92 

individual level through population genetics and Single Nucleotide Polymorphism (SNP) analysis 37-41. 93 

However, incomplete reference databases for eukaryote genomes 42 and the 4.5-fold higher cost to 94 

run the assay compared to metabarcoding 43 limits the utility and scalability of shotgun sequencing. 95 

Efforts to expand reference databases 44 and decrease sequencing costs 45 will reduce these two 96 

limitations. Nevertheless, data dominated by uninformative repeats and highly abundant non-target 97 

species DNA is the most significant obstacle to shotgun sequencing in routine biomonitoring 42,46,47. 98 

For example, 46 found that in marine eDNA samples, most reads were of bacterial origin (94.5%), 99 

followed by viruses (3.0%), with only 2.4% of reads originating from eukaryotes, of which only 100 

0.00004% of reads were fish (class Actinopterygii, Chondrichthyes, and Cyclostomata). Hence, 101 

depletion of over-abundant organisms and sequences must be carried out. However, current 102 

methods of removing unwanted DNA before sequencing rely on the physical differences in the DNA 103 

(e.g. mitochondria and chloroplast organelles 48 or RNA sequence types 49) which restricts the 104 

amount of data that can be removed. 105 

Here, we explore two options for Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) 106 

and the CRISPR-associated proteins (Cas) technologies to circumvent current drawbacks of 107 

metagenomic sequencing: (1) the removal of non-target sequences to limit DNA exploration to target 108 

species, and (2) selectively enriching for taxa of interest in a precise and sequence-specific method.  109 

The promise of CRISPR-Cas deployment in environmental DNA 110 

studies 111 

CRISPR-Cas was discovered as part of an adaptive immune system in bacteria and archaea 50. Due to 112 

its ability to precisely target DNA, CRISPR-Cas has since been adapted to selectively target both 113 

nucleic and non-nucleic acids for various applications such as cancer treatment 51, agriculture 52, or 114 

controlling pest populations 53. The system uses a short guide RNA (sgRNA) probe in complex with a 115 

Cas protein to precisely cleave the complementary DNA to the sgRNA (~20 bp long) downstream of a 116 

protospacer-adjacent motif (PAM) site. Despite the early stage the field is in, the expanding 117 

repertoire of commercial Cas enzymes (e.g., dCas9, mutated Cas9 nickases, and recombinant Cas12a 118 

[IDT Technologies]), the discovery of new enzymes 54-56, and the significant private investment (i.e., 119 

JumpCode genomics, Mammoth biosciences, Sherlock biosciences) has resulted in diverse CRISPR-120 

Cas based studies encouraging their use in eDNA.  121 
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Depleting over-abundant DNA 122 

One of the first approaches to deplete non-target sequences using CRISPR-Cas is the Depletion of 123 

Abundant Sequences by Hybridization (DASH, Figure 1a) method developed by 57. DASH works by 124 

cleaving target DNA in a sequencing library so that only non-targeted sequences with adapters at 125 

both ends remain to be sequenced. 58 demonstrated the effectiveness of using the DASH method by 126 

using 566,766 sgRNAs to deplete repetitive elements in a lentil genome to improve genotyping 127 

methods. DASH-depletion resulted in a 37.7%–41.2% reduction of repetitive DNA sequences, with an 128 

increase of up to 160% in target DNA reads sequenced. This led to the identification of ∼4.5–to ∼18-129 

fold more variants in the DASH-depleted samples when compared to non-depleted samples. Other 130 

CRISPR-Cas based depletion methods have been used in microbiome analyses 59,60, single cell 131 

transcriptomics 61, immunotherapy for cancer treatment by down-regulating amino acid uptake by 132 

tumor cells 62, used as an antimicrobial agent by selectively depleting antibiotic resistant strains of 133 

bacteria 63, and recently in host depletion for metabarcoding analysis in faeces and blood64. The 134 

diverse range of demonstrated applications of DASH and other CRISPR-Cas technologies provide an 135 

encouraging foundation for its potential use in eDNA monitoring of diverse terrestrial and aquatic 136 

ecosystems.  137 

For the use of DASH and other CRISPR-Cas depletion technologies to be useful, eDNA samples must 138 

first be shotgun sequenced to find the most abundant sequences to be targeted. Once this is done 139 

however, eDNA samples from marine environments are similar, comprising common bacteria, viruses 140 

and repeats with predictable patterns of most abundant species 65,66. This means the same set of 141 

guides can be used in multiple areas reducing most of the cost to develop these depletion assays. 142 

Terrestrial environments are less well studied using eDNA 67 and are much more heterogenous than 143 

marine ecosystems. However, depletion of common contamination sources that often complicate air 144 

eDNA analysis can also improve and optimise terrestrial eDNA studies. CRISPR-Cas depletion can fill a 145 

gap in sequence specific depletion methods that have not been possible yet without taking 146 

advantage of structural differences in unwanted DNA (i.e., rRNA) or removing organelles to remove 147 

their unwanted DNA. 148 

Enrichment of low-abundant DNA 149 

Conversely to CRISPR depletion, CRISPR enrichment techniques offer a promising means of 150 

selectively targeting and enriching DNA sequences in an eDNA sample. By using Cas enzymes to treat 151 

the DNA and isolate it in various ways, as extensively detailed by 68, CRISPR-Cas-based enrichment 152 

becomes a powerful and highly adaptable tool to enrich almost any sequence of target taxa before 153 

sequencing, thereby enabling enhanced species and individual identification with ultra-conserved 154 
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elements 69 or SNP analysis 37-39. Quan et al. (2019) 70 demonstrated the use of CRISPR-Cas 155 

enrichment through a method called “Finding Low Abundance Sequences by Hybridisation” (FLASH, 156 

Figure 1b), a simple way of targeting specific DNA sequences for enrichment. FLASH first 157 

dephosphorylates the ends in DNA libraries, preventing adapters from ligating onto these ends, and 158 

then uses CRISPR-Cas9 to cut target DNA to allow sequencing adapters to be ligated onto the cut 159 

ends. FLASH treatment of simulated clinical dried blood spot samples targeting drug resistant malaria 160 

sequences produced far higher on-target sequencing efficiency with 85.6% on-target sequence 161 

reads, compared to <0.02% on-target reads without FLASH enrichment 70. Moreover, with costs of 162 

<$1 US per library, FLASH also provides a cost-effective option for detection of rare sequences 70. 163 

Targeted single species enrichment using other CRISPR-Cas technologies has been demonstrated in 164 

several studies, such as in detecting SARS-CoV-2 71, endangered delta smelt 72, harmful algal blooms 165 

73, Atlantic salmon 74,75, and invasive insects 76,77. Although multiplex species enrichment and 166 

detection with FLASH is possible and comparable to metabarcoding studies in freshwater bulk eDNA 167 

samples 78, and despite FLASH’s capability to detect very rare and low abundance species, its 168 

application beyond human disease studies remains largely unexplored.  169 

CRISPR-Cas enrichment offers distinct advantages compared to other enrichment techniques 170 

allowing for a high degree of multiplexing. For example 70 used 5,513 sgRNAs to target 127 genes, 171 

and 79 used more than 4,500 sgRNAs in one assay to detect 169 different species with no detectable 172 

reduction in reaction efficiency. Additionally, CRISPR-Cas enrichment and depletion offer solutions to 173 

several challenges encountered in current eDNA monitoring methods, including the potential for 174 

quantitative assessment by avoiding PCR limitations, streamlining lengthy laboratory stages, and by 175 

increasing specificity/accuracy, allowing for portable and isothermal assessment 80-82.   176 

However, before CRISPR-Cas deployment in environmental DNA studies can begin, factors affecting 177 

interaction efficiency between the Cas enzyme, sgRNA, and target DNA must be addressed. 178 

Consequently, ongoing efforts include the development of deep learning models to account for these 179 

factors systematically 83-85. In conjunction with more accurate sgRNA design capabilities, research into 180 

the generation of RNA guides is underway 86, allowing for assays that can be customised in a matter 181 

of hours 85 without compromising the outcome quality of the desired assay. 182 

eDNA limitations and CRISPR opportunities 183 

CRISPR-Cas based methods have shown promise in eDNA studies 72,74,75,78,87. So far, we have explored 184 

the possible improvements that can be made to eDNA monitoring through selective depletion of 185 

highly abundant DNA using DASH and selective enrichment of low-abundant DNA using FLASH. 186 
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Besides FLASH/DASH, we explore three more promising avenues of CRISPR-based biomonitoring 187 

approaches. 188 

Detecting eDNA interactions and dynamics  189 

The accuracy of eDNA studies is limited by our knowledge of factors including eDNA decay 88, 190 

exogenous DNA interactions (e.g., biofilms from bacteria 89), and endogenous DNA interactions (e.g., 191 

nucleosomes inhibiting protein binding and cleavage 90). Additionally, the vast diversity in organism 192 

types in an eDNA sample (e.g., Bacteria, Archaea, Eukarya domains) means that DNA condition or 193 

DNA interactions within the eDNA collected can be hard to predict 89, which may impact the ability to 194 

isolate the DNA of interest. By using CRISPR-Cas-based techniques to sequence specific species to a 195 

higher read depth, we can shed light on these questions behind eDNA interactions. 196 

CRISPR-based screens of extracellular DNA can shed light on the mechanisms of DNA release and 197 

decay. Using CRISPR screens similar to those used on cell free DNA in human studies 91 we can detect 198 

changes in expression levels of target DNA, which would not normally be seen in diverse eDNA 199 

samples, and as a result, inform targets for eDNA based monitoring if certain DNA fragments are 200 

more readily released than others, for example, to form biofilms.  201 

The benefits of identifying and quantifying all organisms and their interactions in an environmental 202 

sample are becoming more apparent 8,92 and CRISPR-Cas methods can assist this process. Specifically, 203 

CRISPR-Cas-based depletion of uninformative sequences from non-target taxa can increase the depth 204 

of information gathered on low-abundant organisms. These rare or understudied organisms can shed 205 

further light onto inter-species interactions, for example, polymicrobial interactions creating biofilms 206 

are common in disease 93, they may also be common in harmful algal bloom biofilms. Targeting a 207 

single species will miss these exogenous DNA interactions. In this scenario, once interacting species 208 

are identified, enrichment of the specific species can then further show what endogenous DNA 209 

interactions are occurring by avoiding PCR (which removes epigenetic marks on the DNA) and, in 210 

turn, let us learn more about the abiotic/biotic factors influencing persistence, and toxin production 211 

in harmful algal blooms. Though other CRISPR-based enrichment methods, such as CAPTURE 94 must 212 

be used instead of FLASH, as FLASH does have a short PCR amplification step to attach barcode 213 

primers. Additionally, CRISPR-Cas-based biomonitoring can potentially be applied for accurate and 214 

sensitive early detection of blooms by sampling eDNA instead of relying on spectrophotometry 215 

methods 95. 216 
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eRNA-based biodiversity mapping  217 

In addition to eDNA, environmental RNA (eRNA) is a growing field in environmental biomonitoring, 218 

offering distinct advantages, but also some disadvantages, over eDNA due to its faster degradation 219 

rate and the need for a cDNA conversion step for most sequencing technologies 96. Its rapid 220 

degradation means that eRNA can signal the presence of live organisms at the time of sampling (i.e., 221 

if it is found present in a sample then it can be assumed that the organism was still alive at the time 222 

of sample collection). Comparatively, eDNA persists longer in the environment with eRNA potentially 223 

having 4-5 times faster half-life than eDNA depending on many environmental factors 96, potentially 224 

leading to false positives if an organism has left the area or organism DNA has been carried into the 225 

area by predators. 226 

CRISPR-Cas methods such as DASH and FLASH can address the limitations of RNA analyses. While 227 

RNA depletion kits exist to optimise RNA analysis 49, these kits lack the sequence-specific targeting 228 

capability of CRISPR-Cas technologies, limiting the efficiency of RNA analysis. This presents an 229 

opportunity for DASH, which has already been successfully adapted to RNA sequencing by 97 and in 230 

MAD-DASH by 98, to remove adapter dimer and abundant miRNAs, respectively. In addition, FLASH 231 

represents a promising alternative for RNA enrichment, underscoring the potential for CRISPR-Cas to 232 

contribute to the advancement of eRNA techniques. 233 

In-field detection challenges and solutions 234 

For eDNA detection and monitoring methods to be most effective, there is a growing demand for in-235 

field detection capabilities in all environments regardless of the resources available. Advancements 236 

such as  SHERLOCK – Specific High Sensitivity Enzymatic Reporter UnLOCKing 99 or DETECTR – DNA 237 

Endonuclease-Targeted CRISPR Trans Reporter 87 which use Cas13a and Cas12a, respectively, for 238 

florescence readings, have paved the way for such developments.  Many CRISPR technologies have 239 

been harnessed for targeted single species detection in a portable and compact way (e.g., SARS-CoV-240 

2, Dengue, Zika), exemplified by lateral flow assays 100, fluorescence-based detection 79,87,99, and 241 

automated systems using robots for sampling and detection of COVID-19 variants in the environment 242 

101. These developments in the medical field for biosensing that are even moving towards wearable 243 

devices 102 can be applied to eDNA monitoring fairly seamlessly due to the programmability of 244 

sgRNAs. 245 

For using depletion and enrichment in the field, both DASH and FLASH methods can already be used 246 

at sea if molecular laboratories are available on board. These methods both have relatively short lab 247 

protocols as the most time-consuming step is a two-hour incubation. In more remote field testing 248 
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(e.g., remote locations for biosecurity monitoring), the requirement of a thermocycler and 249 

sequencing machine, pose logistical challenges. Despite these challenges, ongoing advancements in 250 

in-field DNA extraction methods (e.g., PDQeX 103, ExCad 104,105, and HUDSON 106), hand-held lab 251 

equipment such as PCR machines 107, and portable sequencers 108 offer potential solutions for more 252 

accessible in-field monitoring. 253 

Environmental DNA promises to be an effective method acquiring comprehensive ecosystem 254 

information 11,16,17,25,109. CRISPR-based approaches, such as DASH and FLASH combined with shotgun 255 

sequencing, can significantly improve the efficiency of eDNA data analysis by removing non-target 256 

DNA and streamlining enrichment, thereby enhancing the overall accuracy and quality of results and 257 

reduce computational burden. Integration of CRISPR-Cas technologies offers avenues for refining 258 

monitoring approaches, overcoming PCR bias, and enabling efficient high-throughput applications. 259 

Moreover, the adaptability and scalability of CRISPR-Cas systems provide a customizable toolset to 260 

meet diverse research needs and study limitations. Broader interest and support for more accurate 261 

monitoring methods may lead to wider adoption of CRISPR-Cas techniques, revolutionizing our 262 

capacity to monitor natural ecosystems on a global scale.   263 
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