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Abstract 7 

1. Counts of species in ecological samples are of interest when they tell us about community 8 

assembly processes. Older process-based models of count distributions are either complex, 9 

widely rejected, or not able to predict high unevenness. 10 

2. I leverage a general strategy for deriving simple one-parameter models. A distribution of 11 

abundances x on a continuous scale is predicted from a transform of a uniform distribution U; 12 

U is solved for to yield one minus a cumulative distribution function (CDF) for x; and the 13 

result is differenced and rounded to down to yield a probability mass function. The same 14 

workflow has long been used to derive the geometric series from the exponential distribution. 15 

Three variants are proposed, respectively based on the transforms µ/U – µ = (µ – U)/U where 16 

µ is a fitted constant (a scaled odds); [–ln(U)/l]2 where –ln U is just an exponential random 17 

variate and l is the constant; and [–ln(2/U – 1)/g]4 where g is the constant. They collectively 18 

cover the range of functions that lead from some U to a non-negative real number. 19 

3. The distributions are all consistent with simple population dynamical models in which 20 

recruitment rates, and sometimes death rates, vary randomly amongst species and are fixed 21 

for each species. The number of recruited offspring produced during each interval by each 22 

species is Poisson-distributed, and death rates are per-capita. Population counts are 23 

equilibrial, allowing co-existence in the absence of competition. 24 

4. Large-scale surveys of corals, fishes, butterflies, and trees are consistent with the 25 

distributions, as are local-scale inventories of trees and assorted vertebrate and insect groups. 26 

Each inventory is used to predict the counts of another one that is matched based on group 27 

representation, biogeography, and richness. Based on examining decisive differences 28 

between the resulting likelihoods, the new models routinely outperform eight different rivals. 29 

5. Thanks to their simplicity, grounding in non-competitive equilibrial population dynamics, 30 

and predictive power, the new approaches have considerable relevance throughout ecology. 31 

 32 

KEYWORDS 33 

half-power distribution, log series, negative binomial distribution, Poisson log normal 34 

distribution, quarter-power distribution, scaled odds distribution, Weibull distribution  35 



 3 

1  |  INTRODUCTION 36 

 37 

The rules of community assembly are of fundamental interest to ecologists, and debate over 38 

them goes back to the conflict between the Gleasonian and Clementsian schools in the early 39 

20th century (Eliot 2007; Presley et al., 2010). Community assembly is grounded in rates of 40 

birth, death, and immigration (Kendall, 1948). Rate variation is responsible for complex 41 

patterns at local scales such as vegetational succession and predator-prey cycles. However, 42 

the rates also scale up to govern speciation and extinction processes. Thus, they indirectly 43 

control or correlate with everything that it is interesting in community ecology and 44 

macroecology, including biogeographic patterns, species-area relationships, diversity 45 

gradients, and trait distributions. 46 

There may be no agreement about which assembly processes are the most important, but 47 

the business of ecology is the same as the business of science in general: establishing process 48 

by studying pattern. The problem is that there are highly distinct strategies for drawing 49 

inferences. For example, presence-absence matrices that compare assemblages may signal 50 

several processes (Leibold & Mikkelson, 2002; Henriques-Silva et al., 2013), and species 51 

diversity patterns can likewise suggest different population processes such as colonisation 52 

and local extirpation (MacArthur & Wilson, 1963; Loreau & Mouquet, 1999). 53 

While that literature is important and interesting, the common currency of community 54 

ecology is more basic: simple inventories of species found in particular locations at particular 55 

times. The problem is that isolated inventories are generally thought not to contain enough 56 

information to indicate assembly processes with any real specificity (Lawton, 1999; McGill 57 

et al., 2007; Matthews & Whittaker, 2014). This explains why authors have discussed 58 

alternative approaches such as seeing how abundance distributions, which are counts of 59 

individuals grouped into species, vary across temporal scales (Magurran, 2007) or spatial 60 

scales (Borda-de-Água et al., 2011; Antão et al., 2021). 61 

In this paper, I suggest that individual real-world distributions do have the power to 62 

differentiate quite different assembly processes. In particular, I present three new and 63 

extremely simple models of population dynamics that all generate simple species abundance 64 

distributions. I show that their predicted patterns are common in tree and animal data. 65 

Importantly, the new distributions are not only plausible but distinct, so it is possible to reject 66 

their underlying models and thereby exclude their assumptions. 67 
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Population models have been used in this way before. For example, Kendall (1948) 68 

predicted the log series distribution of Fisher et al. (1943) with a completely random, per-69 

capita birth-death process; MacArthur (1960) pointed out that the log normal should result if 70 

all populations grow exponentially; and Saether et al. (2013) showed how weak density 71 

dependence could also generate the log normal distribution. Meanwhile, the influential zero-72 

sum multinomial (ZSM) distribution of Hubbell (1997, 2001) encompasses the log series and 73 

other shapes. It can be derived from a population model that makes clear assumptions about 74 

dispersal, speciation, competition, and so on. 75 

These are all long-established ideas. But except for the ZSM, newer species abundance 76 

models such as those of Tokeshi (1990) have often not gained much traction. A potential 77 

exception is the gambin model of Ugland et al. (2007), which has attracted other attention 78 

(Matthews et al., 2014, 2019). This model is difficult to assess for reasons outlined later. 79 

Comparative analyses (e.g., Baldridge et al., 2016) have therefore focused on classic 80 

alternatives such as the log series (Fisher et al., 1943) and Poisson log normal (Bulmer, 81 

1974). 82 

With all of this previous work, it would be natural to think that nothing more needs to be 83 

said. Don't we already have far too many models? I will argue this is not true. But even if the 84 

general theory proposed here proves superfluous, stimulating a wider discussion may better 85 

our understanding of ecological processes. In addition, the particular new models all have 86 

built-in species richness estimators that provide maximum likelihood values when the model 87 

assumptions are met. So if the theory is any good, then these estimators might see widespread 88 

application. 89 

 90 

2  |  MATERIALS AND METHODS 91 

 92 

2.1  |  Workflow for deriving distributions 93 

 94 

Throughout this paper, I draw a distinction between two mathematical means of summarising 95 

count data: (1) rank-abundance distributions (RADs), which are simply lists of counts 96 

ordered from greatest to least; and (2) species-abundance distributions (SADs) sensu stricto, 97 

which are lists of counts of species sharing counts (Fisher et al., 1943). Although some 98 

researchers prefer to fit data to models by examining RADs (e.g., Hughes, 1986; Ulrich et al., 99 

2018), I emphasise fitting data to SADs by likelihood, as done by Prado et al. (2018), for 100 
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reasons explained further in the discussion of the preferred fitting method. I use RADs for 101 

illustrative purposes because it is easier to grasp them quickly. 102 

A fitted SAD is just a probability mass function (PMF) in the standard statistical sense, 103 

which is another good reason to work with SADs. As statisticians well understand, integer-104 

value PMFs can be derived from continuous-value cumulative distribution functions (CDF). 105 

A general strategy is to start with a transform of a uniform random variate U into a non-106 

uniform random variate X: 107 

 108 

  X = f(U)        (1) 109 

 110 

Next, U is solved for in terms of x to yield U = f(X). The resulting expression is just one 111 

minus a CDF if (1) it declines monotonically to zero as X approaches infinity, and (2) it either 112 

starts with a value of 1 when X = 0 or can be scaled easily to do so. In other words, many 113 

expressions like 1 – f(X) can be CDFs: 114 

 115 

  FX(x) = P(X ≤ x) = 1 – U = 1 – f(X)     (2) 116 

 117 

Finally, a PMF is produced by rounding down the first differences of the CDF: 118 

 119 

  pX(x) = P(X = x) = [1 – f(x + 1)] – [1 – f(x)] = f(x) – f(x + 1)  (3) 120 

 121 

where x is an integer value. The derivation of the geometric series from the exponential 122 

distribution is then as follows: 123 

 124 

  X = –ln U        (4) 125 

 126 

  FX(x) = 1 – U = 1 – exp(–X)      (5) 127 

 128 

  pX(x) = exp(–x) – exp[–(x + 1)]     (6) 129 

 130 

To confirm that this yields the geometric distribution, let its governing parameter p = 1 131 

– exp(–l) where l governs the exponential. Suppose l = 3. In R, symbolise l as l and then 132 

compute: 133 
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 134 
l = 3 135 
p = 1 - exp(-l) 136 
x = 0:9 137 
exp(-l * x) - exp(-l * (x + 1)) 138 
dgeom(x,p) 139 

 140 

2.2  |  New equations 141 

 142 

The exact equations for the three new distributions examined in this paper follow easily from 143 

the workflow. First, we consider a distribution related to the discrete Weibull (Nakagawa & 144 

Osaki, 1975), whose general form can be derived from the exponential distribution in this 145 

way: 146 

 147 

  X = [–ln(U)/l]p       (7) 148 

 149 

  FX(x) = 1 – exp(–l x1/p)      (8) 150 

 151 

  pX(x) = exp(–l x1/p) – exp{–[l (x + 1)1/p]}    (9) 152 

 153 

where l and p are constants, the former just being the familiar rate parameter of the 154 

exponential distribution. 155 

The specific distribution used here, called the half-power (HP), follows from setting p = 2: 156 

 157 

  X = [–ln(U)/l]2       (10) 158 

 159 

  FX(x) = 1 – exp(–l x0.5)      (11) 160 

 161 

  pX(x) = exp(–l x0.5) – exp{–[l (x + 1)0.5]}    (12) 162 

 163 

The p = 2 assumption is made because a very simple population dynamics model 164 

discussed below implies this value. Assuming any other value would require burdening the 165 

model with extra assumptions. 166 
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Because exp(–l 00.5) = 1 and exp[–(l 10.5)] = exp(–l), this equation yields a remarkably 167 

simple species richness estimator: 168 

 169 

  R = S/exp(–l)        (13) 170 

 171 

where R = estimated richness and S = the observed number of species. 172 

The second distribution, called the scaled odds, uses a scaling constant µ and has a 173 

simplified PMF: 174 

 175 

  X = µ (1/U – 1)       (14) 176 

 177 

  FX(x) = 1 – µ/(x + µ)       (15) 178 

 179 

  pX(x) = [µ/(x + µ)] – [µ/(x + 1 + µ)] 180 

 181 

  pX(x) = 1/[(x + µ) (x + 1 + µ)]      (16) 182 

 183 

  R = (µ + 1)/µ S       (17) 184 

 185 

Crucially, 1/U – 1 can be rearranged as (1 – U)/U. This ratio is nothing other than the 186 

gambler's odds of a random outcome – where the probability of that outcome is itself a 187 

random uniform variate. Odds distributions range from zero to infinity, meeting the 188 

requirement that abundances on a continuous or discrete scale must fall into that range. 189 

Finally, the quarter-power distribution incorporates features of both equations. 190 

Specifically, a modified odds component is logged, scaled, and raised to a power. The power 191 

term could be freed to create a two-parameter model comparable to, say, the Weibull. Very 192 

close fits to real and simulated data are seen with a power of 4, implying that the expression's 193 

form is realistic and the constant is canonical. The constant may reflect an equilibrium state: 194 

a different one would presumably result in unstable and transient communities. It is denoted 195 

with the symbol g: 196 

 197 

  X = [–ln(2/U – 1)/g]4       (18) 198 

 199 
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Note that –ln(2/U – 1) has bounds of zero and infinity, with a self-evident median of ln 3 200 

and a computable mean of ln 2. It is very important that the expressions –ln(U), 1/U – 1, and 201 

–ln(2/U – 1) collectively encompass the set of simple expressions that can convert U into this 202 

range. 203 

The other equations are: 204 

 205 

  g X1/4 = –ln(2/U – 1) 206 

 207 

  U = 2/[exp(–g X1/4) + 1]      (19) 208 

 209 

  FX(x) = 1 – 2/[exp(–g x1/4) + 1]     (20) 210 

 211 

  pX(x) = 2/{exp[–g (x + 1)1/4] + 1} – 2/[exp(–g x1/4) + 1]  (21) 212 

 213 

The richness estimate requires a little work: 214 

 215 

  pX(0) = 2/[exp(–g 11/4) + 1] –  2/[exp(–g 01/4) + 1] 216 

 217 

  pX(0) = 2/[exp(–g) + 1] – 1 218 

 219 

  1 – pX(0) = 2 – 2/[exp(–g) + 1] 220 

 221 

  1 – pX(0) = 2 exp(–g)/[exp(–g) + 1] 222 

 223 

  R = [exp(–g) + 1]/[2 exp(–g)] S     (22) 224 

 225 

It is important to stress two other things. First, unlike the log series (Fisher et al. 1943), all 226 

of these distributions directly imply the total species richness of a community (eqns. 13, 17, 227 

and 22). Likewise, a richness estimate can be gotten out of a Poisson log normal fit because it 228 

too indicates the proportion of species with non-zero counts (Grøtan & Engen, 2008). There 229 

are issues with that distribution such as its failure to remove sample size biases, its imprecise 230 

estimates, and its poor prediction of patterns. The first two topics merit a fuller discussion 231 
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elsewhere. The third problem is demonstrated in the results. On a conceptual level, I take up 232 

what it means to estimate richness from an ecological sample in the discussion. 233 

Second, all of the new models have a single scaling parameter and no shape parameter. In 234 

other words, they posit that all differences between species inventories stem from just two 235 

properties – the richness of the overall species pool and the number of drawn individuals. 236 

Suppose a real-world distribution is ably described by any such distribution. Then all 237 

measures that concern distributional evenness here are irrelevant, because if a shape doesn't 238 

vary, then there is nothing for an "evenness" metric to describe. I discuss later how this 239 

deduction bears on the widespread use of Hill numbers (Hill, 1973; Chao et al., 2014). 240 

 241 

2.3  |  Additional distributions 242 

 243 

There is a large literature on species-abundance distributions in the general sense (McGill et 244 

al., 2007). I restrict my discussion to eight published models that have received substantial 245 

attention from ecologists at different points in history. (1) The geometric series distribution 246 

(Motomura, 1932) was originally applied to RADs. This application has been thought to yield 247 

unrealistic fits to data, and the model is no longer considered viable in such a form (Alroy, 248 

2015; Baldridge et al., 2016). However, its fate is different in the current analysis, which 249 

applies the distribution to SADs instead. (2) The log series (Fisher et al., 1943) is 250 

fundamental to ecology and already considered by some to be a good descriptor of many 251 

communities (Baldridge et al., 2016), especially local ones (Antão et al., 2021). This explains 252 

why it is still routinely used in biodiversity studies, including very large-scale ones (e.g., 253 

Buzas et al., 2002; Cazzolla Gatti et al., 2022). (3) The broken stick distribution (MacArthur, 254 

1957) has a distinct theoretical basis and makes distinct predictions about the shapes of 255 

SADs, so it is investigated here even though modern studies reject it (Alroy, 2015). The 256 

remaining distributions must be considered because of their recent advocacy. (4) The Poisson 257 

log normal (PLN: Bulmer, 1974) was applied to large-scale marine data sets by Connolly et 258 

al. (2005, 2009). (5) The zero-sum multinomial (ZSM: Hubbell, 1997, 2001) is widely 259 

advocated and has long been the subject of much debate (e.g., McGill, 2003). (6) The 260 

negative binomial was explored by Connolly et al. (2009) and Connolly and Thibaut (2012) 261 

and also applied by Tovo et al. (2017) and ter Steege et al. (2020), as part of a broader study. 262 

(7) The Weibull, a standard statistical distribution, was put forth as a good description of 263 

ecological count data by Ulrich et al. (2018). I consider the discrete version of the Weibull 264 
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(Nakagawa & Osaki, 1975). (8) The Zipf is another classic distribution and was thought to be 265 

a good general descriptor of ecology communities by Su (2018). 266 

I put aside the gambin distribution (Ugland et al., 2007; Matthews et al., 2019) for the 267 

same reasons as Ulrich et al. (2018): it is a heuristic pattern descriptor not based in a process 268 

model and one that is fit by binning the data, so a direct comparison based on fitting 269 

alternatives to proper SADs is not possible. In particular, the gambin R library (Matthews et 270 

al., 2014) was not designed to fit SADs. I also do not consider niche preoccupation models 271 

such as the ones proposed by Sugihara (1980) and Tokeshi (1990) because these RAD-based 272 

theories are no longer endorsed, depend on strong assumptions about competition, and do not 273 

make clear predictions about SADs. 274 

 275 

2.4  |  Likelihood-based fitting method 276 

 277 

Fitting models to abundance distributions is a challenging problem (Connolly & Thibaut, 278 

2012; Matthews & Whittaker 2014; Ulrich et al., 2018). Earlier researchers sought to do so 279 

by sorting counts into log2 bins (Preston, 1962). However, even when maximum likelihood 280 

methods are used (McGill, 2003) this loses much information. Thus, it is impractical when 281 

dealing with routine ecological surveys including only 10, 20 or even 30 species (Ulrich et 282 

al., 2018). Meanwhile, directly fitting RADs (e.g., Ulrich et al., 2018) is problematic because 283 

(1) it depends on frequentist methods such as least-squares or major axis regression; (2) there 284 

is no way to specify an error distribution that should apply fairly to all theoretical models; 285 

and (3) the data violate the standard statistical requirement of independence between x- and 286 

y-values. Specifically, it is not possible to model error in ranks sensibly because stochastic 287 

variation in counts would generate swaps in ranks. I therefore follow others (Bulmer, 1974; 288 

Connolly et al., 2005, 2017; Connolly & Thibaut, 2012; Prado et al., 2018; Antão et al., 289 

2021) in evaluating model fit by computing the likelihoods of empirical SADs. Again, the 290 

term SAD is used here for a list of counts of species sharing particular counts of individuals. 291 

Before continuing, I note that the same likelihood calculation is used in this paper for two 292 

purposes: (1) quantifying the fit of each and every rival model to any given SAD, and (2) 293 

finding the best value of the parameters of the new models. The function is also used to fit the 294 

broken stick, geometric series, negative binomial, and discrete Weibull, which lack trivially 295 

computed parameters (the log series has one) and lack existing R functions that fit the 296 

parameters by maximum likelihood (the Poisson log normal has one). 297 
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The math depends on first computing the independent probability pi that a given species 298 

will fall in its observed count class i, i.e., the likelihood. The overall likelihood is just the 299 

product of all the pi values for the counts (Prado et al., 2018). Of course, only the observed 300 

counts can be predicted and the sum of pi over all observable classes has to be 1. However, 301 

zero counts can't be observed and do feature in the PMF equations given above. Therefore, 302 

the p values have to be divided by 1 – p0 (meaning standardised). Connolly et al. (2017, their 303 

eqn. 8) used the same correction. 304 

Connolly and Thibaut (2012) proposed a multinomial equation for fitting SADs instead of 305 

a binomial equation. Nothing is wrong with that. However, when it comes to actual 306 

computation the distinction is not important: the only difference between an indepent-draws 307 

equation and a multinomial equation is the inclusion of combinatorial terms made up of S and 308 

si. Those values are fixed, so the combinatorial terms are fixed across all possible parameter 309 

values, leading to identical maximum likelihood solutions. Thus, users of these methods can 310 

choose the interpret the fitting procedure as "really" based on a multinomial model if they so 311 

choose. 312 

 313 

2.5  |  Simulations of population dynamics 314 

 315 

Simple simulations are used to demonstrate sufficient if not necessary conditions for the 316 

geometric series and the three new distributions to arise. The simulations each assume a 317 

species pool of 100,000 with initial population sizes of 100, and they continue for 1000 time 318 

steps. Death is always a binomial process, meaning that it is per-capita (based on the initial 319 

number of adults) with a probability that any one individual will die. Counts of recruits 320 

("births") are randomly drawn from the Poisson distribution. Similar results can be obtained 321 

using models that drawn birth counts from the geometric series. A non-capita birth process is 322 

assumed because the system is assumed to be either (1) open to a steady influx of propagules, 323 

or (2) saturated with subadults that have been generated over a series of intervals instead of 324 

arising over just one time step. Therefore, the models could apply either to open or closed 325 

systems. 326 

The geometric series model assumes that the death rate is fixed at some fraction (0.1 in the 327 

illustrated trials), and that the Poisson parameter of the recruitment rate is a simple random 328 

exponential variate with a rate l. All the other models are variants. The half-power model 329 

assumes that the death probability p is a function of the birth rate l, specifically p = 1/(l + 1). 330 
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So the rates are negatively correlated: when 1/(l + 1) = 1 or 9, p = 0.5 or 0.1. The odds model 331 

assumes a fixed death probability, here 0.5, and a birth probability of exp(–l)/l. Finally, the 332 

quarter-power model also assumes a uniform death rate, again illustrated as 0.5, and a birth 333 

rate of l3. In the illustrated trial, the birth rate is scaled up by 3 to allow comparison with the 334 

other curves. 335 

So the models assume different relationships between birth and death – but populations 336 

must somehow stay in a viable range. How is co-existence maintained? 337 

The counter-intuitive reason is that the simulations reach an equilibrium total population 338 

size K for each species. For example, let p = the death probability and d = the expected death 339 

count, equal to the current population size p n. Also let b = the expected birth count, equal to 340 

–ln p in this hypothetical model. At equilibrium, then, d = b and p K = ln p, so K = ln(p)/p. 341 

Below equilibrium, n < ln(p)/p because n < K and K = ln(p)/p. Therefore, d < b: n < b/p 342 

because b = ln p, p n < b by rearrangement, and d < b because d = p n. As a result, n will 343 

climb towards K. Above K, n > 1/p2  and d > b, so n will fall to K. Similar proofs apply to the 344 

preceding models. They relate closely to the equilibrial theory of island biogeography 345 

(MacArthur & Wilson, 1963), which also assumed per-capita "death" (extinction) and steady, 346 

non-per-capita "birth" (immigration). 347 

The fact that all of this is true is easily confirmed by simulation. It is highly important 348 

because it specifically predicts that species producing more recruits in total per time step are 349 

more common at equilibrium. There are truly "winner" and "loser" species in this paradigm, 350 

but all of them have equilibrial population dynamics, so all of them can co-exist. 351 

 All of the models assumes high but predictable variance among species in recruitment 352 

rates because of fixed differences in traits, but little variance among individuals. Models 353 

assuming a geometric sampling process for recruitment would build in greater variance. They 354 

are not explored in this paper because low variance may be more intuitive to many ecologists. 355 

 356 

2.6  |  Empirical data 357 

 358 

Four large-scale data sets and one database of local-scale species inventories were used to 359 

benchmark the distributions. Data for communities of fishes and corals spread across the 360 

western and central Pacific were drawn from Connolly et al. (2017). A regional data set of 18 361 

butterfly communities from Colombia was taken from Cómbita et al. (2021). Combined 362 

abundances of trees inventoried in 1946 plots across the Amazon basin were drawn from ter 363 
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Steege et al. (2020). Finally, all 3257 available inventories of local tree, insect, and vertebrate 364 

communities from around the world were drawn directly from the Ecological Register 365 

database (Alroy, 2015, 2024). A large majority apply to a single trophic level and a small 366 

local area. There was no combination of inventories and multiple inventories from the same 367 

publications were allowed to be included. After discarding inventories with less then four 368 

species, a maximum count of less than four, or entirely identical counts, 3095 remained. 369 

 370 

2.7  |  Assessment of model fit 371 

 372 

The fit of the 11 models to each of the local data sets was assessed by computing the 373 

corrected Akaike information criterion (AICc) for each combination (Hurvich & Tsai, 1993). 374 

Antão et al. (2021) did the same thing. The above-mentioned likelihood calculation was used 375 

as the basis of the computations, which were implemented in the richness R package 376 

(https://github.com/johnalroy/richness/releases/tag/v2.4). The Zipf and ZSM distributions 377 

were fit first using the sads library (Prado et al., 2018), which uses the same likelihood 378 

equation as richness for all of its SAD fitting. The poilog library (Grøtan & Engen, 2008) in 379 

combination with the richness function pln was used to fit the PLN. The other models were 380 

fit using this paper's maximum likelihood equation, as implemented in the richness package. 381 

The AICc statistic penalises weakly for the number of parameters in a model (either one or 382 

two in all cases), so it tends to favour more complex ones. Many data sets are small in terms 383 

of both the number of species and the number of individuals, so raw AICcs can be 384 

misconstrued to indicate meaningful differences. To avoid being misled by stochastic 385 

variation in the fits, I tallied cases where differences (Ds) in AICcs yielded a weight of > 20, 386 

i.e., where exp(DAICc/2) > 20. 387 

Complex models are able to fit a wide range of distribution shapes by definition, but this 388 

does not necessarily mean they are good predictors of community structure. The reason is 389 

that they overfit, so they commit strongly to a pattern that may result from random variation 390 

in counts. To show whether models could generalise, I carried out more head-to-head 391 

comparisons by (1) fitting each model to each species inventory; (2) for each inventory, 392 

selecting another one that represented the same ecological group and the same biogeographic 393 

realm (ecozone) and had the most similar numbers of non-singleton and singleton species 394 

based on the sum of log ratios of those counts (with the first-encountered inventory being 395 

chosen when there was a tie); and (3) computing the log likelihoods (LLs) of the second 396 
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distribution based on the first one's models. The above methodology was used to obtain the 397 

likelihoods. A likelihood weight cutoff of > 20, meaning exp(DLL) > 20, was used to flag the 398 

decisive comparisons. 399 

 400 

2.7  |  Multivariate ordination based on fit statistics 401 

 402 

Differential sampling of the range of possible SADs might skew tallies of the best 403 

distributions for the inventories. Therefore, it is more illuminating to see which shapes across 404 

the range are able to to fit which distributions, and whether the new models can account for 405 

most or all of this variation. If so, then it is possible that most communities are indeed 406 

generated by processes conforming with the key assumptions: per-capita death rates that may 407 

or may not be species-specific combined with species-specific, highly variable, and not per-408 

capita recruitment rates. 409 

Principal components analysis of the LLs is used to explore the range of shapes. A level 410 

playing field has to be created to make this possible. Specifically, the average magnitude of 411 

LLs regardless of the model tracks richness and sample size, rising with both. To account for 412 

this, the LLs for each inventory are first standardised to fall in the range between the 413 

minimum and maximum. So if the LLs for three models are 10, 13, and 20, then the 414 

standardised values are 0, 0.3, and 1. Alternative approaches would depend on making strong 415 

assumptions, such as strong and linear tracking between average LLs and either richness, 416 

sample size, or both somehow combined. 417 

 418 

3  |  Results 419 

 420 

3.1  |  Simulated SADs 421 

 422 

Patterns closely consistent with the distributions are yielded by the appropriate simulations. 423 

Fits of models to counts are almost precise (Fig. 1). The same patterns can be seen in almost 424 

every single trial – these were selected arbitrarily. 425 

The geometric series (Fig. 1A) is the most general, with fixed per-capita death rates and a 426 

simple exponential distribution of birth rates. The half-power (HP) model (Fig. 1B) assumes 427 

coupling between rates. Finally, the scaled odds and quarter-power (QP) distributions assume 428 

fixed death rates and high-variance birth rates (Figs. 1C, D). 429 
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 430 

3.2  |  Descriptions of empirical SADs 431 

 432 

The QP distribution fits all for regional data sets with great accuracy (Fig. 2). The scaled 433 

odds distribution fits the Pacific coral and fish data and the Colombian tree data next-best 434 

(Figs. 2A, B, C). The log series is second-best with the composite Amazonian tree 435 

inventories (ter Steege et al., 2020), which span a huge spatial scale (Fig. 2D). Thus, it is not 436 

clear that a multi-parameter model like the negative binomial (ter Steege et al., 2020) is really 437 

needed for this data set. 438 

In terms of the local-scale data, an initial vetting of the models can be based on head-to-439 

head comparisons that yield large differences in AICcs (AICc weights > 20: Table 1). Here, 440 

the three new distributions are decisively better than the broken stick, geometric series, 441 

negative binomial, and Zipf. They also beat the zero-sum multinomial (ZSM). The QP 442 

overwhelmingly beats the log series while the others fall to it. The Poisson log normal (PLN) 443 

and Weibull fare worse again against the QP. This is a mixed result for the HP and odds, and 444 

it suggests that the QP is the strongest of all considered distributions. 445 

The fair performance of the two-parameter PLN, Weibull, and ZSM models may be an 446 

artefact of (1) the AICc's weak penalisation for model complexity, (2) overfitting, and (3) the 447 

ability of complex models to mimic distributions generated by simpler processes, including 448 

those that underlie the four models emphasised here. 449 

 450 

3.3  |  Predictions of empirical SADs 451 

 452 

The differences are much more dramatic when fitted SADs are used to predict matched SADs 453 

(Table 2). The QP distribution now trumps all of the old models at least 80% of the time 454 

when the likelihood weight is > 20. The scaled odds distribution is also strong, with a 455 

minimum win percentage of 71. The HP more or less ties the three distributions that predict 456 

gently declining, J-shaped RADs: the log series, PLN, and Weibull. The HP and Zipf also tie. 457 

In sum, because accurate prediction is more important than simple description in science, 458 

the large differences in favour of all three new models, and especially QP, yield them 459 

considerable credence. This conclusion is strengthened by limiting the comparisons to 460 

complex distributions (those having highest log likelihoods across all models > 100). This 461 

time, the QP and scaled odds respectively beat the two-parameter distributions at least 93 and 462 
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86% of the time in all cases. The HP also performs better, still basically tying the Zipf (45%) 463 

but now overcoming the log series (80%), PLN (67%), and Weibull (62%). 464 

There is some important variation among 13 ecological groups with respect to relative 465 

model performance. QP is far and away the strongest, not falling below 50% in any of the 13 466 

x 8 = 104 comparisons with older models. The scaled odds distribution is also favoured 467 

strongly, but not so much over the log series, which it usually beats about 70 – 80% of the 468 

time. However, this ranges from 49% (mosquitoes) to 81% (birds). Support for the HP 469 

distribution is less impressive (sometimes < 50% in various comparisons) when it comes to 470 

four major groups: ants, dung beetles, mosquitoes, and trees. The three insect groups often 471 

feature steep distributions that are well-explained by the odds and QP models. There is no 472 

obvious latitudinal pattern in the data. 473 

 474 

3.4  |  Multivariate ordination patterns 475 

 476 

The ordination is even more interesting because it shows which shapes go with which 477 

distributions, and thus which shapes are broadly applicable (Fig. 3). The classic J-shaped 478 

RAD pattern is only seen at left. The other side encompasses flattened and symmetrical 479 

RADs only well described by two classic but underlooked one-parameter distributions: the 480 

broken stick and much more often the geometric series (red points). The log series (yellow 481 

points) is common only at upper left, and specifically matches RADs that start with a hook 482 

and trail off into a straight line (as illustrated). 483 

Importantly, the two-parameter distributions (turquoise points) that are of so much interest 484 

to ecologists are only common in the central zone of the space, plus part of the branch to the 485 

right (Fig. 3). In particular, they explain some J-shaped RADs that are curved in the middle 486 

instead of running straight. In other words, the Poisson log normal, and Weibull mostly serve 487 

to wrap around unremarkable distributions. 488 

Finally, numerous data sets fit at least one of the three new models well, with relevant 489 

inventories (light blue points) falling almost everywhere to the left of the small "flat RAD" 490 

zone (Fig. 3). Thus, the new distributions are jointly able to account for most shapes. They 491 

are also distinct (Fig. 4). The HP distribution spans a wide region (dark blue points). The 492 

odds distribution (violet points) and QP distribution (green points) split the densely-populated 493 

left side, which includes many distributions that are J-shaped but steep. Like the Zipf, they 494 

can fit broad distributions with hyper-abundant dominant species. But they can also account 495 

for the straightness of the log series-type RADs. 496 
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 497 

4  |  Discussion 498 

 499 

4.1  |  Inference of process 500 

 501 

For many years, ecologists were optimistic about inferring processes from species abundance 502 

distributions (Fisher et al., 1943; MacArthur, 1957; Preston, 1962; May, 1975; Sugihara, 503 

1980; Hughes, 1986; Tokeshi, 1990; Hubbell, 2001). However, influential papers such as 504 

McGill et al. (2007) have more recently argued that because there are so many models 505 

making such similar predictions, the entire enterprise is doomed. 506 

This perspective overlooks the basic logic of the current analysis: whenever a population 507 

model M exactly predicts a distribution D, rejecting D based on empirical data also rejects M. 508 

Thus, fitting SADs can be considerably informative – but only when distributions are simple 509 

and grounded in models. In fact, the three new one-parameter distributions actually do predict 510 

patterns well (Figs. 1 – 4, Tables 1 and 2). Therefore, they actually do inform us about 511 

fundamental ecological processes. By contrast, two-parameter distributions may serve no real 512 

purpose because (1) they are not needed to predict the full range of possible SADs (Fig. 3); 513 

(2) they are mostly not grounded in simple population dynamical models (as opposed to Fig. 514 

1); and (3) science operates on the principle that simple theories are better. 515 

The proposed population models are ecologically interesting and important for several 516 

other major reasons. (1) All of them are not only simple, but simple variants of each other. 517 

(2) They assume high variance in recruitment rates among species but low variance among 518 

individuals within species. By contrast, the fully neutral log series model assumes no 519 

consistent, trait-based variation in demographic rates among species (Kendall, 1948; Hubbell, 520 

2001). In the new models, species do have systematically different demographic rates and 521 

equilibrium population sizes because of their traits, so there are "winners" and "losers" in 522 

perpetuity. (3) The models imply that populations reach equilibrium strictly because of 523 

demographic tradeoffs (Fig. 1). There is no role for competition, niche preoccupation, 524 

assembly rules, speciation, extinction, or any other non-local, non-random process. Thus, 525 

they are bona fide null models that are even simpler and less assumption-laden than that of 526 

Hubbell (1997, 2001).  527 

 528 

4.2  |  Implications for quantifying biodiversity 529 
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 530 

In recent years, ecologists have also moved to the idea that communities should be assessed 531 

by computing Hill numbers (Hill, 1973) such as Shannon's H and Simpson's D (Roswell et 532 

al., 2021). Chao et al. (2014) seems to have provided much momentum in this direction. Hill 533 

numbers blend information about richness and evenness, and ecologists use them in the hope 534 

that the latter can be quantified independent of sample size. But this hope may be in vain for 535 

three reasons. 536 

First, blended statistics are dubious from a philosophical point of view. Statisticians prefer 537 

to develop one descriptive statistic per property. Second, evenness is a transient property of 538 

ecosystems driven by the random success of particular species in particular places at 539 

particular times. By contrast, richness is non-transient because it is governed by processes 540 

operating on geological time scales: speciation, extinction, and dispersal. Third, one-541 

parameter distributions vary based on sampling intensity (scale) and richness but not based 542 

on shape, and Hill numbers vary meaningfully only when "evenness" varies. Because these 543 

distributions often hold, Hill numbers only indicate that some distributions are intrinsically 544 

steep and some are shallow, with this steepness being an inflexible property of no interest on 545 

its own. 546 

A further motivation for the evenness-not-richness philosophy is the notion that the 547 

richness of any community is not only unknown from raw data, but unknowable in general. 548 

There are actually two arguments of this kind. The first is just that existing methods don't 549 

work because their estimates are usually either too low or highly imprecise (Roswell et al., 550 

2021). When the assumptions of the new methods are met, their estimates cannot be greatly 551 

biased because they depend on maximum likelihood estimates of single parameters. 552 

Likewise, the arithmetic mean of a legitimately normal distribution can't be consistently 553 

biased because the mean is the maximum likelihood value of the central tendency. Although 554 

there is no room here to say much more about the matter, the fact that such estimates are 555 

accurate and precise would merit a fuller discussion elsewhere. 556 

The second proposition is that the effective sampling universe is a function of the size of 557 

an inventory: the more individuals counted, the spatiotemporally larger and therefore richer 558 

the sampled community. This argument conflates two things: (1) the number of species that 559 

would be found in an infinitely large inventory, and (2) the number of species that existed in 560 

the spatiotemporal realm that encompassed the sampling point (i.e., the community). This 561 

paper's richness equations are about the latter, not the former. 562 

 563 
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4.3  |  Adequacy of the new analyses and models 564 

 565 

It has long been agreed that a comparative study of species abundance distributions must 566 

compare multiple models by investigating multiple data sets (McGill et al., 2007). However, 567 

previous analyses have tended to consider quite different and often limited sets of 568 

distributions (Hughes, 1986; Ulrich & Ollik, 2005; Ugland et al., 2007; Ulrich et al., 2010; 569 

Connolly et al., 2014; Matthews et al., 2014, 2019; Alroy, 2015; Baldridge et al., 2016; Su, 570 

2018; Antão et al., 2021). Many have included one version or another of both the log normal 571 

and log series (e.g., Antão et al., 2021), if not always (e.g., Su, 2018). For example, the log 572 

series is a special case of the negative binomial (Fisher et al., 1943) and the latter has been 573 

tested against the Poisson log normal (Connolly et al., 2014). Past that, coverage is eclectic. 574 

Thus, few studies are comparable to this one. In the face of this comprehensiveness, 575 

support for the new distributions is jointly clear when one considers their ability to predict 576 

new sets of counts from old ones (Table 2, Figs. 3, 4). It is reasonable to ask whether 577 

additional one-parameter distributions might also be sound from both a descriptive view 578 

(Table 1) and a predictive view (Table 2). But only the geometric series and log series come 579 

even close to passing both of these tests. The latter is profoundly skeptical because it assumes 580 

that communities are drawn from pools with infinite richness (Fisher et al., 1943). It also 581 

assumes that species are identical in terms of population dynamics, in which respect it may 582 

take null modelling a bit too far. After all, this assumption discards the entire premise of trait-583 

based ecology. Thus, the three newly proposed distributions are not only jointly adequate but 584 

arguably more sensible. One way or another, it is fair to suggest that the structure of many or 585 

even most communities does actually result from extremely simple dynamical processes. 586 

 587 
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 736 
 737 

Figure 1. Simulated rank-abundance distributions for pools of 100,000 species. Curves show 738 

the raw counts (black lines), geometric series (orange lines), half-power (half) distribution 739 

(green lines), scaled odds distribution (blue lines), and quarter-power distribution (red lines). 740 

Distributions best-fitting a given model are illustrated in bolder colours. x-axes are square-741 

root transformed; y-axes are log transformed. Recruitment ("birth") counts in each time step 742 

follow a Poisson distribution; death counts follow a binomial distribution. Birth rates vary 743 

exponentially. (A) Geometric series: the death probability is fixed at 0.1. (B) Half-power 744 

model: the death probability is the birth rate l rescaled as 1/(l + 1). (C) Scaled odds model: 745 

the death probability is 0.5 and the birth rate is exp(–l)/l. (D) Quarter power model: the 746 

death probability is 0.5 and the birth rate is l3. 747 
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 748 
 749 

Figure 2. Examples of regional rank-abundance distributions. Black lines; raw counts; light 750 

blue lines: scaled odds distribution; red lines: quarter-power distribution; yellow line in (D): 751 

log series. The best two distributions in each case are illustrated: the quarter-power model is 752 

always best. (A) Corals from the Pacific Ocean (Connolly et al., 2017). Scaled odds is 753 

second. (B) Fishes from the Pacific Ocean (Connolly et al., 2017). Odds is second. (C) 754 

Butterflies from Colombia (Cómbita et al., 2021). Odds is second. (D) Trees from Amazonia 755 

(ter Steege et al., 2020). Log series is second. 756 
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 757 
 758 

Figure 3. Ordination of species inventories based on the fits of 11 models. Points closer 759 

together yield similar log likelihoods. Likelihoods are produced by fitting models to 760 

inventories and using the fits to predict distributions for other inventories matched by 761 

considering ecological groups, biogeographic regions, and species counts (see text). Data 762 

come from the Ecological Register (Alroy, 2015, 2024). Eight lines at the edges illustrate 763 

representative rank-abundance distributions each including at least 30 species. Point colours 764 

indicate the models that best fit each inventory's data. Blue = the three new methods (half-765 

power exponential, scaled odds, and quarter-power); turquoise = two-parameter models 766 

(negative binomial, Poisson log normal, Weibull, and zero-sum multinomial); orange = flat 767 

one-parameter models (BS = broken stick and GS = geometric series); red = the Zipf model; 768 

yellow = the log series. See the text for references. 769 
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 770 
 771 

Fig. 4. Ordination of species inventories highlighting the newly proposed distribution models.  772 

Data and methods are the same as in Fig. 3. Colours indicate the best models. HP = half-773 

power (blue points); odds = scaled odds (violet); QP = quarter-power (green). Points best 774 

fitting the other distributions are in grey.775 
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Table 1.  Head-to-head comparisons of 11 species abundance distribution models. Each pair 776 

of numbers shows how many published terrestrial ecological inventories are better fit to the 777 

column's distribution than the row's distribution according to the corrected Akaike 778 

information criterion (Hurvich & Tsai, 1993) with a weight > 20. Proportions > 0.5 are in 779 

bold. Data are local-scale inventories drawn from the Ecological Register and reposited on 780 

Dryad (Alroy, 2024). Models are explained and referenced in the text. HP = half-power; odds 781 

= scaled odds; QP= quarter power; geom. series = geometric series; n. binomial = negative 782 

binomial; PLN = Poisson log normal; ZSM = zero-sum multinomial. 783 

 784 

 HP odds QP broken 

stick 

geom. 

series 

log series 

HP  222/391 297/390 84/1875 74/1711 228/346 

odds 169/391  195/277 134/1818 119/1653 316/510 

QP 93/390 82/277  202/1914 188/1777 20/130 

broken 

stick 

1797/1875 1684/1818 1712/1914  389/396 1755/1947 

geom. 

series 

1637/1711 1534/1653 1589/1777 7/396  1633/1814 

log series 118/346 194/510 110/130 192/1947 181/1814  

Zipf 1711/1878 1538/1606 1748/1773 897/2181 953/2104 1811/1864 

n. 

binomial 

1911/1952 1678/1723 1803/1889 821/1400 931/1373 1899/1996 

PLN 236/478 246/465 247/394 195/1746 195/1610 301/512 

Weibull 178/468 179/436 158/316 162/1751 167/1624 170/389 

ZSM 474/621 575/755 390/400 455/2017 468/1907 144/145 

 785 

 Zipf n. binomial PLN Weibull ZSM 

HP 167/1878 41/1952 242/478 290/468 147/621 

odds 68/1606 45/1723 219/465 257/436 180/755 

QP 25/1773 86/1889 147/394 158/316 10/400 

broken 

stick 

1284/2181 579/1400 1551/1746 1589/1751 1562/2017 
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geom. 

series 

1151/2104 442/1373 1415/1610 1457/1624 1439/1907 

log series 53/1864 97/1996 211/512 219/389 1/145 

Zipf  482/1460 1296/1437 1352/1419 1159/1326 

n. 

binomial 

978/1460  1316/1328 1371/1375 1351/1500 

Poisson 

LN 

141/1437 12/1328  88/115 80/446 

Weibull 67/1419 4/1375 27/115  3/375 

ZSM 167/1326 149/1500 366/446 372/375  

 786 

  787 
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Table 2.  Head-to-head comparisons of 11 species abundance distribution models based on 788 

predictions of counts in matched inventories. Each model is fitted to each inventory in the 789 

overall Ecological Register data set (Alroy, 2024) and then projected onto another inventory 790 

with similar singleton and non-singleton species counts that represents the same ecological 791 

group and ecozone. Each pair of numbers shows how many inventories better fit to the 792 

column's distribution than the row's distribution according to the log likelihood of the second 793 

count vector, with a relative weight > 20. Proportions > 0.5 are in bold. Data and models are 794 

explained and referenced in the text; abbreviations are as in Table 1. 795 

 796 

 HP odds QP broken 

stick 

geom. 

series 

log series 

HP  643/781 680/710 22/2321 26/2100 232/576 

odds 138/781  209/380 20/2247 45/2019 265/902 

QP 30/710 171/380  44/2307 57/2097 43/611 

broken 

stick 

2299/2321 2227/2247 2263/2307  1291/1292 2273/2318 

geom. 

series 

2074/2100 1984/2029 2040/2097 1/1292  2055/2114 

log series 344/576 637/902 568/611 45/2318 59/2114  

Zipf 661/1256 730/923 756/949 215/2265 313/2120 650/1152 

n. 

binomial 

1677/1697 1652/1678 1732/1769 188/1494 625/1433 1738/1777 

Poisson 

LN 

459/841 508/692 544/634 56/2290 139/2036 474/770 

Weibull 414/834 525/739 525/609 32/2272 155/2023 378/725 

ZSM 734/930 911/1172 859/908 37/2314 330/2086 642/644 

 797 

 Zipf n. binomial PLN Weibull ZSM 

HP 595/1256 20/1697 382/841 420/834 196/930 

odds 193/923 26/1678 184/692 218/739 261/1172 

QP 193/949 37/1769 90/634 84/609 49/908 

broken 

stick 

2050/2265 1306/1494 2234/2290 2240/2272 2277/2314 
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geom. 

series 

1807/2120 808/1433 1897/2036 1868/2023 1756/2086 

log series 502/1152 39/1777 296/770 347/725 2/644 

Zipf  201/1654 715/1243 719/1245 662/1468 

n. 

binomial 

1453/1654  1652/1706 1607/1682 1437/1775 

PLN 528/1243 54/1706  283/532 252/983 

Weibull 526/1245 75/1682 249/532  245/986 

ZSM 806/1468 338/1755 731/983 741/986  

 798 


