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Abstract 12 

Accurate estimates of abundance are crucial for successful conservation and management. 13 

However, gathering abundance data is costly. Species Abundance Models (SAMs) are 14 

increasingly used to predict variation in abundance for resource management for single 15 

species, but collecting enough relevant environmental information to build effective SAMs 16 

can often be challenging. Species co-occurrence patterns may provide additional information 17 

on missing environmental predictors, and data on presence-absence species co-occurrence are 18 

typically easier to collect than abundance or detailed environmental data. However, it is still 19 

not clear when supplementing abiotic data with co-occurrence data should improve abundance 20 

predictions, as co-occurrence data itself represents a noisy indicator of the local environment. 21 

Using simulated data where we manipulated the strength of relevant environmental predictors 22 

across multiple species, we assessed the conditions that improve model predictions of a target 23 

species by using co-occurrence data on the remaining species as a proxy for missing 24 

environmental predictors. Because species often share environmental preferences in nature, an 25 

aspect simulated in our data, latent variables are expected to summarize important 26 

environmental gradients across co-occurring species. We employed Gaussian copulas to 27 

generate presence-absence co-occurrence-based latent variables as proxies. These latent 28 

variables, along with various combinations of environmental predictors, were subsequently 29 

used as predictors in SAMs. We evaluated the accuracy of these models in predicting the 30 

presence and abundance of target species through model validation exercises. Our results 31 

showed that incorporating presence-absence latent predictors generally improved model 32 

performance when compared to models lacking relevant environmental predictors, although 33 

there was considerable variation in performance across simulations. All models tended to have 34 

greater error rates when predicting abundant species compared to rare species. The goal of our 35 
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proposed framework is to offer a novel and easy to implement method for accurately 36 

predicting abundance from both biotic and environmental information. 37 

 38 

Introduction 39 

Community ecology has grown increasingly quantitative in response to the demand for a 40 

deeper understanding and more accurate predictions regarding how ecological factors and 41 

processes influence abundance, biomass, and interactions among both coexisting and non-42 

coexisting species (Flecker and Matthews 1999; Persson 2008). Abundance serves as a critical 43 

indicator for individual species, their communities, and/or the state of the environment, 44 

enabling us to quantify ecosystem functioning (e.g., predation pressure, densities of preys 45 

available, the probability of reproductive encounters) (Degnbol and Jarre 2004). However, 46 

abundance data is generally difficult to collect across many different locations in 47 

heterogeneous landscapes (e.g., across many lakes in a landscape) whereas data on the 48 

presence or absence of communities of species can be easier to collect at landscape scales 49 

(Jackson and Harvey 1997). As such, it would be useful for landscape-scale management to 50 

be able to predict the local abundance of specific species based on easier-to-sample data such 51 

as the presence or absence of other species. 52 

Many conventional models used to predict abundance rely on local (e.g., lake temperature) 53 

and regional (e.g., number of growing degree days) environmental variables (Lek et al. 1996; 54 

Brosse et al. 1999; VanDerWal et al. 2009; Boyce et al. 2016; Bradley 2016; Sobrino et al. 55 

2020). While environmental variables are relatively easy to gather through sampling or 56 

existing datasets, they are unlikely to encompass the multitude of sources of variation 57 

necessary for accurately predicting the abundances of target species of interest and other 58 

responses related to their communities, such as species composition. This limitation arises 59 
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because it is not often possible to measure all relevant environmental variables, and many 60 

species and community responses depend on factors beyond just environmental ones. 61 

Additional factors, such as species interactions and history of introducing exotic species, 62 

among many others, also play important roles in shaping species patterns of species 63 

distributions, including abundance, and biodiversity (richness and species composition) in 64 

local communities and regionally (i.e., large scale variation). 65 

In many cases, however, the environmental data gathered and used for predicting abundance 66 

variation in space (e.g., across sites) may stand as the primary source of low predictive 67 

accuracy, rather than other additional factors. For instance, relevant environmental variables 68 

may be missing or subject to measurement errors, or there could be time lags in 69 

environmental fluctuations and related changes in abundances (Myers 1998; Dornelas et al. 70 

2013; Bengtsson, Baillie, and Lawton 1997); and these lags may vary spatially and temporally 71 

(i.e., non-stationarity in lag-responses) even for the same species. If an unmeasured driver 72 

affects the abundance of at least two species, whether positively, negatively, or even in 73 

opposite directions between the species, one can expect that information about the distribution 74 

of one of these two species would improve the prediction of the other. This is especially 75 

expected when the probability of a species’ presence or absence is related to its abundances, 76 

and when the presence or absence of other species act as proxies for unmeasured quantitative 77 

factors (e.g., low versus high values), or qualitative factors (e.g., presence or absence of the 78 

missing factor). Indeed, several studies have shown that, for certain species, the most accurate 79 

predictor of abundance was information regarding the presences and absences of other species 80 

(González-Salazar, Stephens, and Marquet 2013; Lewis et al. 2017; Öğlü et al. 2019; Olkeba 81 

et al. 2020). While pairwise comparisons can be somewhat effective when studying single 82 

species, the interactions among multiple species can be complex and may not be adequately 83 

captured by pairwise comparisons alone. 84 
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It is generally not feasible to include the presence of all species in a regional species pool as 85 

predictors in a model targeting even the abundance of a single species. This is because even a 86 

moderately sized regional species pool may result in tens or hundreds of additional predictors 87 

in any abundance model. As such, incorporating the presence of other species into abundance 88 

models requires some form of dimension reduction of the species pool prior to analysis. In 89 

addition, many dimension reduction methods can borrow information across species and 90 

characterize their patterns of co-occurrence in a much-reduced number of axes, thereby 91 

improving predictive power based on these axes rather than considering all species separately 92 

(Carreira-Perpinán 1997; Cunningham 2008). 93 

A solution to incorporating complex co-occurrence data while retaining a low dimensionality 94 

is to employ latent variable models (Walker and Jackson 2011). Latent variables are 95 

unobservable variables or factors that are not directly measured but rather estimated based on 96 

the associations (covariation) among species. These latent variables aim to estimate the joint 97 

model probability distribution of species presences-absences and represent the underlying 98 

structure or patterns in the data by specifying how data points (e.g., species composition 99 

across local communities or sites) are likely to be generated. Several methods exist to estimate 100 

latent variables from abundance or presence-absence data, including non-model-based (e.g., 101 

classic ordination methods such as principal component analysis) and model-based (e.g., 102 

mixed-model ordinations) methods (Walker and Jackson 2011; Popovic et al. 2019; Popovic, 103 

Hui, and Warton 2022). The power of latent variable methods stems from their ability to 104 

capture hidden variation in a dataset in low dimensionality (ter Braak and Prentice 1988; ter 105 

Braak 1985). Our contribution here is to demonstrate the robustness of modeling the 106 

abundances of single target species as function of latent variables that model the co-107 

occurrence (presence-absence patterns) of the other species. This aspect is particularly 108 

important for the management and conservation programs tailored to specific species. We 109 
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introduce this general modeling framework and evaluate its ability to represent sources of 110 

predictive error caused by unmeasured drivers through detailed simulations. 111 

The goal of this study is to assess the robustness of our proposed framework for advancing 112 

single species abundance distribution models using species co-occurrence data of other 113 

species in their communities. We used detailed simulations to contrast the performance of 114 

models containing various levels of information on the environment and community 115 

composition. Moreover, because we generate abundance distributions for all species in our 116 

simulations, we can contrast our model performance between abundance-based and species-117 

co-occurrence based. Specifically, using comprehensive simulations, we set out to assess the 118 

performance of our proposed species-abundance framework by: (1) deriving rules for 119 

determining the number of latent variables used in modeling single species abundances, (2) 120 

contrasting model performance containing varying levels of information about the true 121 

underlying drivers (environment) versus latents (i.e., environmental proxies based on co-122 

occurrence patterns of species sharing variable levels of environmental affinities; Figure 1), 123 

and (3) assessing how predictive performance varies as a function of sample size (i.e., number 124 

of sites or local communities used as input into the model). In this study, we focused on 125 

scenarios in which species and their communities are influenced solely by environmental 126 

variation, without considering the impact of species interactions or dispersal, which can either 127 

enhance or diminish model performance (i.e., increase or decrease predictive accuracy, 128 

respectively). 129 

 130 

Material and method 131 

The simulations to test our framework followed the subsequent steps (see Figure 1 for an 132 

illustration of how this general workflow for a single simulated landscape): 133 
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1. Use stochastic simulations to generate landscape-scale environmental variation for 134 

each site in a landscape, and to generate coefficients for each species determining how 135 

average species abundance should vary as a function of environmental variables. 136 

2. Simulate the abundance of species in each site, based on the environmental variables 137 

and coefficients generated in step 1. 138 

3. Calculate latent variables from the presence-absence data of the previously generated 139 

abundance using Gaussian Copulas. 140 

4. Using a subset of the data generated, train a set of statistical models for each species to 141 

predict local abundance. Trained models varied in the number of included 142 

environmental variables and whether the model included latent variables. 143 

5. Use a suite of metrics to evaluate the ability of each model to predict patterns of 144 

presence-absence and abundance for the sites that were not used to estimate the 145 

models. 146 

Steps 1 and 2: simulating communities 147 

We used a Poisson model to simulate species abundances across different landscapes 148 

representing communities spread across E environmental gradients, assuming that the values 149 

of the environmental gradients were uncorrelated from one another, and that the log of the 150 

mean abundance of each species was equal to the sum of linearly dependent functions of each 151 

of the environmental gradients plus a species-specific intercept: 152 

𝐴𝑠,𝑗,𝑢 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑠,𝑗,𝑢) 

𝜇𝑠,𝑗,𝑢 =  exp (𝑏0,𝑠,𝑢 + 𝑏1,𝑠,𝑢𝑋1,𝑗,𝑢 + 𝑏2,𝑠,𝑢𝑋2,𝑗,𝑢 + ⋯ + 𝑏𝐸,𝑠,𝑢𝑋𝐸,𝑗,𝑢) 

 

1(a) 

1(b) 

 

Here 𝜇𝑠,𝑗,𝑢 is the expected number of individuals (abundance) of a species at a site, 153 

conditional on the environmental covariates included in the model. The abundance values 154 
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were drawn from a Poisson distribution with mean 𝜇𝑠,𝑗,𝑢. 𝑠 denotes species, 𝑗 sites, and 𝑢 the 155 

landscape. 𝐴𝑠,𝑗,𝑢 is the abundance of the sth species in site 𝑗 of landscape 𝑢, 𝑋1,𝑗,𝑢 to 𝑋𝐸,𝑗,𝑢 are 156 

the E environmental covariates that vary for each site 𝑗 of each landscape 𝑢, 𝑏0,𝑠,𝑢 the 157 

intercept that vary for each species 𝑠 and landscape 𝑢, and 𝑏1,𝑠,𝑢 to 𝑏𝐸,𝑠,𝑢 fixed coefficients 158 

relative to environmental variables 1 to E for species 𝑠 in landscape 𝑢. 159 

We simulated environmental covariates by drawing J independent, normally distributed 160 

values for each of the E environmental variables for each landscape (step 1). Thus, values for 161 

each covariate were statistically independent, with each environmental covariate having a 162 

mean of 0 and a variance of 1 across sites. These environmental covariates can be interpreted 163 

as environmental gradients given that they were generated independently. The coefficients 164 

(𝑏0,𝑠,𝑢, 𝑏1,𝑠,𝑢, … 𝑏𝐸,𝑠,𝑢) for each species were drawn from a uniform distribution with a range of 165 

-2.4 to 1.2 for the intercept, and -0.8 to 0.8 for the slopes. The ranges for the coefficients were 166 

determined through simulation trials where we identified the minimum and maximum 167 

coefficients that allowed for all species to be present in at least 10% of sites and at most in 168 

90% of sites. The selected parameters allowed to generate species with different levels of 169 

strength between abundance and environment variables (e.g., narrow versus broad niche 170 

breadths; step 2). Table 1 summarizes how each variable in eq. 1 was generated. The 171 

distribution across species of spatially averaged species abundance within each landscape was 172 

approximately log-normally distributed (Figure 2), resembling common patterns found in 173 

natural communities. 174 

Step 3: Latent variables generation and their abilities to represent missing 175 

environmental variation 176 

Different methods are available for incorporating presence-absence information into a latent 177 

model (Popovic et al. 2019; Zou and Zhang 2009; Blanchet, Cazelles, and Gravel 2020). The 178 
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copula approach used here is a model-based latent approach to estimate latent variables from 179 

multivariate data sets, as implemented in the ecoCopula R package (Popovic et al. 2019). This 180 

Gaussian Copula graphical model approach combines a multivariate distribution (e.g., 181 

multivariate Gaussian) with a set of marginal distributions (e.g., binomial, Poisson). Due to its 182 

high versatility (i.e., allowing for the selection of the multivariate distribution as well as the 183 

modeling of the appropriate discrete marginal distributions), it holds significant potential for 184 

applications in ecology (Anderson et al. 2019). Additionally, it has been shown to be one of 185 

the most accurate latent estimation methods in heterogenous environments (i.e., varying with 186 

a binary environmental covariate) (Popovic et al. 2019) and has been identified as the fastest 187 

and most robust latent variable quantification method for count and binomial (presence-188 

absence) data (Popovic et al. 2022). 189 

However, the copula model requires specifying the number of latent variables to estimate 190 

prior to model fitting. In general, at least E latent variables should be required to capture the 191 

variation in E independent environmental gradients, but it may be the case that more latent 192 

variables are needed to fully capture environmental variation. One frequently used method for 193 

determining the number of latent variables to retain is to compare AIC (Akaike Information 194 

Criterion) or BIC (Bayesian Information Criterion) for models with increasing numbers of 195 

latent variables until the chosen matrix reaches a minimum value (i.e., best predictive value of 196 

co-occurrence). However, initial testing on landscapes (simulated using the method in step 1) 197 

with varying numbers of latent variables consistently showed that, using the BIC method 198 

calculated in ecoCopula, the BIC score was always lowest for models with a single latent 199 

variable, regardless of the number of environmental predictors used to simulate species 200 

abundances. As such, we conducted a preliminary trial to evaluate the number of latent 201 

variables needed to best approximate the environmental gradients in our simulated 202 

landscapes. 203 
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Using eq. 1, we simulated U landscapes of size J (number of sites), containing S species and a 204 

varying E number of environmental predictors (U = 450, J ∈ {100, 200, 300}, S ∈ {10, 20, 205 

30}, E ∈ [1,5]; Table 1). To evaluate the optimal number of latent parameters (axes) needed to 206 

best approximate the environmental gradients in our simulated landscapes and compare the 207 

impact of adding or removing latent variables, we generated several numbers of latent 208 

variables for each possible combination of parameter values. Therefore, for each possible 209 

combination of parameter values, we fitted the presence-absence data into a stacked species 210 

regression model before using a model-based ordination with Gaussian copulas by using the 211 

functions stackedsdm and cord from the package ecoCopula (Popovic et al. 2019, version 1.0-212 

2) with L different numbers of latent factors to model them (L ∈ [1,5]).  213 

We extracted the BIC value of each of these models and subtracted from them the BIC of the 214 

best model from any given simulation set (i.e., lowest BIC for the species considered in the 215 

current landscape). To evaluate the effectiveness of the latent variables in representing (i.e., 216 

serve as a proxy) environmental variation, we conducted a redundancy analysis (RDA) of the 217 

original environmental variables used to simulate species abundance regressed against the 218 

extracted latents using the function rda from the package vegan (Oksanen et al. 2022, version 219 

2.6-2). Ability of latents to represent environmental variation was measured via the RDA 220 

adjusted R2 (Peres-Neto et al. 2006). We determined from this trial that, regardless of the 221 

number of sites J or species S in the simulation, BIC was always lowest with a single latent 222 

variable (Appendix S1: Figure S1), but adjusted R2 did increase with the number of latent 223 

predictors, until the number of latents equalled E, after which the adjusted R2 did not increase 224 

with more latent variables (Appendix S1: Figure S2), so there is no reason to extract more 225 

than E latent variables for any given simulation.  226 

Step 4: Contrasting the performance of abundance models 227 
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We compared the models containing only the environmental variables used to generate 228 

species abundances (eq. 1) against the ones containing selected environmental variables and 229 

the latent variables (community composition). This allowed us to compare model 230 

performance under ideal conditions because we used the true environmental drivers used to 231 

simulate species abundances against models from which we removed various combinations of 232 

environmental variables (scenarios) and replaced them with latent variables (proxies) to 233 

represent the missing sources of variation. Note, however, that ideal conditions do not imply 234 

perfect model performance, as different species were simulated with varying degrees of 235 

strength and associated errors relative to environmental variables (e.g., narrow versus broad 236 

niche breadths). 237 

For this contrast, we created U landscapes, and for each landscape u, we generated K 238 

replicates (U = 30, K = 10 replicates per landscape). For each replicate k, we simulated 239 

abundances for each s species in each site j using eq. 1, using three environmental variables 240 

𝑿1, 𝑿2 and 𝑿3 per landscape containing multiple sites. We simulated 20 species and 1000 241 

sites per landscape. We fixed the number of latent factors to 3 as we had three environmental 242 

variables (see RDA results in previous section). Replicates (i.e., landscapes using the same 243 

coefficients but had varying values of environmental gradients) were used to allow a 244 

reasonable estimate of the metrics used to contrast model performances. 245 

We randomly sampled 100 sites (out of the 1000 simulated) from each landscape u (referred 246 

here as to the training set), and for each training set we estimated abundance models with 247 

different combinations of environmental and latent predictors (step 4). Each model was 248 

estimated using a Generalized Linear Model (GLM), using a Poisson distribution with a log-249 

link function (Kéry and Royle 2015). We used the manyglm function from the R package 250 

mvabund (Wang et al. 2022, version 4.2-1) to fit separate models for each replicate landscape 251 

simultaneously for all species separately. 252 
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We were interested in comparing models containing different combinations of environmental 253 

variables and latent variables. The complete list of model scenarios considered is described in 254 

Table 2. As each species had different strengths of relationship with each environmental 255 

variable (i.e., different coefficient values in eq. 1 were used to simulate each species), we 256 

ordered the models based on the decreasing values of the environmental coefficients used to 257 

simulate the species’ abundance. For instance, if species A had the values of -0.5, 0 and 0.8 as 258 

coefficients for the environmental variables 𝑿1, 𝑿2, and 𝑿3, respectively, 𝑿3 had the largest 259 

influence on driving abundance values, followed by 𝑿2 (i.e., importance is given by 260 

decreasing coefficient values) and 𝑿1. But if species B had values of 0.7, -0.5 and 0.3 as 261 

coefficients for the environmental variables 𝑿1, 𝑿2, and 𝑿3 respectively, its abundance was 262 

mostly driven by variations of 𝑿1, then 𝑿3 and finally 𝑿2. When removing 𝑿1 from the 263 

predictors of a model, species A and B were not impacted in the same way due to the lesser 264 

influence 𝑿1 had on the abundance of species A. We predicted that including latent variables 265 

should increase predictive ability more when added to a model that only included 266 

environmental predictors that weakly predicted the abundance of an individual species. To test 267 

this, we compared model performance with and without latent variables for models including 268 

different combinations of strengths of environmental variables.  269 

For models containing one environmental variable as predictor, we labeled the predictors as 270 

“high”, “intermediate”, and “low”, corresponding to the decreasing values of coefficients of 271 

the environmental variables. For models incorporating two environmental variables, we 272 

designated the model with the two highest coefficients as “high”, the model with the highest 273 

and lowest coefficient as “intermediate”, and the model with the two lowest coefficients as 274 

“low”. 275 

Step 5: comparison of model performance 276 
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For each model estimated for each replicate within the same landscape, we generated 277 

predictions for species abundances at the remaining 900 sites in the landscape from which the 278 

sites were sampled from (the test set). To establish baselines for optimal model performance, 279 

we also calculated predicted abundances in the test set using the oracle model: i.e., the model 280 

employing the true coefficients used to simulate each species’ abundances to predict the 281 

conditional expected abundance for each species in each site. The oracle model represents the 282 

best possible model for estimating the simulated abundances in each test set that could be 283 

derived using data from the training set. Two other models were singled out: (i) a benchmark 284 

model containing all three environmental variables, to identify in which scenarios having 285 

access to all environmental variables (drivers of the abundance) did not suffice to properly 286 

estimate the environmental coefficients (by comparing the performance of the benchmark 287 

model to that of the oracle model), and (ii) a latent model containing only the latent variables, 288 

to study how species co-occurrence patterns performed as predictors of their own. We 289 

assessed how effectively the different models, including the oracle model, predicted the 290 

pattern of presences and absences as well as the true abundances in the test set. 291 

Although our primary focus was on predicting abundance, we evaluated the models for both 292 

presence-absence and abundance predictions. This approach was taken because, in many 293 

cases, the interest may lie in predicting presence or absence of a particular target species. It is 294 

important to note, however, that the latents used as predictors were always derived based on 295 

the presence-absence of other species. 296 

Metrics for evaluating presence-absence predictions 297 

The Poisson regression models estimated in step 4 can predict the probability of presence of 298 

each species in a given site, but to evaluate the effectiveness of the model for predicting 299 

presence, these probabilities need to be translated into concrete predictions for presence or 300 

absence (Lawson et al. 2014; Phillips and Elith 2013). If we only treated a model as 301 
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predicting a species present if the probability of presence was over 50%, models for rare 302 

species would only predict absences (and vice versa for common species), so using a fixed 303 

probability threshold would lead to all models of rare (common) species having the same 304 

predictive performance as a model that just predicts the species always being absent (present).  305 

Therefore, instead of using a fixed probability threshold to convert the probabilities into 306 

presence-absence predictions, we used a prevalence-based approach. For each species, we set 307 

a threshold equal to the true occurrence (prevalence) rate of the species across a given 308 

landscape (e.g., Liu et al. 2005). We used this threshold to generate a predicted presence-309 

absence matrix for each site and each species in each landscape for a given model. This was 310 

achieved by determining whether the expected abundance by the model for that site was 311 

greater (present) or lower (absent) than the threshold value. We then compared the 312 

performance of each model to the oracle model using a range of metrics, the equations for 313 

which are provided in Table 3. Using the predicted presence-absence matrices, we calculated 314 

the True Skill Statistic (TSS, Peirce 1884; Table 3) for each model, species and landscape 315 

replicate. The TSS, which ranges from -1 to +1, measures the difference between the 316 

sensitivity and specificity of the model. A score of +1 indicates a perfect agreement between 317 

the model’s predictions and the true presence-absence, while a score of 0 or lower signifies 318 

performance no better than random (Allouche, Tsoar, and Kadmon 2006). We calculated the 319 

ratio of the TSS of the model over the TSS of the oracle and computed the mean for each 320 

model, species and landscape. Then, we grouped species into bins based on occurrence rates 321 

across different landscapes. A TSS ratio of ≥1 indicates that the model performed as well or 322 

better than the oracle, while a TSS ratio of ≤0 or less means that the model predicted presence 323 

as badly or worse than random chance.  324 

To compare whether including latent predictors increased model performance relative to just 325 

using environmental variables, we also calculated the delta TSS, defined as the TSS of 326 
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environmental model minus the TSS of corresponding latent model (i.e., models containing 327 

the same environmental variables where the only difference in specification was the inclusion 328 

of latent variables as predictors). A positive delta TSS indicates the environmental model to 329 

have the best performance, whereas a negative value suggests that the model including of 330 

latent variables performs best. 331 

Metrics for evaluating abundance predictions  332 

When evaluating how each model predicted species abundance, we limited comparisons to 333 

sites where the species was present (i.e., abundance of 1 or higher). To evaluate how well each 334 

model predicted species abundance we calculated the following prediction metrics for each 335 

model, species and landscape replicate: Mean Absolute Percentage Error (MAPE), Root Mean 336 

Squared Percentage Error (RMSPE), Relative Mean Squared Error (RMSE), Symmetric Mean 337 

Absolute Percentage Error (SMAPE), and Root Mean Ratio Percentage Error (RMRPE) (see 338 

Table 3 for definitions of these metrics). We calculated the ratio of each metric to the 339 

corresponding metric calculated for the oracle model (i.e., best possible scenario) and 340 

calculated the average ratio for each model, species and landscape (referred to as the ratio 341 

metric in the results). We also calculated the delta metric, defined as the metric calculated for 342 

a model containing only environmental variables minus the metric calculated for a model with 343 

the same environmental variables as well as latent variables. As above, a negative delta metric 344 

indicated that the latent model performed better than the same model lacking latent variables.  345 

To illustrate how different metric performances varied with species abundance across 346 

simulations, we grouped species in different landscapes into percentile bins, based on the 347 

average (true) abundance of the species in its own landscape, and then calculated average 348 

ratio metrics and delta metrics for each percentile bin across landscapes and replicates.  349 

 350 
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Results 351 

Number of latent variables needed to capture environmental variation 352 

We first focus on determining the optimal number of latent dimensions to select when using 353 

Gaussian copulas. To assess the goodness of fit of the models, we examined both the RDA 354 

adjusted R2, which represents the proportion of variance explained by the model, and the 355 

Bayesian Information Criterion (BIC), which is typically used to determine the optimal 356 

number of latent variables to retain. The RDA enabled us to estimate how effectively the 357 

latents characterize the original environmental variables (gradients) based on community 358 

composition, while the BIC helped us determine whether this criterion indeed allows for 359 

selection of an appropriate number of latents to represent community composition. 360 

The adjusted R2 consistently increased with the number of latent dimensions until it equaled 361 

the actual number of environmental variables used to simulate the data, at which point it 362 

plateaued (Figure 3, Appendix S1: Figure S2). This indicates that additional latent variables 363 

did not improve the model’s ability to predict the environmental state of a given location. The 364 

maximum fraction of variance explained was not significantly affected by the number of true 365 

environmental variables used to generate (simulate) species abundances; capturing variation 366 

from one environmental gradient was as feasible as capturing it from three or four 367 

environmental gradients (i.e., variables). Note, again, that the interpretation here as gradients 368 

is possible because environmental variables were generated independently. The adjusted R2 369 

was not sensitive to the number of sites in the landscape used to estimate the latent variables, 370 

but it was sensitive to the number of species used: models based on 10 species could only 371 

explain about 30% of the variation in environmental variables, regardless of the number of 372 

latent variables used, whereas models based on 30 species could explain ~60% of variation in 373 

the environmental matrix (Appendix S1: Figure S2). 374 
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In contrast, the Bayesian Information Criterion (BIC) consistently increased with the number 375 

of latent dimensions, without showing any signs of reaching a plateau (Appendix S1: Figure 376 

S1). While models with lower BIC are generally expected to have better predictive ability for 377 

unobserved data - suggesting that the best model would always retain one latent variable 378 

regardless of the environmental dimension - this expectation did not align with our 379 

observations for the adjusted R2. This discrepancy indicates that BIC (as calculated by 380 

ecoCopula) is not a good metric of the predictive performance of the latent model, at least 381 

when applied to gradients driving abundances while their latents were extracted from 382 

presence-absence data. Therefore, we did not report BIC of the estimated latent models for the 383 

remainder of our simulations.  384 

Models’ performance 385 

Presence-absence predictions 386 

We now focus on the models’ performance in predicting presence-absence, including the ratio 387 

TSS (representing how well each model performed compared to the oracle model) and delta 388 

TSS (represented how well models without latent variables performed relative to models 389 

including latent variables). The ratio of the TSS had a mean of 0.7 and ranged from -1.6 to 1.7 390 

(recall that any value below 0 indicates that the model did not perform better than random, 391 

while any value above 1 represents better performance compared to the oracle). Initially 392 

examining the TSS across species occurrence percentiles, there were no obvious patterns 393 

(Figure 4). In this case, the number of occurrences of a target species did not influence 394 

model’s performance. When comparing models, models containing two environmental 395 

variables performed better on average than those with only one, regardless of whether latents 396 

are included or not. 397 
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When comparing models with and without latent variables, any delta TSS value above 0 398 

indicates that the environmental model performs better, while any negative value indicates a 399 

better performance by the latent model. Models containing latent variables generally 400 

performed better on average across all (target) species, especially for those with high 401 

occurrence and in models containing only one environmental predictor (Figure 4). The 402 

differences are less pronounced when comparing models that contain two environmental 403 

variables (i.e., where only one environmental predictor is missing from the model). Reducing 404 

the number of sites used to fit the model did not affect the performance of the TSS, sensitivity, 405 

or specificity (Appendix S1: Figure S3). 406 

When comparing the TSS as performance of the oracle (i.e., a model using the true 407 

coefficients of the environmental variables to generate the species’ conditional expectations), 408 

benchmark (i.e., a model containing all three environmental variables), and latent models (i.e., 409 

a model containing only the latent variables), we can notice that they are very correlated 410 

across species occurrence percentiles (Figure 5). The benchmark and oracle models have 411 

extremely similar performances. Regarding sensitivity, the benchmark and oracle models are 412 

also highly correlated, while the latent model demonstrates good correlation for species with 413 

low occurrence. For specificity, the benchmark and oracle models are correlated for high 414 

occurrence species, while the benchmark and latent models are correlated for low occurrence 415 

species. 416 

Abundance predictions 417 

To assess the goodness of fit for abundance-based models (i.e., target species include 418 

abundance information while latents are based on presence-absence of the other species), we 419 

calculated six metrics to assess the extent to which the models mispredict species abundances. 420 

Again, we used the ratio of each metric over the same metric calculated for the oracle model 421 

(i.e., representing the best possible predictive scenario), along with the delta metric to 422 



19 
 

compare models that differ in composition due to the inclusion or exclusion of latent 423 

variables. 424 

To assess across all species the impact on model performance of removing any given 425 

environmental predictor, we had to consider the varying strengths in the relationship between 426 

each species abundance and each environmental variable to compare the predictive ability of 427 

latents. As a reminder, in models containing one environmental variable as predictor, we 428 

labeled the predictors as “high”, “intermediate”, and “low”, corresponding to the decreasing 429 

coefficients of the environmental variables. For models incorporating two environmental 430 

variables, we designated the model with the two highest coefficients as “high”, the model 431 

with the highest and lowest coefficient as “intermediate”, and the model with the two lowest 432 

coefficients as “low”. Regardless of the metric considered, we observe the following patterns: 433 

prediction error increases as species abundance increases, and models containing two 434 

environmental variables outperform models containing only one environmental variable 435 

(Figure 6, Appendix S1: Figure S4). When comparing models with or without latent variables, 436 

highly abundant species were best predicted by models containing latent variables (Figure 6, 437 

Appendix S1: Figure S4). For species with low and medium abundances, the inclusion or 438 

exclusion of latent did not impact the performance of the models; they exhibited very similar 439 

values of error. 440 

When comparing the metrics in relation to the performance of the oracle (i.e., a model using 441 

the true coefficients of the environmental variables to generate the species’ conditional 442 

expectations), benchmark (i.e., a model containing all three environmental variables) and 443 

latent models (i.e., a model containing only the latent variables), we observe identical trends 444 

across all metrics. The performance of the three models was very similar for low abundance 445 

species; however, the latent model diverged when the abundance percentile was higher than 446 

70%, with an increase in predictive error (Appendix S1: Figure S5). The metrics were not 447 
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sensitive to the number of sites in the landscape used to fit the models (Appendix S1: Figure 448 

S6). 449 

 450 

Discussion 451 

Number of latent variables needed to capture environmental variation 452 

Our first goal was to establish rules for determining the number of latent variables used in 453 

modeling single species abundances. To achieve this, we examined the behavior of two 454 

metrics, the BIC and the adjusted R2, within a simulated landscape. Our results indicate that 455 

the BIC was not a useful metric for deciding the appropriate number of latent variables when 456 

employing Gaussians copulas. Instead of plateauing once the latent variables captured as 457 

much of the environment as possible, it continued to increase, implying that the best number 458 

of latent variables was consistently one even in cases where multiple independent 459 

environmental gradients were set to simulate species distributions. It is plausible that current 460 

calculation method for BIC is incorrect or does not employ an appropriate penalty measure 461 

(number of parameters and sample size). Note that there is a general lack of consensus about 462 

the best criteria for assessing latent models (Weller, Bowen, and Faubert 2020). On one hand, 463 

the BIC is generally regarded as a reliable metric for latent models (Nylund, Asparouhov, and 464 

Muthén 2007); however, it is also criticized for being overly conservative (Mindrila 2023) as 465 

it was the case here. Note, however, that the underperformance of BIC to decide the number 466 

of latents to use in species abundance models may be due to the fact that, in our simulations, 467 

species’ responses to environmental gradients were in the form of abundances, whereas latent 468 

predictors were extracted from presence-absence data. Consequently, the more liberal AIC 469 

might be a preferable option for the Gaussian copulas used in our study. Note that regardless 470 

of whether we use AIC or BIC to assess the number of latents to retain, this assessment is 471 
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intrinsic and solely based on the community data used to estimate the latent variables, which 472 

are then used as predictors in abundance distribution models of single species. As we will 473 

discuss, an extrinsic selection, in which latents that improve abundance predictive accuracy 474 

are chosen, may prove to be a better strategy when using latent models based on co-475 

occurrence data to predict abundance of single (target) species. 476 

Note that the goal of the RDA analysis, based on the R2 metric, was to assess whether the 477 

latent structures used here could serve as a good proxy for the true environmental variables 478 

used to simulate species distributions. Given that the adjusted R2 plateaued when the number 479 

of latent variables equalled the true number of environmental dimensions, it instills 480 

confidence that these latents serve as robust proxies. However, it is important to note that this 481 

analysis cannot generally be performed, as in true empirical cases we do not know whether 482 

the measured predictors are important. Further, this plateau of latent predictive ability when 483 

the number of latent predictors equals the number of environmental predictors is likely due to 484 

the fact that our abundance simulations only used linear environment-abundance 485 

relationships; it is likely that if abundance-environment relationships were nonlinear (e.g. uni- 486 

or multi-modal), a larger number of latent variables would be needed to capture the same 487 

number of environmental dimensions. 488 

Additionally, although the RDA analysis demonstrated that the correct number of latents can 489 

represent the true number of environmental gradients structuring co-occurring species, it is 490 

important to note that the original simulations generated abundance values that were then 491 

transformed into presence-absence for generating latents. Although using presence-absence 492 

data allows our models to be applicable across many systems - given that researchers often 493 

only have abundance data for a few target species and presence-absence data for multiple 494 

other co-occurring species - there is certainly loss of environmental signal by doing so. This 495 

explains why the adjusted R2 is generally not very high. 496 
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Model performance 497 

Our second and third objectives were aimed at contrasting model performance that contained 498 

varying levels of information (i.e., number of predictors) about the true underlying drivers 499 

versus latent predictors and assessing how predictive performance varied as a function of 500 

sample size. We first compared model performance based on the presence-absence 501 

predictions, with the goal of assessing accuracy and comparing it to current models used by 502 

management which in most cases, do not contain all relevant environmental drivers. Although 503 

our study was primarily designed to predict abundance, the ability to derive accurate 504 

presence-absence predictions would enable researchers to apply an even more general 505 

framework for species distribution modeling based on latent predictors. 506 

Presence-absence predictions 507 

As to be expected, adding relevant environmental variables to the models improves 508 

predictions. Since the species’ abundance - and consequently presence-absence - is linearly 509 

related to these variables, any environmental information enables the model to capture more 510 

variation and thus predict abundance more accurately. Including all environmental variables 511 

leads to a perfect prediction. Although our goal was to develop and assess the performance of 512 

a general framework for predicting species distributions of target species based on latents of 513 

co-occurring species, different issues could be considered in future studies. For instance, the 514 

perfect prediction including all predictors was an outcome to be expected given that we did 515 

not include measurement error for environmental predictors or species abundances (i.e., white 516 

noise) in our simulations (see McInerny and Purves 2011 for potential approaches for 517 

attenuating the potential effects of environmental measurement error species distributional 518 

models). It would be interesting to perform a sensitivity analysis after including measurement 519 

errors either in the way environment (e.g., spatial variation within sites, temporal lags in 520 
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species responses to environments) or abundance (e.g., estimates based on mark-recapture) 521 

are measured. 522 

The inclusion of species co-occurrence patterns through latent variables also leads to an 523 

improvement in predictions, indicating that the latent variables can capture unobserved 524 

environmental variation and serve as a proxy for missing (but relevant) environmental drivers. 525 

Indeed, models that incorporate two environmental variables and latent variables tended to 526 

perform better than models containing only two environmental variables. This is particularly 527 

important since empirical datasets are unlikely to capture all relevant environmental drivers. 528 

Although presence-absence datasets are common, a model capable of predicting the presence 529 

and absence of an invasive species or a rare species based on the rest of the community 530 

composition could be useful for conservation efforts, especially with methods such as eDNA 531 

surveys that can collect information on presence from relatively few samples (Rees et al. 532 

2014). 533 

The lack of influence of number of sites sampled on model performance may initially seem 534 

surprising. However, the training set of sites used to fit the models was sampled 535 

independently of the values of the environmental variables and without measurement error. 536 

This means that regardless of number of sites used to fit the model, the relationship between 537 

abundance and environment would have been accurately captured. It would be interesting to 538 

assess how changing the relationship from linear to quadratic would influence the results; as 539 

there would be increased complexity in the link, we’d expect to have a greater impact of 540 

number of sites sampled on the predictions. 541 

Abundance predictions 542 

The species’ average abundance was generally low in our simulations. However, since we 543 

were interested in relative abundance error rather than true abundance error, we made a 544 
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deliberate decision not to adjust the parameters of our simulations, maintaining a low average 545 

abundance. The shape of the abundance density curve was, to us, the most salient 546 

characteristic we aimed to replicate. Keeping the average abundance low also allowed us to 547 

maintain the occurrence of species within an ecologically meaningful range (i.e., between 548 

10% and 90% of occurrence across the landscape). 549 

As expected, adding environmental variables improved the abundance predictions. Since no 550 

measurement error was included in the simulations for either environmental variables or 551 

species abundances, the inclusion of any environmental variable is likely to improve 552 

predictive accuracy. However, it is interesting to note that adding community composition 553 

only improved predictions for the high abundance species. One possible explanation for this is 554 

that the way we generated species abundances resulted in low-abundance species also being 555 

only weakly predictable from environmental variation (and thus only weakly predictable from 556 

community composition). In our simulations, a species would have low average abundance if 557 

it either had a small intercept (𝑏0) and values of the environmental slopes (𝑏1 to 𝑏𝐸 values) 558 

close to zero (so it would be roughly equally distributed across the landscape), or if it had a 559 

very small intercept value (𝑏0) and one large environmental slope value, so it was well-560 

predicted by a single environmental variable. As such, the low predictive power of latent 561 

variables for rare species observed in our results may not generalize to species in natural 562 

settings. In fact, one might expect that species with intermediate abundances are likely to be 563 

best predicted due to the positive relationship typically observed between occupancy (number 564 

of sites occupied) and abundance (Gaston 1996; but see Wright 1991). Species with low 565 

abundances may not occupy all suitable habitats, while those with high abundances could be 566 

generalists, occupying an excess of environments. Additionally, many other non-567 

environmental factors (e.g., biogeography, dispersal limitation, species interactions, species 568 

introductions) may plays an important role in shaping patterns of species distributions and 569 
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biodiversity in local communities and regionally (Boulangeat, Gravel, and Thuiller 2012; 570 

Lewis et al. 2017; Guisan and Thuiller 2005). We suggest that future research could extent 571 

these simulations to incorporate nonlinear environmental gradients driving species 572 

abundances. 573 

Unlike presence-absence predictions, where no pattern related to species incidence could be 574 

identified, we observe a clear trend for the abundance predictions. The more abundant a 575 

species is, the higher the model’s predictive error. Since we measure the relative error in 576 

prediction and not the absolute error, this is not an artefact related to the total abundance of 577 

the species but rather it is related to the fact that the high abundance sites are poorly predicted. 578 

However, it may be due to the fact that we simulated species abundance from a Poisson 579 

distribution, where the variance in outcome increases linearly with the mean abundance, 580 

which would lead to higher variability in abundance even between sites with identical 581 

environmental variables. This does not make this result an artifact of our simulations, 582 

however; positive mean-variance relationships are typical in ecological populations (He and 583 

Gaston 2003), so we expect that it should be more difficult in general to predict abundances of 584 

common species compared to rare ones. It is important to highlight the fact that using a 585 

different statistical family to model species’ abundance might allow for a better fit of the 586 

model with empirical data and further improve the predictions (see review by Waldock et al. 587 

2022). Note, however, that the main component of our framework - the use of latents based on 588 

species co-ocurrence patterns to predict species abundances - can be directly applied to any 589 

modeling procedure, whether it is based on maximum likelihood, Bayesian or machine 590 

learning models. 591 

One intriguing result was observing the convergence of the models’ performance for low-592 

abundance species. Indeed, for species in the 0 to 50 percentiles of abundance, regardless of 593 

the metric used, a model containing only community composition can perform as well as one 594 
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containing all environmental variables. This result may demonstrate the true potential for our 595 

framework as a management tool. However, again, this may be due to the Poisson expectation 596 

of our simulations as explained earlier. This performance does not apply to high abundance 597 

species, where there is a significant divergence in the models’ performance, likely caused by a 598 

few sites with very high abundances. Applications to empirical datasets may require 599 

downweighing the importance of sites containing high abundances to avoid skewing the 600 

model's predictive accuracy. The use of more robust models that may account for different 601 

types of overdispersion (e.g., very low and high abundances) can be considered within the 602 

context of our framework (e.g., Poisson-log normal model, Harrison 2014). 603 

Additionally, increasing the number of sites sampled did not influence predictive 604 

performance, a result we anticipated since we sampled uniformly across the landscapes and 605 

captured the entire range of variation when fitting the model. However, such uniform 606 

sampling across landscapes is unlikely to be realistic when using empirical data, particularly 607 

in complex and patchy landscapes in which environmental features are clumped and spatially 608 

autocorrelated. This issue extends beyond our study. Various approaches have been proposed 609 

to mitigate the impact of complex landscapes on the predictive performance of species 610 

distribution models based on environmental features. Different sampling methods (Fortin, 611 

Drapeau, and Legendre 1989; Christianson and Kaufman 2016), model validation techniques 612 

(Wenger and Olden 2012), and modeling frameworks (e.g., Dormann 2007 for a review, 613 

Guélat and Kéry 2018) are among these proposed solutions and could, in principle, be 614 

incorporated into our modeling framework given its flexibility.  615 

We did not include any species interactions in our model simulations: as such, our results 616 

demonstrate that latent community composition variables can capture similar patterns of 617 

environmental interactions even in the absence of species interacting with one another. 618 

Although latent variable models can represent species interactions (e.g., competition, trophic 619 
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interactions) via networks (e.g., Ovaskainen et al. 2016), adjustments to the latent extraction 620 

may be necessary in order to incorporate more complex processes underlying pattern of 621 

species co-occurrences. It is likely that including direct species interactions (e.g., competition 622 

or predation) would increase the power of latent parameters for predicting species abundances 623 

as long as strong species interactions were relatively rare, or species interaction networks are 624 

relatively sparse; strong species interactions and dense species interaction networks can result 625 

in complex feedbacks, such that the net effect of presence or absence of a given species on a 626 

focal species may be indeterminant (Tunney, Carpenter, and Vander Zanden 2017).  627 

Finally, it is important to consider that we used all species in any given simulated landscape to 628 

generate latents. However, it is likely that certain reduced number of species combinations 629 

would better serve as inputs for latent generation. For instance, consider a scenario involving 630 

two species and two independent environmental predictors. If one species is highly associated 631 

with one environmental predictor but randomly associated with the other; and the second 632 

species shows the reverse pattern, then the two species will not effectively predict each other. 633 

One possible solution is to cluster species based on their environmental affinities prior to 634 

latent generation (see Hui et al. 2013 for a discussion). As such, latents could be tailored to 635 

only consider species that increase the model performance of the target species. 636 

Our proposed framework offers considerable promise for several compelling reasons. First, it 637 

is highly flexible in terms of parameter estimation, as it can accommodate any regression style 638 

approach. This allows to predict both presence-absence and abundance, and it demonstrates 639 

very good performance in predicting low-abundance species. Moreover, one can also use 640 

other latent modeling procedures and not necessarily Gaussian copulas. The framework could 641 

also be used to predict biomass rather than abundance by replacing the family of the GLM 642 

used, depending on the variable of highest interest for management. Overall, our proposed 643 
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framework is incredibly versatile, allowing for significant flexibility and adaptability to 644 

accommodate the available data. 645 
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Tables 841 

Table 1. Variable symbols and indexes, and their associated values and distributions used in 842 

the simulation study. Bold letters indicate that the variable is a vector or a matrix. 843 

Variable name Variable Values  

A Abundance 0 to ∞ 

S, s Number of species, species index {10, 20, 30} 

U, u Number of landscapes, landscape index 30 

J, j Number of sites, site index  

E Number of environmental variables 3 

𝑏0,𝑠,𝑢 Intercept for species s and landscape u Uniform(-2.4, 1.2) 

𝑏1,𝑠,𝑢 𝑡𝑜 

𝑏𝐸,𝑠,𝑢 

Slopes for species s, landscape u and 

environmental variables 1 to E 

Uniform(-0.8, 0.8) 

𝑋1,𝑢,𝑗 to 

𝑋𝐸,𝑗,𝑢 

Environmental variables 1 to E for site j of 

landscape u 

Normal(0,1) 

L Number of latent variables 3 

X Environmental variable  

Z Latent variable  

 844 
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Table 2. All models considered in this study based on combinations of environmental 845 

variables and community composition (latents). The best model is expected to be the true 846 

model considering all environmental variables. A refers to the abundance matrix, X1 to X3 to 847 

the environmental variables, and Z1 to Z3 to the community composition (latent variables). 848 

Variables included Model specification Regression formula 

Environmental variables 

3 environmental variables 𝑨 ~ 𝑿1 + 𝑿2 + 𝑿3 

2 environmental variables 

𝑨 ~ 𝑿1 + 𝑿2 

𝑨 ~ 𝑿1 + 𝑿3 

𝑨 ~ 𝑿2 + 𝑿3 

1 environmental variable 

𝑨 ~ 𝑿1 

𝑨 ~ 𝑿2 

𝑨 ~ 𝑿3 

Environmental variables and 

community composition 

2 environmental variables and 

community composition 

𝑨 ~ 𝑿1 +  𝑿2 + 𝒁1: 𝒁3 

𝑨 ~ 𝑿1 + 𝑿3 + 𝒁1: 𝒁3 

𝑨 ~ 𝑿2 + 𝑿3 + 𝒁1: 𝒁3 

1 environmental variable and 

community composition 

𝑨 ~ 𝑿1 + 𝒁1: 𝒁3 

𝑨 ~ 𝑿2 + 𝒁1: 𝒁3 

𝑨 ~ 𝑿2 + 𝒁1: 𝒁3 

 849 
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Table 3. Metrics used for assessing model predictive performance based on presence-absence 850 

and abundance of target species. J represents the number of sites, As the true abundance of the 851 

(target) species, Ps the predicted abundance, TP the true positives, FP the false positives, TN 852 

the true negatives, and FN the false negatives. Bold letters indicate that the variable is a vector 853 

or a matrix. The True Skill Statistic (TSS), sensitivity, and specificity are calculated for all 854 

sites of the landscape. Having evaluated the presence-absence predictions of the models and 855 

to avoid artificially inflating the error rate of the abundance metrics, the Mean Absolute 856 

Percentage Error (MAPE), Root Mean Squared Percentage Error (RMSPE), Relative Mean 857 

Squared Error (RMSE), Symmetric Mean Absolute Percentage Error (SMAPE), and Root 858 

Mean Ratio Percentage Error (RMRPE) are calculated for sites where the species is truly 859 

present (i.e., abundance of 1 or more). 860 

Metric Equation 

TSS 𝑇𝑆𝑆 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
− 1 

Sensitivity 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

MAPE 𝑀𝐴𝑃𝐸 =
1

𝐽
∑

|𝑨𝑠 − 𝑷𝑠|

𝑨𝑠
𝑠

× 100 

RMSPE 𝑅𝑀𝑆𝑃𝐸 = √
1

𝐽
∑ (

𝑨𝑠 − 𝑷𝑠

𝑨𝑠
)

2

𝑠

× 100 

RMSE 𝑅𝑀𝑆𝐸 = √
1

𝐽
∑

(𝑨𝑠 − 𝑷𝑠)2

𝑨𝑠
2

𝑠

× 100 

SMAPE 𝑆𝑀𝐴𝑃𝐸 =
1

𝐽
∑

|𝑨𝑠 − 𝑷𝑠|

|𝑨𝑠| + |𝑷𝑠|
𝑠

× 100 

RMRPE 𝑅𝑀𝑅𝑃𝐸 = √
1

𝐽
∑ log (

𝑷𝑠

𝑨𝑠
)

2

𝑠

× 100 

 861 
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Figure captions 862 

Figure 1. The rationale underlying our model framework and simulation workflow to assess 863 

its performance. First, species abundances were simulated for all species (top left panel) as a 864 

function of multiple environmental factors. In this example, two environmental variables were 865 

used to simulate species abundances (X1 and X2; bottom left panel). Species abundances are 866 

then transformed into presence-absence data and used to derive latent variables (bottom left 867 

panel). Here, only one latent variable is presented for simplicity. allowing one to more easily 868 

it association with the abundances of the original simulated species. Variation in species 869 

abundances (target species) across sites is then modeled against latent and environmental 870 

variables or reduced combinations (e.g., removing an environmental variable and assess the 871 

conditions that affect latent performances), depending on specific simulation scenarios. The 872 

model can produce either abundance or presence-absence predictions for each site. The black 873 

rectangular outline highlights the target species (species 10) that the model aims at predicting. 874 

Figure 2. The density of average species abundance across sites within each landscape. For 875 

each landscape, we calculated the average abundance of each species and plotted the density 876 

of abundances in each of the 30 landscapes (grey lines). We also plotted the density of 877 

abundances across all landscapes to represent the average landscape (black line). The red line 878 

is a reference line indicates the probability density function of a log-normal distribution with 879 

the same log-mean and log-standard deviation of the average abundance distribution across 880 

replicates. 881 

Figure 3. Variation in adjusted R2 as a function of the number of latent variables used, as well 882 

as the true dimensions of the environment and the number of species in the landscape. Here 883 

we used 500 sites, and variations according to other number of sites are presented in 884 

Appendix S1: Figure S2. Colors represent the varying number of species in the landscape, and 885 
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each panel indicates the true dimension of the environment (i.e., number of environmental 886 

variables used to simulate the abundance of a given target species).  887 

Figure 4. Ratio TSS and delta TSS for each model and bin of species occurrence percentiles. 888 

The ratio TSS was averaged across all landscapes and replicates per model and species, with 889 

species binned by percentile of occurrence (percentage of sites occupied) and divided by the 890 

TSS of the oracle model. A value of 1 for the ratio TSS indicates an identical performance 891 

between the model and the oracle model, while a value below 0 represents a performance 892 

similar to that of a random model. To improve contrast between colors, we confined the color 893 

scheme between 0 and 1. Any value below 0 indicates a prediction of presence-absence no 894 

better than a random model, and any value above 1 a better prediction than the oracle model. 895 

The environment panel represents models containing only environmental variables, while the 896 

latent panel is for models containing latent variables (mix of latent and environmental 897 

predictors); the models were then ordered from bottom to top as fewest to the greatest number 898 

of environmental variables included and sorted by coefficients relative to each environmental 899 

variable (see Methods for more information, note that the “mid” model refers to the 900 

“intermediate” model). The delta TSS was measured as the TSS of the model with 901 

environmental variables minus the TSS of the model with the same combination of 902 

environmental variables and latent variables. A negative value indicates that the model with 903 

latent predicts the presence-absence of the species better than the model containing only 904 

environmental variables. 905 

Figure 5. Correlation between the metrics studied (TSS, sensitivity, and specificity) 906 

depending on the model across species occurrence percentiles. The vertical panels indicate the 907 

different metrics, with models represented in different colors. The oracle model refers to the 908 

model using the true environmental coefficients, while the other models were fitted using all 909 

environmental variables (benchmark) or latent variables (latent). The True Skill Statistic 910 
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(TSS) measures the difference between sensitivity and specificity of the model and ranges 911 

from -1 to +1. A score of +1 indicates a perfect agreement between the predictions of the 912 

model and the true presence-absence, while a score of 0 or less represents a performance no 913 

better than random. Sensitivity represents the ability to correctly classify a species as 914 

“present”, while specificity represents the ability to correctly classify a species as “absent”. 915 

Their values can be interpreted as a percentage, with values of 1 indicating perfect 916 

classification of either presence or absence, and values of 0.5 no better than random. Here we 917 

used 500 sites, and variations according to other number of sites are presented in Appendix 918 

S1: Figure S3. 919 

Figure 6. Ratio Mean Absolute Percentage (MAPE) and delta MAPE are presented for each 920 

model and bins of species abundance percentiles. The MAPE is averaged across all 921 

landscapes and replicates per model and species, with the species binned by percentile of 922 

abundance and divided by the MAPE of the oracle model to derive the ratio MAPE. The 923 

environment panel represents models containing only environmental variables, while the 924 

latent panel depicts models containing latent predictors. The models are then ordered from 925 

bottom to top, from the fewest to the greatest number of environmental variables included and 926 

sorted by coefficients relative to each environmental variable. See Methods for more 927 

information, note that the “mid” model refers to the “intermediate” model. Delta MAPE was 928 

measured as the MAPE of the model with environmental variables only minus the MAPE of 929 

the model with the same combination of environmental and latent predictors. A positive value 930 

indicates that the model with latent predicts the abundance of the species better than the 931 

model containing only environmental variables. 932 

 933 
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Appendix S1 1 

 2 

Figure S1. Variation in delta BIC as a function of the number of latent variables used, as well 3 

as the true dimensions of the environment, the number of species in the landscape and the 4 

number of sites. Horizontal panels represent the number of sites, and each vertical panel 5 

indicates the true dimension of the environment (i.e., number of environmental variables used 6 

to simulate the abundance of a given target species). Colors represent the varying number of 7 

species in the landscape. The delta BIC is calculated as the BIC of the model minus the BIC 8 

of the best model for the ongoing simulation. 9 

 10 
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 11 

Figure S2. Variation in adjusted R2 as a function of the number of latent variables used, as 12 

well as the true dimensions of the environment, the number of species in the landscape and 13 

the number of sites. Horizontal panels represent the varying number of sites, and each vertical 14 

panel indicates the true dimension of the environment (i.e., number of environmental 15 

variables used to simulate the abundance of a given target species). Colors represent the 16 

varying number of species in the landscape.  17 

 18 
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 19 

Figure S3. Average value of the studied metrics (Ratio TSS, ratio sensitivity, and ratio 20 

specificity) depending on the number of sites used to fit the models, the model used, and the 21 

occurance of species. Horizontal panels represent the different occurence: species with low, 22 

medium and high occurrence corresponding respectively to bins of 15, 50, and 80 percentiles 23 

of occurrence. Vertical panels indicate the metrics considered, with the models represented in 24 

different colors. The ratio metric is calculated as the metric for the predictions of a model for 25 

a species of the landscape divided by the same metric calculated for the oracle model. For the 26 

ratio TSS, a score of 1 indicates a perfect agreement between the predictions of the considered 27 

model and the oracle model, while a score of 0 or less represents a performance no better than 28 

random. For the ratio sensitivity, it represents the ability to correctly classify a species as 29 
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“present”, while the ratio specificity represents the ability to correctly classify a species as 30 

“absent”. For both metrics, values above 1 indicate a better performance than the oracle 31 

model and values below 1 indicate a lesser performance. The benchmark model refers to the 32 

model containing all environmental variables, 2V.high the model with the two environmental 33 

variables with the highest coefficients, 1V.high the model with the environmental variable 34 

with the highest coefficient, and Latent the model containing the latent variables. 35 
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Figure S4. Abundance metrics and the comparison of performance between environmental 37 

models and latent models measured as delta metrics. Each metric is averaged across all 38 

landscapes and replicates per model and species, with the species binned by percentile of 39 

abundance, and divided by the metric of the oracle model to give the ratio metric. The 40 

environment panel represents models containing only environmental variables, while the 41 

latent panel depicts models containing latent predictors. The models are then ordered from 42 

bottom to top, from the fewest to the greatest number of environmental variables included and 43 

sorted by coefficients relative to each environmental variable. See Methods for more 44 

information, note that the “mid” model refers to the “intermediate” model. The delta metric 45 

was measured as the metric of the model with environmental variables only minus the metric 46 

of the model with the same combination of environmental and latent predictors. A positive 47 

value indicates that the model with latent predicts the abundance of the species better than the 48 

model containing only environmental variables. 49 

 50 
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Figure S5. Correlation between the metrics studied (MAPE, RMSPE, RMSE, SMAPE, and 51 

RMRPE) depending on the model across species abundance percentiles. The vertical panels 52 

indicate the different metrics, with models represented in different colors. Each metric is 53 

averaged across all landscapes and replicates per model and species, with the species binned 54 

by percentile of abundance. The oracle model refers to the model using the true environmental 55 

coefficients while the other models were fitted using all environmental variables (benchmark) 56 

or latent variables (latent). 57 

 58 

Figure S6. Average value of the studied metrics (MAPE, RMSPE, RMSE, SMAPE, and 59 

RMRPE) depending on the number of sites used to fit the models, the model used, and the 60 
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abundance of species. Horizontal panels represent the different abundances: species with low, 61 

medium and high occurrence corresponding respectively to bins of 15, 50, and 80 percentiles 62 

of occurrence. Vertical panels indicate the metrics considered, with the models represented in 63 

different colors. Each metric is averaged across all landscapes and replicates per model and 64 

species, with the species binned by percentile of abundance and divided by the metric of the 65 

oracle model to give the ratio metric. The benchmark model refers to the model containing all 66 

environmental variables, 2V.high the model with the two environmental variables with the 67 

highest coefficients, 1V.high the model with the environmental variable with the highest 68 

coefficient, and Latent the model containing the latent variables. 69 
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