IUCN RED LIST

ECOSYSTEMS ASSESSMENTS

www.iucnrle.org

Mangroves of South India and Sri Lanka, and Maldives CR

Vaithilingam Selvam¹, R. Ramasubramanian², Kandasamy Kathiresan³, M.G. Manoj Prasanna⁴, K. A. Sunanda Kodikara⁵, Mala D. Amarasinghe⁶ & Ena L. Suárez⁷

- ¹ SPEED Trust, Devipattinam, Ramanathapuram, India
- ² M.S. Swaminathan Research Foundation, III Cross Road, Taramani Institutional Area, Chennai 600113, India
- ³ Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Tamil Nadu, India
- ⁴ Biodiversity Secretariat, Ministry of Environment, Sri Lanka
- ⁵ Department of Botany, Faculty of Science, University of Ruhuna, Matara, Sri Lanka
- ⁶ Department of Botany, University of Kelaniya, Kelaniya, Sri Lanka
- ⁷ International Union for Conservation of Nature IUCN, Gland, Switzerland

Abstract

Mangroves of South India and Sri Lanka, and Maldives is a regional ecosystem subgroup (level 4 unit of the IUCN Global Ecosystem Typology). It includes the marine ecoregions of Western India, South India and Sri Lanka, and Maldives. The mapped extent in 2020 was 249.2 km², representing 0.2% of the global mangrove area. The environmental settings of this ecoregion differ widely ranging from open coast, lagoonal, deltaic and estuarine mangrove formations. The mangroves of Maldives grow on a calcareous mud substratum; those in all other parts of this ecoregion occur on fine terrigenous sediments. The biota is characterized by 21 species of true mangroves.

The mangroves of the southernmost east coast of India are dominated by a single, highly saline-tolerant species: Avicennia marina. In contrast, elsewhere in this ecoregion, diverse species constitute the mangrove floral community. There are at least five endangered mangrove-associated bird species and one shark species in the IUCN Red List. The major threats to the mangroves of this ecoregion are reduction in freshwater flow and subsequent development of hypersaline conditions; conversion of mangroves for aquafarming and tourism development; changes in sediment dynamics; poor exchange of tidal water; and climate change especially sea-level rise and storm surges.

Today the South India, Sri Lanka, and Maldives mangroves cover ranges between 197.1 and 249.2 km² according to different available sources. This is higher than our broad estimation for 1970. The mangrove net area change fluctuates between -4.7 and -26.8% 1996 to 2020 based on the data sources. If this trend continues, an overall loss between 49% and 58 % is projected over the next 50 years. Under a high sea-level rise scenario (IPCC RCP8.5) 82.7% of this ecoregion's mangroves would be submerged by 2060. Moreover, 3.2% of the mangroves are undergoing degradation, with the potential to increase to 9.5% within a 50-year period, based on a vegetation index decay analysis. Overall, the South India and Sri Lanka, and Maldives mangrove ecosystem is assessed as Critically Endangered (CR).

Citation:

Selvam, V., Ramasubramanian, R., Kathiresan, K., Prasanna, M.G., Kodikara, Manoj Amarasinghe, M.D. & Suárez, E. L., (2024). 'IUCN Red List of Ecosystems, Mangroves of the South India, Sri Lanka, and Maldives'. EcoEvoRxiv.

Corresponding author:

Email: ena.suarez@iucn.orq

Mangroves; Red List of ecosystems; ecosystem

collapse; threats.

Ecosystem classification:

MFT1.2 Intertidal forests and shrublands

Assessment's distribution:

South India, Sri Lanka, and Maldives province

Summary of the assessment

Criterion	Α	В	С	D	E	Overall
Subcriterion 1	LC	LC	DD	DD	NE	
Subcriterion 2	VU	LC	CR	LC	NE	CR
Subcriterion 3	DD	LC	DD	DD	NE	

CR: Critically Endangered, VU: Vulnerable,

LC: Least Concern, DD Data Deficient, NE: Not Evaluated

Mangroves of South India and Sri Lanka, and Maldives

1. Ecosystem Classification

IUCN Global Ecosystem Typology (version 2.1, Keith et al. 2022):

Transitional Marine-Freshwater-Terrestrial realm

MFT1 Brackish tidal biome

MFT1.2 Intertidal forests and shrublands

MFT1.2_4_MP_21b Mangroves of the South India, Sri Lanka, and Maldives

IUCN Habitats Classification Scheme (version 3.1, IUCN 2012):

1 Forest

1.7 Forest – Subtropical/tropical mangrove vegetation above high tide level*below water level¹

12 Marine Intertidal

12.7 Mangrove Submerged Roots

Monospecies stand of Avicennia marina in Karangadu mangroves, Southeast coast of India (Photo credit: Selvam Vaithilingam)

-

¹ Note on the original classification scheme. This habitat should include mangrove vegetation below water level. Mangroves have spread into warm temperate regions to a limited extent and may occasionally occur in supratidal areas. However, the vast majority of the world's mangroves are found in tropical/subtropical intertidal areas.

2. Ecosystem Description

Spatial distribution

The Mangroves of South India and Sri Lanka, and Maldives include intertidal forests and shrub lands of the marine ecoregions of South India and Sri Lanka, and Maldives. These ecoregions include the coastal areas of Southeastern India (lower half of the Cauvery Delta and south) and Southwestern India (the southern part of the state of Kerala) and the entire coastlines of Sri Lanka and the Maldives (Figure 1). The estimated extent of mangroves in these ecoregions was 249.2 km² in 2020, representing about 0.2% of the global mangrove area. There represents a loss of 26.8 % since 1996 (Bunting *et al.*, 2022).

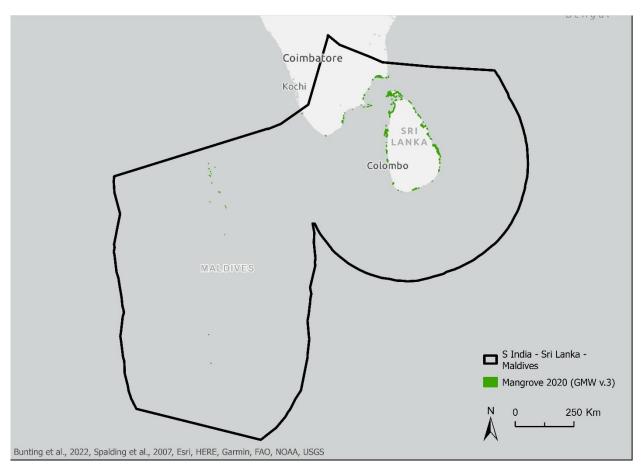


Figure 1. The mangroves of South India and Sri Lanka, and Maldives.

The mangroves of southeastern India are deltaic in nature, and the climate is semi-arid, whereas the mangroves of southwestern India are located around backwaters with wet climatic conditions. The coastal areas of Sri Lanka are divided into wet and dry zones and an intermediate zone based on average annual rainfall. The wet zone in the southwest part of Sri Lanka receives, on average, about 2,500 mm of rainfall, occurring almost throughout the year. The north, east, northeast and southwest coastal areas are comparatively dry with an average rainfall of 1,500 mm, mostly during the northeast monsoon season (October to January) and they remain dry for about five months from May to September. Mangroves are distributed in all coastal districts of Sri Lanka. North Western Province has the highest mangrove species diversity, while the largest mangrove cover is in the Northern Province. Extensive mangroves occur in the dry zone around large lagoons such as Puttalam, Mannar, Jaffna, Trincomalee and Batticaloa.

The mangroves of Maldives are found both in the northern and southern atolls, but the most luxuriant and diverse mangroves are in the northern atolls. In Maldives, the mangrove ecosystem is present in five different microenvironmental settings: i) the fringe area of some of the islands, where wave energy and wind speed are less and brackish water is present due to the mixing of seawater with the margin of the freshwater lens; ii) in between two islands, where the water is shallow, and there are accumulated deposits of sediments; iii) along the borders of lagoons that are connected to the sea; iv) along the borders of lagoons that have lost connection to the sea, but still receive seawater periodically through seepage; and v) in shallow depressions deep inside the islands, where rainwater accumulates (Selvam, 2003). These environmental settings significantly influence both the abiotic processes and biotic components of the mangrove ecosystem.

Biotic components of the ecosystem (characteristic native biota)

The mangroves of the South India and Sri Lanka, and Maldives ecoregions are biologically diverse with 21 recorded true mangrove plant species (IUCN, 2022). Recently, however, Veettil *et al.*, (2023) reported 32 mangrove species in Sri Lanka, including *Rhizophora annamalayanaa* a natural hybrid in the Family Rhizophoraceae; and three locally critically endangered species namely *Lumnitzera littorea*, *Ceriops decandra* and *Xylocarpus rumphii*. However, *Xylocarpus rumphii* is usually associated with more rocky and sandy habitats above high water mark, rather than intertidal mangrove forests. In Maldives, Dryden *et al.* (2020) reported *Bruguiera hainesii* a rare species classified as critically endangered (CR) in the IUCN Red List.

The community structure of the mangroves varies in different environmental settings within these ecoregions shows some interesting features, reflecting prevailing conditions. The floral community structure of Muthupet mangroves and all other small patches located south of, it shows complete dominance of a single species, *Avicennia marina* (Azariah *et al.*, 1992). This is mainly because of hypersaline conditions that prevail on the southernmost east coast of India. In contrast, mangroves on the southernmost west coast of India are dominated with species tolerant of low salinity such as *Acanthus ilicifolius*, *Avicennia officinalis*, *Excoecaria agallocha*, *Bruguiera cylindrica* and *B. gymnorhiza*.

The Sri Lankan mangroves are highly diverse in their species composition and distribution. Their floristic composition shows closer affinity to the Madagascar mangrove wetlands (Amarasinghe and Perera, 2017) than to the mangroves of India. The mangrove floral diversity is high in Sri Lanka's northwest province followed by western and southern provinces. Their maximum extent is seen in Jaffna District in the northern province, while the lowest species diversity is found in Matara District in the Southern Province. *Rhizophora annamalayana* is the only natural mangrove hybrid, occurring in Sri Lanka (Veettil *et al.*, 2023)

Jayathissa (2012) reported 21 true mangroves species and 24 species of mangrove associates in Sri Lanka, while Gunawardena *et al.* (2016) recorded 23 true mangrove species. There are no reports of endemic species in Sri Lanka. *Aegiceras corniculatum, Avicennia marina, Avicennia officinalis, Bruguiera gymmnorhiza, Excoecaria agallocha, Heritiera littoralis, Lumnitzera racemose, Rhizophora mucronata and <i>Sonneratia caseolaris* are common in almost all provinces. In the Maldives, mangroves are not estuarine-based and are classified as either 'open' or 'closed' depend on the ecosystem's exposure to the sea (Shadiya

et al., 2016). Fifteen mangrove species were recorded in the mangrove areas of Maldives (Sivakumar et al., 2018) of which *Bruguiera cylindrica* is the dominant species. Recently, *Bruguiera hainesii* a rare and critically endangered mangrove species has been recorded in Maldives and listed in the IUCN Red List (Dryden et al., 2020).

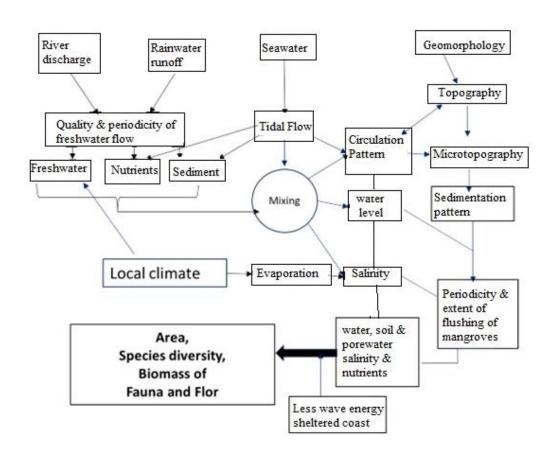
The mangroves of South India and Sri Lanka, and Maldives have at least 242 species in the taxa Actinopterygii, Amphibia, Anthozoa, Aves, Chondrichthyes, Gastropoda, Holothuroidea, Insecta, Magnoliopsida, Mammalia and Reptilia associated with mangrove habitats in the IUCN Red List of Threatened Species (IUCN, 2022). The mudflats around the mangroves of the southern east coast of India support large congregations of birds. Every year about two hundred thousand birds visit these areas, including five species listed in the IUCN Red List of Threatened Species: the Critically Endangered White-bellied Heron (*Ardea insignis*) and Spoon-billed Sandpiper (*Eurynorhynchus pygmeus*); Endangered Spotted Greenshank (*Tringa guttifer*); and Near Threatened Spot-billed Pelican (*Pelecanus philippensis*) and Blacknecked Stork (*Ephippiorhynchus asiaticus*) (GIZ, 2023). The Sharptooth Lemon Shark (*Negaprion acutidens*) is an endangered fish species found in the bay of Farukolhu mangrove lagoon in the Maldives (Dryden *et al.*, 2020).

A monospecies stand of Avicennia marina in Muthupet, Southeast coast of India (Photo credit: Selvam Vaithilingam)

A young stand of Bruguiera mangrove in the Maldives (Photo credit: Water Solutions, Maldives)

Abiotic Components of the Ecosystem

Mangrove environment can be classified broadly based on three groups of dynamic factors: (i) geophysical (changes in sea-level, climatic conditions and tidal properties of a region); (ii) geomorphic (geomorphologically distinct landscapes due to sedimentation dynamics, dominance of hydrological processes, e.g. wave, tidal or river, and micro-topography of the wetland); and (iii) biological (Thom, 1984). Using machine learning, Worthington *et al.* (2020) created a broad-scale biophysical typology, which is more or less similar to that of Thom's. The geomorphic and sedimentary setting of South India and Sri Lanka, and Maldives, as classified by Worthington *et al.* (2020), is given below:


Mangroves	Geomorphic	Description	Sedimentary setting
	setting		
Muthupet	Deltaic	Fan-shaped plains created by the	
mangroves of		deposition of large amounts of sediment	Terrigenous
South India		transported by rivers; Rapid deposition	(Sediment derived
		of sediment; mangroves luxuriant in	from land. The
		abundant delta	composition of the
A few of the	Estuarine	Funnel-shaped estuaries with	sediment depends on
mangroves in		bidirectional tidal flows, characterised	the lithology and age
Sri Lanka, e.g.		by large catchment areas and high	of the source rock, as
Kalu Ganga		precipitation input	well as the
mangroves			weathering and
Majority of the	Lagoonal	Shallow coastal waterbody,	transport process and
mangroves in		intermittently separated from ocean	history; in a
Sri Lanka, e.g.		inputs. Usually formed parallel to the	mangrove
Jaffna and		shore.	environment,
Puttalam			terrigenous sediment
mangroves			is normally fine
Many small	Open Coast	Sheltered embayment such as Palk Bay	texture and rich in

patches of mangroves south of Muthupet;	(but not on bedrock valley)	and the Gulf of Mannar	organic matter)
Maldives mangroves	Lagoonal	Shallow coastal waterbody, intermittently separated from ocean inputs. Usually formed parallel to the shore	Carbonate Platform is made up of accumulated
	Open coast	Sheltered environments on oceanic islands behind coral reefs and carbonate banks	calcareous mud (marl) and peat

The macro-level environmental factors affecting mangroves undergo changes in time and space, and these changes are reflected in the composition and structure of the mangrove ecosystem at the site level (Selvam, 2003). Such changes pertaining to South India and Sri Lanka, and Maldives are described below.

Key processes and interactions

The wealth of mangrove ecosystems in terms of their extent, diversity and biomass of both plants and animals (including fisheries, which are an important component of the mangrove-associated fauna), and the health of the mangroves in terms of hydrological conditions and salinity regime, are determined primarily by i) the quantity and duration of freshwater flow; ii) tidal amplitude; iii) slope of the coast; and iv) protection from high wave energy. These site-level factors interact closely, as illustrated below.

Any changes in these factors influence structure and function of the mangrove ecosystem. For example, as explained elsewhere, a reduction in freshwater flow leads to hypersaline conditions, which, in turn, causes the local extinction of salinity-sensitive species, as in the case of Muthupet (Selvam, 2003). In Sri Lanka, the ecology of mangrove-associated lagoons has changed due to stream flow regulation by constructing dams and trans-basin diversions (Silva et al., 2013). Other changes in these processes lead to loss of fish nursery grounds and depletion of fishery resources, and habitat reduction for wildlife, including migratory birds. In the Maldives, open coast mangroves facilitate the deposition of calcareous sediments. (In contrast, where mangroves are physically isolated from the sea, the sediment is deposited from land sources). Since this process has been going on for a long time, the calcareous sediments in the Maldivian mangroves are very deep, measuring about 5.00 m in some areas (Shadiya et al., 2016). Mangroves in the Maldives play an important role in fishery management by providing habitats for various fish species. Juveniles of many commercially important species of snappers, jackfish, lethrinids, groupers, goatfish and milkfish are found in large numbers in mangroves that are well-connected to the sea. Juvenile sharptooth lemon sharks (Negaprion acutidens), a species classified as Endangered (IUCN, 2022), are observed in the bay at Farukolhu, which harbours a large area of mangroves (Dryden et al., 2020). Hence, any changes in physical processes, such as tidal exchange, will have negative impacts on mangrove-associated fishery resources and biodiversity.

Mangroves act as structural engineers possessing traits such as pneumatophores, salt excretion glands, vivipary, and propagule buoyancy that promote survival and recruitment in poorly aerated, saline, mobile, and tidally inundated substrata. They exhibit high efficiency in nitrogen use and nutrient resorption. Mangroves produce large amounts of detritus (e.g., leaves, twigs, and bark), which is either buried in waterlogged sediments, or consumed by crabs and gastropods, then decomposed further by meiofauna, fungi and bacteria to produce detritus, which becomes available as a protein-rich food source for other consumers in the mangrove and estuarine food web.

Mangrove ecosystems also serve as major blue carbon sinks, incorporating organic matter into sediments and living biomass. Estimation of above and below-ground and soil carbon stocks of five important mangrove forests in Sri Lanka (Rekawa, Puttalam-Kalpitiya, Pambala-Chilaw, Batticaloa and Negombo), which are situated in the three major climate zones (dry, intermediate and wet), ranged from 75.5 to 189.1 Mg C ha⁻¹, 7.9 to 14.3 Mg C ha⁻¹, and 643.6 to 1253.6 Mg C ha⁻¹ respectively. The study also showed that the soil comprised 83-90% of the total mangrove carbon stocks at all sites, highlighting the large potential for release into the atmosphere as carbon dioxide if these habitats are disturbed (Cooray *et al.*, 2021). In the mangroves of Kerala, which are in a wet zone, the mean total ecosystem carbon is 218.98 \pm 169.86 Mg C ha⁻¹, which is equivalent to 803.66 \pm 621.47 Mg CO₂ ha⁻¹. Further, 88% of the estimated ecosystem carbon stock was represented by vegetation biomass and 22% by the soil carbon stock (Sreelekshmi *et al.*, 2022).

3. Ecosystem Threats and vulnerabilities

Main threatening process and pathways to degradation

Mangrove deforestation arises from various factors, including changes in biophysical conditions due to over-harvesting, unsound management practices, aquaculture, urbanization and associated coastal development, reduction in freshwater flow, and pollution stemming from domestic, industrial, and

agricultural sources. The location of mangrove forests within intertidal areas also renders them vulnerable to sea-level rise as a result of climate change. Tropical storms can damage mangrove forests through direct defoliation and destruction of trees, as well as through the mass mortality of animal communities within the ecosystem. Four major threats may lead to the collapse of the mangrove ecosystem in South India, Sri Lanka, and Maldives: i) reduced freshwater flow and increased salinity; ii) changes in sedimentation dynamics; iii) conversions to other land uses; and iii) climate change especially storm surges, flood and sea-level rise.

A complex interaction of reduced freshwater flow and increased salinity affects the mangroves of the southernmost east coast of India located in the deltaic region of the Cauvery River (Selvam, 2020). The catchment area of this delta is situated in two monsoon regimes. The upper catchment area receives rainfall during summer (July to September), and the lower catchment area gets rain during winter (October to December). The Cauvery Basin is highly populated, and agriculture is the primary economic occupation. To improve water resources, 96 dams, 10 barrages, 16 weirs/anicuts, and nine lift irrigation projects have been constructed in this basin (MoWR, 2014). As a result, the quantity and duration of freshwater flowing into the mangroves during the summer and winter monsoons have reduced drastically. In addition, the mangrove wetland area is not well-flushed by tidal water due to the low tidal amplitude. Consequently, tidal water reaching the mangroves remains stagnant in depressions created by biophysical changes from past clear-felling management practices. The stagnant tidal water evaporates, leading to the development of hypersaline conditions. Due to reduced freshwater flow, the hypersaline conditions persist, leading to a) local extinction of less salt-tolerant mangroves; and b) gradual reduction in mangrove cover (Tissot, 1987; Kathiresan, 2000; Selvam, 2003).

Currently, mangrove cover in this and adjoining mangrove patches is restored by establishing artificial canals to increase tidal flushing. However, both the restored and remaining natural mangroves will survive only if they receive sufficient freshwater discharge. Another important factor that causes degradation is the high rate of sedimentation. Palk Bay, which supplies tidal water to the mangroves on India's southern east coast, is one of the major sediment sinks. As a result, large quantities of sediment are brought into the mangroves and deposited in the waterways, including lagoons and creeks, making them shallow. This causes faster water evaporation, which contributes to hyper salinity (NIOT, 2005).

Sedimentation of the waterways that connect mangroves and lagoons is a serious issue in Maldives and several estuaries and lagoons in Sri Lanka that support mangroves have decreased gradually in size. For example, due to sedimentation, the effective water area in Negombo Lagoon has diminished by 791 hectares over a period of two decades (NRESA, 1991). Conversion of mangroves to other land uses is another important reason for the degradation of mangroves in South India, Sri Lanka, and the Maldives. The primary cause of the loss of mangroves in the southern west coast of India is the conversion of mangrove areas for paddy cultivation and shrimp farming. Although India and Sri Lanka have strict legislation to protect mangroves from conversion to other land uses, mangroves that are located on lands that are privately owned, and on lands that are not owned by the Forest Department, face the problem of conversion to various land uses, as in the case of Kerala on the western south coast of India. In some areas, the mangroves are converted to develop large-scale infrastructure and urban projects, or for coconut plantations and shrimp culture (Veettil *et al.*, 2023).

Land-filling for house construction is taking place extensively in the mangrove-supporting lagoons in Sri Lanka, and this has been identified as one of the major threats to the lagoon environment and the associated mangroves (Silva *et al.*, 2013). An irrigation project has caused heavy siltation and reduction of salinity in Kalametiya Lagoon the lagoon, resulting in about 86% of the water surface area being taken over by *Sonneratia caseolaris* and *Typha angustifolia* as the dominant riparian vegetation. Water quality in the remaining water body has also deteriorated as evident by increased acidity, reduced dissolved oxygen and increased ammonium content. If the present trend continues, the remaining water surface could be lost in the near future (Madarasinghe *et al.*, 2020).

Hotel construction in Rekawa mangrove forest (Photo credit: K. A. Sunanda Kodikara)

Another factor that threatens the mangroves of South India and Sri Lanka are invasive species. In Southern India, *Prosopis juliflora*, an exotic species of shrub (Family Fabaceae) that can tolerate a wide range of environmental conditions, including high temperature, low freshwater availability and high salinity, is making entry into mangroves gradually, though currently they are present on a large scale in the periphery of mangroves. In Sri Lanka, *Acrostichum aureum and Acacia auriculiformis* have invaded many mangroves. *Acrostichum aureum* is considered a problematic species because it seems to suppress the spread and growth of mangroves. *A. auriculiformis* has become the dominant species in the back mangroves of many of the mangroves of Sri Lanka, occurring with true mangroves. In these areas, the highest sapling and seedling densities are recorded and a high contribution of *A. auriculiformis* to relative densities and relative dominance supports the competitive domination of the Acacia plants over mangroves (Kodikara *et al.*, 2022).

Coconut plant burning inside a mangrove forest (Photo credit: K. A. Sunanda Kodikara)

Sedimentation is a serious problem affecting most of the mangroves of Maldives (Photo credit: Water Solutions, Maldives)

Mass mortality of Avicennia marina in Muthupet, caused by a complex interaction of reduced freshwater flow, sedimentation and inadequate tidal flushing (Photo credit: Selvam Vaithilingam)

Impact of 2018 Gaja cyclone in 2018 on Muthupet mangroves: trees were broken or defoliated, and some were uprooted.(Photo credit: Selvam Vaithilingam)

Definition of the collapsed state of the ecosystem

Mangroves, acting as structural engineers, possess specialized traits that facilitate high nitrogen use efficiency and nutrient resorption, influencing critical processes and functions within their ecosystem. Ecosystem collapse is recognised when the tree cover of diagnostic true mangrove species dwindles to zero, indicating complete loss (100%).

Mangrove ecosystems exhibit remarkable dynamism, with species distributions adapting to local shifts in sediment distribution, tidal patterns, and variations in local inundation and salinity gradients. Disruptive processes can trigger shifts in this dynamism, potentially leading to ecosystem collapse. Ecosystem collapse may manifest through the following mechanisms: a) restricted recruitment and survival of diagnostic true

mangroves due to adverse climatic conditions (e.g., low temperatures); b) alterations in rainfall, river inputs, waves, and tidal currents that destabilize and erode soft sediments, hindering recruitment and growth; c) shifts in rainfall patterns and tidal flushing altering salinity stress and nutrient loadings, impacting overall survival.

Mangroves in this ecoregion will be affected severely by increased temperature and reduced rainfall due to climate change during the summer season. For example, it is predicted that rainfall during the summer on the southeast coast of India will be reduced by 10%, while average temperatures will increase by 2.1°C. This will increase the evaporation of soil water and increase soil and water salinity, adding to already existing hypersaline conditions. This may lead to a substantial loss in mangroves (ICEM, 2023). There will be an increased frequency of cyclones, which will also cause loss of mangroves. For example, the Gaja cyclone (November 2018) caused extensive damage to mangroves in Muthupet, reducing mangrove forest cover from 16 km² in 2017 to 13 km² in 2019 (FSI, 2019). Although mangrove forests can recoup naturally, repeated cyclones may lead to cumulative loss.

In the case of the Maldives, climate change-induced impacts vary across the archipelago due to geophysical settings and climatic controls. Cyclone hazards are highest in the north and very low in the south Maldives due to the greater proximity of northern latitudes to the cyclone belt. Hence, the possibility of storm surges associated with the cyclones is also highest in the north. Swell waves are more prominent in the southern and western islands of Maldives due to the proximity to the Southern Indian Ocean and the predominant southwesterly approach of the swell waves. However, nearly 80% of the Maldives' land mass is less than 1m above sea level, and thus, the Maldives and its mangroves are acutely vulnerable to sea-level rise (UNDP, 2019).

Threat Classification

IUCN Threat Classification (version 3.3, IUCN-CMP, 2022) relevant to mangroves of the South India, Sri Lanka, and Maldives province:

1. Residential & commercial development

- 1.1 Housing & urban areas
- 1.2 Commercial & industrial areas

2. Agriculture & aquaculture

- 2.3 Livestock farming & ranching
 - 2.3.2 Small-holder grazing, ranching or farming
- 2.4 Marine & freshwater aquaculture
 - 2.4.1 Subsistence/artisanal aquaculture

4. Transportation & service corridors

• 4.1 Roads & railroads

5. Biological resource use

- 5.3 Logging & wood harvesting
 - 5.3.1 Intentional use: subsistence/small scale (species being assessed is the target [harvest]
- 5.4 Fishing & harvesting aquatic resources
 - 5.4.1 Intentional use: subsistence/small scale (species being assessed is the

6. Human intrusions & disturbance

- 6.1 Recreational activities
- 6.2 War, civil unrest & military exercises
- 6.3 Work & other activities

7. Natural system modifications

- 7.2 Dams & water management/use
 - 7.2.1 Abstraction of surface water (domestic use)
 - 7.2.2 Abstraction of surface water (commercial use)
 - 7.2.3 Abstraction of surface water (agricultural use)
 - 7.2.5 Abstraction of ground water (domestic use)
 - 7.2.6 Abstraction of ground water (commercial use)
 - 7.2.7 Abstraction of ground water (agricultural use)
 - 7.2.9 Small dams
 - 7.2.10 Large dams
- 7.3 Other ecosystem modifications

8. Invasive & other problematic species, genes & diseases

- 8.1 Invasive non-native/alien species/diseases
 - 8.1.2 Named species
- 8.2 Problematic native species/diseases

9. Pollution

- 9.1 Domestic & urban waste water
 - 9.1.1 Sewage
 - 9.1.2 Run-off
- 9.3 Agricultural & forestry effluents
 - 9.3.1 Nutrient loads
 - 9.3.2 Soil erosion, sedimentation
 - 9.3.3 Herbicides & pesticides
- 9.4 Garbage & solid waste

11. Climate change & severe weather

- 11.1 Habitat shifting & alteration
- 11.4 Storms & flooding
- 11.5 Other impacts (sea-level rise)

4. Ecosystem Assessment

Criterion A: Reduction in Geographic Distribution

Subcriterion A1 measures the trend in ecosystem extent during the last 50-year time window. Unfortunately, there is currently no common regional dataset that provides information for the entire target area in 1970. However, country-level estimates of mangrove extent can be used to extrapolate the trend between 1970 and 2020.

To estimate mangrove area in 1970 for each country within the province, we compiled reliable published sources that contain information on mangrove area estimates close to 1970 (see appendix 3). These estimates were then used to interpolate the mangrove area in 1970 in each country. By summing up these estimates, we calculated the total mangrove area in the province. We only considered the percentage of each country's total mangrove area located within the province. The estimated values for 1970 should be considered only

indicative (see appendix 3 for further details of the methods and limitations).

To evaluate the mangrove area in 2020, we employed two methods. First, we compiled estimates from national statistics and published articles. Second, we calculated the province area using the Global Mangrove Watch (GMW v3.0) spatial dataset. The mangrove area in the province was corrected for both omission and commission errors, utilizing the equations in Bunting *et al.*, (2022).

The analysis of sub-criterion A1 (Annex 3), which examines the trend in ecosystem extent during the last 50-years (1970-2020), reveals an expansion in the mangrove province of "South India, Sri Lanka, and Maldives". Estimates derived from national statistics and literature indicate a ~58% increase, while those from the GMW suggest a 100% increase (see table below). Both southern India and Sri Lanka showed increased mangrove area compared to 1970. Consequently, the ecosystem is assessed as **Least Concern** (**LC**) under Subcriterion A1.

Mangroves of the		Area 2020 (Km²)	Area 1970 (Km²)	Net area Change (Km²)	% Net Area Change	Rate of change (%/year)
South India, Sri Lanka, and Maldives	High estimate	249.2**	124.8*	124.4	99.6	4.2
	Lower estimate	197.1*	124.8*	72.2	57.8	2.4

^{*} Details on the methods and references used to estimate the mangrove area in 1970 and 2020 are listed in appendix 3.

** Estimated mangrove area based on the Global Mangrove Watch Version 3 (GMW v3.0) dataset.

Subcriterion A2 measures the change in ecosystem extent in any 50-year period, including from the present to the future: To evaluate recent mangrove area changes we used the most recent version of the Global Mangrove Watch (GMW v3.0) spatial dataset, which includes a time series from 1996 to 2020. Based on the GMW dataset, "The South India, Sri Lanka, and Maldives" mangrove province shows a net area change of 26.8% between 1996 and 2020 (Bunting *et al.*, 2022). This value reflects the offset between areas gained (+ 0.1%/year) and lost (- 1.2%/year). The largest decrease in mangrove area in this time series occurred between 1996 and 2010 (Figure 2). This period coincides with the period of high mangrove deforestation in Asia during the 90s (Giri *et al.*, 2008), followed by significant natural disasters such as the 2004 Indian Ocean Tsunami (Sri Lanka section) and 2000's cyclones (Giri *et al.* 2008, 2015, Veettil, 2023).

Applying a linear regression to the area estimations between 1996 and 2020 we obtained a rate of change in the mangrove forest area of -1.1%/year (Figure 2). Assuming this trend continues in the future, it is predicted that the extent of mangroves in the South India, Sri Lanka, and Maldives province will change by -49.0% from 1996 to 2046; by -69.2% from 1996 to 2070; but by -58.0% from 2020 to 2070.

However, the mangrove area based on national statistics for a similar period shows a different trend (Annex 3 Table b). We find significant differences in the baseline area (1996), which would result in a completely different outcome compared to the 2020 area. According to FSI (2021), the South India portion in 1997 was 21 km² compared to 80.5 km² for 1996 based on GMW. Based on FSI (2021) and national data, the province's area rate of change per year is (-0.20%/year), with net area change of -4.8% and a change of -9.9% over 50 years.

The discrepancies between the predicted changes highlight the uncertainty in assessing the vulnerability of

the South India, Sri Lanka, and Maldives mangrove ecosystem. Considering the potential impact shown in both datasets the ecosystem is assessed as **Vulnerable (VU) with a plausible range between Least Concern to Endangered (LC - EN)**, under Subcriterion A2.

Subcriterion A3 measures changes in mangrove area since 1750. Unfortunately, there are no reliable data on the mangrove extent for the entire province during this period, and therefore the Red Sea and Gulf of Aden mangrove ecosystem is classified as **Data Deficient (DD)** for this subcriterion.

Overall, the ecosystem is assessed as Vulnerable (VU) under criterion A.

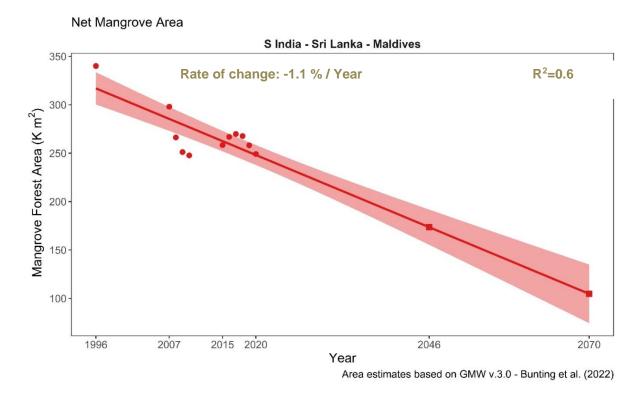
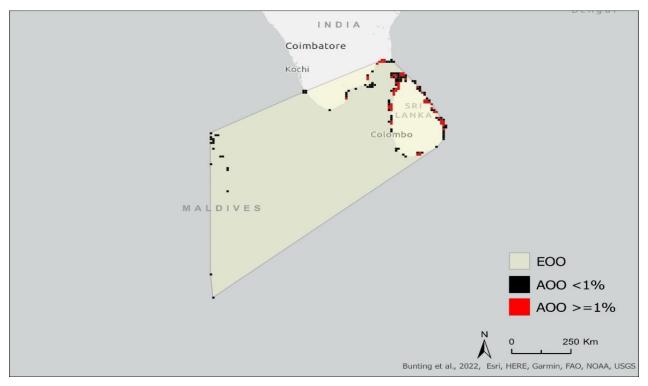


Figure 2. Projected extent of the South India, Sri Lanka, and Maldives mangrove ecosystem to 2070. Circles represent the province mangrove area between 1996 and 2020 based on the GMW v3.0 dataset and equations in Bunting $et\ al.$, (2022). The solid line and shaded area are the linear regression and 95% confidence intervals. Squares show the South India, Sri Lanka, and Maldives province predicted mangrove area for 2046 and 2070. It is important to note that an exponential model (proportional rate of decline) did not give a better fit to the data ($R^2=0.6$). The estimated mangrove area in the province (and in the corresponding countries) was corrected for both omission and commission errors, utilizing the equations in Bunting et al. (2022).

Criterion B: Restricted Geographic Distribution


Criterion B measures the risk of ecosystem collapse associated with restricted geographical distribution, based on standard metrics (Extent of Occurrence EOO, Area of Occupancy AOO, and Threat-defined locations). These parameters were calculated based on the 2020 South India, Sri Lanka, and Maldives province mangrove extent (GMW v.3).

Province	Extent of Occurrence EOO (Km²)	Area of Occupancy (AOO) >1%	Criterion B
The South India, Sri Lanka, and Maldives	641337.6	58	LC

For 2020, AOO and EOO were measured as 58 grid cells 10 x 10 km and 641337.6 km², respectively (Figure 3). From total of 166 cells, excluding from the AOO those grid cells that contain patches of mangrove forest that account for less than 1% of the grid cell area, (< 1 Km²), the AOO is measured as 58, 10 x 10 km grid cells (Figure 3, red grids). Therefore, Red Sea and Gulf of Aden mangroves assessed as Least Concern (LC) under subcriteria B1 and B2.

Considering the very high number of threat-defined-locations, there is no evidence of plausible catastrophic threats leading to potential disappearance of mangroves across their extent. As a result, the South India, Sri Lanka, and Maldives mangrove ecosystem is assessed as **Least Concern (LC)** under criterion B3.

Overall, the ecosystem is assessed as **Least Concern** (**LC**) under criterion B.

Criterion C: Environmental Degradation

Criterion C measures the environmental degradation of abiotic variables necessary to support the ecosystem. Subcriterion C1 measures environmental degradation over the past 50 years: There are no reliable data to evaluate this subcriterion for the entire province, and therefore the South India, Sri Lanka, and Maldives mangrove ecosystem is classified as **Data Deficient (DD)** for subcriterion C1.

Subcriterion C2 measures environmental degradation in the future, or over any 50-year period, including from the present. In this context, the impact of future sea-level rise (SLR) on mangrove ecosystems was assessed by adopting the methodology presented by Schuerch *et al.* (2018). The published model was designed to calculate both absolute and relative change in the extent of wetland ecosystems under various regional SLR scenarios (i.e. medium: RCP 4.5 and high: RCP 8.5), with consideration for sediment accretion. Therefore, the Schuerch *et al.* (2018) model was applied to the South India, Sri Lanka, and

Maldives mangrove ecosystem boundary, with spatial extent based on Giri *et al.* (2011) and assuming mangrove landward migration was not possible.

According to the results, under an extreme sea-level rise scenario of a 1.1 m rise by 2100, the projected submerged area is ~ -82.4% by 2060, which is above the 80% risk threshold. Therefore, considering that no mangrove recruitment can occur in a submerged system (100% relative severity), but that -82.4% of the ecosystem extent will be affected by SLR, the South India, Sri Lanka, and Maldives mangrove ecosystem is assessed as **Critically Endangered (CR)** for subcriterion C2.

Subcriterion C3 measures change in abiotic variables since 1750. There is a lack of reliable historic data on environmental degradation covering the entire province, and therefore the South India, Sri Lanka, and Maldives ecoregion is classified as **Data Deficient (DD)** for this subcriterion.

Overall, the ecosystem is assessed as Critically Endangered (CR) under criterion C.

Criterion D: Disruption of biotic processes or interactions

The global mangrove degradation map developed by Worthington and Spalding (2018) was used to assess the level of biotic degradation in the South India, Sri Lanka, and Maldives province. This map is based on degradation metrics calculated from vegetation indices (NDVI, EVI, SAVI, NDMI) using Landsat time series (≈2000 and 2017). These indices represent vegetation greenness and moisture condition.

Mangrove degradation was calculated at a pixel scale (30 m resolution), on areas intersecting with the 2017 mangrove extent map (GMW v2). Mangrove pixels were classified as degraded if two conditions were met: 1) at least 10 out of 12 degradation indices showed a decrease of more than 40% compared to the previous period; and 2) all twelve indices did not recover to within 20% of their pre-2000 value (detailed methods and data are available at: maps.oceanwealth.org/mangrove-restoration/). The decay in vegetation indices has been used to identify mangrove degradation and abrupt changes, including mangrove die-back events, clear-cutting, fire damage, and logging; as well as to track mangrove regeneration (Lovelock *et al.*, 2017; Santana, 2018; Murray *et al.*, 2020; Aljahdali *et al.*, 2021; Lee *et al.*, 2021). However, it is important to consider that changes observed in the vegetation indices can also be influenced by data artifacts (Akbar *et al.*, 2020). Therefore, a relative severity level of more than 50%, but less than 80%, was assumed.

The results from this analysis show that over a period of 17 years (~2000 to 2017), 3.25% of the South India, Sri Lanka, and Maldives mangrove area is classified as degraded, resulting in an average annual rate of degradation of 0.19%. Assuming this trend remains constant, +9.5% of the South India, Sri Lanka, and Maldives mangrove area will be classified as degraded over a 50-year period. Since less than 30% of the ecosystem will meet the category thresholds for criterion D, the South India, Sri Lanka, and Maldives mangrove province is assessed as **Least Concern** (**LC**) under subcriterion D2b.

No data were found to assess the disruption of biotic processes and degradation over the past 50 years (subcriterion D1) or since 1750 (subcriterion D3). Thus, both subcriteria are classified as **Data Deficient** (**DD**).

Overall, the South India, Sri Lanka, and Maldives mangrove ecosystem remains Least Concern (LC) under criterion D.

Criterion E: Quantitative Risk

No model was used to quantitatively assess the risk of ecosystem collapse for this ecosystem; hence criterion E was **Not Evaluated (NE)**.

5. Summary of the Assessment

CRITERION			
A. Reduction in Geographic	A1 Past 50 years	A2 Future or any 50y period	A3 Historical (1750)
Distribution	LC	VU	DD
	B1	B2	В3
B. Restricted Geo. Distribution	Extent of Occurrence	Area of Occupancy	# Threat-defined Locations < 5?
	LC	LC	LC
6. 5	C1	C2	С3
C. Environmental Degradation	Past 50 years (1970)	Future or any 50y period	Historical (1750)
	DD	CR	DD
D. Diamontian of biotic	D1	D2	D3
D. Disruption of biotic	Past 50 years (1970)	Future or Any 50y period	Historical (1750)
processes	DD	LC	DD
E. Quantitative Risk analysis		NE	
OVERALL RISK CATEGORY		CR	

CR= Critically Endangered; VU= Vulnerable; LC = Least Concern; DD = Data Deficient; NE = Not Evaluated;

Overall, the status of the South India, Sri Lanka, and Maldives mangrove ecosystem is assessed as Critically Endangered (CR).

6. References

- Akbar, M.R., Arisanto, P.A.A., Sukirno, B.A., Merdeka, P.H., Priadhi, M.M. & Zallesa, S. (2020) 'Mangrove vegetation health index analysis by implementing NDVI (normalized difference vegetation index) classification method on sentinel-2 image data case study: Segara Anakan, Kabupaten Cilacap', *IOP Conference Series: Earth and Environmental Science*, 584(1), 012069. https://doi.org/10.1088/1755-1315/584/1/012069.
- Aljahdali, M. O., Munawar, S., & Khan, W. R. (2021). Monitoring Mangrove Forest Degradation and Regeneration: Landsat Time Series Analysis of Moisture and Vegetation Indices at Rabigh Lagoon, Red Sea. Forests, 12(1), 52. https://doi.org/10.3390/f12010052
- Amarasinghe M.D, and Perera K.A.R.S. (2017). Ecological biogeography of mangroves in Sri Lanka. Ceylon Journal of Science 46 (119-125).
- Azariah, J., Selvam, V., & Gunasekaran, S. (1992). Impact of the past management practices on the present status of the Muthupet mangrove ecosystem. *Hydrobiologia*, (247 (253-259). https://doi.org/10.1007/BF00008226
- Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., Worthington, T. A., Spalding, M.D., Murray, N. J., & Rebelo, L.-M. (2022). Global Mangrove Extent Change 1996–2020:

- Global Mangrove Watch Version 3.0. *Remote Sensing*, 14(15), 3657. https://doi.org/10.3390/rs14153657
- Cooray, I., Kodikara, K., Loku P., Jayatissa, G., Daniel, K., Madarasinghe, S., Dahdouh-Guebas, Farid & Huxham, M. (2021). Climate and intertidal zonation drive variability in the carbon stocks of Sri Lankan mangrove forests. *Geoderma*. 389 (1-13).
- Dryden, C., Basheer, A., Grimsditch, G., Musthaq, A., Newman, S., Shan, A., & Shidha, M. (2020). A rapid assessment of natural environments in the Maldives. Gland, Switzerland: IUCN and Government of Maldives. 53pp. https://www.environment.gov.mv/v2/wp-content/files/publications/20201025-pubrapid-assessment-natural-environment.pdf
- FSI: Forest Survey of India, (2019). *India State of Forest Report.* 2019. Forest Survey of India, Ministry of Environment and Forests, Dehradun.
- FSI: Forest Survey of India, (2021). *India State of Forest Report. 2021*. Forest Survey of India, Ministry of Environment and Forests, Dehradun, India.
- Giri, C., Zhu, Z., Tieszen, L. L., Singh, A., Gillette, S., & Kelmelis, J. A. (2008). Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia†. *Journal of Biogeography*, 35(3), 519–528. https://doi.org/10.1111/j.1365-2699.2007.01806.x
- Giri, C. Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A., Loveland, T., Masek, J. and Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. *Glob. Ecol. Biogeogr.* 20(54–159).
- Giri, C., Long, J., Abbas, S., Murali, R.M., Qamer, F.M., Pengra, B. and Tham, D. (2015). Distribution of dynamics of mangrove forests of South Asia. Journal of Environmental Management. 148:101-111.
- GIZ: German Technical Cooperation (2023). *Integrated Management Plan for Point Calmere Ramsar Site* (*Draft*). Indo-German Biodiversity Programme, GIZ, New Delhi.162p
- Gunawardena A.R, Nissanka S.P., Dayawansa, N.D.K., & Fernando. T.T. (2016). Above Ground Biomass Estimation of Mangroves Located in Negombo-Muthurajawela Wetland in Sri Lanka using ALOS PALSAR Images. *Tropical Agricultural Research* 27(137–146).
- ICEM (2023). Climate Risk Assessment of Point Calimere Wildlife and Bird Sanctuary, Tamil Nadu. Prepared for GIZ by the International Centre for Environmental Management, Hanoi. 109 pp.
- IUCN (2012). *IUCN Habitats classification scheme* (3.1). [Data set]. https://www.iucnredlist.org/resources/habitat-classification-scheme.
- IUCN (2022). *The IUCN Red List of Threatened Species*. (Version 2022-2) [Data set]. https://www.iucnredlist.org
- IUCN-CMP (2022). *Unified Classification of Direct Threats* (3.3) [Data set]. https://www.iucnredlist.org/resources/threat-classification-scheme.
- Jayathissa, L.P. (2012). Present Status of Mangroves in Sri Lanka. In: The National Red List 2012 of Sri Lanka; Conservation Status of the Fauna and Flora. Weerakoon, D.K. & S. Wijesundara Eds., Ministry of Environment, Colombo, Sri Lanka. 197-199 pp.
- Kathiresan, K. (2000). A review of studies on Pichavaram mangrove, southeast India. *Hydrobiologia*, 430 (185-205). https://doi.org/10.1023/A:1004085417093
- Keith, D. A., Ferrer-Paris, J. R., Nicholson, E., & Kingsford, R. T. (Eds.) (2020). *IUCN Global* Ecosystem *Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups*. IUCN, International Union for Conservation of Nature. https://doi.org/10.2305/IUCN.CH.2020.13.en

- Kodikara, K., Ransaraa, G., Madarasinghe, S. K.., Dissanayakea, N., Abeysinghe, N., Prasangika, K.D., Dahdouh-Guebas, Farid & Jayatissa, L. (2022). A growing threat to tidal forests: incursion of mangrove ecoystems by invasive alien species Acacia auriculiformis A.Cunn. Ex Benth. Russian Journal of Biological Invasions. 15 (102-105),10.35885/1996-1499-15-4-102-105
- Lee, C. K. F., Duncan, C., Nicholson, E., Fatoyinbo, T. E., Lagomasino, D., Thomas, N., Worthington, T. A., & Murray, N. J. (2021). Mapping the Extent of Mangrove Ecosystem Degradation by Integrating an Ecological Conceptual Model with Satellite Data. Remote Sensing, 13(11), 2047. https://doi.org/10.3390/rs13112047
- Lovelock, C. E., Feller, I. C., Reef, R., Hickey, S., & Ball, M. C. (2017). Mangrove dieback during fluctuating sea levels. *Scientific Reports*, 7(1), 1680. https://doi.org/10.1038/s41598-017-01927-6
- Madarasinghe, S. K., Yapa, K. K., Satyanarayana, B., Udayakantha, P.M.P., Kodikara, S. and Jayatissa, L.P., (2020). Inland irrigation project causes disappearance of coastal lagoon: the trajectory of Kalametiya lagoon, Sri Lanka from 1956 to 2016. *Coastal Management*, 48(3), pp.188-209.
- MOWR: Ministry of Water Resources Government of India (2014) *Cauvery Basin Report 2*. Central Water Commission, MoWR, Govt. of India. New Delhi. 141 p https://indiawris.gov.in/wris/#/Basin
- Murray, N. J., Keith, D. A., Tizard, R., Duncan, A., Htut, W. T., Oo, A. H., Ya, K. Z., and Grantham, M. (2020). *Threatened ecosystems of Myanmar: An IUCN Red List of Ecosystems Assessment. Version 1*. Wildlife Conservation Society. https://doi.org/10.19121/2019.Report.37457
- NRESA: Natural Resources, Energy and Science Authority of Sri Lanka (1991). *Natural Resources of Sri Lanka: Conditions and Trends*. Government of Sri Lanka, 267 p
- NIOT: National Institute of Ocean Technology (2005). Ecosystem modelling for Muthupet lagoon along Vedaranyam coast (Tamil Nadu). Integrated Coastal and Marine Area Management (ICMAM) Project Directorate, Ministry of Earth Sciences, Government of India. 43 p
- Santana, N. (2018). Fire Recurrence and Normalized Difference Vegetation Index (NDVI) Dynamics in Brazilian Savanna. *Fire*, 2(1), 1. https://doi.org/10.3390/fire2010001
- Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D., McOwen, C. J., Pickering, M. D., Reef, R., Vafeidis, A. T., Hinkel, J., Nicholls, R. J., & Brown, S. (2018). Future response of global coastal wetlands to sea-level rise. *Nature*, 561(7722), 231–234. https://doi.org/10.1038/s41586-018-0476-5
- Selvam, V., (2003). Environmental classification of mangrove wetlands of India. *Current Science*. 84 (757–765). https://www.currentscience.ac.in/Volumes/84/06/0757.pdf
- Selvam, V. (2020). An assessment of mangrove management during the colonial and post-colonial periods. Current Science, 120 (766-771). www.currentscience.ac.in/Volumes/120/05/0766.pdf
- Silva, E.I.L., Katupotha, J., Amarasinghe, O., Manthrithilake, H. and Ariyaratna, R. (2013). *Lagoons of Sri* Lanka: *from the origins to the present*. Colombo, Sri Lanka: International Water Management Institute (IWMI). 122p. DOI: 10.5337/2013.215.
- Shadiya, F., Riyaz Jauharee, A., & Aminath Shazly (2016). *Environmental valuation of H. huraa* mangrove: A case study of ecological, social and economic perspectives. The Maldives National University and Mangroves for the Future, Technical Report. 14 p.
- Sivakumar, K., Rilwan, A., Priyanka, K., Salah, M., & Kathiresan K. (2018). Mangroves of the atolls of the Maldives, rich among the atoll groups of the Indian Ocean. ISME/GLOMIS Electronic Journal., 16(3): 11-18.

- Sreelekshmi, S., Harikrishnan, M., Nandan, S.B. et al (2022). Ecosystem Carbon Stock and Stable Isotopic Signatures of Soil Organic Carbon Sources Across the Mangrove Ecosystems of Kerala, Southern India. *Wetlands* **42**, 29. https://doi.org/10.1007/s13157-022-01540-y
- Thom, B. G., (1984). Coastal landforms and geomorphic processes. In *Mangrove Ecosystem: Research Methods* (eds. Snedaker, S. C. and Snedaker, J. G.), UNESCO, Paris, 1984, pp. 3–17. https://unesdoc.unesco.org/ark:/48223/pf0000063028
- Tissot, C., (1987). Recent evolution of mangrove vegetation in the Cauvery Delta: A palynological study. *Journal of Marine Biological Association of India*, 29 (16-22). http://mbai.org.in/uploads1/manuscripts/Article%203%20(16-22)1125882439.pdf
- UNDP (2019). Independent Country Programme Evaluation Maldives. UNDP Independent Evaluation Office, New York. 32 pp.
- Veettil, B.K., Wickramasinghe,D and Amarakoon,V. (2023). Mangrove forests in Sri Lanka: An updated review on distribution, diversity, current state of research and future perspectives. Regional Studies in Marine Science 62. https://doi.org/10.1016/j.rsma.2023.102932
- Worthington, T.A., & Spalding, M. D. (2018). *Mangrove Restoration Potential: A global map highlighting a critical opportunity*. Apollo University of Cambridge Repository. https://doi.org/10.17863/CAM.39153
- Worthington, T. A., Zu Ermgassen, P. S. E., Friess, D. A., Krauss, K. W., Lovelock, C. E., Thorley, J., Tingey, R., Woodroffe, C. D., Bunting, P., Cormier, N., Lagomasino, D., Lucas, R., Murray, N. J., Sutherland, W. J., & Spalding, M.D. (2020). A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. *Scientific Reports*, 10(1), 14652. https://doi.org/10.1038/s41598-020-71194-5

Authors:

Selvam, V., Ramasubramanian, R., Kathiresan, K., Manoj Prasanna, M.G., Kodikara, K.A.S., Amarasinghe, M.D. & Suárez, E. L.,

Acknowledgments

We would also like to thank the IUCN SSC Mangrove Specialist Group and the Global Mangrove Alliance Science Working group, for their support in the delineation of the level 4 mangrove units that were the basis for this analysis. Special thanks to José Rafael Ferrer-Paris for his contribution to the production of the general ecosystem description template for the RLE mangrove assessments. We also wish to acknowledge Thomas Worthington for kindly providing the spatial data on mangrove degradation.

Peer revision:

Donald Macintosh Marcos Valderrabano Somaya Ghoraba

Web portal:

http://iucnrle.org/

Disclaimer:

The designation of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The views expressed in this publication do not necessarily reflect those of IUCN or other participating organisations.

7. Appendices

1. List of Key Mangrove Species

List of plant species considered true mangroves according to Red List of Threatened Species (RLTS) spatial data (IUCN, 2022). We included species whose range maps intersected with the boundary of the marine provinces/ecoregions described in the distribution section.

Class	Order	Family	Scientific name	RLTS category
Polypodiopsida	Polypodiales	Pteridaceae	Acrostichum aureum	LC
Magnoliopsida	Ericales	Primulaceae	Aegiceras corniculatum	LC
Magnoliopsida	Lamiales	Acanthaceae	Avicennia marina	LC
Magnoliopsida	Lamiales	Acanthaceae	Avicennia officinalis	LC
Magnoliopsida	Malpighiales	Rhizophoraceae	Bruguiera cylindrica	LC
Magnoliopsida	Malpighiales	Rhizophoraceae	Bruguiera gymnorhiza	LC
Magnoliopsida	Malpighiales	Rhizophoraceae	Bruguiera parviflora	LC
Magnoliopsida	Malpighiales	Rhizophoraceae	Ceriops decandra	NT
Magnoliopsida	Malpighiales	Rhizophoraceae	Ceriops tagal	LC
Magnoliopsida	Malpighiales	Euphorbiaceae	Excoecaria agallocha	LC
Magnoliopsida	Malpighiales	Rhizophoraceae	Kandelia candel	LC
Magnoliopsida	Myrtales	Combretaceae	Lumnitzera littorea	LC
Magnoliopsida	Myrtales	Combretaceae	Lumnitzera racemosa	LC
Liliopsida LC	Arecales	Arecaceae	Nypa fruticans	LC
Magnoliopsida	Malpighiales	Rhizophoraceae	Rhizophora apiculata	LC
Magnoliopsida	Malpighiales	Rhizophoraceae	Rhizophora mucronata	LC
Magnoliopsida	Myrtales	Lythraceae	Sonneratia alba	LC
Magnoliopsida	Myrtales	Lythraceae	Sonneratia apetala	LC
Magnoliopsida	Myrtales	Lythraceae	Sonneratia caseolaris	LC
Magnoliopsida	Sapindales	Meliaceae	Xylocarpus granatum	LC
Magnoliopsida	Gentianales	Rubiaceae	Scyphiphora hydrophylacea	LC

2. List of Associated Species

List of taxa that are associated with mangrove habitats in the Red List of Threatened Species (RLTS) database (IUCN, 2022). We included only species with entries for Habitat 1.7: "Forest - Subtropical/Tropical Mangrove Vegetation Above High Tide Level" or Habitat 12.7 for "Marine Intertidal - Mangrove Submerged Roots", and with suitability recorded as "Suitable", with "Major Importance" recorded as "Yes", and any value of seasonality except "Passage". The common names are those shown in the RLTS, except common names in brackets, which are from other sources.

Class	Order	Family	Scientific name	RLTS category	Common name
Actinopterygii	Gobiiformes	Gobiidae	Oligolepis acutipennis	LC	Pointed-fin goby
Actinopterygii	Gobiiformes	Gobiidae	Redigobius balteatus	LC	Girdled goby
Actinopterygii	Perciformes	Sparidae	Acanthopagrus berda	LC	Picnic seabream
Actinopterygii	Gobiiformes	Gobiidae	Acentrogobius audax	LC	(Mangrove goby)
Actinopterygii	Albuliformes	Albulidae	Albula glossodonta	VU	Shortjaw bonefish
Actinopterygii	Perciformes	Ambassidae	Ambassis buruensis	DD	Buru glassfish
Actinopterygii	Perciformes	Ambassidae	Ambassis interrupta	LC	Long-spined

Class	Order	Family	Scientific name	RLTS category	Common name
				cutegory	glassfish
Actinopterygii	Perciformes	Ambassidae	Ambassis nalua	LC	Scalloped perchlet
Actinopterygii	Perciformes	Ambassidae	Ambassis urotaenia	LC	Bleeker's glass perchlet Bearded
Actinopterygii	Tetraodontiformes	Monacanthidae	Anacanthus barbatus	LC	leatherjacket White-spotted
Actinopterygii	Tetraodontiformes	Tetraodontidae	Arothron hispidus	LC	puffer Immaculate
Actinopterygii	Tetraodontiformes	Tetraodontidae	Arothron immaculatus	LC	puffer Reticulated
Actinopterygii	Tetraodontiformes	Tetraodontidae	Arothron reticularis	LC	pufferfish
Actinopterygii	Tetraodontiformes	Tetraodontidae	Arothron stellatus Asterropteryx	LC	Stellate puffer Star-finned
Actinopterygii	Gobiiformes	Gobiidae	semipunctata	LC	goby Hardyhead
Actinopterygii	Atheriniformes	Atherinidae	Atherinomorus lacunosus	LC	silverside
Actinopterygii	Perciformes	Carangidae	Atule mate	LC	Yellowtail scad Four-eyed
Actinopterygii	Gobiiformes	Eleotridae	Bostrychus sinensis	LC	sleeper
Actinopterygii	Gobiiformes	Eleotridae	Butis butis	LC	Crimson-tipped gudgeon Striped crazy
Actinopterygii	Gobiiformes	Eleotridae	Butis gymnopomus	LC	fish
Actinopterygii	Gobiiformes	Eleotridae	Butis koilomatodon	LC	Marblecheek sleeper Scaleless worm
Actinopterygii	Gobiiformes	Gobiidae	Caragobius urolepis	LC	goby
Actinopterygii	Tetraodontiformes	Tetraodontidae	Chelonodontops patoca	LC	Milkspotted puffer
Actinopterygii	Clupeiformes	Engraulidae	Coilia neglecta	LC	Neglected grenadier anchovy
		El ('I		IC	Brown spinecheek
Actinopterygii Actinopterygii	Gobiiformes Elopiformes	Eleotridae Elopidae	Eleotris fusca Elops machnata	LC LC	gudgeon Na
Actinopterygii	Perciformes	Epinephelidae	Etops machada Epinephelus coeruleopunctatus	LC	Whitespotted grouper
Actinopterygii	Perciformes	Epinephelidae	Epinephelus coioides	LC	Orange-spotted grouper
Actinopterygii	Perciformes	Epinephelidae Epinephelidae	Epinephelus malabaricus	LC	Malabar grouper
Actinopterygii	Perciformes	Epinephelidae	Epinephelus tauvina	DD	Greasy grouper
Actinopterygii	Perciformes	Leiognathidae	Eubleekeria splendens	LC	Splendid ponyfish
Actinopterygii	Gobiiformes	Gobiidae	Exyrias puntang	LC	Puntang goby
Actinopterygii	Perciformes	Leiognathidae	Gazza minuta	LC	Toothed ponyfish
Actinopterygii	Perciformes	Gerreidae	Gerres erythrourus	LC	Deep-bodied mojarra
Actinopterygii	Perciformes	Gerreidae	Gerres filamentosus	LC	Whipfin mojarra
Actinopterygii	Syngnathiformes	Syngnathidae	Hippichthys cyanospilos	LC	Bluespeckled pipefish Reticulated
Actinopterygii	Syngnathiformes	Syngnathidae	Hippichthys heptagonus	LC	freshwater pipefish
Actinopterygii	Syngnathiformes	Syngnathidae	Hippichthys penicillus	LC	Beady pipefish
Actinopterygii	Syngnathiformes	Syngnathidae	Hippichthys spicifer	LC	Bellybarred pipefish
Actinopterygii	Gobiiformes	Gobiidae	Istigobius ornatus	LC	Ornate goby
Actinopterygii	Perciformes	Sciaenidae	Johnius belangerii	LC	Belanger's croaker

Class	Order	Family	Scientific name	RLTS	Common name
				category	Hammer
Actinopterygii	Perciformes	Sciaenidae	Johnius borneensis	LC	croaker
Actinopterygii	Perciformes	Sciaenidae	Johnius carouna	LC	Caroun croaker
Actinopterygii	Tetraodontiformes	Tetraodontidae	Lagocephalus lunaris	LC	Lunartail puffer
Actinopterygii	Perciformes	Leiognathidae	Leiognathus equulus	LC	Common ponyfish
Actinopterygii	Perciformes	Lethrinidae	Lethrinus harak	LC	Thumbprint emperor
Actinopterygn	Teremornies	Letinindae	Letititus narak	LC	Spangled
Actinopterygii	Perciformes	Lethrinidae	Lethrinus nebulosus	LC	emperor
Actinopterygii	Perciformes	Lethrinidae	Lethrinus ornatus	LC	Ornate emperor
Actinopterygii	Perciformes	Lethrinidae	Lethrinus semicinctus	LC	Black-spot emperor
Actinopterygii	Perciformes	Lutjanidae	Lutjanus argentimaculatus	LC	Mangrove red snapper
Actinopterygn	Teremornies	Lutjamuac	argenimacuaius	LC	Blackspot
Actinopterygii	Perciformes	Lutjanidae	Lutjanus ehrenbergii	LC	snapper
Actinopterygii	Perciformes	Lutjanidae	Lutjanus fulviflamma	LC	Dory snapper
Actinopterygii	Perciformes	Lutjanidae	Lutjanus fulvus	LC	Blacktail snapper
Actinopterygii	Perciformes	Lutjanidae	Lutjanus johnii	LC	John's snapper
Actinopterygn	reichornies	Lutjamuae	Luijanus jonnu	LC	Red emperor
Actinopterygii	Perciformes	Lutjanidae	Lutjanus sebae	LC	snapper
	E1 'C	N. 1 . 1	36 1	DD	Indo-pacific
Actinopterygii	Elopiformes	Megalopidae	Megalops cyprinoides	DD	tarpon
Actinopterygii	Perciformes	Monodactylidae	Monodactylus argenteus	LC	Silver moony Dusky
Actinopterygii	Gobiiformes	Gobiidae	Mugilogobius fuscus	LC	mangrove goby
					Merton's
Actinopterygii	Gobiiformes	Gobiidae	Mugilogobius mertoni	LC	mangrove goby Queen of siam
Actinopterygii	Gobiiformes	Gobiidae	Mugilogobius rambaiae	LC	goby
					(Long whisker
Actinopterygii	Siluriformes	Bagridae	Mystus gulio	LC	cat fish)
Actinopterygii	Clupeiformes	Clupeidae	Nematalosa nasus	LC	Bloch's gizzard shad
1 1			Neopomacentrus		Freshwater
Actinopterygii	Perciformes	Pomacentridae	taeniurus	DD	damsel
Actinopterygii	Perciformes	Sciaenidae	Nibea maculata	LC	Blotched croaker
recomopterygn		Sciucinauc	Novaculichthys	EC	Green-banner
Actinopterygii	Perciformes	Labridae	macrolepidotus	LC	wrasse
Actinopterygii	Perciformes	Blenniidae	Omobranchus ferox	LC	Gossamer blenny
Actinopterygn	Teremornies	Dicinindae	Omobranchus Jerox	LC	biciniy
Actinopterygii	Perciformes	Blenniidae	hikkaduwensis	VU	Na
Actinopterygii	Perciformes	Blenniidae	Omobranchus smithi	VU	Na
Actinopterygii	Perciformes	Apogonidae	Ostorhinchus lateralis	LC	Humpback cardinal
A - 4* 4	D .c	g : .;	0. 1.1	I C	Lesser tiger
Actinopterygii	Perciformes	Sciaenidae	Otolithes cuvieri	LC	toothed croaker Hooghly
Actinopterygii	Perciformes	Sciaenidae	Panna heterolepis	LC	croaker
	G 1.10	G 11	Parachaeturichthys	1.6	
Actinopterygii	Gobiiformes	Gobiidae	polynema	LC	Lancet-tail goby
Actinopterygii	Clupeiformes	Pristigasteridae	Pellona ditchela Periophthalmus	LC	Indian pellona Barred
Actinopterygii	Gobiiformes	Gobiidae	argentilineatus	LC	mudskipper
					Kalolo
Actinopterygii	Gobiiformes	Gobiidae	Periophthalmus kalolo	LC	mudskipper
Actinopterygii	Mugiliformes	Mugilidae	Planiliza subviridis	LC	Greenback mullet
					Orbiculate
Actinopterygii	Perciformes	Ephippidae	Platax orbicularis	LC	batfish

Class	Order	Family	Scientific name	RLTS category	Common name
Actinopterygii	Perciformes	Haemulidae	Plectorhinchus gibbosus	LC	Brown sweetlips
Actinopterygii	Perciformes	Haemulidae	Plectorhinchus pictus	LC	Trout sweetlips
Actinopterygii	Siluriformes	Ariidae	Plicofollis dussumieri	LC	Blacktip sea catfish
Actinopterygii	Perciformes	Polynemidae	Polydactylus microstomus	LC	Small-mouthed threadfin
Actinopterygii	Gobiiformes	Gobiidae	Psammogobius biocellatus	LC	Sleepy goby
Actinopterygii	Gobiiformes	Gobiidae	Pseudogobius melanosticta	LC	Black-spotted goby
Actinopterygii	Pleuronectiformes	Paralichthyidae	Pseudorhombus arsius	LC	Largetooth flounder
Actinopterygii	Clupeiformes	Clupeidae	Sardinella albella	LC	White sardinella
Acthopterygn	Ciupenomies	Ciupeidae	заганена инена	LC	Clouded
Actinopterygii	Aulopiformes	Synodontidae	Saurida nebulosa	LC	lizardfish
Actinopterygii	Perciformes	Scatophagidae	Scatophagus argus	LC	Spotted scat Vermiculated
Actinopterygii	Perciformes	Siganidae	Siganus vermiculatus	LC	spinefoot
Actinopterygii	Clupeiformes	Engraulidae	Stolephorus andhraensis	LC	Andhra anchovy
Actinopterygii	Aulopiformes	Synodontidae	Synodus sageneus	LC	Speartoothed grinner
Actinopterygii	Gobiiformes	Gobiidae	Taenioides cirratus	DD	Whiskered eel goby
Actinopterygii	Tetraodontiformes	Tetraodontidae	Takifugu oblongus	LC	Lattice blaasop
	GI :C				Baelama
Actinopterygii Actinopterygii	Clupeiformes Clupeiformes	Engraulidae Engraulidae	Thryssa baelama Thryssa mystax	LC LC	anchovy Moustached
	-	J			thryssa
Actinopterygii	Perciformes	Toxotidae	Toxotes jaculatrix	LC	Banded archerfish
Actinopterygii	Gobiiformes	Gobiidae	Trypauchen vagina	LC	Burrowing goby
Actinopterygii	Anguilliformes Perciformes	Muraenidae	Uropterygius concolor	LC LC	Brown moray eel Mangrove
Actinopterygii	Perchormes	Apogonidae	Yarica hyalosoma Duttaphrynus	LC	cardinalfish Black-
Amphibia	Anura	Bufonidae	melanostictus	LC	spectacled toad
Amphibia	Anura	Dicroglossidae	Euphlyctis hexadactylus	LC	Indian green frog
Anthozoa	Scleractinia	Siderastreidae	Siderastrea savignyana	LC	Na
Aves	Accipitriformes	Accipitridae	Accipiter virgatus	LC	Besra
Aves	Charadriiformes	Scolopacidae	Actitis hypoleucos	LC	Common sandpiper
Aves	Passeriformes	Aegithinidae	Aegithina tiphia	LC	Common iora Common
Aves	Coraciiformes	Alcedinidae	Alcedo atthis	LC	kingfisher
Aves	Coraciiformes	Alcedinidae	Alcedo meninting	LC	Blue-eared kingfisher
Aves	Psittaciformes	Psittacidae	Alexandrinus krameri	LC	Rose-ringed parakeet White-breasted
Aves	Gruiformes	Rallidae	Amaurornis phoenicurus	LC	waterhen
Aves	Suliformes	Anhingidae	Anhinga melanogaster	NT	Oriental darter
Aves	Caprimulgiformes	Apodidae	Apus affinis	LC	Little swift
Aves	Pelecaniformes	Ardeidae	Ardea cinerea	LC	Grey heron
Aves	Pelecaniformes	Ardeidae	Ardea intermedia	LC	Intermediate egret
Aves	Pelecaniformes	Ardeidae	Ardea purpurea	LC	Purple heron
Awas	Pelecaniformes	Ardeidae	Ardoola cravii	LC	Indian pond- heron
Aves			Ardeola grayii		
Aves	Pelecaniformes	Ardeidae	Butorides striata	LC	Green-backed

Class	Order	Family	Scientific name	RLTS	Common
				category	name heron
Aves	Cuculiformes	Cuculidae	Centropus sinensis	LC	Greater coucal
Aves	Coraciiformes	Alcedinidae	Ceryle rudis	LC	Pied kingfisher
Aves	Charadriiformes	Charadriidae	Charadrius dubius	LC	Little ringed plover Lesser
Aves	Charadriiformes	Charadriidae	Charadrius mongolus	LC	sandplover
Aves	Ciconiiformes	Ciconiidae	Ciconia episcopus	NT	Asian woollyneck
Aves	Cuculiformes	Cuculidae	Clamator coromandus	LC	Chestnut- winged cuckoo Greater spotted
Aves	Accipitriformes	Accipitridae	Clanga clanga	VU	eagle
Aves	Passeriformes	Muscicapidae	Copsychus saularis	LC	Oriental magpie-robin Blue-throated
Aves	Passeriformes	Muscicapidae	Cyornis rubeculoides	LC	blue-flycatcher Asian palm-
Aves	Caprimulgiformes	Apodidae	Cypsiurus balasiensis	LC	swift
Aves	Anseriformes	Anatidae	Dendrocygna javanica	LC	Lesser whistling-duck
Aves	Passeriformes	Motacillidae	Dendronanthus indicus	LC	Forest wagtail
Aves	Passeriformes	Timaliidae	Dumetia atriceps	LC	Dark-fronted babbler
Aves	Pelecaniformes	Ardeidae	Egretta garzetta	LC	Little egret
Aves	Pelecaniformes	Ardeidae	Egretta gularis	LC	Western reef- egret
Aves	Ciconiiformes	Ciconiidae	Ephippiorhynchus asiaticus	NT	Black-necked stork
Aves	Passeriformes	Muscicapidae	Eumyias thalassinus	LC	Verditer flycatcher
Aves	Suliformes	Fregatidae	Fregata ariel	LC	Lesser frigatebird
Aves	Coraciiformes	Alcedinidae	Halcyon pileata	VU	Black-capped kingfisher
Aves	Coraciiformes	Alcedinidae	Halcyon smyrnensis	LC	White-breasted kingfisher
Aves	Accipitriformes	Accipitridae	Haliastur indus	LC	Brahminy kite
Aves	Caprimulgiformes	Hemiprocnidae	Hemiprocne coronata	LC	Crested treeswift
Aves	Ciconiiformes	Ciconiidae	Leptoptilos javanicus	VU	Lesser adjutant
Aves	Gruiformes	Rallidae	Lewinia striata	LC	Slaty-breasted rail Blue-tailed bee-
Aves	Coraciiformes	Meropidae	Merops philippinus	LC	eater
Aves	Suliformes	Phalacrocoracidae	Microcarbo niger	LC	Little cormorant
Aves	Passeriformes	Muscicapidae	Muscicapa dauurica	LC	Asian brown flycatcher
Aves	Strigiformes	Strigidae	Ninox scutulata	LC	Brown boobook
Aves	Charadriiformes	Scolopacidae	Numenius arquata	NT	Eurasian curlew
Aves	Charadriiformes	Scolopacidae	Numenius phaeopus	LC	Whimbrel Black-crowned
Aves	Pelecaniformes	Ardeidae	Nycticorax nycticorax	LC	night-heron Alexandrine
Aves	Psittaciformes	Psittacidae	Palaeornis eupatria	NT	parakeet
Aves	Accipitriformes	Pandionidae	Pandion haliaetus	LC	Osprey Stork-billed
Aves	Coraciiformes	Alcedinidae	Pelargopsis capensis	LC	kingfisher Indian
Aves	Suliformes	Phalacrocoracidae	Phalacrocorax fuscicollis	LC	cormorant
Aves	Strigiformes	Tytonidae	Phodilus assimilis	LC	Sri lanka bay-

Class	Order	Family	Scientific name	RLTS category	Common name
				category	owl
Aves	Piciformes	Picidae	Picoides nanus	LC	Indian pygmy woodpecker
Aves	Pelecaniformes	Threskiornithidae	Platalea leucorodia	LC	Eurasian spoonbill
Aves	Charadriiformes	Charadriidae	Pluvialis fulva	LC	Pacific golden plover
Aves	Passeriformes	Cisticolidae	Prinia inornata	LC	Plain prinia
Aves	Passeriformes	Cisticolidae	Prinia socialis	LC	Ashy prinia Black-capped
Aves	Passeriformes	Pycnonotidae	Rubigula melanictera	LC	bulbul Velvet-fronted
Aves	Passeriformes	Sittidae	Sitta frontalis	LC	nuthatch Crested serpent-
Aves	Accipitriformes	Accipitridae	Spilornis cheela	LC	eagle Black-headed
Aves	Pelecaniformes	Threskiornithidae	Threskiornis melanocephalus	NT	ibis
Aves	Charadriiformes	Scolopacidae	Tringa nebularia	LC	Common greenshank
Aves	Charadriiformes	Scolopacidae	Xenus cinereus	LC	Terek sandpiper
Aves	Passeriformes	Zosteropidae	Zosterops palpebrosus	LC	Indian white- eye
Chondrichthyes	Rhinopristiformes	Pristidae	Anoxypristis cuspidata	EN	Narrow sawfish
Chondrichthyes	Chondrichthyes Myliobatiformes		Brevitrygon imbricata Carcharhinus	VU	Bengal whipray
Chondrichthyes	Carcharhiniformes	Carcharhinidae	amblyrhynchoides	VU	Graceful shark
Chondrichthyes	Carcharhiniformes	Carcharhinidae	Carcharhinus amboinensis	VU	Pigeye shark
Chondrichthyes	Chondrichthyes Carcharhiniformes		Carcharhinus melanopterus	VU	Blacktip reef shark
Chondrichthyes	Orectolobiformes	Hemiscylliidae	Chiloscyllium arabicum	NT	Arabian carpetshark
Chondrichthyes	Myliobatiformes	Dasyatidae	Himantura uarnak	EN	Coach whipray
Chondrichthyes	Chondrichthyes Myliobatiformes		Himantura undulata	EN	Honeycomb whipray
Chondrichthyes	Chondrichthyes Myliobatiformes		Maculabatis gerrardi	EN	Whitespotted whipray
Chondrichthyes	Chondrichthyes Carcharhiniformes		Negaprion acutidens	EN	Sharptooth lemon shark
Chondrichthyes	Myliobatiformes	Carcharhinidae Dasyatidae	Pastinachus ater	VU	Broad cowtail ray
Chondrichthyes	Myliobatiformes	Dasyatidae	Pateobatis bleekeri	EN	Bleeker's whipray
Chondrichthyes	Rhinopristiformes	Pristidae	Pristis clavata	EN	Dwarf sawfish
Chondrichthyes	Rhinopristiformes	Pristidae	Pristis pristis	CR	Largetooth sawfish
Chondrichthyes	Myliobatiformes	Dasyatidae	Taeniura lymma	LC	Bluespotted lagoon ray
		Dasyatidae	,		Mangrove
	Chondrichthyes Myliobatiformes		Urogymnus granulatus	VU	whipray
Gastropoda	Sorbeoconcha	Potamididae Littorinidae	Cerithium coralium	LC	Coral cerith
	astropoda Littorinimorpha		Littoraria undulata	LC	Na
Gastropoda	Sorbeoconcha	Thiaridae	Sermyla riqueti	LC	Na Bottleneck sea
Holothuroidea	· ·		Holothuria impatiens	DD	cucumber
Holothuroidea	olothuroidea Aspidochirotida F		Holothuria scabra Ceriagrion	EN	Golden sandfish
Insecta	Odonata	Coenagrionidae	cerinorubellum	LC	Na
Insecta	Odonata	Coenagrionidae	Paracercion malayanum	LC	Na
Magnoliopsida Fabales		Fabaceae	Albizia lebbeck	LC	Indian siris

Class	Order	Family	Scientific name	RLTS category	Common name
Magnoliopsida	Ericales	Lecythidaceae	Barringtonia asiatica	LC	Sea putat
Magnonopsida	Effectives	Eccytinaaceae	Barringionia asianca	LC	Seaside indian oak; fish killer
Magnoliopsida	Ericales	Lecythidaceae	Barringtonia racemosa	LC	tree
Magnoliopsida	Boraginales	Cordiaceae	aceae Cordia subcordata		Beach cordia
Magnoliopsida	Fabales	Fabaceae	Dalbergia candenatensis	LC	Na
Magnoliopsida	Fabales	Fabaceae	Dalbergia horrida	NT	Prickly dalbergia
Magnoliopsida	Fabales	Fabaceae	Dalbergia rostrata	LC	Hornet creeper
Magnoliopsida	Fabales	Fabaceae	Dalbergia spinosa	LC	Na
Magnoliopsida	Malvales	Malvaceae	Hibiscus tiliaceus	LC	Coast cottonwood. Sea hibiscus
Magnoliopsida	Malvales	Malvaceae	Thespesia populnea	LC	Portia tree
Magnoliopsida	Caryophyllales	Cactaceae	Rhipsalis baccifera	LC	Mistletoe cactus
Mammalia	Carnivora	Mustelidae	Aonyx cinereus	VU	Asian small- clawed otter
Mammalia	Rodentia	Muridae	Bandicota bengalensis	LC	Lesser bandicoot rat
Mammalia	Sirenia	Dugongidae	Dugong dugon	VU	Dugong
Mammalia	Rodentia	Sciuridae	Funambulus palmarum	LC	Common palm squirrel
Mammalia	Chiroptera	Vespertilionidae	Hesperoptenus tickelli	LC	Tickell's bat
Mammalia	Chiroptera	Hipposideridae	Hipposideros ater	LC	Dusky leaf- nosed bat
Mammalia	Chiroptera	Hipposideridae	Hipposideros galeritus	LC	Cantor's leaf- nosed bat
Mammalia	Chiroptera	Hipposideridae	Hipposideros lankadiva	LC	Indian leaf- nosed bat
Mammalia	Chiroptera	Hipposideridae	Hipposideros speoris	LC	(Schneidera leaf-nosed bat)
Mammalia	Carnivora	Mustelidae	Lutra lutra	NT	Eurasian otter
Mammalia	Carnivora	Mustelidae	Lutrogale perspicillata	VU	Smooth-coated otter
Mammalia	Chiroptera	Megadermatidae	Lyroderma lyra	LC	Greater false vampire Lesser false
Mammalia	Chiroptera	Megadermatidae	Megaderma spasma	LC	vampire Lesser large-
Mammalia	Chiroptera	Vespertilionidae	Myotis hasseltii	LC	footed myotis
Mammalia	Cetartiodactyla	Phocoenidae	Neophocaena phocaenoides	VU	Indo-pacific finless porpoise
Mammalia	Carnivora	Viverridae	Paradoxurus hermaphroditus	LC	Common palm civet
Mammalia	Chiroptera	Vespertilionidae	Pipistrellus ceylonicus	LC	Kelaart's pipistrelle
Mammalia	Chiroptera	Vespertilionidae	Pipistrellus coromandra	LC	Coromandel pipistrelle
Mammalia	Carnivora Felidae <i>Prionailurus bengalensis</i>		LC	Mainland leopard cat	
Mammalia	Carnivora	Felidae	Prionailurus viverrinus	VU	Fishing cat
Mammalia	Rodentia	Muridae	Rattus rattus	LC	House rat
Mammalia	Cetartiodactyla	Delphinidae	Sousa plumbea	EN	Indian ocean humpback dolphin
Mammalia	Cetartiodactyla Suidae Sus scrofa		LC	Wild boar	
Mammalia	Carnivora	Viverridae	Viverricula indica	LC	Small indian civet
Reptilia	Squamata Acrochordidae Acrochordus granulatus		Acrochordus granulatus	LC	Wart snake
Reptilia	Squamata	Colubridae	Ahaetulla nasuta	LC	Long-nosed tree

Class	Order	Family	Scientific name	RLTS category	Common name
				category	snake
Dantilia	Canamata	Homalopsidae	Cerberus rynchops	LC	South asian bockadam
Reptilia	Squamata	пошаюряцае	Cerberus rynchops	LC	Asian
Reptilia	Squamata	Chamaeleonidae	Chamaeleo zeylanicus	LC	chameleon
Reptilia	Squamata	Colubridae	Chrysopelea ornata	LC	Ornate flying snake
Reptilia	Squamata	Colubridae	Coelognathus helenae	LC	Trinket snake
Reptilia	Squamata	Viperidae	Echis carinatus	LC	Saw-scaled viper
Reptilia	Testudines	Cheloniidae	Eretmochelys imbricata	CR	Hawksbill turtle
Reptilia	Squamata	Homalopsidae	Gerarda prevostiana	LC	Gerard's water snake
Reptilia	Squamata	Gekkonidae	Hemidactylus depressus	LC	Sri lanka leaf- toed gecko
Reptilia	Squamata	Gekkonidae	Hemiphyllodactylus typus	LC	Indo-pacific slender gecko
Reptilia	Squamata	Elapidae	Hydrophis cyanocinctus	LC	Annulated sea snake
Reptilia	Squamata	Elapidae	Hydrophis gracilis	LC	Graceful small- headed seasnake
Reptilia	Squamata	Elapidae	Hydrophis schistosus	LC	Beaked sea snake
Reptilia	Squamata	Typhlopidae	Indotyphlops braminus	LC	Brahminy blindsnake
Reptilia	Squamata	Elapidae	Laticauda colubrina	LC	Yellow-lipped sea krait
Reptilia	Squamata	Gekkonidae	Lepidodactylus lugubris	LC	Mourning gecko
Reptilia	Squamata	Elapidae	Ophiophagus hannah	VU	King cobra
Reptilia	Testudines	Trionychidae	Pelochelys cantorii	CR	Asian giant softshell turtle
Reptilia	Squamata	Viperidae	Trimeresurus gramineus	LC	Common bamboo viper
Reptilia	Squamata	Varanidae	Varanus salvator	LC	Common water monitor

3. National Estimates for subcriterion A1

To estimate the South India, Sri Lanka, and Maldives mangrove ecosystem extent in 1970, we gathered reliable information on the mangrove area for each country within the province around this period (Table b). We then estimated the mangrove area in 1970 for each country, assuming a linear relationship between mangrove extent and time. Finally, we summed up the country estimates to determine the total mangrove area in the South India, Sri Lanka, and Maldives province (Table a). We assumed that the percentage of mangrove extent by country within the province remained constant over time, as the percentages did not change between 1996 and 2020 (GMW v3.0 dataset). However, using mangrove area estimates from different sources can lead to uncertainty (Friess and Webb 2014)² and there were no regional statistics or global studies available for this time period. Thus, the estimates for 1970 should be considered only indicative. No reliable mangrove area estimates were available for the Maldives before 1996. As it comprises just 1% of the total area in the 'S India, Sri Lanka, Maldives' province, we assumed no change in Maldivian mangrove forests over the last 50 years for the criterion A1 calculation.

² Friess, D. A. and Webb, E. L. (2014). Variability in mangrove change estimates and implications for the assessment of ecosystem service provision. *Global Ecology and Biogeography*, 23 (7). 715-725 doi:10.1111/geb.12140

Table a. Estimated mangrove area by country in 1970 and 2020. Estimates for 2020^* mangrove area are based on the Global Mangrove Watch Version 3 (GMW v3.0) dataset. The references used to calculate mangrove area for each country in 1970^{**} and 2021^{**} are listed below in Table b.

	Based on National stats and Literature				
	Country total	Within province	Within province	Country total	Within province
	2020*	2020*	2020*	1970**	1970**
India	4037.76	49.44	36.28		23.8
Maldives	0.97	0.97	0.97	0.97	0.97
Sri Lanka	198.77	198.77	159.81	100.0	100.0
The South India, Sri Lanka, and Maldives		249.2	197.06		124.8

Table b. List of selected studies considered to have reliable information on mangrove area for the period around 1970 in each country of the South India, Sri Lanka, and Maldives province.

Country	Year	Mangrove Area (Ha)	Reference
India	1957	571'808	Mathauda, G.S. (1957). The mangrove of India. In Proceedings of the Mangrove Symposium. p. 66-97. Calcutta.
South India		672	Mathauda, G.S. (1957). The mangrove of India. In Proceedings of the Mangrove Symposium. p. 66-97. Calcutta.
India	1963	689'989	Sidhu, S.S. (1963). Studies on the Mangroves of India: I. East Godavari Region. Indian Forester, 89(5): 337-351
India		2'695	Sidhu, S.S. (1963). Studies on the Mangroves of India: I. East Godavari Region. Indian Forester, 89(5): 337-351
India	1980	506'702	FAO, UNEP. (1981). Tropical Forest Resourcess Assessment Project, Forest Resources of Tropical Asia. FAO, UNEP, 475 pp.
India	1987	404'600	Forest Survey of India (2020) The State of the Forest Report. Forest Survey of India. Ministry of Forests and Environment, Government of India
India	1994	482'700	Forest Survey of India. (2020). The State of the Forest Report 1997. Forest Survey of India. Ministry of Forests and Environment, Government of India.
South India	1987	2300	Forest Survey of India. (2020). The State of the Forest Report 1997. Forest Survey of India. Ministry of Forests and Environment, Government of India
South India	1989	4700	Forest Survey of India. (2020). The State of the Forest Report 1997. Forest Survey of India. Ministry of Forests and Environment, Government of India
South India	1991	4700	Forest Survey of India. (2020). The State of the Forest Report 1997. Forest Survey of India. Ministry of Forests and Environment, Government of India
South India	1993	2100	Forest Survey of India. (2020). The State of the Forest Report 1997. Forest Survey of India. Ministry of Forests and Environment, Government of India
South India	1997	21	Forest Survey of India. (2020). The State of the Forest Report 1997. Forest Survey of India. Ministry of Forests and Environment, Government of India (Area of Tamil Nadu, No Mangrove Forest in Kerala in this year)
South India	2019	54	Forest Survey of India. (2020). The State of the Forest Report 1997. Forest Survey of India. Ministry of Forests and Environment, Government of India (Sum of the Area of Kerala and Tamil Nadu)
Sri Lanka	1969	10'000	Aruchelvam, K. (1969). Mangroves. The Ceylon Forester 8 (384): 1-34
Sri Lanka	1980	9600	FAO (2007) The World's mangroves 1980–2005. FAO, Rome, Italy.
Sri Lanka	1986	12'189	Coastal Conservation Department Internal Report No.13, quoted in Natural Resources of Sri Lanka: Conditions and Trends, published by the Natural Resources, Energy and Science Authority of Sri Lanka in 1991
Sri Lanka	1997	18'489	National Aquatic Resources Research. (1997) Sri Lanka Fisheries Year Book, Sri Lanka.
Sri Lanka	2021	15981	In: Arulnayagam, Ahalya, Jong-Seong Khim, and Jinsoon Park. (2021). "Floral and Faunal Diversity in Sri Lankan Mangrove Forests: A Systematic Review" <i>Sustainability</i> 13, no. 17: 9487. https://doi.org/10.3390/su13179487

Country	Year	Mangrove Area (Ha)	Reference
Maldives	1996	97	Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono,
			T., Worthington, T. A., Spalding, M.D., Murray, N. J., & Rebelo, LM. (2022). Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. <i>Remote Sensing</i> , 14(15), 3657. https://doi.org/10.3390/rs14153657