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Abstract
Studying the spatial-social interface requires tools that distinguish between social and spatial
drivers of interactions. Testing hypotheses regarding the factors determining animal interactions
often involves comparing observed interactions with reference or ’null’ models. One approach to
accounting for spatial drivers of social interactions in reference models is randomizing animal
movement paths to decouple spatial and social phenotypes while maintaining environmental
effects on movements. Here, we update a reference model that detects social attraction above
the effect of spatial constraints. We explore the utility of our 'wrap-around' method and compare
its performance to the previous approach using agent-based simulations. The wrap-around
method provides reference models that are more similar to the original tracking data, while still
distinguishing between social and spatial drivers. Furthermore, the wrap-around approach
results in fewer false-positives than its predecessor, especially when animals do not return to
one place each night but change movement foci, either locally or directionally. Finally, we show
that interactions among GPS-tracked griffon vultures (Gyps fulvus) emerge from social attraction
rather than from spatial constraints on their movements. We conclude by highlighting the
biological situations in which the updated method might be most suitable for testing hypotheses
about the underlying causes of social interactions.
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Introduction

Animal movement patterns are influenced both by the physical environment and the social
environment. Animals may seek the presence of others because of the benefits they may gain
from sociality (e.g., removal of parasites, avoidance of predators) or avoid each other (e.g., due
to competition) (Krause and Ruxton 2002). These social interactions are impacted by the
physical environment because most animals need to be in proximity to one another to interact
(Pinter-Wollman et al. 2017). The physical environment might facilitate or constrain social
interactions––for example, by attracting individuals to a shared resource (Dukas and
Edelstein-Keshet 1998; Stephens et al. 2007; Leu and Bull 2016) or preventing them from
moving across barriers (Wolf and Trillmich 2007; He et al. 2019). Uncovering whether social
interactions are a result of social attraction (social phenotype and social environment) or
whether they emerge from spatial constraints on animal movements (spatial phenotype and
spatial environment) is important for understanding the function of social interactions and the
evolution of sociality; and for predicting how changes in external conditions (e.g., habitat
fragmentation) will affect animal societies (Webber et al. 2023). Here we aim to introduce a
method that facilitates dissecting the contribution of these two forces in shaping interactions
measured from tracking data.

The increased availability of high resolution GPS data on animal movements has opened up
new opportunities to examine the relationship between social behavior and the environment
(Kays et al. 2015; Smith and Pinter-Wollman 2021; Nathan et al. 2022). Social interactions are
often inferred from the proximity of tagged individuals that are fitted with GPS tags (Castles et
al. 2014; Robitaille et al. 2019). At the same time, GPS tags provide high-resolution information
about animal movements and can be used to examine how these movements are shaped by
resources and obstacles in the environment (Nathan et al. 2022). Such rich movement data
allows us to investigate whether social interactions emerge from conspecific social attraction or
if they are simply a by-product of the movements of animals within a given spatial environment
(Spiegel et al. 2016; Webber et al. 2023).

Testing hypotheses about the drivers of sociality, or the relative contributions of multiple factors,
is often based on comparing observed interactions with social interactions that are generated by
reference (or "null") models that carefully account for underlying factors of interest. Because
social networks violate many of the assumptions of traditional statistical methods (Croft et al.
2011), their analysis often relies on the construction of biologically meaningful reference models
using various randomization approaches, such as the one we investigate here (Farine 2017;
Hobson et al. 2021). Many questions in animal social network analysis do not require
accounting for spatial information when constructing reference models. For example, asking
whether the social role of an individual can be predicted by its attributes, such as age (Wyman
et al. 2021; Albery et al. 2022), sex (Spiegel et al. 2018; Dorning and Harris 2019), or
personality (Krause et al. 2010; McCully and Rose 2023) can be answered using permutations
of node identities that maintain the observed network structure (Hobson et al. 2021). However,
many questions about animal sociality focus on the underlying proximate causes of social
interactions (e.g., do animals interact more frequently than by ‘chance’?). To answer such
questions, researchers have compared observed interactions to interactions formed by a wide
range of reference models. The broadest reference model would compare observed interactions
to random networks, in which interactions are drawn from some distribution that may, or may
not, be biologically grounded (Fosdick et al. 2018). The less restricted the reference model, the
easier it is to reach the conclusion that animals interact non-randomly. Such reference models,
like the ideal gas model (Hutchinson and Waser 2007), often neglect the biologically meaningful
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processes that underlie the formation of social interactions; for example, the influence of
environmental features on movements. To determine whether social attraction is a cause of
social interactions, or whether interactions result from how the environment shapes animal
movements, it is important to construct reference models that account for animal space use
patterns while controlling for the effects of their social attraction to each other.

A number of approaches have been proposed for disentangling social and spatial drivers of
animal social interactions. Most approaches to this question rely on comparing observed
interactions with reference models that randomize the raw movement data before constructing
the social network (often called data-stream randomization), rather than shuffling nodes of the
social network itself. Randomizing raw movement data allows for the decoupling of social and
spatial processes (Spiegel et al. 2016; Hobson et al. 2021). An initial data-stream randomization
approach permuted the identities of individuals among movement trajectories (Farine 2014) or
among groups (Bejder et al. 1998), allowing one to ask if particular individuals were more likely
than chance to occupy certain social positions, given spatial constraints on animal movements.
However, these methods could not determine whether interactions resulted from social
attraction or emerged from spatial constraints on movementSimilarly, a recent method (Noonan
et al. 2021) can help identify population-level interaction hotspots in the environment. However,
this approach does not address directly whether animals arrive at attractors because they are
searching for resources, avoiding threats, or seeking social encounters.

To address this gap, Spiegel et al. (2016) introduced a novel path randomization approach that
decouples the impact of animal movements from that of social attraction on the formation of
interactions. This decoupling is accomplished by randomizing the order of movement paths and
inferring interactions from the randomized data. Because this randomization decouples the
movements of individuals from one another, while maintaining the impact of the physical
environment on the movement shape of each individual, it uncovers how social attraction (or
repulsion) impact the formation of interactions in the observed data. We will refer to this method
as ‘path shuffling’ to distinguish it from other approaches that randomize movement
data-streams. In short, this approach permutes segments of movement paths within an
individual’s own trajectory (e.g., by shuffling day-long segments of movement) to decouple the
synchronized movements of interacting individuals, while maintaining the spatial component of
each individual's movement patterns. Importantly, this method retains the association between
individual identity and explicit use of space, preserving individual variation in movement and
space use (i.e., territories, preferences for specific locations, variation in the amount or nature of
movement, etc.). Thus, it allows one to identify whether social interactions emerge solely from
movement patterns, or whether they arise from social attraction and movement synchrony. Path
shuffling also allows for identifying whether the locations of encounters differ from those
expected by chance (Spiegel et al. 2018). The path shuffling method has been implemented to
understand patterns and drivers of social interactions in cows (Farthing et al. 2021), hyenas
(Tichon et al. 2020), colonial seabirds (Jones et al. 2020), caribou (Peignier et al. 2019), and
sleepy lizards (Spiegel et al. 2018). It has been integrated into the widely-used R package
`spatsoc` (Robitaille et al. 2019), and a modified version also appears in the `contact` R
package (Farthing et al. 2020). The method, conducted on a timescale of days, produces
biologically sensible and robust reference models for central place foragers that return to the
same location (e.g., a burrow) every night. However, if one is interested in asking questions
about animals that frequently move among sleeping locations, the path shuffling approach
introduces into the reference models biologically unfeasible ‘teleportations’––situations in which
a trajectory of an animal ends in one location on one day , and due to the path shuffling
procedure, continues from a completely different place on the following day. Because reference
models should be shaped by the biological question asked and aspire to disrupt the observed
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data as little as possible, beyond the effect that is being tested, this ‘teleportation’ shortcoming
can limit the applicability of path shuffling in some instances, highlighting the need to expand the
generality of the approach.

Here we propose an alternative trajectory data-stream randomization approach that circumvents
the teleportation problem. The 'wrap-around' method, a modification of the path shuffling
method, shifts the entire movement path of each individual forward or backward in time, and
wraps the trajectory back to the start (or end) to retain the duration and timing of the observation
period (see more details below). This method, like the path shuffling, also breaks the temporal
synchrony between individuals while retaining both the within day and day-to-day sequence of
movements for each individual. Shifting trajectories instead of shuffling them is not entirely new;
a version of the wrap-around method was used by Benhamou et al. (2014), and a few other
studies have also used temporal shifts (McClanahan et al. 2020; Havmøller et al. 2021; Monk et
al. 2023). Still, the wrap-around method has not been widely adopted, despite its greater
biological realism than path shuffling. Furthermore, its performance and ability to distinguish
between social and spatial drivers of interactions in different situations, compared to the path
shuffling method, has not been evaluated. Here we use agent-based simulations to examine the
performance of the wrap-around method, compare it to the path shuffling approach, and apply it
to animal data. Importantly, both methods use randomization to decouple spatial and social
drivers of interactions by randomizing spatial data along a temporal dimension. However, the
degree to which the data is randomized and the amount of temporal autocorrelation within the
movement paths which is preserved in each randomization, slightly differs.

After introducing the wrap-around method, we evaluate its performance under different
scenarios using agent-based simulations, and compare it with path shuffling. Specifically, we
predict that while the path shuffling and wrap-around methods will perform similarly when
animals return to the same place each night, they will differ in their performance when animals
change sleeping sites over time. We further predict that as the amount of shifting of the
movement trajectories in the wrap-around method increases, the closer the outcome will be to
the path shuffling and farther from the observed interactions. We examine whether the path
shuffling and wrap-around methods differ in their false positive rates (likelihood to detect
sociality––either attraction or avoidance––when it is not simulated) or false negatives (not
detecting sociality when it is simulated); and how these differences are affected by movement
patterns (e.g., when migrating or traplining). Furthermore, we investigate whether the number of
observations recorded each day affects the ability of the randomization procedures to
distinguish between social and spatial drivers of interactions. Finally, in addition to testing the
method’s performance with agent-based models, we apply both the wrap-around and path
shuffling randomizations to determine whether social interactions of free-living wild griffon
vultures (Gyps fulvus) are driven by social attraction, or if they are a by-product of the vultures'
movement patterns.

Methods

Implementation of the wrap-around method
In contrast to the path shuffling method, the wrap-around method we propose here shifts
animals' movement trajectories forward and backward in time, breaking the temporal synchrony
between individuals while retaining the sequence of movements for each individual. Simply
shifting each trajectory would expand the total observation period of the randomized data
relative to the observed data, and would reduce the density of individuals present on a given
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day (i.e., simultaneously-tracked individuals will seem to have been tracked during different
periods). Therefore, when a shifted trajectory reaches the end of the individual's observation
period, we take the remaining days in the trajectory and attach them back to the start of the
trajectory, effectively "wrapping" the trajectory around like a conveyor belt. We note that this
approach produces a more biologically plausible randomization compared to "path shuffling"
because, with one exception (the juncture between the first and last days of the original
trajectory), path continuity between days is maintained. As a result, animals do not "teleport" to
a new location each night whereas path shuffling may generate teleportations on a daily basis
(Figure 1).



Figure 1
Figure 1: Comparison of the path shuffling and wrap-around randomization methods. A
schematic representation of the two randomization methods. Five individuals (A-E) are shown
tracked over five days, represented conceptually as colored circles connected by black lines,
with hues progressing from dark to light over time (a). In the path shuffling method (b), the order
of days is permuted for each individual, resulting in a large number of "teleportation" events
(gray slashed lines). In the wrap-around method (c), trajectories are shifted forward or backward
by a number of days selected from a uniform distribution between -2 and 2 (the time-shift
range), with each individual's time-shift shown to the right of its trajectory. This method creates a
maximum of one "teleportation" event per individual and maintains the order of consecutive
days.

Agent-based model description
To validate our method, we developed a series of agent-based models (ABMs), representing
different types of animal movement. These ABMs allowed us to apply the randomization method
to a population with known social attraction rules, and to quantify the methods’ ability to detect
the underlying social structure (which is unknown in real datasets), or the rates of false
detections of sociality. In each model, agents moved in discrete time steps according to a
biased-correlated random walk (BCRW), with the direction of each movement step determined
by a Von Mises distribution (Codling et al. 2008). To represent animals' tendency to confine their
movements to a home range area, we incorporated randomly-chosen bias points to simulate
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"home range centers." The Von Mises distribution has two parameters that determine step
direction and concentration. The concentration parameter was chosen to give a semi-linear path
similar to that of real animal movements, while agents' step directions were biased toward their
home range center for the current day. Step lengths were drawn from a gamma distribution with
a mean of 7 and a standard deviation of 5––set to produce trajectories that seemed similar to
animal movements.

To explore whether the path shuffling and wrap-around methods differed in their performance
more when animals displaced farther from their starting points each day, we varied the location
of each individual's home range bias point to create three scenarios (Figure 2 i). In the 'static
home ranges’ scenario, each individual's bias point was held constant throughout the duration of
the simulation. In the 'locally changing home ranges' and 'directionally changing home ranges'
scenarios, the bias point of each individual followed its own BCRW, with the direction of bias
point movement chosen from a uniform (for 'locally-changing') or a heavily concentrated (for
'directionally-changing') Von Mises distribution. These different distributions led to either highly
tortuous or relatively linear bias point movements, resulting in changes to the home ranges and
to the individuals' tracks over the course of the simulation (Figure 2 ii). Bias point movement
step sizes were drawn from a gamma distribution with mean equal to the agent step size
multiplied by either 0.01 (static home ranges scenarios) or 10 (changing home ranges
scenarios) and a standard deviation of 0.75 times the mean home range step size. These
values were selected to produce trajectories that approximated the movement patterns that we
were interested in investigating.

For each of the above three scenarios, we compared 'non-sociable' and 'sociable' agents
(Figure 2 ii) to examine whether the shuffling and wrap-around differed in their false positives
(detecting sociality when it was not simulated) or false negatives (not detecting sociality when it
was simulated). Non-sociable agents were indifferent to others and did not adjust their
movements according to other agents in the simulation. Sociable agents could perceive other
agents within a certain "social perception distance" (set to 1000 units) and bias their step
direction towards the nearest perceived individual. The starting positions of the agent home
range centers were chosen randomly from a square with a side length of ⅔ of the social
perception distance––thus, they could all perceive each other initially. In our simulations of
sociable agents, the agents biased each of their steps toward the weighted average between
their home range center bias point and the position of the nearest perceived conspecific. The
relative impact of the nearest neighbor on the movement direction of an agent (social weight) is
a tunable parameter, which we set at 0.75 (heavier bias toward a conspecific, versus toward the
home range center). To evaluate the performance of the randomization methods at different
levels of social attraction, we re-ran the "sociable agents" simulations while varying the social
weight between 0.1 and 1 in steps of 0.1. All simulations, analysis, and data visualization was
conducted in R version 4.3.1 (R Core Team 2023), using the tidyverse packages for data
wrangling (Wickham et al. 2019). The full R code is available on Github
(https://github.com/Collaborative-Vulture-Work/Vulture-Conveyor-Belt).

We ran each simulation scenario with 30 agents over a 50-day period and 50 movement steps
per day. We referred to one run of the simulations as the ‘observed’ movements’ and used these
movements to determine the observed interactions of the agents. Two individuals were
considered to be interacting at a given observation time point if they were closer to each other
than twice the mean agent step length (14 units). For a comparison of this "co-location"
definition of an interaction with a more restrictive "co-movement" definition, in which individuals
were only considered to be interacting if they were close to each other for two consecutive time
steps, see Figures S4-S5. We then aggregated these interactions to construct proximity-based
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weighted social interaction networks. We calculated the degree (number of unique individuals
an agent interacted with) and strength (sum of the weights of all social interactions) of each
agent.

Randomizations and analysis
To compare the performance of the shuffling and wrap-around randomization methods, we
conducted 100 iterations of each randomization method. For the path shuffling method, we
randomized dates using the 'trajectory' method of the `randomizations` function in spatsoc
(Robitaille et al. 2019). For the wrap-around method, individual trajectories were shifted forward
or backward by a positive integer s, for a total 'time-shift range' of 2s (so if s is 3 days, then each
trajectory may be shifted by a number of days drawn from a uniform distribution between -3 to
+3). We note that the power of the method is constrained by s (a very small s implies more
individuals will maintain the original synchrony in the shifted dataset). Thus, to determine the
impact that the time-shift range might have on the performance of the wrap-around
randomization method, we ran wrap-around randomizations at each value of s between 0 and
25, resulting in time-shift ranges between 0 and 50 days (0-100% of the entire simulation
duration). For each randomization iteration, we identified interactions and quantified the degree
and strength of each agent, as explained above.

Randomization methods were considered to have succeeded in detecting sociality (i.e. a true
positive) if the observed population mean value of degree or strength was significantly more
extreme than the population mean values of the randomizations. To quantify the size of the
difference, we calculated Z-scores for the observed values (Tables S1-S3), similar to the method
described in (D’Bastiani et al. 2020). To determine each method's likelihood of falsely detecting
sociality, we examined only the non-sociable simulations. We were interested in cases where
the observed agents interacted significantly more or less (or with more or fewer others) than
would be expected by chance according to the randomizations. Specifically, we defined false
positives of sociality as cases in which we would conclude, based on the difference between the
observed data and the randomizations, that social attraction or avoidance existed in the
population, when in fact none was simulated. To determine the false positive rate, we calculated
the proportion of the randomization iterations for which the population mean (degree or
strength) was either greater than or smaller than the top or bottom 2.5% of the simulation runs
to obtain a two-tailed p-value (since we were interested in cases where the observed sociality
was either significantly greater than or significantly less than expected by the randomizations).
To determine each method's likelihood of failing to detect sociality where it existed (i.e. false
negatives), we examined simulations with sociable agents at varying levels of social weight. We
were interested in cases where the observed agents did not interact significantly more or less
than would be expected by chance according to the randomizations. To determine the false
negative rate, we first obtained a two-tailed p-value for detection of sociality, as described above
(true positive rate), and subtracted that from 1 (Figure S3).
Because many animal tracks are limited in their observation frequency or have incomplete
observations, we examine the effect of observation frequency (i.e., sampling effort) on the false
positive rate. We downsampled the non-sociable 'observed' simulation data for each home
range scenario from 50 points per simulation 'day' to 25, 10, or 5 points per day. Due to
computational constraints, we ran 50 iterations of each randomization (path shuffling, and
wrap-around with time-shift ranges between 4% and 100%). We constructed proximity-based
social networks for each randomization, and calculated the false positive rate for each sampling
frequency, type of randomization, and time-shift range separately.
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Figure 2
Figure 2: Examples of movement trajectories of home ranges and agents in the ABM. The
home range centers to which agents are attracted are either static (i a, ii a, b), change locally (i
b, ii c, d), or change in a directional manner (i c, ii e, f). In (i a) the home range center is shown
as a large black circle and in (i b,c) the numbers on the large circles of home range centers
represent five days. Lines are the walking trajectory of an agent attracted to these home range
centers, with line color corresponding to the color of each day’s home range center. The
movements of each agent in the ABM are based on correlated random walks in which
individuals are either non-sociable (ii a, c, e) or sociable and attracted to their nearest neighbor
(ii b, d, f) when home range centers are static (ii a, b), changing locally (ii c, d), or changing in a
directional manner (ii e, f). In (ii) the walking trajectories of ten randomly selected agents
throughout the 50 days of a single simulation are shown in color and the 20 trajectories of the
remaining individuals are in light gray. Note the different spatial scales across (ii a-f).



Vulture system
To demonstrate the applicability of our proposed method, we applied it to empirical data from a
population of free-ranging Eurasian griffon vultures (Gyps fulvus, hereafter 'griffon vultures') in
the Negev Desert. The study system has been extensively described in (Acácio et al. 2023;
Anglister et al. 2023; Sharma et al. 2023). Griffon vultures are large soaring fliers and obligate
scavengers (Mundy et al. 1993). They travel long distances to feed on ephemeral and
widely-distributed carcasses, relying on thermal and orographic uplift to save energy in flight.
They fly the most during the summer and fall, when the weather is warm and favorable for
thermal soaring. Griffons interact frequently with conspecifics in several social situations
(Sharma et al. 2023). In flight, they rely on visual social cues to locate carcasses
(Cortés-Avizanda et al. 2014; Yohan et al. 2023) and often fly in proximity to conspecifics for
extended periods of time (Harel et al. 2017). As such, their interactions have the potential to be
driven by both conspecific social attraction (or avoidance) and by the distribution of resources
on the physical landscape (such as food or uplift). While individual griffons vary in their use of
space, they do not consistently return to the same roost every night. Individuals may prefer
certain central roost locations, but they alternate between roost locations fairly frequently, even
when their daily movements are within the same general area. This makes the vulture dataset
particularly suitable for testing how the randomization methods will perform on animals that are
not strict central-place foragers.

For this analysis, we focused on data collected from 75 GPS-tagged vultures during the summer
of 2022 (May 15 - September 15) which makes up approximately 70% of the total population in
the area at that time. The GPS tags transmit the location of the vultures approximately every 10
minutes, providing us with detailed information about their movements (Figure S1). We
constructed proximity-based social networks of in-flight interactions, to focus on interactions that
emerge from continuous movement. Consistent with previous research on this system (Sharma
et al. 2023), we defined an in-flight interaction as two individuals flying (i.e., moving faster than 5
m/s) within 1 km of each other during two consecutive 10-minute time intervals (to avoid
counting simple path-crossings as interactions). We constructed social networks based on these
interactions over the duration of the summer. The weight of the edge between each pair of
individuals was represented as a simple ratio index––how frequently two individuals were
observed interacting, out of the total number of time periods when they were both tracked and
possibly could have been observed interacting (Cairns and Schwager 1987; Ginsberg and
Young 1992; He et al. 2022). We calculated each individual vulture's degree and strength.

We randomized the individual vultures' movement trajectories according to the path shuffling
and wrap-around randomization methods, in units of days. The total length of the summer was
124 days. We tested two time-shift ranges for the wrap-around method, allowing individual
trajectories to shift within either a 24 day window (up to +/- 12 days shift, ~20% of the total
tracking period) or a 2 day window (up to +/- 1 day shift, ~2% of the total tracking period).
Individual vultures were tracked for 121 days on average (range: 60-124 days; sd: 9.22 days),
had an average daily path length of 118 km (range: 0.07-404 km; sd: 72.1 km), and had an
average daily displacement (distance between the first and last point of the day) of 17.1 km
(range: 0-237 km; sd: 26 km). We conducted 100 iterations of each randomization, and then
constructed proximity-based social networks from each iteration of the randomized data. We
compared the degree and strength of each individual in the observed co-flight social network
with its value in the networks constructed from randomized data for each method.
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Results

Comparing path shuffling to the wrap-around randomization using ABMs

Both randomization methods detected sociality in all cases where it was simulated (Figure
3b,d,f, Figure S3). However, the wrap-around randomization often resulted in values that were
closer to observed, compared to the path shuffling method (Figures 3i f; ii b, d, f). Furthermore,
the more the location of the home range center of the animals changed, the larger the difference
was between the two methods, as predicted. When home ranges were stationary, there was
very little difference between the expected values generated from the wrap-around method and
the path shuffling method, especially for degree (Figure 3i a, b) and only a slight difference for
strength (Figure 3ii b). When home ranges changed locally, the values from the wrap-around
method were more similar to the observed values than the path shuffling values were (Figure 3ii
d), or the two methods were nearly identical (Figure 3i d). Finally, when home ranges changed
in a directional manner, the difference between the two randomizations was the greatest, with
the wrap-around values being substantially closer to the observed values relative to path
shuffling randomization (Figure 3f).

When social weight was high (agents more strongly biased toward nearby conspecifics than to
their own home range centers), none of the randomization methods failed to detect sociality;
population mean degree and strength values differed significantly from the population means of
the randomizations (Figure S3). The wrap-around method, when trajectories were allowed to
shift over the entire simulation duration, closely resembled the path shuffling method in its
likelihood of failing to detect sociality, and was even more sensitive than the path shuffling
method at low levels of sociality in the locally-changing home ranges scenario (Figure S3 c).
When used with a very small time-shift window, the wrap-around method did have a slightly
elevated likelihood of returning a false negative result at lower levels of sociality, especially for
degree in the static home ranges scenario (Figure S3 a).

When simulating non-sociable agents, both methods did not detect sociality when home ranges
were stationary (Figure 3a). When home ranges centers changed locally, both methods slightly
over-predicted both degree and strength (Figure 3c); the small difference between the two
methods is discussed later in the section about false positives (Figure 5). Finally, both
randomization methods detected 'false positive' sociality when home ranges changed in a
directional manner (Figure 3e). As predicted, this false positive detection of sociality was more
apparent when using the path shuffling method than when using the wrap-around method,
which came closer to correctly identifying that the observed values were generated by a
non-sociable process. We explore this further in the section below about false positives.



Figure 3
Figure 3: Comparing the path shuffling and wrap around randomization methods using
agent-based models. In each plot, agents are ordered by their observed value of degree (i) or
strength (ii) (open circles), which are shown on the y axes. Agents are either non-sociable (a, c,
e) or sociable (b, d, f) and their home range centers are static (a, b), change locally (c, d), or
change in a directional manner (e, f). The degree or strength values of each agent from 100
iterations of the shuffled (orange) or the wrap-around (blue) randomizations (with a maximum
time-shift of 10 days, or 20% of the simulation duration) are shown as boxplots which range to
the 25 percentile, with whisker lengths as 1.5 times the interquartile range and outliers as small
points. The inset in each panel shows the distribution of degree (i) or strength (ii) values for all
agents in all 100 simulation iterations of the shuffled (orange) or the wrap-around (blue)
randomizations; the dashed black lines are the average degree or strength values of the
‘observed’ agents.

Effect of time shifts on wrap-around randomization performance

The size of the time-shift range affected how similar the wrap-around randomization results
were to the observed values. The shorter the time-shift range, the more similar the randomized
data was to the observed data (darker blue lines in Figure 4). Note that the wrap-around method
results shown in the Figure 3 boxplots are for a 20% (10 day) time-shift range, selected
arbitrarily from the time-shift range values that we tested. Despite the similarity of short
time-shift ranges to the observed data, even the shortest time-shifts still detected sociality––in
all scenarios and both for degree and strength (Figure 4 b,d,f, in both i and ii). Moreover, when
home range centers were changing in a directional manner, only the smallest time-shift ranges
avoided false positives for sociality (only the darkest blue curves overlapped with the dashed
line representing observed degree or strength in Figure 4 e, both i and ii).



The time-shift range of the wrap-around method impacted its performance relative to the path
shuffling method. For strength, in all scenarios, larger time-shift ranges gave strength values
that were more similar to the path shuffling method than those yielded by smaller time-shift
ranges (Figure 4 ii). When paths were allowed to be shifted over their entire movement range
(100% shift proportion, lightest blue lines in Figure 4), the strength values returned by the
wrap-around method were very similar to those from the path shuffling method (orange lines in
Figure 4). However, for degree (Figure 4 i), the path shuffling method tended to be most similar
to intermediate time-shift range values.

Figure 4
Figure 4: Comparing different time-shift ranges of the wrap-around randomization using
agent-based models. Distribution of population mean degree (i) and strength (ii) values from
100 randomization iterations when agent's movement trajectories are shuffled each day (orange
lines) or when trajectories are shifted using the wrap-around method (blue lines). Each blue line
represents a different allowed time-shift range, as a proportion of the total simulation duration.
The proportion of shifting goes from 4% (darkest blue; as much as +/- 1 day out of 50 days) to
100% (lightest blue; as much as +/- 25 days out of 50 days). Dashed lines are the 'observed'
mean degree or strength of the population of simulated agents, which are either non-sociable
(a, c, e) or sociable (b, d, f). The agents' home range centers are static (a, b), change locally (c,
d), or change in a directional manner (e, f). For a visualization of just the means of the
distributions shown here, see Figure S2.



Sampling frequency and false positives

The likelihood of a method to falsely detect sociality was affected by sampling effort (or
proportion of missing data), differed between randomization methods, and was influenced by the
size of the time-shift range in the wrap-around method. In general, as sampling frequency
decreased, the false positive rate tended to increase, as seen by the negative trends of the lines
in Figure 5 (a, c, d). Interestingly, sampling frequency had less of an effect when home ranges
changed in a directional manner (Figure 5 e, f). The path shuffling method showed a weaker
relationship between sampling frequency and likelihood of detecting sociality in non-sociable
simulations than did the wrap-around method (Figure 5 c, e, f). However, the path shuffling
method also detected significantly higher or lower values of degree than expected by chance in
both of the non-sociable changing home ranges scenarios (Figure 5 c, e), and more extreme
values of strength than expected by chance in the non-sociable, directionally-changing home
ranges scenario (Figure 5 f). Neither randomization method detected false positive social
attraction in the stable home ranges scenario (Figure 5 a, b). For the wrap-around method, the
size of the time-shift range affected the method's likelihood of detecting sociality. When home
ranges changed locally, the wrap-around method returned false positives only at small time-shift
ranges (Figure 5 c, d). But when home ranges changed directionally, the method returned false
positives, especially at large time-shift ranges (Figure 5 e, f), more similar to the path shuffling
method.

Figure 5
Figure 5: Effect of sampling frequency on the false positive rate. The likelihood of detecting
a social effect (social attraction or avoidance) in the non-sociable simulations, i.e., when there
was no underlying social attraction simulated, for the two randomization methods, different
time-shift ranges, and four sampling frequencies (10%, 20%, 50%, and 100% of observed
points). Due to computational constraints, observed values are compared to 50 randomization
iterations in this figure. Path shuffling randomization is in orange and blue lines are for the
wrap-around method, with shades of blue indicating time-shift ranges, with the proportion of
shifting ranging from 4% (darkest blue) to 100% (lightest blue), analogous to Figure 4. The gray
horizontal lines represent a 95% likelihood (p = 0.05). Colored lines that go above this gray line
indicate that a randomization detected sociality even though a social process was not
simulated––i.e., a false positive. Panels on the left (i) show false positives for degree, and
panels on the right (ii) show false positives for strength. Home range centers are static (a, b),
change locally (c, d), or change in a directional manner (e, f).





Applying shuffling methods to data from free-ranging vultures
When comparing the interactions of vultures with both path shuffling and wrap-around reference
models, we found that all individuals had more interactions (both degree and strength) than
expected by chance (Figure 6). While both randomization approaches resulted in substantially
lower social interactions than observed, the wrap-around method produced degree and strength
values that were closer to the observed values than the path shuffling method (applied for the
entire period). A time-shift range of 24 days (Figure 6 i) yielded a much greater deviation
between the observed and expected values of both degree and strength than did a 2-day
time-shift range (Figure 6 ii), but even this small time-shift range was sufficient to distinguish
observed patterns of social interaction from the randomization.

Figure 6
Figure 6: Vulture interactions emerge from social attraction rather than from spatial
constraints. Number of unique individuals a vulture interacts with - degree (a, b) and number of
interactions - strength (c, d) of free living vultures during summer 2022 (black open circles).
Individual vultures are ordered along the x axis by their observed degree (a, b) or strength (c, d).
The observed values are compared with the degree (a,b) and strength (c,d) expected by chance
when shuffling the trajectory of each day (orange) and when shifting trajectories up to 12 days in
either direction (a total time-shift range of 24 days) in (a, c) and by 1 day in each direction (total
time-shift range of 2 days) in (b, d) using the wrap-around method (blue).



Discussion

In their paper introducing the path shuffling method, Spiegel et al (2016) suggested that "A
parallel randomization approach that offsets the entire track of a given individual by a varying
period… should achieve similar performance". They noted that such an approach should be
developed and analyzed––as we do here. The existing path shuffling method and the new
wrap-around randomization method performed similarly when the agents in our simulation had
static home ranges. However, as the agents ranged over larger areas (more mobile home range
centers) and changed their foci of activity, the two randomization methods gave more and more
different predictions for rates of 'chance' social encounters (Figure 3). When the movement
trajectories in the wrap-around method were allowed to be shifted over a wider time range,
strength value outcomes became more similar to those from the path shuffling method (Figure
4ii). However, degree values were most similar between the path shuffling method and
intermediate time-shift range values (Figure 4i).

Neither method failed to detect underlying social attraction where it existed (i.e., no false
negatives) for the strong sociality scenarios we considered, for any of the simulations we tested.
Even at low levels of social attraction, observed population means nearly always differed
significantly from the randomizations (Figures 3 and 4, b,d,f) and the measure that was most
impacted by low social attraction was degree in the stable home range situation (Figure S3).
However, the path shuffling method was more likely to detect false positives of sociality
compared to the wrap-around method, especially when agents' home ranges moved large
distances in a directional manner (Figure 5). The wrap-around method’s likelihood of detecting
false positives increased as the sampling effort decreased (Figure 5). Finally, both
randomization methods detected sociality when we applied them to empirical data on flight
interactions in a population of free-ranging vultures, though the wrap-around method was more
similar to the vultures' observed sociality values than the path shuffling method was, likely
reflecting a better conservation of their movement continuity (Figure 6).

Comparing path shuffling to the wrap-around randomization

Because both randomization methods disrupted the spatiotemporal synchrony of individuals that
were moving together, they both succeeded in detecting underlying social attraction in all of the
simulation scenarios (for Z-scores, see Tables S1-S3). This was due in part to the relatively high
level of social attraction we simulated. However, both methods still detected sociality even at
much lower social weight thresholds, for both degree and strength (Figure S3).
Overall,observed degree and strength values were more similar to the wrap-around
randomization than to the path shuffling randomization because the wrap-around method retains
temporal, as well as spatial, autocorrelation. By contrast, shuffling paths over the entire
randomization period allows individuals to "teleport" across their spatial range, allowing them to
cover the spatial area more evenly in time.

The methods differed from each other the most when animals changed their activity areas
directionally over the course of many days because the effect of ‘teleportation’ on the
randomized trajectories was largest in this situation. Consider a case of two individuals that
spend some multi-day portion of the study period preferring to associate with each other. If we
apply the wrap-around method and end up shifting these two individuals' trajectories (relative to
each other) by an amount less than their original period of association, then those two
individuals will still have some co-occurrence (in time and space) in parts of their shifted



trajectories. If, instead, we shuffle those trajectories across the entire study period, then there is
no guarantee that the days when the two individuals interacted will stay adjacent; they could be
reassigned to any date within the entire tracking period. If the individuals were changing their
home ranges directionally, shuffling the days could also mean being separated far enough in
space that interactions would be impossible.

The way that individuals use space is important for understanding how the two randomizations
perform when there is no underlying social attraction. Notably, the path shuffling method
over-predicted the population mean degree for the non-sociable agents whose home range
centers changed locally (orange curve in Figure 4 i c). Spiegel et al. (2016) observed the same
over-prediction of degree when they initially described the method. Key to this finding is the
overlapping space use of the agents in the locally-changing home ranges scenario (Figure 2 ii c,
d). By applying path shuffling to these non-sociable agents, we increased the number of chance
encounters with other unique individuals (i.e., increasing degree), which in the observed
simulation are precluded by the temporal separation of the agents. By contrast, the wrap-around
method maintains the internal spatiotemporal autocorrelation of each agent's path, thereby
retaining temporal isolation as a means of preventing encounters between certain individuals.
Wrap-around-randomized individuals may interact with different unique individuals than in the
observed simulation, but they will not necessarily encounter more individuals.

The distinction between the two methods is salient mostly for degree, which is a measure of the
number of unique interaction partners, regardless of interaction duration or frequency. Neither
the static home ranges scenario nor the directionally changing home ranges scenario resulted in
larger than random degree values for the non-sociable simulation (Figure 4 i a, e) because they
lack the overlapping space use that characterizes the locally changing home range. This
over-prediction of degree by the path shuffling method when animals have highly overlapping
home ranges highlights the importance of constraining the extent to which we randomize
movement trajectories––by constraining the shifting of each day based on its temporal
sequence, we fix the problem of degree over-prediction and successfully capture the observed
degree value (blue lines in Figure 4 i c). This suggests that the wrap-around method may be
especially important for biological questions about the number of unique individuals animals
interact with (degree) and study systems in which overall space is shared between animals and
social structure is maintained by temporal separation.

Effect of time shifts on wrap-around randomization performance

To apply the wrap-around randomization method, it is necessary to choose a time range that
determines how far each individual's trajectory can be shifted, as a proportion of the total
tracking period. This limit represents a trade-off between test power and expected false positive
rate, and the selected time-shift range should reflect the biology of the system and the relevant
rate of change in individuals’ movement and space use. While the wrap-around and shuffling
methods randomize paths by days, to avoid decoupling activities that occur at different times of
day, there could be biological systems and research questions in which shorter or longer time
units would be more appropriate. Restricting time-shifts to very small ranges (e.g., two-day in
our simulations) results in randomized trajectories that are very similar to the observed data:
each individual has only two possible starting days, so each individual will remain correlated
with half of the others in the population – thus reducing the statistical power and potentially
leading to a higher false negative rate. Indeed, we found that when social attraction was very
slight, the likelihood of a false negative result was higher for the highly restricted wrap-around
method than for either the path shuffling method or wrap-around with a wider range (Figure S3).

https://www.zotero.org/google-docs/?2PIN20


At the other extreme, letting trajectories shift over the entire tracking period effectively allows
any first day of a trajectory to fall on any other day, bringing the adjacent days in the trajectory
along with it. By increasing the number of possible start dates, the largest possible time-shift
range would minimize the chance of any two individuals being exactly aligned with each other.
Interestingly, it did not take much time-shifting to disrupt the social structure and detect sociality.
Even the shortest time-shifts still returned results that were significantly different from the
observed values (Figure 4 b, d, f, in both i and ii), including when the randomization method was
applied to empirical data (Figure 6). A randomization that changes the data minimally while still
distinguishing between the causal factors of interest is desirable because it avoids problems
associated with longer time-scales, such as changing environmental conditions.

The time-shift size that is required for detecting sociality when using the wrap-around method
can depend on the duration of social interactions relative to the duration of the time-shift units.
In our simulation, social interactions were brief, while trajectories were shifted backward and
forward by entire days. Therefore, even shifts of one or two days were sufficient to disrupt social
associations. This was especially true for our analysis of vulture data, in which co-flight
interactions could be very brief. If the shifting and interaction durations are on similar
time-scales, one might be able to examine different time-shift ranges to determine the duration
of a biologically meaningful interaction. Such an approach would be similar to Whitehead’s
(1995) lagged association-rate analysis. Further analysis of the wrap-around method can
highlight its utility for identifying the time scale over which social interactions occur and persist.
Another relevant consideration is how social interactions are defined. We used a simple
co-location definition of social interactions in our simulations, in which being in close proximity
during one time step was sufficient for two individuals to be considered interacting. This may or
may not be biologically accurate for a given study system. The definition of a social interaction
may change the extent of the difference between observed and randomized networks, with the
co-movement definition excluding brief "path-crossings" from consideration and therefore
potentially causing randomizations to differ even more from observed networks than under a
co-location interaction definition. A reanalysis of our simulated social networks with a
co-movement definition of social interactions yielded qualitatively similar results for all
simulations (Figures S4-S5), but we encourage further examination of the effect of interaction
definitions on randomization results.

In the version of path shuffling we used for comparison, days are randomized over the entire
tracking period (any day can be assigned to any other day). This approach is most similar to
conducting the wrap-around randomization with the largest possible time-shift range. However,
they are not identical because even when trajectories shift over many days, some pairs of
individuals will, by chance, have relative shifts that are small enough to maintain more social
interactions than they would when using the path shuffling method. Path shuffling can be
alternatively implemented with restricted time windows, as discussed by Spiegel et al. (2016).
For instance, one could choose to break a 100-day season into 10-day segments and randomly
shuffle the days only within each segment, which would preserve some of the spatiotemporal
autocorrelation that is lost when days are shuffled across all 100 days. Note that the default
implementation of the path shuffling method in the R package ‘spatsoc’ (Robitaille et al. 2019)
randomizes across the entire tracking period, but the user can break the tracking period into
shorter segments. Spiegel et al. (2016) conducted a thorough analysis of the effect of the
time-window size on the performance of the path shuffling approach. Here we shuffle paths over
the entire tracking period, because this is how path shuffling method has been implemented in
most cases (Jones et al. 2020; Tichon et al. 2020; Farthing et al. 2021) and because even the
smallest time-shift ranges of the wrap-around method allow for the possibility of interchanging
trajectory segments at either end of the tracking period. Future work could examine how the
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time window for path shuffling and the time-shift range of the wrap-around method correspond
to each other. For both methods, shorter time-shift ranges are recommended if the typical
duration of a social interaction and the rate of environmental change are shorter.

From our comparison of just one path shuffling time-window to many time-shifts of the
wrap-around method, we see that the relationship between the two methods differs depending
on the network measure examined (degree or strength). When considering strength, the path
shuffling method was most similar to the wrap-around method with the widest possible time-shift
range (lightest blue lines, Figure 4 ii). This is as expected, considering that both of these
methods can randomize any day to any other. But we did not observe the same pattern for
degree – instead, path shuffling was most similar to wrap-around with an intermediate time-shift
range (medium blue lines, Figure 4 i). This pattern is explained by the conceptual difference
between degree (which counts interaction partners, no matter how brief the interaction) and
strength (which considers interaction frequency). Allowing trajectories to shift by a large number
of days increases the number of pairs of individuals whose trajectories will be decoupled to the
point that they will never interact (reducing their degree), while smaller shifts will preserve at
least some chances for them to encounter each other. By contrast, path shuffling creates new,
brief interactions between individuals that would never have met otherwise. Those fleeting
interactions are sufficient to increase degree (because even a single interaction counts,
whereas the effect on strength is minute). In this way, degree can reach beyond its value in the
observed data––as discussed below. Meanwhile, strength does not show the same effect,
because it is agnostic to the identities of the interacting partners. Therefore, in selecting a
randomization method and a time-shift range, it is important to consider how randomization
methods may behave differently depending on the network measure that is being examined.
Depending on the research question, there are many other network measures, in addition to the
two commonly-used ones we considered here. The difference observed here between degree
and strength suggests a potentially general pattern that social network measures that are
sensitive to extreme events (like degree) will show more differences across randomization
methods compared to those that are the cumulative effect of many connections (like strength).

Sampling frequency and false positives

While both randomization methods succeeded in detecting social attraction in our sociable
agents simulations, the changing home ranges sometimes led to detecting social attraction or
avoidance when it did not exist (non-sociable agents). A false positive signal of social avoidance
was detected only once by the path shuffling method, for degree in the locally-changing home
ranges scenario (orange curve in Figure 4 i c) because of individuals' overlapping space use, as
discussed above. A false positive signal of social attraction was detected for both degree and
strength in the directionally-changing home ranges scenario, for both path shuffling and the long
(but not the shortest) time-shift ranges in the wrap-around method (Figure 4 e, f). When animals
in the simulation had directionally-changing home ranges, they all started relatively close to
each other and then radiated outward and away from the starting position and from each other.
When trajectories are wrapped around, the end of the trajectory is linked to its start, allowing
individuals that were too far from each other at the end of the simulation to interact with each
other. Only the smallest time-shifts maintain the overall spatial structure of the population,
resulting in the lowest rates of false positives when animals move in a directional manner.
Finally, the size of the time-shift range had opposite effects on the likelihood of the wrap-around
method to detect false positives in each of these scenarios because one of them is a case of the
observed being artificially above the expected (false positive for attraction in the



directionally-changing home ranges scenario, Figure 5 e, f), while the other is a case of the
observed being artificially below the expected (false positive for avoidance in the
locally-changing home ranges scenario, Figure 5 c, d).

The rate of false positives increased as trajectory data was downsampled for the wrap-around
method, especially when the home range center of the agents moved locally (Figure 5 c, d). As
data become more sparse, error rate increases, just as with any sampling method, not only of
movement data. An increase in error rate results in higher rates of type I errors, i.e. more false
positives, using any statistical approach. Both randomization methods had some false positive
rates at very low sampling rates (when only 10% of the data was sampled) for the locally
changing home ranges scenarios, suggesting that as information about the movement pattern
becomes less complete, the difference in performance of the two methods is smaller when
animals have locally moving home ranges. Interestingly, sampling frequency did not have as
much of an effect on the likelihood of reporting a false positive using the wrap-around method
with small time-shifts, in the directionally-changing or static home ranges scenarios (Figure 5 a,
b, e, f). This lower impact of sample size on false positives might be due to the very localized, or
the large ranging movements of the individuals that are both still captured relatively well within
the timescale of the randomization with downsampled movement data. Thus, the way in which
animals move around in their environment could influence the impact that sampling effort has on
the ability to test hypotheses about the underlying causes of sociality.

While we investigated the performance of our proposed method when the simulated data were
downsampled, we did not explore the effect of irregular missing observations or missing
individuals. Furthermore, in animal tracking studies, it is common for individuals to be tracked
over different portions of the overall study period. Future work could explore how the
wrap-around method performs when individuals are not tracked for the entire study duration.
There are two ways to adjust the wrap-around method to data sets with individuals differing in
sampling duration: (1) wrap each individual's trajectory around itself, retaining the distinction
between tracked and untracked days (the approach we took for the vulture data); (2) assuming
that individuals are present in the population even when they are not tracked, shifting
trajectories throughout the entire tracking period, including to days in which an individual was
not observed. The potential effects of each of these wrap-around versions on the sensitivity and
specificity of the wrap-around method should be explored.

Using path randomizations to determine the causes of sociality in
free-ranging vultures

Both randomization methods detected social attraction when applied to empirical data from a
population of free-ranging vultures, rejecting the hypothesis that vultures interact at random and
supporting the common understanding that vulture interactions emerge from conspecific
attraction, beyond the influence of spatial constraints alone (Figure 6) (Mundy et al. 1993; Harel
et al. 2017). Vultures do change their centers of activity from day to day, but not to the same
extent as our directionally-changing home ranges simulation scenario (see Figure S1 for
examples of vulture trajectories). Their movements are highly spatially overlapping over the
course of the season; conceptually, they might fall somewhere between our static and
locally-changing home range scenarios (Figure S1). Congruent with our findings from the
simulation data, both randomization methods were significantly different from the observed
values for degree and strength, reflecting vultures' strong sociality. Indeed in the simulations,
both methods, but especially the wrap-around method with a wide time-shift range, succeeded
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in detecting social attraction even when it was quite weak (Figure S3), and can therefore be
used on species with low rates of sociality. As with the simulated data, the wrap-around method
produced results that were more similar to observed values than the path shuffling method,
because wrap-around maintains the spatial as well as the temporal autocorrelation of the data.
Wrap-around randomisation detected clear deviations from random for both degree and strength
even when time-shifts were limited to a very small range (Figure 6 b, d). Future work should
examine the effect of the absolute number of days, rather than just the length of the time-shift
range relative to the length of the entire sampling period, on the difference between observed
and expected values. Furthermore, having rejected the hypothesis that vultures interact at
random after accounting for their movement patterns, we anticipate further work examining the
relative importance of spatial attractors and social preferences in shaping their social behavior.

Both randomization methods face challenges when the landscape itself changes frequently. The
case study of the vultures provides particular examples for potential pitfalls related to changing
resources. Vulture flight movements are strongly affected by the location and strength of thermal
and orographic uplift, which are temporally (and, in the case of thermal uplift, spatially) variable
(Shamoun-Baranes et al. 2003; Harel et al. 2016; Scacco et al. 2019). The carcasses they feed
on are ephemeral and also highly variable in space and time (Houston 1974; Monsarrat et al.
2013). A particular carcass may be visited for a few consecutive days, serving as a local
attractor. The goal of randomizations is to decouple the temporal synchrony of pairs of
individuals while keeping each individual's movement tied to the geographic space in which it is
moving. However, when key features of the landscape (such as uplift, ephemeral food, etc.) are
themselves changing in time, randomizing trajectories will also decouple individuals' movements
from the times when the resources were present. Such decoupling could generate false positive
signals of social attraction when animals are aggregating around fleeting resources rather than
being attracted to each other (Brisson-Curadeau et al. 2018; Chen et al. 2022). Adjusting the
time-shift range (for wrap-around) and time window (for path shuffling) to suit the temporal scale
over which resources change could minimize the impact of this decoupling. We have shown that
even time-shifts of a day or two are sufficient for detecting significant differences between
observed and randomized data. If a particular resource tends to change approximately every
3-5 days, then shifting trajectories by 1-2 days could minimize the decoupling of individuals from
ephemeral resources while still disrupting temporal synchrony among individuals. Still,
disentangling the influences of a changing landscape on animal movements––and therefore on
their social interactions––from the effects of their social preferences, and our ability to detect
them, and other potential drivers of sociality, remains a significant challenge that is not
adequately addressed by some of the current methods (Webber et al. 2023).

Conclusions
Uncovering the underlying causes of sociality is often addressed by comparing observed data to
expected values from randomizations that decouple parameters of interest, like spatial and
social processes. The way in which randomizations are designed therefore impacts the ability to
make inferences about underlying biological processes. We show that randomization
approaches that retain spatial-temporal attributes of movement paths in different ways differ in
their ability to detect sociality for certain types of movement patterns. Specifically, the
wrap-around method that we proposed here out-performs the commonly used path shuffling
approach by (1) producing randomizations that are more similar to the observed data, thus
creating values that are more biologically feasible, and (2) reducing the false positive detection
rate when animals shift their home ranges. Thus, the wrap-around method is applicable to more
types of animal movements than path shuffling and is especially more suitable for systems in
which space is shared between animals but social structure is maintained by temporal
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separation. We note however that regardless of which method is used, if the density of
individuals changes over time (e.g., because individuals spread out in certain seasons) the false
positive rates will increase if the time scale of seasonal effects is not considered. It would be
further interesting to examine how the two randomization approaches perform when populations
are composed of individuals that differ substantially in their movement patterns. Considering the
utility of the wrap-around method to a broad range of movement types, its lower error rate, and
increased biological realism, we recommend implementing it in the highly used R package
spatsoc (Robitaille et al. 2019) and using it over the path shuffling method - especially when
animals do not return to the same location each night.
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Figure S1: Vulture trajectories for the first 50 days of Summer 2022. Five randomly selected
vultures are highlighted in colors; other individuals' trajectories are shown in gray. Axes are
marked with latitude and longitude.
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Figure S2. Relationship between time-shift ranges and social network measures. Each
point is the mean (across 100 randomization iterations) of the population mean number of
interaction partners (degree, i) or number of interactions (strength, ii) for a given time-shift
range––i.e. the average of all degree or strength mean values in all 100 simulations depicted by
each blue line in Figure 4. The proportion of shifting ranges from 4% (as much as +/- 1 day out
of 50 days) to 100% (as much as +/- 25 days out of 50 days). Agents are either sociable (light
green) or non-sociable (dark green) and have home range centers that are either static (a),
moving locally (b), or moving in a directional manner (c). Solid lines show the average degree or
strength when using the path shuffling method, and dashed lines are observed degree or
strength values.



Figure S3. Likelihood to miss sociality, for varying levels of social preference. An iteration
of each simulation scenario was run with social weights (bias of movement toward a nearby
conspecific, vs. to the home range center) set at values from 0.1 to 1. 100 randomization
iterations were run for the path shuffling method (orange), and for the wrap-around method at
the two extreme values of the time-shift range (very small time-shift range, in dark blue;
time-shift range equal to the simulation duration, in light blue). Values on the y axis represent 1
minus the two-tailed p value (i.e. false negatives) for the observed population mean value,
versus the distribution of 100 randomization iterations. For example, a value of 0.25 means that
the observed population mean value was more extreme than all but 25% of the randomization



population mean values. The orange line is shown dashed to clarify overplotting of the light blue
line.



Table S1. Z-scores for observed population mean degree compared to the wrap-around
randomizations.



Table S2. Z-scores for observed population mean strength compared to the wrap-around
randomizations.



Table S3. Z-scores for observed population mean degree and strength compared to the
path shuffling randomizations.

Figures S4-S5. A comparison of different social network interaction definitions. Dashed
lines represent the mean degree (Figure S4) and strength (Figure S5) of randomized social
networks, calculated using a co-location definition of an interaction: individuals present within
the threshold distance of each other during one timestep were considered to be interacting.
Solid lines represent the mean degree and strength calculated using a co-movement definition
of an interaction: individuals had to be present within the threshold distance of each other for at
least two consecutive timesteps in order to be considered to be interacting. Light blue lines
represent randomizations conducted with the wrap-around method (with the maximum time-shift
range), orange lines represent randomizations conducted with the path shuffling method, and
black lines represent the mean degree and strength of the observed social network.

Figure S4.



Figure S5


