
IUCN RED LIST

ECOSYSTEMS ASSESSMENTS

http://www.iucnrle.org

Mangroves of the Arabian (Persian) Gulf

¹ Terrestrial and Marine Biodiversity, Environment Agency of Abu Dhabi, Abu Dhabi 45553, United Arab Emirates.

² Red List of Ecosystems Adviser, International Union for Conservation of Nature IUCN, Gland, Switzerland.

³ Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441-1982, Saudi Arabia

⁴ International Union for Conservation of Nature IUCN, Gland, Switzerland.

Abstract

Mangroves of the Arabian (Persian) Gulf is a regional ecosystem subgroup (level 4 unit of the IUCN Global Ecosystem Typology). It includes the marine ecoregions of the Arabian (Persian) Gulf, Gulf of Aden, Gulf of Oman, Western Arabian Sea and Western India (Asia). Mangroves of the Arabian (Persian) Gulf occupy sheltered intertidal lagoons along coastlines and offshore islands, occupying various shore types including highly organic soft sediments, sandy soils, and consolidated hard substrata. The biota is characterized by four species of true mangroves: *Rhizophora mucronata, Avicennia marina, Aegiceras corniculatum*, and *Ceriops tagal*. Of these species, *R. mucronata* and *A. marina* are found along the northern Arabian Gulf and Western Asia, while *Aegiceras corniculatum* and *Ceriops tagal* occur only in Western Asia (Iran and Balochistan Province of Pakistan), *Avicennia marina* is widespread throughout this entire ecoregion, including the southern and western Arabian Gulf.

The mapped extent of mangroves in 2020 was 209.5 km², representing 0.1 % of the global mangrove area. About 47 % occupy the southern coastline of the United Arab Emirates and 39 % the northern coastline of Iran. However, there is uncertainty about mapped extent in 1970 based on available studies. The mangrove net area change has been -14.3 % since 1996. However, there have been increases in patches largely due to plantation efforts. If this decline trend continues, an overall change of -45.0% is projected over the next 50 years. Under a high sea-level rise scenario (IPCC RCP8.5) \approx 16.1 % of the Arabian Gulf mangroves would be submerged by 2060. Moreover, 1.1% of the province's mangrove ecosystem is undergoing degradation, with the potential to increase to 3.3% within a 50-year period, based on a vegetation index decay analysis. Overall, the Arabian (Persian) Gulf mangrove ecosystem is assessed as **Vulnerable (VU)**.

Citation:

Almansoori. A, Macintosh, D. J., Almahasheer, H. & Suárez, E. L. (2024). *'IUCN Red List of Ecosystems, Mangroves of the Arabian (Persian) Gulf'*. EcoEvoRxiv.

Corresponding author:

Email: ena.suarez@iucn.org

Keywords:

Mangroves; IUCN Red List of ecosystems; ecosystem collapse; threats, Endangered.

Ecosystem classification: MFT1.2 Intertidal forests and shrublands Assessment's distribution: The Arabian (Persian) Gulf province					
asse	essm	ent:			
Α	В	С	D	E	Overall
VU	LC	DD	DD	NE	
VU	LC	LC	LC	NE	VU
				NE	
į	ian) asso A VU VU DD , LC:	ian) Gulf p assessme A B VU LC VU LC DD LC , LC: Least C	ian) Gulf provinc assessment: A B C VU LC DD VU LC LC DD LC DD , LC: Least Concern,	ian) Gulf province assessment: A B C D VU LC DD DD VU LC LC LC	ian) Gulf province assessment: A B C D E VU LC DD DD NE VU LC LC LC NE DD LC DD DD NE , LC: Least Concern,

VU

Mangroves of the Arabian (Persian) Gulf

1. Ecosystem Classification

IUCN Global Ecosystem Typology (version 2.1, Keith et al. 2022):

Transitional Marine-Freshwater-Terrestrial realm

MFT1 Brackish tidal biome

MFT1.2 Intertidal forests and shrublands

MFT1.2_4_MP_19 Mangroves of the Arabian (Persian) Gulf

IUCN Habitats Classification Scheme (version 3.1, IUCN 2012) :

1 Forest

1.7 Forest – Subtropical/tropical mangrove vegetation above high tide level *below water level ¹

12 Marine Intertidal

12.7 Mangrove Submerged Roots

Avicennia marina mangrove and rocky shoreline of the Southern Arabian (Persian) Gulf, United Arab Emirates (Photo credit: Amna Almansoori).

¹ Note on the original classification scheme. This habitat should include mangrove vegetation below water level. Mangroves have spread into warm temperate regions to a limited extent and may occasionally occur in supratidal areas. However, the vast majority of the world's mangroves are found in tropical/subtropical intertidal areas.

Mangroves and saltmarshes along intertidal zone of Southern Arabian (Persian) Gulf, United Arab Emirates (Photo credit: Amna Almansoori).

Planted Rhizophora mucronata trees together with natural Avicennia marina mangrove near Jiwani in Western Balochistan Province, Pakistan (Photo credit: Donald Macintosh).

2. Ecosystem Description

Spatial distribution

The Mangroves of the Arabian (Persian) Gulf includes intertidal forest and shrublands of the marine ecoregions of Arabian (Persian) Gulf, Gulf of Aden, Gulf of Oman, Western Arabian Sea and Western India (Spalding *et al.*, 2007) (Figure 1). The interior Arabian (Persian) Gulf is bordered by eight counties: Bahrain, Iran, Kuwait, Iraq, Oman, Qatar, Saudi Arabia, and United Arab Emirates, while the Western Arabian Sea and Western India ecoregions comprise of Oman, Iran and Pakistan. According to the literature, there is also a small area of mangroves, approximately 0.01 km², in the Yemeni Governorate of Al Maharah (Nagi *et al.*, 2012). However, due to the lack of spatial data regarding its exact location, it was not included in the assessment of the mangroves of the Arabia/Persian Gulf.

Mangroves of the Arabian (Persian) Gulf occur as fragmented monospecific stands of once a much larger expense (Sheppard et al., 1992). Of the total interior Arabian (Persian) Gulf mangroves extent, approximately 47 % are situated along the Southern coastline of the United Arab Emirates and approximately 39 % along the Northern coastline of Iran, with marginal habitat increases along Southern coastline largely due to reforestation and plantation efforts (Almahasheer, 2018). Using 25 satellite imagery recently acquired from Landsat 8 data for the year 2017. This study found about 165 km² of fragmented scattered mangroves along the Arabian (Persian) Gulf, mostly intense in the United Arab Emirates (Almahasheer, 2018). Earlier records of the Arabian (Persian) Gulf Southern interior coastline (United Arab Emirates) indicated an extent of 35 km² (year 1980) and 41 km² (year 2005) (FAO, 2007), while recent records using very high-resolution imagery from WorldView-2 recorded 57.8 km² (EAD, 2020), where plantation projects have likely played a significant role in increasing their cover over the years (Almahasheer, 2018). Whereas mangroves in Kuwait are rare, and areas like Bahrain, Qatar and Saudi Arabia remained stable with a slight increase. Mangroves in Iran suffered a decline throughout the years (Almahasheer, 2018; Almahasheer et al., 2013), however, recent estimates of the extent of mangroves could indicate potential increases (Naderloo, et al., 2023), but additional spatial distribution datasets are required to further verify the extent. As of 2020, the estimated extent of mangroves in this province was 209.5 km², representing about 0.1 % of the global mangrove area, with net area change of -14.3 % from 1996 to 2020 (Bunting et al., 2022). However, these estimates vary due to the use of various methodologies and imagery.

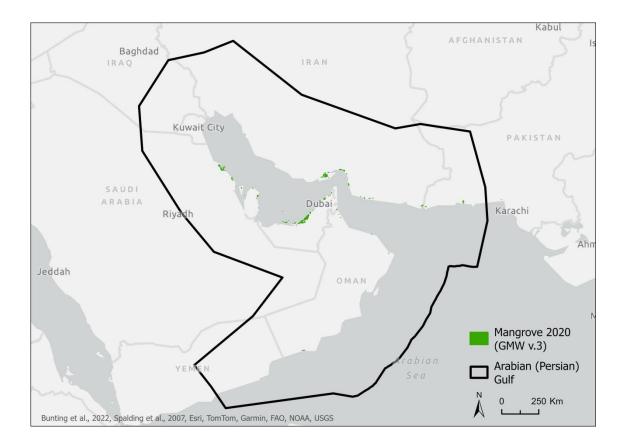


Figure 1. Map of mangroves distribution along the Arabian (Persian) Gulf and Arabian Sea. Due to insufficient spatial data, the map does not depict a small mangrove area in Yemen's Al Maharah Governorate, referenced in literature (see Nagi *et al.*, 2012)

Biotic components of the ecosystem (characteristic native biota)

The mangroves of the Arabian (Persian) Gulf province are low in diversity with four recorded true mangrove plant species; *Rhizophora mucronata*, *Avicennia marina*, *Aegiceras corniculatum*, and *Ceriops tagal* (IUCN, 2022). Historically, two dominant species; *Rhizophora mucronata* and *Avicennia marina*, colonised the Arabian (Persian) Gulf (Sheppard *et al.*, 1992). However, *R. mucronata* became extinct from the southern part of the Arabian (Persian) Gulf (Hellyer and Aspinall, 2005). Presently both species are only found along the northern Arabian (Persian) Gulf of Iran's coastline and the Balochistan coast of Pakistan, while only one species; *Avicennia marina*, occurs naturally along the rest of the Arabian (Persian) Gulf (Almahasheer, 2018).

The limited diversity of mangrove species is due to this province's extremely arid climate, resulting in high salinity conditions unfavourable to less tolerant mangrove species (Hellyer and Aspinall, 2005). The harsh environment of the Arabian (Persian) Gulf also stresses mangroves, which restricts their growth rate to as little as 0.1 cm / month (Saenger *et al.*, 2004), while mangrove stands appear stunted, dwarf-like, and sparse, and are frequently intermingled with non-mangrove, salt-tolerant shrub species (e.g., *Arthrocnemum macrostachyum* and *Halocnemum strobilaceum*) (Hellyer and Aspinall, 2005).

According to the IUCN Red List of Threatened Species (IUCN, 2022), there are at least 180 species within the taxa Actinopterygii, Aves, Mammalia, Reptilia, and Chondrichthyes associated directly or indirectly with mangrove habitats, where at least twenty are found within Arabian (Persian) Gulf region. The direct species associated with mangroves of this province are *Calidris ferruginea* (Curlew Sandpiper) listed as Near Threatened; *Epinephelus coioides* (Orange-spotted Grouper) listed as Vulnerable, and *Negaprion acutidens* (Sharptooth Lemon Shark) listed as Endangered (IUCN, 2022) (See Annex). The common fauna associated with mangroves includes many fish species, crabs, prawns, and molluscs (Hellyer and Aspinall, 2005).

Abiotic Components of the Ecosystem

Regional mangrove distributions are influenced by interactions among landscape position, temperature and rainfall, hydrology, sea-level, sediment dynamics, soil characteristics, storm-driven processes, and disturbance by pests and predators. Mangroves of the Arabian (Persian) Gulf occupy sheltered intertidal lagoons along coastlines and offshore islands containing various soil types including highly organic soft sediments, clay or sandy soils low in organic matter, and consolidated hard substrata (Hellyer and Aspinall, 2005). The Arabian (Persian) Gulf interior is characterized by limited freshwater input (less than 90 mm precipitation annually), large fluctuating sea-water temperatures (ranging from 12°C in winter to 35°C in summer), unusual north winds, and high evaporation rates that cause high salinity (average salinity 42 ppt) (Sheppard *et al.*, 1992). The Balochistan coast of Pakistan is also water-deficient, with average annual precipitation of only 130 mm (FAO, 2007). Prolonged high temperatures in summer months, coupled with high evaporation rates can decrease oxygen levels and greatly increase salinity levels in mangrove soils. Only the most salt-tolerant mangrove species, *Avicennia marina*, is able to withstand salinities in the Arabian (Persian) Gulf that can range from 48 to 70 ppt in some lagoons (Sheppard *et al.*, 1992, 2010).

Key processes and interactions

Mangroves of the Arabian (Persian) Gulf provide important ecosystem services across the marine environment for supporting biodiversity and local communities. They act as structural engineers possessing traits such as pneumatophores, salt excretion glands, vivipary, and propagule buoyancy that promote survival and recruitment in poorly aerated, saline, mobile, and tidally inundated soils. The key processes undertaken within mangrove soils, and the availability of oxygen, are major contributors to the provision of various services (Figure 2). The soil quality and its composition promote the development of mangrove trees. The duration of tidal inundation, availability of freshwater (e.g., from precipitation), and the levels of oxygen are also major processes within mangroves ecosystems. Tidal inundation typically occurs twice daily and ranges from 0.2 meters to three meters. This process regulates soil composition significantly by delivering an influx of new nutrients, while also regulating the level of oxygen. While the growth of *A. marina* was not previously assessed using internodal analysis in the Western Arabian (Persian) Gulf, the node production in 40 branches/axillary shoot in Syhat city, Saudi Arabia, ranged from 6 to 9 nodes y^{-1} , with a branch growth rate from 15 to 46.5 cm; median of 25.5 cm per year (Almahasheer, 2021).

The process of inundation is also critical for the interaction between mangroves and oxygen uptake. During the high tide, mangrove pneumatophores are submerged, thus, respiration cannot occur, whilst during low tide respiration continues due to exposure to air. The hyper-arid climate of the Arabian (Persian) Gulf causes extreme evaporation rates that also affect salinity in the ecosystem. The salinity levels recorded across mangroves of the Arabian (Persian) Gulf range between 40 and 50 ppt, however, prolonged high salinity levels above this range may cause signs of stress on trees, followed by health deterioration. Hence, tidal inundation is vital for regulating salinity levels. The unusual dynamics of the northern winds also cause sudden severe waves across the intertidal areas which can be considered as another key process of interaction in mangrove ecosystems of the Arabian (Persian) Gulf. These processes may have an impact on new recruitments and growth development of saplings due to the instability of the marine environment, affecting dispersal and anchoring of propagules.

Mangroves also produce large amounts of detritus (e.g., leaves, twigs, and bark), which is either buried in waterlogged sediments, or consumed by crabs and other invertebrates, thus, mobilising carbon, and nutrients to other trophic levels. Mangroves play a vital role along the coastline of this ecoregion by supporting primary production for a variety of fish (e.g., *Gerres longirostris* and *Lutjanus argentimaculatus*), birds (e.g., *Ardea cinerea*), crabs (e.g., *Metopograpsus messor*), and marine invertebrates (such as Crustaceans and Molluscs). Burrowing by crabs and marine invertebrates within mangrove soils is a key process for improving soil quality and composition, which supplements regular levels of oxygen and salinity in mangrove ecosystems. The specialised mangrove roots (pneumatophores) offer shelter and protection for many juvenile fish and shrimp species, while the tree canopy cover provides the significant service of shade from prolonged ultraviolet radiation emitted by the sun and cooler sea-water temperatures.

Mangrove ecosystems also serve as major blue carbon sinks, incorporating organic matter into sediments and living biomass. Mangroves soil carbon sequestration of the Southern Arabian (Persian) Gulf range from 8.63 g $C_{org} m^{-2} yr^{-1}$ to 111.38 g $C_{org} m^{-2} yr^{-1}$ with a mean of 57.67 ± 2.90 g $C_{org} m^{-2} yr^{-1}$ (Crooks, *et al.*, 2021). These rates are higher than reported rates from this arid region, for example the reported rates for Red Sea mangroves are 15 ± 1 g $C_{org} m^{-2} yr^{-1}$ (Almahasheer *et al.*, 2017), and 19 ± 11 g $C_{org} m^{-2} yr^{-1}$ for the western Arabian (Persian) Gulf (Cusak *et al.*, 2018). However, the rates reported from the Arabian (Persian) Gulf are much lower than global mean sequestration rates of 170 g $C_{org} m^{-2} yr^{-1}$ (Perez *et al.*, 2018). Moreover, mangrove forests of the Arabian (Persian) Gulf seem to keep pace with the high contemporary sea-level rise (SLR), resulting from the combined effects of global anthropogenic climate change and regional land subsidence (Saderne *et al.*, 2018). The N and P stocks (in 0.2 m thick-sediments) and accumulation rates (for the last century based on ²¹⁰Pb and for the last millennia based on ¹⁴C) in mangrove, seagrass, and saltmarsh sediments from eight locations along the coast of Saudi Arabia (81 cores in total). Finally, the major contributing factors of mangroves health degradation and loss are direct tree removal, coastal infrastructure activities, particularly the impacts of dredging (e.g., deepening and widening of channels) and landfilling near mangrove soils, which causes high levels of eutrophication and modification of substrates.

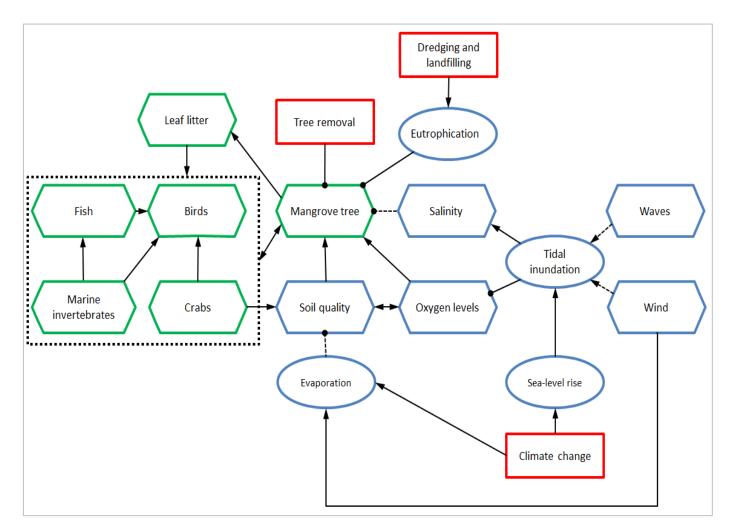


Figure 2. Conceptual model of key processes of abiotic and biotic components and threats relevant to the risk assessment for mangrove forests of Arabian (Persian) Gulf. Hexagons represent key components (biotic in green and abiotic in blue); ellipses represent key processes (biotic in green and abiotic in blue); and red boxes represent threats. Pointed arrows indicate positive effects; rounded arrows indicate negative effects, while dashed line indicates either potential positive or negative effects.

3. Ecosystem Threats and vulnerabilities

Main threatening process and pathways to degradation

Mangrove degradation arises from various factors, including aquaculture, urbanization, associated coastal development, over-harvesting, and pollution stemming from domestic, industrial, and agricultural land use. Fishing activities and resource use by small-scale fishers and local communities are minor in the region, thus, they are not considered as major threats to ecosystem collapse.

Small-scale fishing in a mangrove-fringed lagoon in Balochistan Province, Pakistan (Photo credit: Don Macintosh)

Throughout the Arabian (Persian) Gulf the most pressing threats to mangroves are anthropogenic disturbances mainly from coastal dredging to widen or deepen channels near or within mangrove areas; and landfilling from benthic sedimentation removal for coastal infrastructure and man-made islands (Hellyer and Aspinall, 2005). The alteration of hydrodynamics and the water flow (e.g., daily tidal inundation) by natural or anthropogenic modifications across intertidal zones of the Arabian (Persian) Gulf mangroves will heavily disrupt the ecosystem, particularly if the threat is frequent and prolonged. As a result, extreme salinity greater than 70 ppt with depleted oxygen levels in mangrove soils may adversely affect ecosystem functioning. Increased levels of freshwater input could support the ecosystem (Saenger *et al.*, 2004). Disruption of soil composition and soil quality will negatively affect associated population of marine fauna and invertebrates and disrupt primary production and tropic levels. The degraded health of mangroves and loss will reduce services such as water quality and sedimentation trapping, indirectly affecting adjacent ecosystems such as saltmarsh communities, mudflats, and seagrass meadows (Hogarth, 2015).

Other human-induced threats to the ecosystem include pollution, especially oil spills that could smear oil on to pneumatophores and mangrove soils (Hellyer and Aspinall, 2005; FAO, 2007). A recent estimate revealed that about 82% of the Arabian (Persian) Gulf Western coasts are non-polluted to slightly polluted (Amin and Almahasheer, 2022). Large plastic objects are more frequent in mangroves than on beaches, because they are sinks for marine litter and traps for land litter as well, with a total of 450 litter items recorded in the Arabian (Persian) Gulf, yielding an average of 1.21 ± 0.53 items m⁻² across transects. Litter densities were recorded ranging from 0.22 ± 0.06 items m⁻² in Safwa to 3.0 ± 2.0 items m⁻² on Tarout island (Martin *et al.*, 2019). Desalination plants are another cause of concern, the increased salinity levels, if reached above threshold (> 70), could cause severe stress possibly mangroves loss and degrade nearby ecosystems and associated fauna (Saenger *et al.*, 2004). Natural threats to mangroves by northern strong winds causing high waves and storms can damage mangrove forests through direct defoliation and

destruction of trees, as well as through the mass mortality of animal communities within the ecosystem. Growth of grasses on open mudflats, colonisation of the back mangrove zone by the invasive mesquite shrub (*Prosopis juliflora*), or smothering by sand from shifting sand dunes, can also impede mangrove growth and development in Pakistan. Additionally, predicted sea-level rise as a result of climate change, may affect growth in the long term if they do not keep pace of sea-level rise, due to the Arabian (Persian) Gulf's low-lying coastal topography (Saenger *et al.*, 2004).

Dredging activities near mangroves of Southern Arabian (Persian) Gulf, United Arab Emirates (Photo credit: Amna Almansoori).

Marine landfill near mangroves of Southern Arabian (Persian) Gulf, United Arab Emirates (Photo credit: Amna Almansoori).

Erosion by anthropogenic activities near mangroves of the Southern Arabian (Persian) Gulf, United Arab Emirates (Photo credit: Amna Almansoori).

Threats of littering to mangroves near Eastern Arabian (Persian) Gulf, Saudi Arabia (Photo credit: Hanan Almahasheer).

Definition of the collapsed state of the ecosystem

Mangroves are dynamic ecosystems that tolerate high salinity, wave action and daily tidal inundation rarely experienced by terrestrial or freshwater plants. They possess specialized traits that facilitate high nitrogen use efficiency and nutrient resorption, thereby influencing critical ecosystem processes and functions. Ecosystem collapse is recognized when the tree cover of diagnostic true mangrove species dwindles to zero, indicating complete loss (100%). Mangrove ecosystems exhibit remarkable dynamism, with species distributions adapting to local shifts in sediment distribution, tidal patterns, and variations in local inundation and salinity gradients. Disruptive processes can trigger shifts in this dynamism, potentially leading to ecosystem collapse. Ecosystem collapse may manifest through the following mechanisms: a) restricted recruitment and survival of diagnostic true mangroves due to adverse climatic conditions (e.g., prolonged sea-water temperature above 35°C), or human-induced land modifications (e.g., marine route channels or landfills); b) alterations in freshwater input (e.g., less than annual average precipitation of 90 mm), waves or tidal currents that destabilize and erode soft sediments, hindering recruitment and growth; c) shifts in salinity patterns (threshold > 70 ppt) and tidal inundation levels (threshold > two meters); and (d) land use and modification due to coastal infrastructure (e.g., urbanization, dredging, construction of bridges, landfill), groundwater extraction (for domestic or commercial use), industrial runoff (e.g., from desalination plants) or marine pollution; hence, altering salinity levels and nutrient loadings, thereby affecting mangrove soil quality and composition and impacting mangrove survival. The loss of mangrove habitats in the Arabian (Persian) Gulf could lead to ecosystem collapse, affecting nearby ecosystems (e.g., seagrass meadows) and result in an overall reduction of biodiversity and fisheries production.

Threat Classification

IUCN Threat Classification (version 3.3, IUCN-CMP 2022) relevant to mangroves of the Arabian (Persian) Gulf province:

1. Residential & Commercial Development

- 1.2 Housing & Urban Areas
- 1.2 Commercial & Industrial Areas
- 1.3 Tourism & Recreation Areas

3. Energy Production & Mining

3.1 Oil & Gas Drilling

- 4. Transportation & Service Corridors
 - 4.1 Roads & Railroads
 - 4.2 Utility & Service Lines
 - 4.3 Shipping Lanes

5. Biological Resource Use

5.4 Fishing & Harvesting Aquatic Resources

5.4.3 Unintentional Effects: Subsistence/Small Scale

7. Natural System Modifications

7.2 Dams & Water Management/Use

- 7.2.5 Abstraction of Ground Water (Domestic Use)
- 7.2.6 Abstraction of Ground Water (Commercial Use)
- 7.2.7 Abstraction of Ground Water (Agricultural Use)
- 7.2.8 Abstraction of Ground Water (Unknown Use)

7.3 Other Ecosystem Modifications

9. Pollution

- 9.1 Domestic & Urban Waste Water 9.1.2 Run-Off
- 9.2 Industrial & Military Effluents 9.2.1 Oil Spills
- 9.3 Agricultural & Forestry Effluents9.3.1 Nutrient Loads
 - 9.3.2 Soil Erosion, Sedimentation

11. Climate Change & Severe Weather

- 11.1 Habitat Shifting & Alteration
- 11.2 Droughts

11.3 Temperature Extremes

- 11.4 Storms & Flooding
- 11.5 Other Impacts (sea-level rise)

4. Ecosystem Assessment

Criterion A: Reduction in Geographic Distribution

Subcriterion A1 measures the trend in ecosystem extent during the last 50-year time window. Unfortunately, there is currently no common regional dataset that provides information for the entire target area in 1970. However, country-level estimates of mangrove extent can be used to extrapolate the trend between 1970 and 2020. Accordingly, we compiled reliable published sources (see appendix 3) that contain information on mangrove area estimates close to 1970 (both before and after) for each country within the province. These estimates were then used to interpolate the mangrove area in 1970 in each country. By summing up these estimates, we calculated the total mangrove area in the province. We only considered the percentage of each country's total mangrove area located within the province and the estimated values for 1970 should be considered only indicative (see appendix 3 for further details of the methods and limitations).

Two primary sources were used to estimate the mangrove area in 1970: FAO's (2007) report on the global status and trends of mangroves and the spatial analysis by Milani (2018) (Annex 3 - Table b). Significant differences between the sources resulted in both low and high estimates (Annex 3 - Table a). Iran's mangrove area, which is the largest mangrove area in the province, was estimated at 39.5 km² based on Milani (2018) versus 303 km² using FAO's (2007) trends. Consequently, the total mangrove area in the Arabian (Persian) Gulf in 1970 was estimated to be between 101.52 and 442.94 km². The lower estimate was based on Milani (2018) time series while the higher estimate was obtained based on FAO (2007).

In addition, the latest version of the Global Mangrove Watch (GMW v3.0) spatial dataset was used to estimate the mangrove area in the Arabian (Persian) Gulf from 1996 to 2020. Mangrove area in the province (and corresponding countries) was corrected for errors of omission and commission, using the equations in Bunting *et al.*, (2022).

The analysis revealed a net reduction in mangrove coverage (-14.3%), mainly in Bahrain, Qatar, Pakistan, Oman, and Iran. Notably, Iran's mangroves, contributing to the largest portion in the province at 53%,

experienced a negative net change of ~31 km² (Bunting *et al.*, 2022). However, other studies reported a net increase over the same period ranging from 8.4 km² and 14 km² (Milani 2018, Erfanifard *et al.*, 2022). Estimates of Iran's mangrove area in 2020 also varied significantly (Naderloo *et al.* 2023, Erfanifard *et al.* 2022, Milani 2018, Almahasheer *et al.* 2017) (see Annex 3). Mangroves in the United Arab Emirates, the second largest mangrove extent in the province at 35.6%, exhibited slight changes according to the GMW dataset (-2%). Other sources reported an overall increase of 50.69 km² from the years 2001-2017 (Helena *et al.*, 2020).

Results from the analysis of subcriterion A1 (Annex 3) reveal a notable change in the Arabian (Persian) Gulf mangroves over the past 50 years (1970-2020). These changes indicate a fluctuation ranging between a decrease of -52.7 % and an increase of +106.4% of its mangrove area. This variability places the Arabian (Persian) Gulf mangrove province between the Least Concern (LC) and Endangered (EN) threat categories. Consequently, the ecosystem is assessed as **Vulnerable** under Subcriterion A1, with a plausible range between Least Concern and Endangered (LC-EN).

Mangroves of	Area 2020* (Km ²)		Area 1970* (Km ²)	Net area Change (Km ²)	% Net Area Change	Rate of change (%/year)
the Arabian (Persian) Gulf	200.5	Lower Estimate	101.5	108	106.4%	2.1%
	209.5	Higher Estimate	442.9	-233.4	-52.7%	-1.1%
* D · 1	.1	1 1 1 0	1.		: 1070 1: . 1	

* Details on the methods and references used to estimate the mangrove area in 1970 are listed in appendix 3. Total mangrove area in 2020 is based on the Global Mangrove Watch Version 3 (GMW v3.0) dataset.

Subcriterion A2 measures the change in ecosystem extent in any 50-year period, including from the present to the future: The Arabian (Persian) Gulf province mangroves show a net area change of -14.3% (1996-2020) based on the Global Mangrove Watch time series (Bunting *et al.*, 2022). This value reflects the offset between areas gained (+ 0.2%/year) and lost (- 0.8%/year). The largest decrease in mangrove area in this time series occurred between 2007 and 2020. Applying a linear regression to the area estimations between 1996 and 2020 we obtained a rate of change of -0.6%/year (Figure 3). Assuming this trend continues in the future, it is predicted that the extent of mangroves in the Arabian (Persian) Gulf province will change by -34.2% from 1996 to 2046; by -52.8% from 1996 to 2070; but by -45.0% from 2020 to 2070. Given that these predicted changes in mangrove extent are above 30% but below the 50% risk threshold, the Arabian (Persian) Gulf mangrove ecosystem is assessed as **Vulnerable (VU)** under subcriterion A2.

Subcriterion A3 measures changes in mangrove area since 1750. Unfortunately, there are no reliable data on the mangrove extent for the entire province during this period, and therefore the Arabian (Persian) Gulf mangrove ecosystem is classified as **Data Deficient (DD)** for this subcriterion.

Overall, the ecosystem is assessed as Vulnerable (VU) under criterion A.

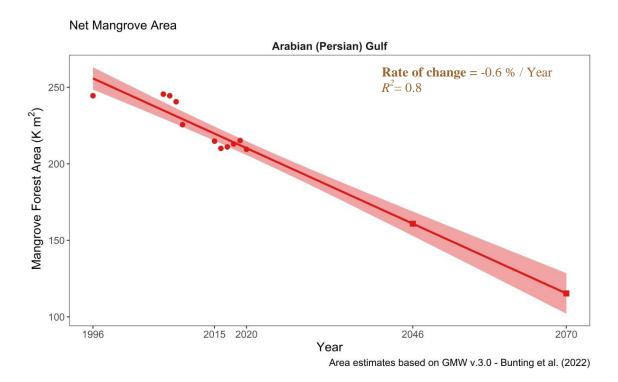


Figure 3. Projected extent of the Arabian (Persian) Gulf mangrove ecosystem to 2070. Circles represent the province mangrove area between 1996 and 2020 based on the GMW v3.0 dataset and equations in Bunting *et al.*, (2022). The solid line and shaded area are the linear regression and 95% confidence intervals. Squares show the Arabian (Persian) Gulf province predicted mangrove area for 2046 and 2070. It is important to note that an exponential model (proportional rate of decline) did not give a better fit to the data (R2 = 0.8).

Criterion B: Restricted Geographic Distribution

Criterion B measures the risk of ecosystem collapse associated with restricted geographical distribution, based on standard metrics (Extent of Occurrence EOO, Area of Occupancy AOO, and Threat-defined locations). These parameters were calculated based on the 2020 Arabian (Persian) Gulf province mangrove extent (GMW v.3).

Province	Extent of Occurrence EOO (Km ²)	Area of Occupancy (AOO)≥1%	Criterion B
The Arabian (Persian) Gulf	896429.0	51	LC

For 2020, AOO and EOO were measured as 141 grid cells 10 x 10 km and 896,429.0 km², respectively (Figure 4). Excluding from the AOO those grid cells that contain patches of mangrove forest that account for less than 1% of the grid cell area, (< 1 km²), the AOO is measured as **51, 10 x 10 km grid cells** (Figure 4, red grids). The Southern Arabian (Persian) Gulf (United Arab Emirates) mangroves are under AOO >= 1 %, however, more than 10 threats-defined locations are present due to mangroves distribution less than 5 km²

from urban development and coastal infrastructure. Though these threats will not collapse the ecosystem in one event, but will take more than three consecutive events, rendering their future position as vulnerable areas (Almansoori *et al.*, 2021). However, considering the very high number of threat-defined-locations, there is no evidence of plausible catastrophic threats leading to potential disappearance of mangroves across their extent. As a result, the Arabian (Persian) Gulf mangrove ecosystem is assessed as **Least Concern (LC)** under criterion B.

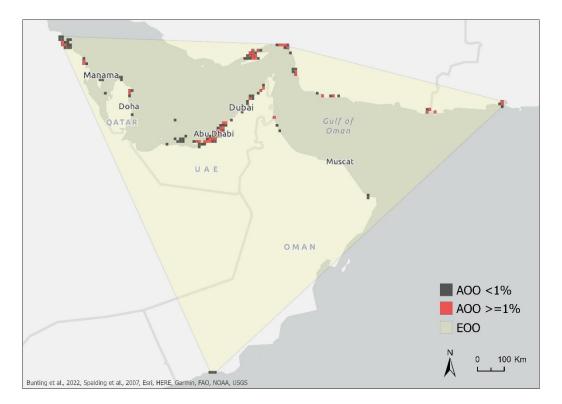


Figure 4. The Arabian (Persian) Gulf mangrove Extent of Occurrence (EOO) and Area Of Occupancy (AOO) in 2020. Estimates based on 2020 GMW v3.0 spatial layer (Bunting *et al.*, 2022). The red 10 x 10 km grids (n=51) are more than 1% covered by the ecosystem, and the black grids <1% (n= 90).

Criterion C: Environmental Degradation

Criterion C measures the environmental degradation of abiotic variables necessary to support the ecosystem.

Subcriterion C1 measures environmental degradation over the past 50 years. Assessment of salinity data for years between 2011 and 2020 across the Southern Arabian (Persian) Gulf show highest value of 49.3 in 2014 indicating below the collapse threshold indicated for the ecosystem, however, this data was not sufficient to measure environmental degradation (Almansoori *et al.*, 2021). Therefore, there are no reliable data to evaluate this subcriterion for the entire province, and therefore the Arabian (Persian) Gulf mangrove ecosystem is classified as Data Deficient (DD) for subcriterion C1.

Subcriterion C2 measures environmental degradation in the future, or over any 50-year period, including from the present. In this context, the impact of future sea-level rise (SLR) on mangrove ecosystems was assessed by adopting the methodology presented by Schuerch *et al.* (2018). The published model was designed to calculate both absolute and relative change in the extent of wetland ecosystems under various

regional SLR scenarios (i.e medium: RCP 4.5 and high: RCP 8.5), with consideration for sediment accretion. Therefore, Schuerch *et al.* (2018) model was applied to the Arabian (Persian) Gulf mangrove ecosystem boundary, with spatial extent based on (Giri *et al.*, 2011) and assuming mangrove landward migration was not possible.

According to the results, under an extreme SLR scenario of a 1.1-meter rise by 2100, the projected submerged area is ~ -16.1 % by 2060, which remains below the 30 % risk threshold. Therefore, considering that no mangrove recruitment can occur in a submerged system (100 % relative severity), but that -16.1 % of the ecosystem extent will be affected by SLR, the Arabian (Persian) Gulf mangrove ecosystem is assessed as **Least Concern (LC)** for subcriterion C2.

Subcriterion C3 measures change in abiotic variables since 1750. There is a lack of reliable historic data on environmental degradation covering the entire province, and therefore the Arabian (Persian) Gulf province is classified as Data Deficient (DD) for this subcriterion.

Overall, the ecosystem is assessed as Least Concern (LC) under criterion C.

Criterion D: Disruption of biotic processes or interactions

The global mangrove degradation map developed by Worthington and Spalding (2018) was used to assess the level of biotic degradation in the Arabian (Persian) Gulf province. This map is based on degradation metrics calculated from vegetation indices (NDVI, EVI, SAVI, NDMI) using Landsat time series (\approx 2000 and 2017). These indices represent vegetation greenness and moisture condition. Mangrove degradation was calculated at a pixel scale (30 m resolution), on areas intersecting with the 2017 mangrove extent map (GMW v2). Mangrove pixels were classified as degraded if two conditions were met: 1) at least 10 out of 12 degradation indices showed a decrease of more than 40 % compared to the previous period; and 2) all twelve indices did not recover to within 20% of their pre-2000 value (detailed methods and data are available at: https://maps.oceanwealth.org/mangrove-restoration/). The decay in vegetation indices has been used to identify mangrove degradation and abrupt changes, including mangrove die-back events, clear-cutting, fire damage, and logging; as well as to track mangrove regeneration (Lovelock *et al.*, 2017; Santana 2018; Murray *et al.*, 2020; Aljahdali *et al.*, 2021; Lee *et al.*, 2021). However, it is important to consider that changes observed in the vegetation indices can also be influenced by data artifacts (Akbar *et al.*, 2020). Therefore, a relative severity level of more than 50 %, but less than 80 %, was assumed.

The results from this analysis show that over a period of 17 years (~ 2000 to 2017), 1.4 % of the Arabian Gulf mangrove area is classified as degraded, resulting in an average annual rate of degradation of 0.01 %. Assuming this trend remains constant, + 3.34 % of the Arabian (Persian) Gulf mangrove area will be classified as degraded over a 50-year period. Since less 30 % of the ecosystem will meet the category thresholds for criterion D, the Arabian (Persian) Gulf mangrove province is assessed as **Least Concern (LC)** under subcriterion D2b.

No data were found to assess the disruption of biotic processes and degradation over the past 50 years (subcriterion D1) or since 1750 (subcriterion D3). Thus, both subcriteria are classified as **Data Deficient** (**DD**).

Overall, the Arabian (Persian) Gulf ecosystem remains Least Concern (LC) under criterion D.

Criterion E: Quantitative Risk

No model was used to quantitatively assess the risk of ecosystem collapse for this ecosystem; hence criterion E was **Not Evaluated (NE)**.

5. Summary of the Assessment

CRITERION			
A. Reduction in Geographic Distribution	A1 Past 50 years	A2 Future or any 50y period	A3 Historical (1750)
Geographic Distribution	VU	VU	DD
	D 4	DA	D2
	B1	B2	B3
B. Restricted Geo. Distribution	Extent of Occurrence	Area of Occupancy	Threat-defined Locations < 5?
	LC	LC	LC
	C1	C2	C3
C. Environmental	Past 50 years (1970)	Future or any 50y period	Historical (1750)
Degradation	DD	LC	DD
D. Diamuntian of histic	D1	D2	D3
D. Disruption of biotic	Past 50 years (1970)	Future or Any 50y period	Historical (1750)
processes	DD	LC	DD
E. Quantitative Risk analysis		NE	
OVERALL RISK CATEGORY		VU	

VU = Vulnerable; LC = Least Concern; DD = Data Deficient, NE = Not Evaluated

Overall, the status of the Arabian (Persian) Gulf mangrove ecosystem is assessed as Vulnerable (VU).

6. References

- Akbar, M.R., Arisanto, P., Sukirno B., Merdeka P., Priadhi M., and Zallesa, S. (2020). Mangrove vegetation health index analysis by implementing NDVI (normalized difference vegetation index) classification method on sentinel-2 image data case study: Segara Anakan, Kabupaten Cilacap. *IOP Conference Series: Earth and Environmental Science*, 584(1), p. 012069, https://doi.org/10.1088/1755-1315/584/1/012069.
- Almahasheer, H., Al-Taisan, W., and Mohamed, M.K. (2013). Mangrove deterioration in Tarut Bay on the eastern province of the Kingdom of Saudi Arabia. *Pakhtunkhwa J Life Sci*, 1(02), pp.49-59.
- Almahasheer, H., Serrano, O., Duarte, C., Arias-Ortiz, A., Masque, P. and Irigoien, X. (2017). Low Carbon sink capacity of Red Sea mangroves. *Scientific Reports*, 7(1).
- Almahasheer, H. (2018). Spatial coverage of mangrove communities in the Arabian Gulf. *Environmental Monitoring and Assessment*, 190(2), p. 10.
- Almahasheer, H. (2021). Internodal Analysis of Avicennia marina in the Western Arabian Gulf. *Frontiers in Marine Science*, 8, Article 698596. https://doi.org/10.3389/fmars.2021.698596

- Almansoori, A., Castellanos, M., Zager, I. and García, L. (2021). Red List of Ecosystems for Abu Dhabi Emirate: Mangrove forests Assessment (IUCN-EAD). *International Union for Conservation of Nature*. Report. Environment Agency of Abu Dhabi.
- Aljahdali, M.O., Munawar, S., and Khan, W.R. (2021). Monitoring Mangrove Forest Degradation and Regeneration: Landsat Time Series Analysis of Moisture and Vegetation Indices at Rabigh Lagoon, Red Sea. *Forests*, 12(1), 52. https://doi.org/10.3390/f12010052
- Amin, S.A., and Almahasheer, H. (2022). Pollution indices of heavy metals in the Western Arabian Gulf coastal area. *The Egyptian Journal of Aquatic Research*, 48(1), pp.21-27.
- Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R.M., Thomas, N., Tadono, T., Worthington, T.A., Spalding, M.D., Murray, N. J., and Rebelo, L.-M. (2022). Global Mangrove Extent Change 1996– 2020: Global Mangrove Watch Version 3.0. Remote Sensing, 14(15), 3657. https://doi.org/10.3390/rs14153657
- Crooks, S., Poppe, K., Rubilla, A., Rybczyk J. (2021). Trial Assessment of Mangrove Soil Carbon Sequestration Rates in the United Arab Emirates: Trial Application. AGEDI-Environment Agency Abu Dhabi. Silvestrum Climate Associates and Western Washington University. Report. Environment Agency Abu-Dhabi, United Arab Emirates.
- Cusack, M., Saderne, V., Arias-Ortiz, A., Masque, P., Krishnakumar, P.K., Rabaoui, L., Qurban, M.A., Qasem, A.M., Prihartato, P., Loughland, R.A., Elyas, A.A., Duarte, C.M. (2018). Organic carbon sequestration and storage in vegetated coastal habitats along the western coast of the Arabian Gulf. Environmental Research Letters. 13(7), 074007. https://doi.org/10.1088/1748-9326/aac899
- EAD (2020). Terrestrial, Marine and Intertidal Habitat Classification Schema Document: V3.5. In S-Dite, H. (ed). *Terrestrial and Marine Habitat Mapping from Satellite Imagery*. Report. Environment Agency Abu-Dhabi, United Arab Emirates.
- Erfanifard, Y., Lotfi Nasirabad, M., Stereńczak, K. (2022) Assessment of Iran's Mangrove Forest Dynamics (1990–2020) Using Landsat Time Series. *Remote Sensing*. 14, 4912. https://doi.org/10.3390/rs14194912
- FAO (2007). Mangroves of Asia 1980–2005: Country Reports. Forest Resources Assessment Working Paper. *Food and Agriculture Organization of the Rome*. Rome. P. 152.
- Giri, C., Ochieng, E., Tieszen, L., Zhiliang, Z., Singh, A., Loveland, T., Masek, J., Norman, D. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography. 20(54–159). https://doi.org/10.1111/j.1466-8238.2010.00584.x
- Hellyer, P. and Aspinall, S. (2005) The Emirates: A natural history. 1 edn. United Arab Emirates: Trident Press. p. 428. ISBN- 1-90-548602-2.
- Helena, S.D., Hornby, R., Tubati, S.R.K., Al Mansoori, A., Al Ansari, H., Al Kharusi, T., Darawsha, T., Al Ahbabi, W., Hamersley, D., Burnett, C., Flemmings, R., Critchley, D. (2020). Terrestrial and Marine Habitat Mapping from Satellite Imagery. Environment Agency Abu Dhabi, Terrestrial, Marine and Intertidal Habitat Classification Schema Document, Report, V3.5, pp 82-85.

- Hogarth, P. J. (2015). The Biology of Mangroves and Seagrasses. 3 edn. Oxford University Press. p. 304. ISBN: 9-78-019871654-9.
- IUCN (2012). IUCN Habitats classification scheme (3.1). International Union for Conservation of Nature. [Data set]. https://www.iucnredlist.org/resources/habitat-classification-scheme.
- IUCN (2022). The IUCN Red List of Threatened Species. International Union for Conservation of Nature. (Version 2022-2) [Data set]. https://www.iucnredlist.org/ https://www.iucnredlist.org
- IUCN-CMP (2022). Unified Classification of Direct Threats (3.3) [Data set]. International Union for Conservation of Nature. https://www.iucnredlist.org/resources/threat-classification-scheme.
- Keith, D. A., Ferrer-Paris, J. R., Nicholson, E., and Kingsford, R. T. (Eds.) (2020). IUCN Global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups. IUCN, International Union for Conservation of Nature. https://doi.org/10.2305/IUCN.CH.2020.13.en
- Lee, C., Duncan, C., Nicholson, E., Fatoyinbo, T. E., Lagomasino, D., Thomas, N., Worthington, T. A., and Murray, N. J. (2021). Mapping the Extent of Mangrove Ecosystem Degradation by Integrating an Ecological Conceptual Model with Satellite Data. *Remote Sensing*, 13(11), 2047. https://doi.org/10.3390/rs13112047
- Lovelock, C. E., Feller, I. C., Reef, R., Hickey, S., and Ball, M. C. (2017). Mangrove dieback during fluctuating sea levels. *Scientific Reports*, 7(1), 1680. https://doi.org/10.1038/s41598-017-01927-6
- Martin, C., Almahasheer, H. and Duarte, C.M. (2019) Mangrove forests as traps for marine litter. *Environmental Pollution*, 247, pp.499-508.
- Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5 3.
- Murray, N. J., Keith, D. A., Tizard, R., Duncan, A., Htut, W. T., Oo, A. H., Ya, K. Z., & Grantham, M. (2020). Threatened ecosystems of Myanmar: An IUCN Red List of Ecosystems Assessment. Version 1. Wildlife Conservation Society. https://doi.org/10.19121/2019.Report.37457
- Naderloo, R., Shahdady A., Rahiman, H., Shijai, M., Nessralhi, A. (2023). Atlas of sensitive ecosystems in the Persian Gulf and Gulf of Oman. Iran province. [Unpublished work].
- Nagi, H. M., Khanbari, K. M. and Al-Sameh, A. (2012). Estimating Total Area of Mangrove Habitats in the Republic of Yemen Using Remote Sensing and GIS; Faculty of Science Bulletin, 24: 75-84.
- Perez S.A., Libardoni, B.G. and Sanders.C.J. (2018). Factors influencing organic carbon accumulation in mangrove ecosystems. *Biology letters*. 10.1098/rsbl.2018.0237.
- Santana, N.C. (2018). Fire Recurrence and Normalized Difference Vegetation Index (NDVI) Dynamics in Brazilian Savanna. Fire, 2(1), 1. https://doi.org/10.3390/fire2010001
- Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D., McOwen, C. J., Pickering, M. D., Reef, R., Vafeidis, A. T., Hinkel, J., Nicholls, R. J., and Brown, S. (2018). Future response of

global coastal wetlands to sea-level rise. *Nature*, 561(7722), 231–234. https://doi.org/10.1038/s41586-018-0476-5

- Saenger, P., Blasco, A., Youssef and Loughland, R.A. (2004) Mangroves of the United Arab Emirates with particular emphasis on those of Abu Dhabi Emirate. In: Loughland, R.A., F.S. Al Muhairi, S.S. Fadel, A.M. Al Mehdi and P. Hellyer (Eds.), *Marine Atlas of Abu Dhabi. Emirates Heritage Club*, Abu Dhabi, pp. 58-69.
- Saderne, V., Cusack, M., Almahasheer, H., Serrano, O., Masqué, P., Arias Ortiz, A., Krishnakumar, P.K., Rabaoui, L., Qurban, M.A. and Duarte, C.M. (2018) Accumulation of carbonates contributes to coastal vegetated ecosystems keeping pace with sea level rise in an arid region (Arabian Peninsula). *Journal* of Geophysical Research: Biogeosciences, 123(5), pp.1498-1510.
- Sheppard, C., Price, A. and Roberts, C. (1992) Marine Ecology of the Arabian Region Patterns and Processes in Extreme Tropical Environments. *Academic Press*, p. 356. ISBN-10: 0-12-639490-3.
- Sheppard, C., Al-Husiani, M., Al-Jamali, F., AL-YAMANI, F., Baldwin, R., Bishop, J.M., Benzoni, F., Dutrieux, É., Dulvy, N.K., Durvasula, S.R., Jones, D., Loughland, R.A., Medio, D., Nithyanandan, M., Pilling, G.M., Polikarpov, I., Price, A.R., Purkis, S.J., Riegl, B., Saburova, M., Namin, K.S., Taylor, O., Wilson, S., & Zainal, K. (2010) The Gulf: a young sea in decline. *Marine pollution bulletin*, 60 1, 13-38.
- Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A., and Robertson, J. (2007). Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. *BioScience*, 57(7), 573–583. https://doi.org/10.1641/B570707

Authors:

Almansoori, A., Macintosh, D. J., Almahasheer, H. & Suárez, E. L.

Acknowledgments

The development of the Arabian Gulf Mangrove Red List of Ecosystems was made possible through the collaboration and dedication of the Authors. We would also like to thank the IUCN SSC Mangrove Specialist Group and the Global Mangrove Alliance Science Working group, for their support in the delineation of the level 4 mangrove units that were the basis for this analysis. Special thanks to José Rafael Ferrer-Paris for his contribution to the production of the general ecosystem description template for the RLE mangrove assessments. We also wish to acknowledge Thomas Worthington for kindly providing the spatial data on mangrove degradation.

Peer revision:

Somaya Ghoraba Marcos Valderrabano

Web portal:

http://iucnrle.org/

Disclaimer:

The designation of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The views expressed in this publication do not necessarily reflect those of IUCN or other participating organisations.

7. Appendices

1. List of Key Mangrove Species

List of plant species considered true mangroves according to Red List of Threatened Species (RLTS) spatial data (IUCN, 2022). We included species whose range maps intersected with the boundary of the marine provinces/ecoregions described in the distribution section.

Class	Order	Family	Scientific name	RLTS category
Magnoliopsida	Lamiales	Acanthaceae	Avicennia marina	LC
Magnoliopsida	Rhizophorales	Rhizophoraceae	Rhizophora mucronata	LC
Magnoliopsida	Ericales	Primulaceae	Aegiceras corniculatum	LC
Magnoliopsida	Malpighiales	Rhizophoraceae	Ceriops tagal	LC

2. List of Associated Species

List of taxa that are associated with mangrove habitats in the Red List of Threatened Species (RLTS) database (IUCN, 2022). We included only species with entries for Habitat 1.7: "Forest - Subtropical/Tropical Mangrove Vegetation Above High Tide Level" or Habitat 12.7 for "Marine Intertidal - Mangrove Submerged Roots", and with suitability recorded as "Suitable", with "Major Importance" recorded as "Yes", with Presence recorded as "Extant", "Possibly Extant" or "Possibly Extinct", Origin recorded as "Native" or "Reintroduced" and with any value of Seasonality except "Passage. The common names are those shown in the RLTS.

Class	Order	Family	Scientific name	RLTS category	Common name
Aves	Charadriiformes	Scolopacidae	Calidris ferruginea	NT	Curlew sandpiper
Actinopterygii	Perciformes	Epinephelidae	Epinephelus coioides	VU	Orange-spotted Grouper
Magnoliopsida	Malvales	Malvaceae	Thespesia populnea	LC	Portia tree
Actinopterygii	Perciformes	Sparidae	Acanthopagrus berda	LC	Picnic seabream
Actinopterygii	Perciformes	Sparidae	Acanthopagrus bifasciatus	LC	Two-bar Seabream
Aves	Accipitriformes	Accipitridae	Accipiter tachiro	LC	African goshawk
Aves	Passeriformes	Sturnidae	Acridotheres tristis	LC	Common myna
Aves	Charadriiformes	Scolopacidae	Actitis hypoleucos	LC	Common sandpiper
Actinopterygii	Albuliformes	Albulidae	Albula glossodonta	VU	Shortjaw bonefish
Aves	Coraciiformes	Alcedinidae	Alcedo atthis	LC	Common kingfisher
Aves	Gruiformes	Rallidae	Amaurornis phoenicurus	LC	White-breasted Waterhen
Aves	Suliformes	Anhingidae	Anhinga rufa	LC	African darter
Chondrichthyes	Rhinopristiformes	Pristidae	Anoxypristis cuspidata	EN	Narrow sawfish
Aves	Passeriformes	Cisticolidae	Apalis flavocincta	LC	Brown-tailed Apalis
Aves	Caprimulgiformes	Apodidae	Apus affinis	LC	Little swift
Aves	Caprimulgiformes	Apodidae	Apus caffer	LC	White-rumped Swift
Aves	Pelecaniformes	Ardeidae	Ardea brachyrhyncha	LC	Yellow-billed Egret
Aves	Pelecaniformes	Ardeidae	Ardea cinerea	LC	Grey heron

Class	Order	Family	Scientific name	RLTS category	Common name
Aves	Pelecaniformes	Ardeidae	Ardea goliath	LC	Goliath heron
Aves	Pelecaniformes	Ardeidae	Ardea intermedia	LC	Intermediate egret
Aves	Pelecaniformes	Ardeidae	Ardea purpurea	LC	Purple heron
Aves	Pelecaniformes	Ardeidae	Ardeola grayii	LC	Indian Pond-heron
Actinopterygii	Tetraodontiformes	Tetraodontidae	Arothron hispidus	LC	White-spotted Puffer
Actinopterygii	Tetraodontiformes	Tetraodontidae	Arothron immaculatus	LC	Immaculate puffer
Actinopterygii	Tetraodontiformes	Tetraodontidae	Arothron stellatus	LC	Stellate puffer
Actinopterygii	Gobiiformes	Gobiidae	Asterropteryx semipunctata	LC	Star-finned Goby
Actinopterygii	Atheriniformes	Atherinidae	Atherinomorus	LC	Hardyhead silverside
Actinopterygii	Perciformes	Carangidae	lacunosus Atule mate	LC	Yellowtail scad
Reptilia	Squamata	Viperidae	Bitis arietans	LC	Puff adder
Aves	Pelecaniformes	Threskiornithidae	Bostrychia hagedash	LC	Hadada ibis
Magnoliopsida	Malpighiales	Rhizophoraceae	Bruguiera gymnorhiza	LC	Oriental mangrove
Aves	Charadriiformes	Burhinidae	Burhinus vermiculatus	LC	Water Thick-knee
Actinopterygii	Gobiiformes	Eleotridae	Butis butis	LC	Crimson-tipped Gudgeon
Aves	Pelecaniformes	Ardeidae	Butorides striata	LC	Green-backed Heron
Aves	Passeriformes	Cisticolidae	Camaroptera brachyura	LC	Bleating camaroptera
Chondrichthyes	Carcharhiniformes	Carcharhinidae	Carcharhinus amblyrhynchoides	VU	Graceful shark
Chondrichthyes	Carcharhiniformes	Carcharhinidae	Carcharhinus amboinensis	VU	Pigeye shark
Chondrichthyes	Carcharhiniformes	Carcharhinidae	Carcharhinus melanopterus	VU	Blacktip reef shark
Aves	Passeriformes	Hirundinidae	Cecropis abyssinica	LC	Lesser striped swallow
Insecta	Odonata	Coenagrionidae	Ceriagrion cerinorubellum	LC	Na
Gastropoda	Sorbeoconcha	Potamididae	Cerithidea decollata	LC	Na
Aves	Coraciiformes	Alcedinidae	Ceryle rudis	LC	Pied kingfisher
Aves	Charadriiformes	Charadriidae	Charadrius dubius	LC	Little ringed plover
Aves	Charadriiformes	Charadriidae	Charadrius mongolus	LC	Lesser sandplover
Actinopterygii	Tetraodontiformes	Tetraodontidae	Chelonodontops patoca	LC	Milkspotted puffer
Chondrichthyes	Orectolobiformes	Hemiscylliidae	Chiloscyllium arabicum	NT	Arabian carpetshark
Mammalia	Primates	Cercopithecidae	Chlorocebus	LC	Vervet monkey
Aves	Ciconiiformes	Ciconiidae	pygerythrus Ciconia microscelis	LC	African woollyneck
Aves	Passeriformes	Nectariniidae	Cinnyris venustus	LC	Variable sunbird
Aves	Accipitriformes	Accipitridae	Clanga clanga	VU	Greater spotted eagle
Gastropoda	Neogastropoda	Conidae	Conus varius	LC	Na
Aves	Coraciiformes	Alcedinidae	Corythornis cristatus	LC	Malachite kingfisher
Reptilia	Crocodylia	Crocodylidae	Crocodylus niloticus	LC	Nile crocodile
Reptilia	Squamata	Colubridae	Crotaphopeltis hotamboeia	LC	Red-lipped Snake

Class	Order	Family	Scientific name	RLTS category	Common name
Actinopterygii	Pleuronectiformes	Cynoglossidae	Cynoglossus puncticeps	LC	Speckled tonguesole
Aves	Piciformes	Picidae	Dendropicos fuscescens	LC	Cardinal woodpecker
Aves	Passeriformes	Malaconotidae	Dryoscopus cubla	LC	Black-backed Puffback
Mammalia	Sirenia	Dugongidae	Dugong dugon	VU	Dugong
Reptilia	Squamata	Viperidae	Echis carinatus	LC	Saw-scaled Viper
Aves	Pelecaniformes	Ardeidae	Egretta ardesiaca	LC	Black heron
Aves	Pelecaniformes	Ardeidae	Egretta garzetta	LC	Little egret
Aves	Pelecaniformes	Ardeidae	Egretta gularis	LC	Western Reef-egret
Actinopterygii	Elopiformes	Elopidae	Elops machnata	LC	Na
Actinopterygii	Ophidiiformes	Carapidae	Encheliophis homei	LC	Silver pearlfish
Liliopsida	Alismatales	Hydrocharitaceae	Enhalus acoroides	LC	Species code: Ea
Actinopterygii	Perciformes	Epinephelidae	Epinephelus coeruleopunctatus	LC	Whitespotted grouper
Actinopterygii	Perciformes	Epinephelidae	Epinephelus malabaricus	LC	Malabar grouper
Actinopterygii	Perciformes	Epinephelidae	Epinephelus tauvina	DD	Greasy grouper
Reptilia	Testudines	Cheloniidae	Eretmochelys imbricata	CR	Hawksbill turtle
Aves	Coraciiformes	Coraciidae	Eurystomus glaucurus	LC	Broad-billed Roller
Actinopterygii	Perciformes	Leiognathidae	Gazza minuta	LC	Toothed ponyfish
Actinopterygii	Perciformes	Gerreidae	Gerres filamentosus	LC	Whipfin mojarra
Aves	Coraciiformes	Alcedinidae	Halcyon senegaloides	LC	Mangrove kingfisher
Aves	Coraciiformes	Alcedinidae	Halcyon smyrnensis	LC	White-breasted Kingfisher
Aves	Accipitriformes	Accipitridae	Haliaeetus vocifer	LC	African Fish-eagle
Aves	Accipitriformes	Accipitridae	Haliastur indus	LC	Brahminy kite
Liliopsida	Alismatales	Cymodoceaceae	Halodule uninervis	LC	Species code: Hu
Liliopsida	Alismatales	Cymodoceaceae	Halodule wrightii	LC	Species code: Hw
Liliopsida	Alismatales	Hydrocharitaceae	Halophila ovalis	LC	Species code: Ho
Reptilia	Squamata	Gekkonidae	Hemidactylus robustus	LC	Red Sea Leaf-toed Gecko
Chondrichthyes	Myliobatiformes	Dasyatidae	Himantura uarnak	EN	Coach whipray
Actinopterygii	Syngnathiformes	Syngnathidae	Hippichthys cyanospilos	LC	Bluespeckled pipefish
Actinopterygii	Syngnathiformes	Syngnathidae	Hippichthys penicillus	LC	Beady pipefish
Aves	Passeriformes	Acrocephalidae	Hippolais languida	LC	Upcher's warbler
Holothuroidea	Aspidochirotida	Holothuriidae	Holothuria impatiens	DD	Bottleneck sea cucumber
Holothuroidea	Aspidochirotida	Holothuriidae	Holothuria parva	DD	Na
Holothuroidea	Aspidochirotida	Holothuriidae	Holothuria scabra	EN	Golden sandfish
Reptilia	Squamata	Elapidae	Hydrophis cyanocinctus	LC	Annulated sea snake
Reptilia	Squamata	Elapidae	Hydrophis gracilis	LC	Graceful Small-headed Seasnake
Reptilia	Squamata	Elapidae	Hydrophis schistosus	LC	Beaked sea snake

Class	Order	Family	Scientific name	RLTS category	Common name
Actinopterygii	Gobiiformes	Gobiidae	Istigobius ornatus	LC	Ornate goby
Aves	Pelecaniformes	Ardeidae	Ixobrychus minutus	LC	Common little bittern
Aves	Pelecaniformes	Ardeidae	Ixobrychus sinensis	LC	Yellow bittern
Aves	Pelecaniformes	Ardeidae	Ixobrychus sturmii	LC	Dwarf bittern
Actinopterygii	Perciformes	Sciaenidae	Johnius belangerii	LC	Belanger's croaker
Actinopterygii	Perciformes	Sciaenidae	Johnius borneensis	LC	Hammer croaker
Actinopterygii	Perciformes	Sciaenidae	Johnius carouna	LC	Caroun croaker
Actinopterygii	Tetraodontiformes	Tetraodontidae	Lagocephalus	LC	Diamondback puffer
Actinopterygii	Tetraodontiformes	Tetraodontidae	guentheri Lagocephalus lunaris	LC	Lunartail puffer
Aves	Charadriiformes	Laridae	Larus hemprichii	LC	Sooty gull
Actinopterygii	Perciformes	Leiognathidae	Leiognathus equulus	LC	Common ponyfish
Actinopterygii	Perciformes	Lethrinidae	Lethrinus harak	LC	Thumbprint emperor
Actinopterygii	Perciformes	Lethrinidae	Lethrinus nebulosus	LC	Spangled emperor
Gastropoda	Littorinimorpha	Littorinidae	Littoraria undulata	LC	Na
Magnoliopsida	Myrtales	Combretaceae	Lumnitzera racemosa	LC	Na
Actinopterygii	Perciformes	Lutjanidae	Lutjanus	LC	Mangrove red snapper
Actinopterygii	Perciformes	Lutjanidae	argentimaculatus Lutjanus ehrenbergii	LC	Blackspot snapper
Actinopterygii	Perciformes	Lutjanidae	Lutjanus fulviflamma	LC	Dory snapper
Actinopterygii	Perciformes	Lutjanidae	Lutjanus fulvus	LC	Blacktail snapper
Actinopterygii	Perciformes	Lutjanidae	Lutjanus johnii	LC	John's snapper
Actinopterygii	Perciformes	Lutjanidae	Lutjanus sebae	LC	Red emperor snapper
Mammalia	Carnivora	Mustelidae	Lutra lutra	NT	Eurasian otter
Mammalia	Carnivora	Mustelidae	Lutrogale	VU	Smooth-coated Otter
Mammalia	Primates	Cercopithecidae	perspicillata Macaca mulatta	LC	Rhesus monkey
Chondrichthyes	Myliobatiformes	Dasyatidae	Maculabatis gerrardi	EN	Whitespotted whipray
Actinopterygii	Elopiformes	Megalopidae	Megalops cyprinoides	DD	Indo-pacific tarpon
Aves	Coraciiformes	Meropidae	Merops albicollis	LC	White-throated Bee-
Aves	Coraciiformes	Meropidae	Merops nubicus	LC	eater Northern Carmine Bee-
Aves	Coraciiformes	Meropidae	Merops persicus	LC	eater Blue-cheeked Bee-eater
Aves	Coraciiformes	Meropidae	Merops superciliosus	LC	Olive Bee-eater
Aves	Suliformes	Phalacrocoracidae	Microcarbo africanus	LC	Long-tailed Cormorant
Aves	Perciformes	Monodactylidae	Monodactylus	LC	Silver moony
			argenteus		
Actinopterygii	Gobiiformes	Gobiidae	Mugilogobius mertoni	LC	Merton's mangrove goby
Actinopterygii	Siluriformes	Bagridae	Mystus gulio	LC	Na
Chondrichthyes	Carcharhiniformes	Carcharhinidae	Negaprion acutidens	EN	Sharptooth lemon shark
Actinopterygii	Clupeiformes	Clupeidae	Nematalosa nasus	LC	Bloch's gizzard shad
Mammalia	Cetartiodactyla	Phocoenidae	Neophocaena phocaenoides	VU	Indo-pacific finless porpoise

Class	Order	Family	Scientific name	RLTS category	Common name
Actinopterygii	Perciformes	Labridae	Novaculichthys macrolepidotus	LC	Green-banner wrasse
Aves	Charadriiformes	Scolopacidae	Numenius arquata	NT	Eurasian curlew
Aves	Charadriiformes	Scolopacidae	Numenius phaeopus	LC	Whimbrel
Aves	Pelecaniformes	Ardeidae	Nycticorax nycticorax	LC	Black-crowned Night- heron
Actinopterygii	Gobiiformes	Eleotridae	Ophiocara porocephala	LC	Spangled gudgeon
Aves	Passeriformes	Oriolidae	Oriolus larvatus	LC	Eastern Black-headed Oriole
Actinopterygii	Perciformes	Apogonidae	Ostorhinchus lateralis	LC	Humpback cardinal
Actinopterygii	Perciformes	Sciaenidae	Otolithes cuvieri	LC	Lesser tiger toothed croaker
Aves	Strigiformes	Strigidae	Otus senegalensis	LC	African Scops-owl
Actinopterygii	Gobiiformes	Gobiidae	Oxyurichthys ophthalmonema	LC	Eyebrow goby
Aves	Accipitriformes	Pandionidae	Pandion haliaetus	LC	Osprey
Mammalia	Carnivora	Felidae	Panthera pardus	VU	Leopard
Mammalia	Primates	Cercopithecidae	Papio cynocephalus	LC	Yellow baboon
Actinopterygii	Gobiiformes	Gobiidae	Parachaeturichthys polynema	LC	Lancet-tail Goby
Actinopterygii	Perciformes	Mullidae	Parupeneus barberinus	LC	Dash-and-dot goatfish
Aves	Passeriformes	Paridae	Parus major	LC	Great tit
Chondrichthyes	Myliobatiformes	Dasyatidae	Pastinachus ater	VU	Broad cowtail ray
Chondrichthyes	Myliobatiformes	Dasyatidae	Pateobatis bleekeri	EN	Bleeker's whipray
Aves	Pelecaniformes	Pelecanidae	Pelecanus rufescens	LC	Pink-backed Pelican
Actinopterygii	Clupeiformes	Pristigasteridae	Pellona ditchela	LC	Indian pellona
Actinopterygii	Perciformes	Sciaenidae	Pennahia anea	LC	Grey fin jew fish
Actinopterygii	Gobiiformes	Gobiidae	Periophthalmus argentilineatus	LC	Barred mudskipper
Actinopterygii	Gobiiformes	Gobiidae	Periophthalmus kalolo	LC	Kalolo mudskipper
Actinopterygii	Gobiiformes	Gobiidae	Periophthalmus waltoni	LC	Walton's mudskipper
Aves	Passeriformes	Phylloscopidae	Phylloscopus collybita	LC	Common chiffchaff
Aves	Passeriformes	Phylloscopidae	Phylloscopus nitidus	LC	Green warbler
Aves	Passeriformes	Phylloscopidae	Phylloscopus tristis	LC	Siberian chiffchaff
Aves	Passeriformes	Phylloscopidae	Phylloscopus trochiloides	LC	Greenish warbler
Aves	Passeriformes	Phylloscopidae	Phylloscopus trochilus	LC	Willow warbler
Gastropoda	Sorbeoconcha	Potamididae	Pirenella conica	LC	Na
Actinopterygii	Mugiliformes	Mugilidae	Planiliza subviridis	LC	Greenback mullet
Aves	Pelecaniformes	Threskiornithidae	Platalea leucorodia	LC	Eurasian spoonbill
Actinopterygii	Perciformes	Ephippidae	Platax orbicularis	LC	Orbiculate batfish
Actinopterygii	Perciformes	Haemulidae	Plectorhinchus gibbosus	LC	Brown sweetlips
Actinopterygii	Perciformes	Haemulidae	Plectorhinchus pictus	LC	Trout sweetlips
Actinopterygii	Perciformes	Haemulidae	Plectorhinchus plagiodesmus	LC	Barred rubberlip

Class	Order	Family	Scientific name	RLTS category	Common name
Actinopterygii	Siluriformes	Ariidae	Plicofollis dussumieri	LC	Blacktip sea catfish
Aves	Passeriformes	Ploceidae	Ploceus nigricollis	LC	Black-necked Weaver
Aves	Charadriiformes	Charadriidae	Pluvialis fulva	LC	Pacific golden plover
Aves	Passeriformes	Cisticolidae	Prinia gracilis	LC	Graceful prinia
Chondrichthyes	Rhinopristiformes	Pristidae	Pristis pristis	CR	Largetooth sawfish
Chondrichthyes	Rhinopristiformes	Pristidae	Pristis zijsron	CR	Green sawfish
Actinopterygii	Gobiiformes	Gobiidae	Psammogobius biocellatus	LC	Sleepy goby
Actinopterygii	Pleuronectiformes	Paralichthyidae	Pseudorhombus arsius	LC	Largetooth flounder
Aves	Passeriformes	Pycnonotidae	Pycnonotus leucotis	LC	White-eared Bulbul
Reptilia	Squamata	Pythonidae	Python sebae	NT	Central african rock python
Mammalia	Chiroptera	Pteropodidae	Rousettus aegyptiacus	LC	Egyptian fruit bat
Actinopterygii	Clupeiformes	Clupeidae	Sardinella albella	LC	White sardinella
Actinopterygii	Clupeiformes	Clupeidae	Sardinella melanura	LC	Blacktip sardinella
Actinopterygii	Aulopiformes	Synodontidae	Saurida nebulosa	LC	Clouded lizardfish
Actinopterygii	Perciformes	Scatophagidae	Scatophagus argus	LC	Spotted scat
Anthozoa	Scleractinia	Siderastreidae	Siderastrea savignyana	LC	Na
Mammalia	Cetartiodactyla	Delphinidae	Sousa plumbea	EN	Indian ocean humpback dolphin
Mammalia	Cetartiodactyla	Suidae	Sus scrofa	LC	Wild boar
Aves	Passeriformes	Macrosphenidae	Sylvietta leucopsis	LC	Eastern crombec
Actinopterygii	Gobiiformes	Gobiidae	Taenioides cirratus	DD	Whiskered eel goby
Chondrichthyes	Myliobatiformes	Dasyatidae	Taeniura lymma	LC	Bluespotted lagoon ray
Actinopterygii	Tetraodontiformes	Tetraodontidae	Takifugu oblongus	LC	Lattice blaasop
Liliopsida	Alismatales	Cymodoceaceae	Thalassodendron ciliatum	LC	Species code: Tc
Aves	Pelecaniformes	Threskiornithidae	Threskiornis aethiopicus	LC	African sacred ibis
Actinopterygii	Clupeiformes	Engraulidae	Thryssa baelama	LC	Baelama anchovy
Aves	Coraciiformes	Alcedinidae	Todiramphus chloris	LC	Collared kingfisher
Aves	Charadriiformes	Scolopacidae	Tringa nebularia	LC	Common greenshank
Reptilia	Testudines	Trionychidae	Trionyx triunguis	VU	African softshell turtle
Actinopterygii	Gobiiformes	Gobiidae	Trypauchen vagina	LC	Burrowing goby
Chondrichthyes	Myliobatiformes	Dasyatidae	Urogymnus granulatus	VU	Mangrove whipray
Actinopterygii	Anguilliformes	Muraenidae	Uropterygius concolor	LC	Brown moray eel
Reptilia	Squamata	Varanidae	Varanus niloticus	LC	Nile monitor
Aves	Charadriiformes	Scolopacidae	Xenus cinereus	LC	Terek sandpiper
Actinopterygii	Gobiiformes	Gobiidae	Yongeichthys nebulosus	LC	Shadow goby
Aves	Passeriformes	Zosteropidae	Zosterops palpebrosus	LC	Indian White-eye

3. National Estimates for subcriterion A1

To estimate the Arabian (Persian) Gulf mangrove ecosystem extent in 1970, we gathered reliable information on the mangrove area for each country within the province around this period (Table b). We then estimated the mangrove area in 1970 for each country, assuming a linear relationship between mangrove extent and time. Finally, we summed up the country estimates to determine the total mangrove area in the Arabian (Persian) Gulf province (Table a). We assumed that the percentage of mangrove extent by country within the province remained constant over time, as the percentages did not change between 1996 and 2020 (GMW v3.0 dataset). There were some exceptions for countries that observed an increased cover largely due to mangroves plantation and reforestation efforts. These marginal changes were observed for the United Arab Emirates, using high-resolution Landsat imagery, indicate an extent increase of 50.56 km² (5056 ha) between 2001 to 2017, acknowledging that mangroves plantation areas contribute to an estimate of 40 % of the area increase (EAD, 2020). Another observed increase according to Naderloo, *et al.*, (2023), mangroves in Iran are roughly 139 km² (13,900 ha), however, additional spatial distribution datasets are required to further verify the current extent. Moreover, using mangrove area estimates from different sources can lead to uncertainty (Friess and Webb, 2014)² and local or regional scale data may not be available for rest of countries. Thus, the estimates for 1970 should be considered only indicative.

Table a. Estimated mangrove area in km ² by country in 1970 and 2020. Estimates for 2020* mangrove area are
based on the Global Mangrove Watch Version 3 (GMW v3.0) dataset. The references used to calculate mangrove
area for each country in 1970 are listed below in Table b.

	Country total	Within province	Within province	Within province
Year	2020*	2020*	1970 Least estimate**	1970 Highest estimate***
Bahrain	0.6	0.6	0.3	1.6
Iran	111.8	111.8	39.5	303.0
Oman	1.4	1.4	0.9	27.10
Pakistan	828.9	7.2	50.7	50.7
Qatar	4.5	4.5	0.15	5.0
Saudi Arabia	76.0	9.5	0.07	26.30
United Arab Emirates	74.5	74.5	9.9	29.24
The Arabian (Persian) Gulf		209.50	101.52	442.94

Table b. List of selected studies considered to have reliable information on mangrove area for the period around 1970 in each country of the Arabian (Persian) Gulf province.

Country	Year	Mangrove Area (Ha)	Reference
Bahrain**	1977	31	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Bahrain**	1989	25	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.

² Friess, D. A. and Webb, E. L. (2014). Variability in mangrove change estimates and implications for the assessment of ecosystem service provision. *Global Ecology and Biogeography*, 23 (7). 715-725 <u>doi:10.1111/geb.12140</u>

Bahrain**	2000	43	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing.
Bahrain**	2017	48	https://doi.org/10.1007/978-3-319-73016-5_3. Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Bahrain***	1980	150	FAO (2007) The World's Mangroves 1980-2005.
Bahrain***	1990	100	FAO (2007) The World's Mangroves 1980-2005.
Bahrain***	1992	100	FAO (2007) The World's Mangroves 1980-2005.
Bahrain***	2000	90	FAO (2007) The World's Mangroves 1980-2005.
Bahrain***	2005	90	FAO (2007) The World's Mangroves 1980-2005.
Iran**	1977	4735	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Iran**	1989	6052	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Iran**	2000	8015	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Iran**	2017	9403	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Iran***	1980	27500	FAO (2007) The World's Mangroves 1980-2005.
Iran***	1990	22500	FAO (2007) The World's Mangroves 1980-2005.
Iran***	1997	19234	FAO (2007) The World's Mangroves 1980-2005.
Iran***	2000	19100	FAO (2007) The World's Mangroves 1980-2005.
Iran***	2005	19000	FAO (2007) The World's Mangroves 1980-2005.
Oman**	1977	206	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Oman**	1989	153	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Oman**	2000	168	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Oman**	2017	530	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Oman***	1980	2000	FAO (2007) The World's Mangroves 1980-2005.

Oman***	1990	2000	FAO (2007) The World's Mangroves 1980-2005.
Oman	1992	2000	Sheppard <i>et al.</i> (1992). Marine ecology of the Arabian region. Patterns and Process in Extreme tropical Environment. Academic Press London UK 359 pp.
Oman***	1995	1088	FAO (2007) The World's Mangroves 1980-2005.
Oman***	2000	1000	FAO (2007) The World's Mangroves 1980-2005.
Oman***	2005	1000	FAO (2007) The World's Mangroves 1980-2005.
Pakistan	1980	345000	Ministry of Food, Agriculture and Cooperatives, Food and Agriculture Division (2005). Letter of 12/3/81 of Inspector General of Forests/Additional Secretary to Assistant Director General, Forestry Department, FAO on FAO/UNEP Tropical Forest Resources Assessment Project - Islamabad
Pakistan	1985	283000	Kogo, M. (1985). A report of Mangrove research and recommendations of afforestation in Pakistan. UNDP/UNESCO Regional Project on Mangrove Ecosystems of Asia and the Pacific - RAS/72/002; Nov. 1985; Al-Gurm Research Centre for the Middle East, Tokyo. pp i-v 47
Pakistan	1990	207000	Reid, Collins and Associates, Canada, and Silvi consult Ltd. Sweden. (1992). Forestry Sector Master Plan: National Perspective. Islamabad, Pakistan. 195 pp.
Pakistan***	2000	158,000.00	Estimations by FAO (2007) The World's Mangroves 1980-2005.
Pakistan***	2005	157,000.00	Estimations by FAO (2007) The World's Mangroves 1980-2005.
Pakistan***	2001	158,000.00	FAO (2007) The World's Mangroves 1980-2005.
Qatar**	1977	16	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Qatar**	1989	184	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Qatar**	2000	283	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Qatar**	2017	1002	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Qatar	1992	500	Spalding, M.D., Blasco, F. and Field, C.D., eds. 1997. World Mangrove Atlas. The International Society for Mangrove Ecosystems, Okinawa, Japan. 178 pp.
Qatar***	1980 - 2005	500	FAO (2007). Status and trends in mangrove area extent worldwide. By Wilkie, M.L. and Fortuna, S. Forest Resources Assessment Working Paper No. 63. Forest Resources Division.
Saudi Arabia**	1977	97	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Saudi Arabia**	1989	107	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Saudi Arabia**	2000	146	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
Saudi Arabia**	2017	837	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.

Saudi Arabia***	1980	21000	FAO (2007). Status and trends in mangrove area extent worldwide. By Wilkie, M.L. and Fortuna, S. Forest Resources Assessment Working Paper No. 63. Forest Resources Division.
Saudi Arabia***	1990	20000	FAO (2007). Status and trends in mangrove area extent worldwide. By Wilkie, M.L. and Fortuna, S. Forest Resources Assessment Working Paper No. 63. Forest Resources Division.
Saudi Arabi***a	2000	20000	FAO (2007). Status and trends in mangrove area extent worldwide. By Wilkie, M.L. and Fortuna, S. Forest Resources Assessment Working Paper No. 63. Forest Resources Division.
Saudi Arabia***	2005	20000	FAO (2007). Status and trends in mangrove area extent worldwide. By Wilkie, M.L. and Fortuna, S. Forest Resources Assessment Working Paper No. 63. Forest Resources Division.
Saudi Arabia***	1985	20400	Saenger, P. (1993). Management of Mangroves in the Kingdom of Saudi Arabia.
United Arab Emirates**	1977	1327	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
United Arab Emirates**	1989	1949	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
United Arab Emirates**	2000	4777	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
United Arab Emirates**	2017	7926	Milani, A. S. (2018). Mangrove Forests of the Persian Gulf and the Gulf of Oman. In Threats to Mangrove Forests, edited by Christopher Makowski and Charles W. Finkl, 25:53–75. Coastal Research Library. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73016-5_3.
United Arab Emirates***	1978	2930	FAO. 1978. The Mangroves and related coastal fishery resources in the United Arab Emirates. By Rabanal, H.R., Beuschel, G.K Consultant report UAE/78/002. FAO, Rome. 103 pp.
United Arab Emirates***	1980	3500	FAO (2007). Status and trends in mangrove area extent worldwide. By Wilkie, M.L. and Fortuna, S. Forest Resources Assessment Working Paper No. 63. Forest Resources Division.
United Arab Emirates***	1990	3800	FAO (2007). Status and trends in mangrove area extent worldwide. By Wilkie, M.L. and Fortuna, S. Forest Resources Assessment Working Paper No. 63. Forest Resources Division.
United Arab Emirates***	2000	4000	FAO (2007). Status and trends in mangrove area extent worldwide. By Wilkie, M.L. and Fortuna, S. Forest Resources Assessment Working Paper No. 63. Forest Resources Division.
United Arab Emirates***	2005	4100	FAO (2007). Status and trends in mangrove area extent worldwide. By Wilkie, M.L. and Fortuna, S. Forest Resources Assessment Working Paper No. 63. Forest Resources Division.
United Arab Emirates	1999	4000	Saenger, P., Blasco, F., Youssef, A. and R. Loughland. in press. The coastal atlas: mangroves of the UAE with particular emphasis on those of the Abu-Dhabi Emirate.
For all countries.	1970	442.94	FAO (2007). Status and trends in mangrove area extent worldwide. By Wilkie, M.L. and Fortuna, S. Forest Resources Assessment Working Paper No. 63. Forest Resources Division.