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Abstract 41 

Monitoring biodiversity can be critical for informing effective conservation strategies, 42 

but can also deplete the resources available for management actions. Freely-available 43 

community science data may help alleviate this issue, but only if data quality is sufficient 44 

to inform the best decisions. Our objective was to quantify the predicted outcomes of 45 

prioritizing conservation action based on regional community science compared to using 46 

targeted professional monitoring data. Using data from the BirdReturns program in the 47 

Central Valley of California as a case study, we prioritized management units for 48 

conservation action based on the predicted probability of detecting seven shorebird 49 

species. Crowd-sourced data performed better than professional data even before 50 

accounting for the cost of professional monitoring, and substantially better when 51 

monitoring costs were explicitly considered. Thus, conservation action based on freely-52 

available community science data could theoretically result in better biodiversity 53 

outcomes than paying for targeted professional monitoring.  54 

Keywords: citizen science, conservation, agriculture, shorebirds, BirdReturns, Central 55 

Valley, habitat enhancement, site selection, eBird 56 

Introduction 57 

Improving the evidence base for conservation decisions is the impetus for many 58 

biodiversity monitoring programs. Increasing our knowledge of a system can lead to 59 
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better conservation outcomes (Runting, Wilson, and Rhodes 2013), and thus presents a 60 

worthwhile investment. However, some studies suggest that collecting additional 61 

information may not be beneficial for decision making (Moore and McCarthy 2010), and 62 

delaying action in favour of collecting more information can be detrimental (Martin et al. 63 

2012). Despite half of conservation budgets allocated for threatened species recovery 64 

being spent on research and monitoring (Buxton et al. 2020), the trade-offs between 65 

spending on information gathering versus action remain poorly understood.    66 

Extensive biodiversity data exist that can potentially be used to inform conservation 67 

decisions (e.g., GBIF (GBIF: The Global Biodiversity Information Facility 2022); eBird 68 

(Sullivan et al. 2014); iNaturalist (Callaghan et al. 2020)). For instance, data from 69 

community science programs (also commonly known as “citizen science”) are often 70 

readily available and freely accessible (Binley et al. 2023). Since these data are gathered 71 

by the public, they have extensive spatial coverage and are less costly than hiring 72 

professionals to collect data (Heigl et al. 2017; Theobald et al. 2015). However, there are 73 

concerns that less structured protocols and greater variation in observer skill may yield 74 

less accurate results than professional monitoring (Binley and Bennett 2023; Munson et 75 

al. 2010). Furthermore, since many of these programs are opportunistic, the capacity for 76 

targeting data collection precisely where it is needed is more limited. Professional 77 

monitoring, while more costly and limited in spatial scope, can be directed to areas that 78 

will yield the most useful information for decision making, including areas that have 79 

limited access to community scientists. Although previous studies have compared 80 

species’ diversity and abundance estimates derived from professional monitoring 81 
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protocols and community science programs (e.g., (Kamp et al. 2016; Munson et al. 2010; 82 

Walker and Taylor 2017), it is not clear whether discrepancies between the different 83 

approaches would, in turn, result in different conservation decisions (Grantham et al. 84 

2008; Polasky and Solow 2001). 85 

Here we investigate whether untargeted, crowd-sourced community science data is of 86 

sufficient quality to inform conservation prioritizations, comparing them to professional 87 

monitoring efforts targeted on privately-owned properties enrolled in a conservation 88 

program. Furthermore, we assess whether the cost savings afforded by using the freely 89 

available community science data could aid in redistributing resources from monitoring 90 

to action, potentially leading to better outcomes for biodiversity. To achieve this, we used 91 

data from a dynamic conservation program run by the Nature Conservancy (TNC) in 92 

central California as a case study. We generated theoretical conservation plans 93 

(henceforth, prioritizations) that selected rice farms to enroll in the conservation program 94 

by minimizing costs and maximizing the predicted number of detections of seven 95 

shorebird species on enrolled properties based on species distribution data derived from 96 

(i) community science (from the eBird community science project), (ii) targeted 97 

professional monitoring data only (collected by TNC), and (iii) both community science 98 

and professional data integrated. Community science data were available for the region, 99 

but rarely on the rice fields that were candidates for enrollment in the program. 100 

Professional monitoring was conducted on the private properties to fill this habitat 101 

coverage gap, as well as to monitor habitat conditions, address research questions and 102 

assess landowner compliance. While the professional monitoring for this program served 103 
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multiple purposes, our analysis focuses solely on the biodiversity information content to 104 

assess its relative utility for prioritizing conservation action. In addition to the costs 105 

associated with implementing conservation action, which in this case involves enrolling 106 

properties in the conservation program, our prioritizations accounted for monitoring 107 

costs. Specifically, prioritizations based on the professional data or the integrated 108 

community science and professional dataset had their total budget reduced by the cost of 109 

monitoring. Since the community science dataset is open and freely available, 110 

prioritizations based on this dataset were assumed to have zero field monitoring costs. 111 

After generating the prioritizations, we assessed the performance of each dataset based on 112 

the number of bird detections captured across all properties selected in our theoretical 113 

prioritization. 114 

Materials and Methods 115 

The BirdReturns program is a dynamic conservation project by The Nature Conservancy 116 

(TNC) in central California that aims to provide temporary habitat for migratory 117 

shorebirds (Reynolds et al. 2017). Over 90% of California’s native wetlands have been 118 

lost to agricultural expansion (Dahl 1990; Frayer, Peters, and Pywell 1989), creating a 119 

potentially hostile environment for migratory birds that rely on them to rest and refuel. 120 

However, by flooding harvested rice fields for a few weeks during spring and fall 121 

migration, conservation practitioners can create “pop-up wetlands” that meet the needs of 122 

species as they pass through, temporarily restoring high quality habitat for their use when 123 

and where they need it (Golet et al. 2018, 2022). Any costs associated with habitat 124 

creation on the farms are offset by a reverse auction system, whereby farmers bid the 125 
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amount of compensation they would require to flood their fields for a set period of time. 126 

TNC uses eBird community science data, data collected from previously enrolled fields, 127 

and remotely-sensed land cover data to rank the shorebird habitat value of properties 128 

being considered for enrollment in the program (Reynolds et al. 2017). This information 129 

is used in conjunction with bid prices submitted through a reverse auction to select 130 

enrollments for the program. Professional monitoring is then used to assess habitat 131 

conditions and patterns of bird use in a subset of enrolled and (in some cases) unenrolled 132 

fields during program implementation. The purpose of this monitoring is to evaluate 133 

program effectiveness and better understand how local and landscape-scale factors affect 134 

bird response for refining requirements of the program and improve the analytical models 135 

(e.g., Conlisk et al. 2022) used to inform bid selection in future auctions. In addition, 136 

professional monitoring is done to assess compliance so that landowners can be 137 

instructed to take corrective actions when target habitat requirements are not being met. 138 

Thus, both community science and professional monitoring data are used in the true 139 

implementation of the BirdReturns program. For more information on the BirdReturns 140 

program, see (Golet et al. 2018; Reynolds et al. 2017). 141 

Given that both community science and professional datasets are available for the same 142 

species and locations, this presents a unique opportunity to compare the relative value of 143 

each dataset to inform the prioritization of conservation action, in this case enrollment of 144 

properties in the BirdReturns program. We emphasize that our analysis focuses on the 145 

trade-offs between monitoring costs and information content, but does not account for the 146 

other aforementioned purposes of professional monitoring. Models of predicted 147 
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probability of detection for each species were developed by Robinson et al. (2020), 148 

providing a uniform metric for prioritization using each dataset, as well as an integrated 149 

model that performs better than using either dataset alone (see details under 150 

“Prioritizations”). The integrated model predictions can therefore serve as the benchmark 151 

of the best available information (Robinson et al. 2020; Runting et al. 2013) with which 152 

we can evaluate the value of decisions based on each dataset individually. Correcting for 153 

the sensitivity and specificity of the integrated model (Robinson et al. 2020), we can use 154 

the estimates as our best knowledge of where species are truly detected while accounting 155 

for uncertainty in these estimates. The size and location of 207 properties that submitted 156 

reverse auction bids were used in this analysis. Detailed information on the cost of 157 

monitoring and action is available from TNC (Appendix A). Thus, this case study 158 

represents a realistic applied conservation scenario, with real biodiversity data and 159 

operational costs. 160 

Data Collection Protocols 161 

Surveys conducted by TNC consisted of 8,192 point counts conducted between February 162 

1 and May 31, 2014-2017. All birds within a 200m radius semicircle were recorded. 163 

Observers searched for birds for at least two minutes, but continued until all visible 164 

individuals in the semi-circle were recorded. Information was collected on the identity of 165 

the observer, the duration of the count, and the date, as well as habitat conditions such as 166 

water depth, vegetation cover and weather. Point count locations were randomly assigned 167 

to both treatment and control fields enrolled in the BirdReturns program. Treatment fields 168 

are those that were enrolled in the program and therefore adhered to program 169 
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requirements regarding flood depth and minimal standing vegetation. Control fields are 170 

those that were not enrolled in the program and therefore did not follow these 171 

requirements, though many were still flooded. For more details, see (Golet et al. 2018). 172 

eBird is a semi-structured community science program that allows participants of any 173 

skill level to submit checklists of species observed at any time or location (Sullivan et al. 174 

2014). Although eBird observations are opportunistic (i.e., not following a set monitoring 175 

protocol), users must submit information such as time of day, time spent searching, 176 

distance travelled, and whether the checklist represents a complete account of all species 177 

that were seen and identified in the field. These covariate data can then be used to control 178 

for additional sources of variation introduced by the opportunistic method of recording 179 

data (Johnston et al. 2021). In this study, eBird checklists were filtered to only include 180 

observations collected during the same period of the year as TNC surveys and limited to 181 

the extent of the California Central Valley. This is approximately the extent of TNC 182 

surveys, but not limited to the fields enrolled in the program. Checklists were further 183 

filtered to include only complete checklists, and stationary counts or travelling counts 184 

that cover less than 300m, resulting in 12,891 checklists used in the analysis (Robinson et 185 

al. 2020). Although more eBird checklists were used than professional surveys, we see 186 

this as a realistic benefit of using crowd-sourced data for conservation. Furthermore, 187 

Robinson et al. (2020) found limited improvement in model performance when the eBird 188 

dataset was augmented with simulated data by the number of TNC point counts (n = 189 

8,192), suggesting that sample size did not play a substantial role. Since very few eBird 190 

checklists were collected on the properties, yet the performance of each model was 191 



 

 

10 

 

limited to how well they could predict species detections on these properties, the quantity 192 

of eBird checklists likely provided no discernible advantage over the professional surveys 193 

in our analysis. 194 

Species 195 

We prioritized management units for conservation action based on the modeled 196 

probability of detection for seven migratory shorebird species during spring migration: 197 

American Avocet (Recurvirostra americana), Dunlin (Calidris alpina), Yellowlegs 198 

(Tringa melanoleuca and Tringa flavipes), Least sandpiper (Calidris minutilla), Long-199 

billed Curlew (Numenius americanus), Dowitcher (Limnodromus scolopaceus and 200 

Limnodromus griseus) and Western Sandpiper (Calidris mauri). Greater and Lesser 201 

Yellowlegs were grouped as one species for analysis (“Yellowlegs”), as were Short-billed 202 

and Long-billed Dowitchers (“Dowitchers”), due to the difficulty distinguishing between 203 

these species at distance in the field, both for professional and amateur observers (Golet 204 

et al. 2018).  205 

Monitoring and Action Costs 206 

Monitoring costs were based on the real operational costs incurred by TNC during the 207 

BirdReturns program between 2014 and 2015 for spring monitoring only (Golet et al. 208 

2018; Reynolds et al. 2017), to match the data used by (Robinson et al. 2020), totalling 209 

$121,622 USD (Appendix A). This includes the cost of supplies, truck rentals, and field 210 

technicians to conduct surveys. Although there are costs associated with the time required 211 

to process and analyze eBird data, these were assumed to be approximately equivalent to 212 
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data processing requirements for TNC data. Costs associated with data analysis for both 213 

datasets were therefore excluded from this study. We did not include costs associated 214 

with the implementation of the eBird program as these are external to the costs incurred 215 

by the conservation organization. That is, we assume that the eBird data will be available 216 

regardless of whether we choose to use them for conservation planning. 217 

Reverse auction bids were based on the 2014 pilot season of the BirdReturns program. 218 

We simulated bid values for each property using the average and standard deviation for 219 

accepted bids only, drawing from a normal distribution. We therefore assume here that all 220 

207 farms in our study made acceptable bids and would be considered for the program. 221 

We simulated bid values based on the real data, rather than using the real bid values 222 

attached to each property, to capture the real characteristics of the bids while ensuring 223 

these results remain generalizable across other contexts and regions. As the farms are real 224 

properties, they vary in size, and bid values are based on a price per unit of area. The total 225 

cost of enrolling a property in the program through the reverse auction process will be 226 

referred to as the Property Cost (Table 1). 227 

Table 1. Glossary of important terms used throughout this study and how they are defined 228 

for our purposes.  229 

Term Definition 

Property Cost Total cost of enrolling a farm in the program, calculated as the reverse 

auction bid in price per unit area multiplied by the area of the property. 
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Conservation 

Action 

In this study, conservation action involves enrolling a property in the 

BirdReturns program. The property owner’s reverse auction bid is accepted 

and their field is flooded to provide “pop-up” wetland habitat. 

 

Predicted 

Species 

Detections 

For each property, this is the sum of modeled probabilities of detecting a 

species across all cells. Prioritizations are based on maximizing the 

Predicted Species Detections estimated by each model for each species. 

 

 

Expected 

Species 

Detections 

The probability that a species is detected given the binary predictions of the 

integrated model for each cell, accounting for the prevalence of the species 

and the probability of false positives and false negatives using Bayes 

Theorem (see equations 1 and 2). Cell values are then summed for each 

property. Note that this does not correct for the sensitivity and specificity of 

surveys themselves (which are unknown), because we assume that 

managers will only consider a “success” to be a detected occurrence. The 

100 iterations of the test and training datasets used to calculate sensitivity 

and specificity result in 100 Expected Species Detection values for each 
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property. The integrated model (and therefore Expected Species Detections) 

represents the best available information on species detection according to 

Robinson et al. (2020). 

 

 

Expected 

Detections 

Prioritized 

The sum of Expected Species Detections across all farms selected in 

prioritizations for each species, at each budget, based on each model. There 

are 100 values for each prioritization, based on the 100 Expected Species 

Detection values for each property.  

 230 

Prioritizations 231 

For each of the seven study species, (Robinson et al. 2020) built random forest models 232 

predicting the probability that an expert observer would detect the species during a 233 

standardized survey, using observation effort, observer skill, land cover predictors, and 234 

either (i) eBird data only, (ii) TNC data only, or (iii) an integrated TNC and eBird 235 

dataset. Predictions were made across the Central Valley in California at a 500 m × 500 236 

m resolution, and models were selected based on outputs that maximized accuracy based 237 

on Cohen’s Kappa, Brier score, and Mean Standard Error. For more details on the 238 

models, see Robinson et al. (2020). We overlaid the model predictions onto the farms 239 

and, for each farm and each species, computed the sum of the species’ probability values 240 
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associated with the cells that overlapped with the farm. For example, a 0.75 km2 property 241 

(i.e., three 500 m × 500 m cells) with predicted probabilities of detection of 0.5, 0.6 and 242 

0.6 in each cell would have a total value of 1.7. Henceforth we will refer to these summed 243 

probability values as the Predicted Species Detections on the property (Table 1). 244 

Analyses were completed using the R statistical computing environment (R Core Team 245 

2020) and tidyverse family of packages (Wickham et al. 2019). Spatial data processing 246 

was performed using the raster R package (Hijmans 2020). 247 

Here, we assume that conservation success is associated with the number of detected 248 

species occurrences on management units selected in our prioritizations. We prioritized 249 

properties for enrollment in the BirdReturns program based on the predicted probability 250 

of detections (Predicted Species Detections) as estimated using community science data 251 

(the eBird model), professional monitoring data (the TNC model) and the best available 252 

model (the integrated model; Figure 1). To achieve this, we used the prioritizr R package 253 

(Hanson et al. 2022) to generate single species prioritizations under 30 different budgets 254 

ranging from $0 to $1,500,000 USD (with $50,000 USD increments). For each budget, 255 

we used a minimum shortfall objective, which aims to find the set of management units 256 

that minimizes the shortfall for conservation targets (see (Jung et al. 2021) for details). In 257 

this case, we set targets to 100% representation for each species, so that prioritizations 258 

aim to maximize the number of detections on selected management units. We selected 259 

management units that maximized the Predicted Species Detections for each species 260 

while minimizing Property Costs, selecting as many management units as possible within 261 

the budgetary constraints. To account for monitoring costs, we subtracted $121,622 USD 262 
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from the available budget for prioritizations based on the professional data model 263 

(Appendix A). The result was a selection of properties to enroll for each species and at 264 

each budget, depending on the Property Cost and where each respective model predicted 265 

the highest probabilities of detection for each species (Predicted Species Detections).    266 

Evaluation of Prioritizations 267 

We used the integrated model predictions as a benchmark (in other words, an imperfect 268 

gold standard) to assess the performance of the prioritizations. This is because the 269 

integrated models had better performance than the eBird and TNC models. To account 270 

for the fact that the integrated models do not have perfect predictive ability, the integrated 271 

models’ predictions were corrected before using them to evaluate the prioritizations. By 272 

correcting the integrated models’ predictions, we could evaluate how well the 273 

prioritizations generated using the eBird models, TNC models, and integrated models 274 

covered each of the species, whilst accounting for model uncertainty.  275 

We used performance statistics from Robinson et al. (2020) to correct the integrated 276 

models’ predictions. Briefly, Robinson et al. (2020) employed a repeat sampling process 277 

to produce 100 estimates of the sensitivity (true positive rate) and specificity (true 278 

negative rate) for each species’ model. For each of these 100 estimates, we used them to 279 

identify a detection threshold to convert a given integrated models’ predictions from a 280 

probability of detection to a binary (detected or not detected) value. Specifically, the 281 

detection threshold was selected by maximizing Cohen’s Kappa, a measure of the 282 

agreement between predictions and actual survey outcomes from a test set that accounts 283 
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for the probability of random agreement. After identifying these detection thresholds, we 284 

then used them to produce 100 sets of binary predictions indicating whether the species 285 

was likely to be detected in each cell. Thus, for each species, we produced 100 sets of 286 

binary predictions, and for each set of binary predictions, we had a sensitivity and a 287 

specificity statistic to characterize uncertainty in the given set binary predictions. 288 

We used Bayes theorem to produce a set of 100 corrected integrated model predictions 289 

for each species. We used species prevalence as the prior probability of a species being 290 

detected in each cell, calculated as the proportion of field sites where the species was 291 

detected on professional surveys (Appendix B; Table S1). By applying Bayes theorem, 292 

our methodology accounts for model uncertainty based on the sensitivity and specificity 293 

of the integrated models. Specifically, if a given species was predicted to be detected in a 294 

cell under a given set of binary predictions, we used the following equation:  295 

𝑃(𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 | 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑)  =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 + (1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)(1 − 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒)
 296 

[eqn. 1] 297 

 298 

Alternatively, if the species was predicted to be not detected in the given cell, then we 299 

used the following equation instead: 300 

𝑃(𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 | 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑)  =
(1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) ∗ 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

(1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) ∗ 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ∗ (1 − 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒)
 301 

[eqn. 2] 302 
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We used the corrected integrated model predictions to evaluate the prioritizations. 303 

Because the corrected integrated model predictions were produced for each cell and the 304 

prioritizations were generated using properties, we needed to spatially aggregate these 305 

predictions to the property level so they could be used to evaluate the prioritizations. As 306 

such, for each of the 100 sets of corrected integrated model predictions for each species, 307 

we overlaid a given set of corrected model predictions with the property boundaries and 308 

calculated the sum of the predictions (probability values) within each property. Thus, for 309 

each property and each species, we produced 100 estimates of the expected number of 310 

cells inside the property that are likely to contain the given species (termed Expected 311 

Species Detections, see Table 1). The Expected Detections Prioritized (Table 1) for a 312 

given model and budget is equal to the sum of Expected Species Detections across all 313 

properties that were selected for Conservation Action in the prioritization. 314 

Relative value of community science data 315 

At each budget, we compared the total Expected Detections Prioritized based on each of 316 

the three model predictions and at each budget. For each of the 100 iterations i, we 317 

calculated the difference in the Expected Detections Prioritized between community 318 

science prioritizations (V(Pc)) and professional monitoring prioritizations (V(Pp)): 319 

∆ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑒𝑑 = 𝑉(𝑃𝑐)𝑖 −  𝑉(𝑃𝑝)𝑖 320 

For each repetition, we also compared the value of prioritizations based on the integrated 321 

model (V(Pg)), our benchmark of the best available information, to those based on 322 
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community science data to quantify the difference between decisions based on 323 

community science data and the best available information: 324 

  325 

∆ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑒𝑑 = 𝑉(𝑃𝑔)𝑖 −  𝑉(𝑃𝑐)𝑖 326 

For each comparison, we calculated the mean difference in performance between the two 327 

prioritizations, and the lower and upper limits of the shortest range within which 90% of 328 

the values occurred (i.e., 90% high density interval (HDI), represented using square 329 

brackets in the results). 330 

To assess how much the monitoring costs influenced our results, we conducted two 331 

supplementary analyses: 1) we conducted the community science – professional 332 

monitoring comparison without adding monitoring costs to the professionally-collected 333 

data, and 2) we added the monitoring costs to the integrated – community science 334 

comparison, to account for the realistic costs of having the best available information.  335 

Quantifying the Financial Value of Community Science Data 336 

During the spring enrollment period for the BirdReturns program in 2014, TNC spent 337 

approximately $400,000 USD on monitoring and the reverse auction. To quantify the 338 

financial value of eBird data for prioritizing action at this budget, we assessed the 339 

difference in the budget required to achieve the same number of Expected Species 340 

Detections if Conservation Action were based on professional monitoring data instead. 341 

For this analysis, we ignore the other purposes of professional monitoring and focus 342 

solely on biodiversity information provided. Starting at a budget of $400,000 USD, we 343 
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prioritized properties using the estimates of detection from the professional data model at 344 

budgets increasing by $10,000 USD increments, until the Expected Detections Prioritized 345 

based on professional data alone was approximately equal to the Expected Detections 346 

Prioritized using eBird (i.e., until the 90% HDI of the differences overlapped zero).  347 

Results 348 

 349 

In our case study, we found that using community science data resulted in the best 350 

prioritizations across budgets and species when accounting for the cost of professional 351 

monitoring. When the monitoring cost of $121,622 USD was applied to the overall 352 

budget, prioritizations conducted using professionally-collected data had no expected 353 

detections prioritized, which we define as the expected number of bird detections in 354 

prioritized properties (see Table 1 for details), for budgets below $150,000 USD. This is 355 

because most or all of lower budgets were consumed by monitoring costs. 356 

Unsurprisingly, the difference in performance was most pronounced at lower budgets, 357 

declining until the budget exceeded the cost of enrolling all properties in the program 358 

($1,001,915; Figure 1, Appendix B Figure S1). This was consistent across species, and 359 

the value of prioritizations based on professional data never met or exceeded the value of 360 

prioritizations using eBird data until this point. The greatest mean difference in 361 

performance was seen for Dowitcher (Limnodromus scolopaceus and Limnodromus 362 

griseus) at a budget of $150,000 USD: prioritizations using eBird data resulted in a 363 

117.28% [99.35,125.97] increase in number of expected detections prioritized across 364 

selected farms. The smallest mean difference at this budget was seen for Western 365 

Sandpiper (Calidris mauri), where we still found a 105.08% [85.67,118.51] increase in 366 
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coverage. Even when monitoring costs were not included in the professional monitoring 367 

prioritizations, prioritizations using community science data performed equally well 368 

across all species and budgets (Appendix B; Figure S2-S3). The expected detections 369 

prioritized using community science data even exceeded those based on the 370 

professionally-collected data for some species at certain budgets, but never more than an 371 

average of 8.08% [-0.45, 15.26], and the 90% HDI usually overlapped zero. That is, even 372 

before the cost of collecting the professional data were considered, the information 373 

content of both datasets for making decisions was approximately equal. 374 

 375 
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 376 

Figure 1. Percent improvement in expected detections prioritized across a range of 377 

budgets when basing prioritizations on community science data compared to professional 378 

data collected by on-site field technicians, accounting for the cost of collecting 379 

professional field data. Solid lines represent the mean difference in the expected 380 

detections prioritized between the two prioritizations, and shaded regions represent the 381 

90% high density interval of these contrasts. Positive values indicate that prioritizations 382 
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based on community science performed better, while negative values indicate that 383 

prioritizations based on professional data performed better.  384 

Prioritizations based on the integrated model, which represents the best available 385 

information on this system according to (Robinson et al. 2020), performed slightly better 386 

than those using community science data alone (Figure 2, Appendix B Figure S4). The 387 

greatest difference in performance was seen for Avocet at a budget of $850,000 USD, 388 

where prioritizations based on the integrated model captured 2.66% [0.99, 3.66] more 389 

expected detections than eBird prioritizations. For most species, the 90% HDI overlapped 390 

zero across budgets. Interestingly, the integrated prioritizations performed up to 1.10% [-391 

1.15, -0.97] worse than those based on eBird data alone for Long-Billed Curlew 392 

(Numenius americanus, Figure 2, Appendix C). When we added monitoring costs to 393 

prioritizations based on the integrated model, we found similar patterns to those found 394 

when adding monitoring costs to the prioritizations based on professional data only, 395 

although the magnitude of the differences was considerably smaller (Appendix B; Figure 396 

S5-S6). At the lowest budget of $150,000 USD, the integrated prioritizations yielded an 397 

average number of expected detections prioritized up to 53.77% [52.84, 54.53] lower 398 

than when using freely available community science data. When monitoring costs were 399 

included, the number of expected detections prioritized based on the integrated model 400 

were lower than those using community science data across all species and budgets.  401 

 402 
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 403 

Figure 2. Percent improvement in expected detections prioritized across a range of 404 

budgets when basing prioritizations on the best available information (integrated model) 405 

compared to prioritizations based on community science data. Solid lines represent the 406 

mean difference in the expected detections prioritized between the two prioritizations, 407 

and shaded regions represent the 90% high density interval of these contrasts. Positive 408 

values indicate that prioritizations based on the integrated dataset performed better, while 409 
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negative values indicate that prioritizations based on community science data performed 410 

better. 411 

 412 

At a set budget of $400,000 USD, using community science data to conduct the 413 

prioritizations (and instead using the monitoring portion of the budget on the auction) 414 

performed better than using the professional monitoring data (Figure 3). At this budget, 415 

all species had between 15-20% more expected detections prioritized when using 416 

community science data compared to professional data. The greatest advantage in using 417 

the community science data was seen for Least Sandpiper (Calidris minutilla), where the 418 

difference in performance was 19.04% [16.77, 22.02]. For all species, we found that 419 

$120,000 - $130,000 USD in additional spending was required when spending money on 420 

professional monitoring to achieve the same outcome that could be achieved using 421 

community science data. Therefore, the financial value of community science data in this 422 

case study, where the two data types are approximately equal for decision making, is 423 

approximately equal to the cost of professional monitoring ($121,622).  424 

 425 

 426 
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 427 

Figure 3. Mean percent difference in expected detections prioritized between community 428 

science prioritizations conducted at a budget of $400,000 USD compared to 429 

prioritizations derived with professionally-collected data at each incremental increase in 430 

the budget beyond $400,000 USD (Cost). Solid lines represent the mean difference in the 431 

expected detections prioritized between the two prioritizations, and shaded regions 432 

represent the 90% high density interval of these contrasts. Where the 90% HDI bars cross 433 
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the blue dotted line, the expected detections prioritized based on community science data 434 

is approximately equal to that based on professional data collected by on-site field 435 

technicians, at the additional cost along the x-axis. 436 

 437 

 438 

Discussion  439 

 440 

The question of whether to collect more data or act based on what is available should 441 

depend on the quality of the available data and, more importantly, whether collecting 442 

more (or better quality) data has the potential to improve decision making (Bennett et al. 443 

2018). Though many studies have previously examined the difference in information 444 

content between community science programs and more structured, professional 445 

monitoring schemes, to our knowledge this is the first comparison that explicitly 446 

examines the difference in terms of influencing the outcomes of decisions. Here, we 447 

compared the relative value of conservation decisions using biodiversity data collected by 448 

community scientists and professional surveyors, explicitly accounting for the cost of 449 

professional data collection. For the theoretical decisions in our case study, we found that 450 

community science prioritizations performed better than professional monitoring 451 

prioritizations across all budgets, and that the advantage was greatest at lower budgets, 452 

since the professional data collection costs depleted much of the budget remaining for 453 

action. Furthermore,  the results of our case study demonstrated that prioritizations based 454 

on eBird data performed comparably to those based on the professionally-collected data 455 

even without considering the additional cost of professional data collection. This is 456 
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surprising given that eBird participants are limited in their ability to access these areas, 457 

and contradicts expectations that professional monitoring data would perform better due 458 

to it being targeted towards the habitats being prioritized. Community science 459 

prioritizations also performed comparably to prioritizations based on the integrated 460 

dataset, which represents the best available information about the system. Thus, there was 461 

a theoretical disadvantage to spending part of the budget on professional monitoring for 462 

the purposes of prioritizing action because the community science data was equally 463 

capable of informing decisions. This reinforces the concept that both community science 464 

and professionally-collected data can be relatively equal in their capacity for the data to 465 

inform conservation action in this case, and that the cost spent on monitoring to collect 466 

information on biodiversity may detract from the budget remaining for action and 467 

therefore diminish biodiversity outcomes. 468 

We found a substantial advantage to using community science data rather than paying for 469 

professional biodiversity monitoring in our theoretical case study, both in terms of dollars 470 

and biodiversity. However, monitoring requirements are highly contextual (Conlisk et al. 471 

2022), and it is important to acknowledge that monitoring can serve more purposes than 472 

simply data collection. Monitoring can be a mandated component of certain 473 

environmental programs (Venus and Sauer 2022), and can serve important educational, 474 

enforcement and outreach purposes (Likens and Lindenmayer 2018). For example, 475 

professional surveyors in the BirdReturns program monitor for both bird presence and 476 

adherence to the program requirements, to ensure that adequate habitat is being provided 477 
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for the focal species. Certain types of data (e.g., on highly cryptic species or in 478 

inaccessible places) may also only be collectable using professional monitoring.  479 

Although prioritizations based on the integrated model resulted in slightly better 480 

outcomes for certain species, this was not the case when the costs of collecting the 481 

professional monitoring data were considered. However, when professional monitoring is 482 

mandated or required for other purposes, integrating these data with community science 483 

data may help maximize the benefits for biodiversity. In our study, the advantage of using 484 

freely available data was substantially lower than the integrated dataset versus the 485 

professional dataset alone. We found that prioritizations using community science data 486 

performed up to 117% better compared to professional data prioritizations, but only up to 487 

53% better compared to the integrated dataset prioritizations, when the monitoring costs 488 

were applied in both cases. The additional information provided by the integrated dataset 489 

may also prove to be worth the cost in other contexts. 490 

Previous studies assessing the quality and information content of eBird data support our 491 

findings that this community science program demonstrates considerable promise for 492 

informing conservation decisions. Several studies have benchmarked measures of species 493 

richness (Callaghan et al. 2018), abundance (Feng and Che-Castaldo 2021), diversity 494 

(Callaghan et al. 2018; Callaghan and Gawlik 2015), occurrence (Munson et al. 2010; 495 

Robinson et al. 2020) and trend (Feng and Che-Castaldo 2021; Horns, Adler, and 496 

Şekercioğlu 2018; Walker and Taylor 2017) estimated using eBird data to those 497 

estimated using more structured, professionally-collected data. Although there were 498 

discrepancies in these estimates in some cases, the eBird data frequently produced similar 499 
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values to the professionally-collected data. In fact, the eBird models used in this study 500 

generally had higher sensitivity and specificity than the models using professionally-501 

collected data (Robinson et al. 2020).. Our results are particularly interesting given that 502 

most data from the farms were collected through the TNC point counts, and less 503 

commonly by eBird participants. This suggests that models using regional, untargeted 504 

eBird data were able to accurately predict species occurrences on the properties of 505 

interest, even when data on those particular properties was mostly lacking. Nonetheless, 506 

the quality of community science datasets can vary greatly (Boakes et al. 2010), and we 507 

urge caution extrapolating these results to other datasets and systems. In addition, 508 

although here we assumed data processing effort and costs to be equal, it is important to 509 

note that this may not always be the case. 510 

Many factors beyond biodiversity data can influence conservation decision making and 511 

outcomes. The cost of obtaining data can substantially influence management decisions 512 

(Moore and McCarthy 2010), as can the cost of action (Butt et al. 2020). Prioritizing land 513 

for conservation action must also consider the needs of landowners and rights holders, 514 

and account for their willingness to participate (Gregory et al. 2012). While our study 515 

demonstrates the value of community science for decisions, incorporating these 516 

additional factors into would be important in real-world management scenarios.  517 

Conclusions 518 

Our case study demonstrates the financial and ecological benefits of community science 519 

data, for helping to redistribute conservation resources from monitoring to action. While 520 
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many previous studies have compared various biodiversity metrics estimated using 521 

community science data to those estimated using professionally-collected data, 522 

comparisons in the context of decision science still remain limited. Our results 523 

demonstrate that the value of decisions based on a community science dataset was 524 

comparable to that based on the best available data, and substantially greater when 525 

accounting for monitoring costs. By using high-quality, freely available community 526 

science datasets, conservation practitioners may be able to support decisions without 527 

depleting the budget remaining to implement conservation action. In our case study, we 528 

found this to be true even when the community science data were not collected directly 529 

on the properties available for enrollment in the conservation program. This will be 530 

critical when budgets are limited. Community science data may not be perfect (no data 531 

are), but our study suggests that they can be of sufficient quality for informing decisions 532 

about where to prioritize conservation action. We urge practitioners to carefully consider 533 

the trade-offs associated with new data collection, and urge consideration of whether 534 

existing data may suit their information needs.  535 

 536 
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