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 56 

Abstract  57 

Systematic evidence syntheses (systematic reviews and maps) summarize knowledge 58 
and are used to support decisions and policies in a variety of applied fields, from 59 
medicine and public health to biodiversity conservation. However, conducting these 60 
exercises in conservation is often expensive and slow, which can impede their use and 61 
hamper progress in addressing the biodiversity crisis. With the explosive growth of large 62 
language models (LLM) and other forms of artificial intelligence (AI), we discuss the 63 
promise and perils associated with their use. We conclude that, when judiciously used, 64 
AI has the potential to speed up and hopefully improve the process of evidence 65 
synthesis, which can be particularly useful for underfunded applied fields such as 66 
conservation science. 67 
 68 
  69 
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Main text  70 

Biodiversity conservation needs evidence synthesis 71 

Biodiversity conservation requires rapid decisions that, ideally, are made with the best 72 
available scientific evidence.  Systematic evidence syntheses (systematic reviews 73 
and systematic maps;see Glossary)—through rigorous, transparent and repeatable 74 
methods—are recognized as the gold standard for cataloging, collating and 75 
synthesizing the available evidence to support decision making from public health to 76 
environmental management and conservation ([1], Box 1). However, conducting 77 
systematic evidence syntheses can often be expensive and slow [2]. With the 78 
conservation literature growing exponentially, the endeavor can rapidly become 79 
unmanageable for human reviewers and irrelevant for managers and policy advisors 80 
that look for timely scientific evidence to support their decisions [3]. Several solutions 81 
have been proposed for more rapid forms of evidence synthesis (e.g., [1,4,5]), which 82 
raises the challenge of potentially having to trade speed of the review process with 83 
comprehensiveness or exhaustiveness, thus reducing the reliability of the review 84 
findings.  85 
 86 
Artificial intelligence (AI) and machine learning (especially deep learning) tools are 87 
currently revolutionizing how evidence is synthesized in biomedical sciences [6]. While 88 
there are key differences between biomedicine and conservation research, in this 89 
opinion piece, we make the case that AI tools can also dramatically improve evidence 90 
syntheses and decision-making for biodiversity conservation. We do so by first 91 
highlighting the potential role of AI in biodiversity conservation, and then discussing the 92 
benefits and challenges of using AI, especially large language models (LMMs) in this 93 
field. Because these tools are still in their infancy [7,8], we clarify their role in 94 
synthesizing text-based scientific evidence for conservation decision-making, and 95 
propose suggestions for responsible and ethical use of AI in conservation science.  96 
 97 

Artificial intelligence is revolutionizing conservation science 98 

Artificial Intelligence, initially the realm of science fiction, is now firmly entrenched in our 99 
daily lives, and continues to revolutionize the way we interact with each other, our world 100 
and even the universe. In conservation science, AI technologies are already extensively 101 
and creatively deployed in a myriad of ways for research and management purposes — 102 
from AI tools to expose online wildlife trafficking [9] and drones with machine and deep 103 
learning capabilities to identify, track and monitor wild animals [10], to the use of 104 
interactive robots to understand and control the spread of invasive species [11]. By 105 
contrast, using rapidly emerging AI tools, such as LLMs, to allow for more efficient 106 
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evidence synthesis to support conservation decision-making, holds great potential but is 107 
still relatively new. 108 
 109 
Machine learning algorithms employ artificial neural networks that are trained by large 110 
amounts of data (referred to as a corpus). Whereas simple machine learning is an 111 
approach to classify and facilitate discrimination between two or more entities, LLMs are 112 
able to recognize, summarize, translate, predict and generate text without any training 113 
or only a few instructions as a form of prompts (known as zero-shot or few-shot 114 
learning). In the medical sciences, where evidence synthesis methods are well 115 
developed and widely used, recent studies demonstrate the promising role that AI tools 116 
can play in carrying out rapid and extensive literature reviews [8,12]. At the same time, 117 
there is also discourse around potential challenges and limitations regarding the 118 
usefulness of these platforms [7,13–15]. 119 

Benefits and challenges of using AI for evidence synthesis  120 

Speed 121 
Conservation science is a race against time. Employing AI and LLM tools can reduce 122 
the time required to perform systematic evidence syntheses by assisting in various 123 
stages of the work [6], including communicating the results to relevant stakeholders [3]. 124 
Researchers have shown that the use of LLM tools can substantially shorten, by as 125 
much as six-fold, the time spent screening relevant research ([8,12,13], Box 2). LLMs 126 
could also be applied to (meta)data extraction from relevant studies and summarize a 127 
collection of articles more efficiently [8,16,17]. At present, different AI tools have 128 
different limits to the amount of data that can be inputted into them or processed by 129 
them. Some free versions of AI tools may be swamped by large screening tasks [17], 130 
which could limit their use by funding-restricted conservation agencies. Speed is 131 
desirable, but without expert oversight there are likely to be issues with accuracy and 132 
reliability by increasing the pace of evidence syntheses (i.e., a human-in-the-loop, HITL 133 
process is necessary). 134 
 135 
Comprehensiveness, accuracy and reliability 136 
Systematic evidence syntheses aim to reduce human bias in the assessment of 137 
scientific evidence, but human biases (e.g., selection and language biases; [18]) and 138 
inconsistencies among human reviewers in study selection and data extraction, are 139 
known issues in these syntheses [19]. Using LLM tools can assist in reducing these 140 
human biases. For example, by improving prompts, Spillias et al. ([13]) were able to 141 
increase the accuracy of screening with ChatGPT (reducing type II errors to < 1%). By 142 
helping locate potentially useful gray literature sources, which can be a critical source of 143 
biodiversity conservation evidence [20,21], LMMs can help further reduce the effects of 144 
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publication bias on review comprehensiveness, and can act as a second or third non-145 
human reviewer to tackle screening inconsistencies [13].  146 
 147 
While AI tools may reduce some human biases, they can introduce errors. LLMs can 148 
miss important and relevant articles during screening [8] and, more broadly, the 149 
reliability of different AI tools can vary greatly throughout the synthesis process [22, 150 
Table 1]. Missing relevant information may be especially problematic in conservation 151 
research where the best solutions are often context-dependent [23], which can lead to 152 
incorrect management guidance. AI tools may also generate overconfident and 153 
potentially erroneous conclusions and create harm in real-world applications [17]. 154 
Misinterpretation errors, where text is improperly summarized, creates an improper 155 
understanding of the content. Fabrication errors, where a summary includes information 156 
not in the original text, refer to a broad class of ‘hallucinations’ that are well-known 157 
outputs from LLMs. Attribute errors relate to any non-key elements in the review 158 
question (e.g., the mis-evaluation of the number of interventions or treatments). Thus, 159 
substantial human validation of LLM outputs is essential at each stage of review 160 
construction (i.e., HITL; [8]).  161 
   162 
Complexity 163 
Compounding the problem of reliability, conservation research is characterized by some 164 
unique complexities. Specifically, the field is highly heterogeneous, and includes studies 165 
that span a variety of ecosystems and species applying a panoply of study designs and 166 
dependent variables that can be measured in various ways (c.f., [24]). The field often 167 
draws on evidence from many different disciplines, from psychology and physiology to 168 
biochemistry and animal behavior. In addition, the language and terminology used in 169 
conservation can be highly inconsistent, with many synonyms for similar terms [25]. For 170 
example, the terms invasive, introduced, exotic, alien or non-native species, weed, and 171 
pest can all have the same meaning, depending on context. Finally, the majority of 172 
published conservation research does not test practical, real-world interventions [26]. 173 
Evidence producers must therefore make fine-grained decisions about where academic 174 
studies are sufficiently solution-oriented or relevant, while trudging through disparate 175 
and highly variable gray literature. Such complexities and nuances need to be taken into 176 
account in developing search prompts, screening and oversight of results, and when 177 
models are updated to ensure reliability and accuracy of results generated by LLMs 178 
[27]. However, robust methods for dealing with such complexities are yet to be 179 
developed.  180 
 181 
Relevance over time 182 
The evidence base for conservation is rapidly accumulating and evidence syntheses 183 
can quickly become outdated. In a rapidly changing world, the effectiveness of 184 
interventions might also change with time. Thus, systematic reviews that are not 185 
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regularly updated may lead to significant inaccuracies over time [28,29]. Living 186 
systematic reviews have been developed to provide high quality, up-to-date online 187 
summaries that incorporate relevant new evidence as it becomes available [28,30]. 188 
Such reviews require continuous work and a level of commitment that is often hard to 189 
achieve. Here, LLMs can be used to support living reviews and ensure that the 190 
evidence-base remains up to date with minimal human effort [30,31]. However, as the 191 
outputs of LLMs may change over time (because the algorithms and training sets 192 
change), their performance will require human evaluation.  193 
 194 
Inclusivity 195 
In our view, one of the major benefits of using LLMs in synthesis is their ability to find 196 
conservation evidence from across the globe, particularly in languages other than 197 
English [32]. Most of the world’s remaining biodiversity is found in the Global South, yet 198 
most scientific evidence to inform decision-making comes from authors in the Global 199 
North and is published in English [33]. Local studies from the Global South are often 200 
missed or discarded from reviews if they are not written in English.  201 
 202 
By translating languages, AI tools can make all stages of the review process more 203 
inclusive (Box 1). For example, a review on community-based fisheries management 204 
focusing on the Pacific Islands [13] benefited from AI rapidly providing a list of non-205 
English relevant terms to be integrated into the search string and yielding additional 206 
articles not previously identified by the original search. AI-suggested terms should, 207 
however, be checked by proficient speakers of the language in question before 208 
inclusion in the search string.  209 
  210 
Nevertheless, it is important to emphasize that AI tools require accessible digitized 211 
information. Moreover, the original training to create LLMs requires sufficiently large 212 
data sets that currently exclude most of the world’s languages [34,35]. Therefore, 213 
exclusively relying on AI for information means that some traditional and local 214 
knowledge may be ignored. This process could reduce the effectiveness of 215 
conservation interventions at the local scale and widen the divide between conservation 216 
agencies and local communities [36]. In this respect, we emphasize that effective 217 
conservation work relies just as heavily on building strong relationships with the relevant 218 
stakeholders as using the most accurate scientific evidence (e.g., [37]). The use of AI 219 
may alienate local collaborators if not conveyed and properly communicated to all 220 
stakeholders and rightsholders.  221 

Ethical considerations 222 

The question, in our view, is not whether AI tools will/should be used in conservation 223 
science (the singularity is nigh!), but rather how they are used. Issues of data privacy 224 
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and informed consent created by emerging AI technologies can be exacerbated through 225 
their use in systematic evidence syntheses. People may not wish that their published 226 
data are used for AI training, or repurposed and applied to new problems. In this regard, 227 
continuous effort to actively engage various stakeholders in the synthesis process is 228 
even more crucial in the context of AI application to evidence synthesis. 229 

 230 
A well-recognized concern with using AI is the presence of (algorithmic) biases that 231 
result from factors such as the unknown data quality and representativeness in training 232 
corpus [38,39]. As previously discussed, it is likely that documents written in English 233 
and from developed countries form the bulk of the training corpus — this may limit the 234 
nature of responses to specific queries and enhance existing biases. Therefore, there is 235 
an urgent need for culturally sensitive multi-lingual LLMs [40]. Moreover, in the current 236 
LLM landscape there is a lack of transparency around algorithm development and 237 
reporting related to decisions algorithms make during the review process. Lack of 238 
transparency leads to limited peer scrutiny and accountability in AI-supported evidence 239 
syntheses and prevents equitable and responsible development of AI. 240 
 241 
Hence, the best practice moving forward is to be explicitly clear about how AI is being 242 
used in evidence syntheses, which may include detailed reporting of the prompts and 243 
instructions given to an LLM and how it was tested for replicability and reliability. This 244 
ensures transparency and reproducibility to some extent. Repeatability can be limited 245 
because models are probabilistic and constantly updated with new data. Thus, multiple 246 
runs of the same model over time may produce different responses. This is a challenge 247 
that requires future research to fully understand its impact on evidence synthesis and, 248 
ultimately, on conservation management decisions.  249 

Concluding remarks  250 

AI is not a silver bullet and conducting a reliable evidence synthesis requires a lot of 251 
work and will always be time-consuming and require attention to detail (Box 3). 252 
However, AI tools can help improve the location and consideration of gray literature and 253 
evidence in a variety of languages that were not traditionally included in syntheses. AI 254 
may make evidence synthesis faster, more accessible, and inclusive to a greater 255 
number of researchers. Although decision-making in conservation involves more than 256 
just scientific evidence, expanding the availability of the information base will increase 257 
opportunities for developing informed policies and management actions (see 258 
Outstanding Questions).  259 
 260 
More broadly, while we have focused on how AI tools can be used to synthesize 261 
evidence for biodiversity conservation, we suggest that ecologists and evolutionary 262 
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biologists, more broadly, can also benefit from using these tools to efficiently identify the 263 
state of knowledge in their respective disciplines.  264 
 265 
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 458 

Glossary 459 

 460 
Artificial intelligence (AI): a machine or model which can perform what appears to 461 
require human intelligence. It also refers to a branch of computer science dedicated to 462 
creating these models. Recently, generative AI has gained much attention with its ability 463 
to create text, images, audio and other media.  464 
 465 
Artificial neural networks: a method used in machine learning whereby the 466 
connections and strength of connections between a set of nodes (which are modeled 467 
after neurons in the brain) is iteratively modified to maximize some desired output (e.g., 468 
a discrimination). Originally, these networks had several layers of nodes between input 469 
and output but deep learning models have many layers of nodes. 470 
 471 
Evidence syntheses: involve a process of combining information from multiple studies 472 
on a specific topic and to inform decision making. The term is also used as an umbrella 473 
term for the family of reviews that include systematic reviews, systematic maps, rapid 474 
reviews, and reviews of reviews. 475 
 476 
Deep learning: a type of machine learning that relies on multiple layers of connected 477 
nodes whose connections and weights are iteratively modified so as to maximize their 478 
ability to make discriminations or identifications. It requires a huge amount of training. 479 
 480 
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Human-in-the-loop (HITL): a process of model development in machine learning 481 
where humans play an interactive and iterative role. 482 
 483 
Large language model (LLM): a type of generative artificial intelligence created by a  484 
deep learning, neural network trained on a large written corpus that can “understand” 485 
human language and generate responses to specific queries.   486 
 487 
Living systematic reviews: systematic reviews that are continuously updated that 488 
incorporate new evidence as it is produced.  489 
 490 
Machine learning: a process by which data are fed into neural network models which 491 
are iteratively modified without specific instructions that permit the identification of 492 
patterns in data. 493 
 494 
Prompts: specific inputs or instructions to a LLM designed to elicit an answer. The 495 
growing field of prompt engineering studies the characteristics of effective prompts 496 
which in general should be specific, and constrained. Creating a role (‘you are a 497 
fastidious researcher conducting a systematic review…’) can help improve output 498 
accuracy. 499 
 500 
Systematic review: a formal and highly structured process to comprehensively, 501 
rigorously and transparently collate and synthesize evidence, including the academic 502 
and gray literature sources. Can be used to support policy formation and biodiversity 503 
management decisions. 504 
 505 
Systematic map: comprehensive catalogues of the literature on a broad topic of 506 
interest. Systematic maps follow the same step-wise process as systematic reviews, but 507 
they tackle broader questions, and their final output is a narrative report and a 508 
searchable catalogue of the literature that can be used to identify areas where evidence 509 
is lacking or is under-represented (knowledge gaps), or areas with sufficient evidence to 510 
conduct full synthesis (knowledge clusters) Zero-shot or few-shot learning: a direct 511 
query to an existing LLM is referred to as a zero-shot query where the results of zero-512 
shot queries are based entirely on the information already contained in the LLM. By 513 
contrast, few-shot learning requires some additional data, for instance, where the LLM 514 
is provided a list of papers that, based on their title and abstract, that should be included 515 
or excluded from a systematic review.  516 
 517 
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Table 1: AI tools and platforms for evidence synthesis a  518 
Stage of 

synthesis 

Example tools and  
Platforms b    

Opportunities  Potential challenges 
and considerations 

Identify and 
formulate 

review 
questions 

● Gemini (Google DeepMind; 
https://gemini.google.com/)  

● Scite (scite; https://scite.ai/) 

Facilitate question formulation 
through assistance with 
brainstorming and refinement [7] 

Some stakeholders might feel 
disengaged or excluded by the 
process, potentially hampering 
innovation and even reinforcing 
existing biases [7,41] 
 

Draft review 
protocol 

● Gemini (Google DeepMind; 
https://gemini.google.com/)  

● ChatGPT (OpenAI, 
https://chat.openai.com) 

Assist in creating a good initial 
outline and, hence, speeding up 
the process for protocol writing 
[7,42] 

Risk of ‘hallucinations’ may cast 
doubt on protocol accuracy [16,17]; 
Protocol may lack details and/or 
correct references [16] 
  
  

Search for 
evidence 

● Elicit (Elicit; https://elicit.com/) 
● Scite (scite; https://scite.ai/) 
● Consensus (Consensus; 

https://consensus.app/) 
● Scispace (PubGenius Inc; 

https://typeset.io/) 
● ConnectedPapers (Connected Papers; 

https://www.connectedpapers.com/) 
● Inciteful (Weishun, M. 2024; 

https://inciteful.xyz/) 
● Litmaps (Litmaps Ltd; 

https://www.litmaps.com) 
● Gemini (Google DeepMind; 

https://gemini.google.com/)  
● ChatGPT (OpenAI, 

https://chat.openai.com) 

Help with suggesting and finding 
a variety of gray literature 
sources, including in different 
languages [43]; Suggest 
alternative  terms for the search 
[7]; Help to incorporate evidence 
as it becomes available [44] 

Inconsistent and incomplete  
search terms that can reduce 
search efficiency and increase the 
potential for selection bias [45]; 
Changes to the algorithm may 
change search results [7,46]; 
Search results may be probabilistic, 
erroneous, and not repeatable [7]; 
Can only make use of digitized 
knowledge [47]  
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Include 
relevant 
studies 

● Rayyan (Ouzanni et al. 2016; 
https://www.rayyan.ai/) 

● Abstrackr (Brown University; 
http://abstrackr.cebm.brown.edu/accoun
t/login) 

● DistillerSR DistillerSR Inc; 
https://www.distillersr.com/) 

● EPPI-Reviewer (EPPI Centre; 
eppi.ioe.ac.uk/EPPIReviewer-Web) 

● SWIFT-Active Screener (Sciome; 
https://www.sciome.com/swift-
activescreener/) 

● ASReview (ASReview Lab; 
https://asreview.nl/) 

● Silivi (A-Evidence ApS; 
https://www.silvi.ai/) 

Substantially reduce screening 
time [Box 2]; In the case of double 
screening, act as the second 
reviewer to tackle screening 
inconsistencies [48,49] 

May inadvertently pass on relevant 
studies [50,51]; Changes to the 
algorithm may change screening 
results [7,46]; Lack of transparency 
around algorithm development and 
decision-making [52]; Screening 
decisions may be probabilistic and 
not repeatable [7] 

Critically 
appraise 
studies 

● RobotReviewer [53] 
(https://www.robotreviewer.net/) 

● Elicit (Elicit; https://elicit.com/) 
 

Speed up an otherwise very time-
consuming process [53,54] 

Difficulties in dealing with more 
complex and diverse study designs 
and different reporting styles [55]; 
Interpretation and extraction errors 
[16,56]; Lack of transparency 
around algorithm development and 
decision-making [52] 
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Extract data ● Scispace (PubGenius Inc; 
https://typeset.io/) 

● RobotReviewer [53] 
(https://www.robotreviewer.net/) 

● SWIFT-Review (Sciome; 
https://www.sciome.com/swift-review/) 

● Silivi (A-Evidence ApS; 
https://www.silvi.ai/) 

● ExaCT 
(https://exact.cluster.gctools.nrc.ca/Exac
tDemo/intro.php) 

● Elicit (Elicit; https://elicit.com/) 

Efficient at extracting  data and 
metadata (e.g. moderators and 
study descriptors) [53,57] 

Difficulties in dealing with more 
complex and diverse study designs 
and different reporting styles 
[53,55,57]; Interpretation and 
extraction errors [16,56]; Lack of 
transparency around algorithm 
development and decision-making 
[52]; May not be reliable in 
obtaining effect sizes [58] 

Synthesize 
data/study 

findings 

● ChatGPT (OpenAI, 
https://chat.openai.com) 

● Gemini (Google DeepMind; 
https://gemini.google.com/)  

Potentially efficient at running 
simple quantitative syntheses 
(meta-analysis) of evidence as 
well as narratively synthesizing 
study findings [59,60] 

Sophisticated quantitative (e.g. 
meta-regression) synthesis is still 
difficult to conduct [59,61]  

Report 
findings 

● ChatGPT (OpenAI, 
https://chat.openai.com) 

● Scispace (PubGenius Inc; 
https://typeset.io/) 

Efficient at scientific 
communication as it can assist 
scientists in improving their 
writing style by analyzing text and 
provide suggestions for 
improvements [14,62] 

Lack of transparency around 
algorithm development and 
decision-making [63,64] 
  

a We highlight both opportunities, as well as potential challenges and considerations. In regard to the latter, many of the challenges 519 
we have identified can be resolved by having humans-in-the-loop and greater procedural transparency. Stages of synthesis mirror 520 
those outlined in Figure I in Box 1. 521 
b A non-exhaustive list with an emphasis on new and popular platforms 522 
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Box 1: Evidence hierarchy for decision support in conservation with 523 
AI  524 

 525 
For scientific evidence to be useful or usable, information must be distilled, 526 
amalgamated and translated from a large collection of individual studies to an output 527 
that can inform decision-making. Figure I illustrates how different types of knowledge, 528 
information and expert opinions, primary (individual studies) and secondary research 529 
(e.g., systematic reviews and review of reviews) feed into decision support systems 530 
(i.e., tools that provide different scenarios and logical sets of steps to assist with 531 
decision making; [65]). Outputs from these systems help create evidence-informed 532 
advice and guides. The pyramid demonstrates how, at each step, the scientific evidence 533 
gradually becomes more “condensed” and hence more accessible to conservation 534 
decision makers.  535 
 536 
Each step of evidence synthesis could potentially be supported and expedited by AI and 537 
LLMs, including: 1) question formulation, 2) protocol generation, 3) literature search, 4) 538 
screening to select relevant papers (including deduplication), 5) critical appraisal of 539 
included studies, 6) data extraction, 7) synthesizing information and 8) transparent 540 
reporting (Figure I). Recently, Jimenez and colleagues ([6]) identified 63 machine-541 
learning tools for systematic evidence syntheses. They showed that most of the 542 
currently available tools primarily support the three review stages: searching, screening 543 
and data extraction. For example, BIBOT uses keywords to search and retrieve relevant 544 
papers from PubMed [66], while Rayyan facilitates screening by reordering papers in 545 
the order of relevance, learning from included and excluded papers [67] (also Box 2). 546 
None of the tools in their review used LLMs, but LLMs can immediately be used in these 547 
three stages and more. A generative AI platform, Elicit (elicit.com), for instance, can 548 
extract information and summarize pdf documents.  549 
 550 
In addition, LLMs can facilitate “Summaries” turning long academic documents (such as 551 
systematic reviews) into distilled key messages for policy and practice. Furthermore, 552 
LLMs can help create algorithms and software for decision support systems [3].  553 
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 554 
Figure I: Hierarchy of scientific evidence used in conservation decision-making 555 
(Modified and redrawn from Dicks et al. [65]). 556 
 557 
  558 
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Box 2: Speeding up screening with AI: a case study  559 

 560 
There are a number of AI-assisted article screening tools, most of which use re-ordering 561 
algorithms that learn from included/excluded articles as researchers screen based on 562 
title and abstract. More recently, large language models (LLMs) have been suggested to 563 
be used for such screening [13]. We tested both types: Rayyan.ai (re-ordering 564 
algorithm) and GPT 3.5 (LLM) to screen 11,270 article search records from the Web of 565 
Science for relevance to the question: how does artificial light affect bird movement and 566 
distribution? These articles were manually screened by Adams et al. [68] (Figure I). 567 
 568 
Rayyan.ai’s relevance ratings could have reduced the manual screening burden at the 569 
title/abstract level by over 80%, with accuracy comparable to a human-alone screening. 570 
We provided initial training data by classifying 46 articles we knew to be relevant as 571 
“include” and classified 46 additional articles as “exclude”. Rayyan computed relevance 572 
ratings for the remaining articles, and we sorted them by relevance and screened the 573 
first 100. We then recomputed the ratings, re-sorted the records, and screened the next 574 
100 articles. We repeated the process until no additional relevant articles were found, 575 
which occurred at ~ 2,200 articles. This method identified 169 (97%) out of 174 relevant 576 
articles in the screening dataset after screening less than 20% of the articles. Notably, 577 
this process yielded 5 articles missed by a human screener during the original 578 
screening process, meaning that the human-alone and this AI-assisted method 579 
(Rayyan.ai) had equivalent false negative rates in this case (2.9%). 580 
 581 
For GPT 3.5, we used the following prompt "Classify the given research paper as 582 
worthy of inclusion or exclusion… The paper should be classified as "include" or 583 
"exclude". You are a careful and thorough researcher conducting a systematic review of 584 
the effect of artificial light on bird movement and distribution. Given a title and an 585 
abstract of a research paper, your task is to determine whether the paper meets the 586 
criteria for inclusion in a review study.". Following this message, this prompt also 587 
included the published abstract along with screening criteria. For the initial run (i.e. zero-588 
shot learning) it retrieved 66 of 215 relevant articles (30%). For the second run, we 589 
provided 46 included and excluded articles, and GPT 3.5 was able to retrieve 200 out of 590 
215 (93%) articles. It took 2.5 hours for each run to screen 11,270 articles.  591 
 592 
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 593 
Figure I: Many studies have investigated the relationship between artificial light at night 594 
and bird movements (credit: JoshuaWoroniecki)  595 
 596 
 597 
  598 
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Box 3: Guiding principles for responsible AI use in evidence 599 
syntheses for conservation  600 

 601 
Acceptable practices of using AI are evolving rapidly. For example, AI has been used to 602 
improve writing for years (many already use Grammarly or Microsoft Grammar Checker) 603 
but some publishers currently limit or prohibit LLM-produced text from being used in 604 
papers. With this state of flux in mind, we make the following recommendations (Figure 605 
I).  606 
 607 
First, while AI tools offer considerable promise, use them cautiously. We do not 608 
currently understand, in various contexts, its precision, accuracy, specificity, or reliability 609 
and the developers themselves are unclear about how some AI tools and models work 610 
[69]. As these tools are applied to specific conservation issues, effort will have to be 611 
allocated to estimate these sources of error and optimize algorithms [70,71].  612 
 613 
Second, view AI tools as a research assistant—it is essential to keep humans as 614 
supervisors of AI decision-making (i.e., human-in-the-loop). In the context of systematic 615 
evidence syntheses, validate AI decisions against established evidence synthesis 616 
standards and guidelines for conduct and reporting (e.g., [1,72,73]). 617 

Third, at the moment, AI is more reliable in some evidence synthesis steps (such as title 618 
and abstract screening, and to some extent search strategy design and full-text 619 
screening) than others (such as data extraction and critical appraisal). To prevent 620 
relevant omissions for search strategy and screening supported by AI, there is a need 621 
for detailed scoping exercise that will test all phases of the review before it is conducted.  622 

Finally, we urge AI developers to provide decision files that facilitate the scrutiny of AI 623 
algorithms, because transparency is crucial (e.g., see ASReview AI software, [63]), and 624 
we should make decision data files accessible [12]. The evidence synthesis community 625 
urgently needs a guide for reporting of AI-supported reviews (e.g., PRISMA extension 626 
PRISMA-DFLLM for LLM; [74]). Such transparency will help with trust building between 627 
evidence producers and evidence users. 628 



6 

 629 
 630 
Figure I: Recommendations for responsible AI use for evidence synthesis in 631 
conservation. 632 
 633 
 634 


