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Abstract 11 

1. Biodiversity monitoring schemes periodically measure species’ abundances and distributions 12 

at a sample of sites to understand how they have changed over time. Often, the aim is to infer 13 

change in an average sense across some wider landscape. Inference to the wider landscape is 14 

simple if the species’ abundances and distributions are similar at sampled to non-sampled 15 

locations. Otherwise, the data are geographically biased, and some form of correction is 16 

desirable.  17 

2. We combine causal diagrams with “superpopulation models” to correct time-varying 18 

geographic biases in biodiversity monitoring data. For a given time-period, expert-derived 19 

causal diagrams are used to deduce the set of variables that explain the geographic bias, and 20 

superpopulation models adjust for these variables to produce a corrected estimate of a 21 

landscape-wide mean of e.g. abundance or occupancy. Estimating a time trend in the variable 22 

of interest is achieved by fitting models for multiple time-periods and, if the drivers of bias 23 

are suspect to change over time, by constructing per period causal diagrams. We test the 24 

approach using simulated data then apply it to real data from the UK Butterfly Monitoring 25 

Scheme (UKBMS).   26 

3. Where the variables that explain the geographic bias are known and measured without error, 27 

our method is unbiased. Introducing measurement error reduces the method’s efficacy, but it 28 

is still an improvement on using the sample mean. When applied to data from the UKBMS, 29 

the approach gives different results to the scheme’s current method, which assumes no 30 

geographic bias.  31 

4. Where the goal is to estimate change in some variable of interest at the landscape level (e.g. 32 

biodiversity indicators), models that do not adjust for geographic bias implicitly assume it 33 

does not exist. Our approach makes the weaker assumption that there is no geographic bias 34 

conditional on the adjustment variables, so it should yield more accurate estimates of time 35 

trends in many circumstances. The method does require assumptions about the drivers of bias, 36 

but these are codified explicitly in the causal diagrams. Operationalising our approach should 37 

be less costly than full probability sampling, which would be needed to satisfy the 38 

assumptions of conventional approaches.  39 
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Introduction 42 

Monitoring biodiversity 43 

The goal of biodiversity monitoring is to understand how some variable of interest 𝑌, often when 44 

summarised across the relevant landscape or study area, has changed over time (cf. Yoccoz et al., 45 

2001). 𝑌 might be a species’ (relative) abundance, occupancy or some summary thereof across many 46 

species. The landscape is often delimited by national boundaries (Moussy et al., 2022), but in 47 

principle it could be any geographic area. 𝑌 is usually summarised across the landscape periodically 48 

by taking its mean or something similar (e.g. a categorical year effect from a model in which 𝑌 is the 49 

response; Brereton, Roy, et al., 2011; Powney et al., 2019; Stroh et al., 2023). 50 

To calculate the landscape-wide mean of 𝑌 directly, one would need to know its distribution across 51 

the landscape as a whole (i.e. its value at every location). Generally, however, the landscape 52 

distribution of 𝑌 is not known, because it is not possible to collect data at every location. Instead, the 53 

usual strategy is to split the landscape into areal units, or “sites”, and to collect data at some of them. 54 

The landscape-wide mean of 𝑌 is then estimated from the sample of sites for which data are available.   55 

Geographic sampling biases  56 

When estimating the landscape-wide mean of 𝑌 from a sample of sites, there is a risk of geographic 57 

sampling bias. A dataset is geographically biased if the distribution of 𝑌 across sampled sites differs 58 

from its distribution across the wider landscape. An equivalent definition is the existence of a non-59 

zero correlation between 𝑌 and a sample inclusion indicator 𝑅, which takes the value 1 at sampled 60 

sites and 0 elsewhere (Boyd, Powney, et al., 2023; Meng, 2018). If the correlation is positive, then the 61 

bias is positive (i.e. the mean of 𝑌 is larger across sampled sites than across the landscape as a whole), 62 

and vice versa. The greater the magnitude of the correlation, the more severe the bias.  63 

Biodiversity monitoring data are often collected in such a way that the same factors affect 𝑅 and 𝑌, 64 

which induces a correlation between the two (and therefore a bias). To give one simple example 65 

(many others are possible), 𝑌 might be some species’ abundance, which is positively affected by 66 

habitat quality. Habitat quality might also have a positive effect on 𝑅, because data collectors are 67 

often volunteer naturalists (i.e. citizen scientists) and prefer to visit sites that are interesting in terms 68 

of wildlife (Bowler et al., 2022; Forister et al., 2023). In this situation, 𝑌 would be larger at sampled 69 

sites, which is to say that there would be a positive bias. The reverse would be true if sampling was 70 

more likely at sites where species are faring poorly: say, in built-up areas that have poor quality 71 

habitat, but which are easy for recorders to access by road (Hughes et al., 2020). 72 

Data from structured monitoring schemes are less susceptible to geographic biases than those from 73 

most other sources (Geldmann et al., 2016), but they are not immune. Many structured monitoring 74 

schemes aim to collect data at a random sample of sites (e.g. Pescott et al., 2019; Robbins et al., 75 

1986). If implemented properly, random sampling ensures no correlation between 𝑅 and 𝑌 in 76 

expectation (i.e. on average over many possible samples; see Meng, 2018). Obtaining a true random 77 

sample is challenging, however, especially if there is a reliance on volunteers to collect the data 78 

(which is true of many monitoring schemes). The volunteers might be unwilling or unable to visit 79 

some randomly selected sites, whether because they are difficult to access, uninteresting in terms of 80 

wildlife or for some other reason (Pescott et al., 2015). Nominally random samples with incomplete 81 

uptake of sites, or “nonresponse” in survey sampling parlance, are almost certain to be biased (Bailey, 82 

2023). 83 

Mitigating geographic biases 84 

Various approaches exist to mitigate sampling biases, most of which exploit the fact that some set of 85 

variables 𝐴 could explain the correlation between 𝑅 and 𝑌 (Lohr, 2022; Meng, 2022). If, to use the 86 

above example, 𝑅 and 𝑌 are both greater at sites with good quality habitat, then the presence of that 87 

habitat will explain some of the correlation between the two. Where the variables in 𝐴 can be 88 

identified—a point we come back to below—and are reflected in available data, statistically 89 

“adjusting for” them will reduce the sampling bias (Collins et al., 2001; Mohan et al., 2013).  90 



One way to adjust for 𝐴 is to fit a “superpopulation model”, which is a regression (or other type of) 91 

model for 𝑌 that includes 𝐴 as covariates (Elliott & Valliant, 2017). In effect, the superpopulation 92 

model stratifies sites based on levels of 𝐴 and predicts the average or expected value of 𝑌 for each 93 

stratum. If 𝐴 explains the correlation between 𝑅 and 𝑌, the two should be uncorrelated within each 94 

stratum, and the predicted within-stratum means should be close to their true values (as there is no 95 

sampling bias). Averaging the within-stratum means of 𝑌 with respect to the distribution of 𝐴 across 96 

all sites in the landscape yields an “adjusted” estimate of the landscape-wide mean of 𝑌 (i.e. the target 97 

quantity). More simply, the average of the superpopulation predictions across all sites is the estimate 98 

of the landscape-wide mean—or, in practice, the average of the predictions for non-sampled sites and 99 

the observations for sampled sites (Elliott & Valliant, 2017)—and it is unbiased if 𝐴 completely 100 

explains the geographic bias.  101 

Causal diagrams and what to adjust for 102 

To identify the variables in 𝐴, insight can be gleaned from causal inference, where a similar challenge 103 

arises. Recall that 𝐴 is the set of variables that explains the correlation between 𝑅 and 𝑌. In causal 104 

inference, where to goal is to estimate the causal effect of one variable on another, analysts must 105 

identify and adjust for the set of variables that explain the non-causal portion of the correlation 106 

between the two (Pearl et al., 2016). One way to identify these variables, which could also be used to 107 

identify the variables in 𝐴, is to construct “causal diagrams”(Greenland et al., 1999; Thoemmes & 108 

Mohan, 2015).  109 

Causal diagrams—not to be confused with parametric structural equation models—will not be 110 

familiar to some ecologists (but see Grace & Irvine, 2020), so we will introduce the relevant concepts 111 

using the example in Fig 1 (a full description of the graph in Fig. 1 is provided in the Methods 112 

section). An arrow from one variable to another indicates a direct causal effect; that is, it indicates that 113 

the cause is part of the real-world function that determines the value of the effect (Pearl et al., 2016). 114 

In Fig. 1, annual temperature (annual_temp) has a direct effect on 𝑌, which is a species’ abundance. A 115 

path consists of several variables linked by arrows regardless of the direction of those arrows. Fig. 1 116 

depicts a path linking 𝑅 (site inclusion) to 𝑌: 𝑅 ← heather_grass → heather_grass_quality → 𝑌. The 117 

existence of a path between two variables implies that they are correlated, whether by association or a 118 

causal link. Hence, Fig. 1 implies a correlation between 𝑅 and 𝑌 and therefore a geographic bias.  119 

 120 

Figure 1. A simplistic causal diagram depicting causes and effects of sample inclusion 𝑅 and a 121 

species’ abundance 𝑌. 122 

While a path between two variables implies that they are correlated (dependent), it does not imply that 123 

the dependence is unbreakable. Rather, it might be possible to “block” paths between variables, which 124 

is to say, to block the flow of association. Blocking a path is achieved by adjusting for certain 125 

variables (i.e. 𝐴), and a set of rules—the rules of d-separation—tell us which ones (Cinelli et al., 126 



2022; Pearl et al., 2016). It is not necessary to spell out the rules of d-separation here, partly because 127 

they are described elsewhere (see the references above) and partly because they are built into software 128 

packages such as the R package dagitty (Textor et al., 2016). The important point is that the rules 129 

can be used to determine the sets of variables 𝐴 that, when statistically adjusted for, will render 𝑅 and 130 

𝑌 independent (if such a set exists; Thoemmes & Mohan, 2015).  131 

Identifying the correct set of variables in 𝐴 is contingent on the causal diagram being an accurate 132 

reflection of reality, and there are broadly two ways to achieve this (which are not mutually 133 

exclusive). One is to consult domain experts, who understand the relevant system, when constructing 134 

the diagram (Grace & Irvine, 2020). The other is to develop the diagram iteratively and test the 135 

implied conditional independencies (according to the rules of d-separation) of each iteration (Pearl et 136 

al., 2016). Where data are missing on 𝑌 for most sites (i.e. where 𝑅 = 0), it will not be possible to test 137 

many of a diagram’s implied conditional independencies, in which case consulting domain experts is 138 

even more important than usual. Of course, experts cannot be expected to have a perfect 139 

understanding of most systems, and we come back to this point in several places below.  140 

Structure of this paper  141 

In this paper, we demonstrate how one might combine expert knowledge with causal diagrams and 142 

superpopulation models to mitigate geographic biases in biodiversity monitoring data. We assume that 143 

a time trend in the mean of 𝑌 across all sites in the relevant landscape is the target quantity, and it is 144 

estimated by fitting separate superpopulation models for each of several time-periods. Starting with 145 

some simple simulations, we test the abilities of superpopulation models including 𝐴 as covariates to 146 

recover the landscape-wide mean of 𝑌 from perfect and imperfect (i.e. including measurement error) 147 

data on 𝐴. Next, we apply our method to empirical data from the UK Butterfly Monitoring Scheme 148 

(UKBMS). The scheme estimates time trends in the mean abundances butterflies in the UK using a 149 

model that does not adjust for geographic bias, and we compare these trends to those produced using 150 

superpopulation models. In the final section, we discuss the pros and cons of our approach and how it 151 

could be improved in future. 152 

Methods 153 

Demonstrating superpopulation modelling via simulation 154 

Although superpopulation models can mitigate geographic biases in theory, reality is more complex. 155 

It is likely, for example, that data will not be available on some variable(s) in 𝐴 at the exact location 156 

of a site. Instead, the available data might represent an average across some larger area in which the 157 

site is situated. Alternatively, data might be available on 𝐴 at the precise location of the site but not 158 

for the relevant time-period. In these cases, we would expect the data to correlate with the true 159 

variable(s) in 𝐴, but not to be a perfect proxy. To test the implications of including imperfect data on 160 

𝐴 in a superpopulation model, as well as some other methodological choices, we conducted a simple 161 

simulation study. (See supplementary material three for an additional simulation that includes two 162 

time-periods and the estimation of a trend.) 163 

Our simulation was based on the causal diagram in Fig. 1. The diagram depicts the causes of some 164 

species’ abundance 𝑌 and sample inclusion 𝑅 across 250,000 sites in a simple virtual landscape. It 165 

implies that the quantity of good quality heather grassland (heather_grass_quality) and annual 166 

temperature at each site directly affect 𝑌. The quantity of good quality heather grassland at a site is 167 

determined by the total quantity of heather grassland (of any quality; heather_grass) and the 168 

proportion that is well managed (management). 𝑅 is greater at sites with more heather grassland, 169 

because recorders know that it is a favourable habitat for the focal species, which they hope to see. 170 

The presence of major roads near a site makes it more accessible so also affect 𝑅. According to the 171 

rules of d-separation, the causal diagram in Fig. 1 implies that 𝑅 is independent of 𝑌 given heather 172 

grassland (i.e. there is only variable in 𝐴).  173 

To simulate the data, we used the simulateSEM function in the R package dagitty (Textor et al., 174 

2016). With the exception of 𝑅, all variables are standard normal (i.e. mean of 0 and unit variance). 175 

Other than causes of 𝑅 (see below), each variable explains ~25% of the variation in its direct 176 



descendent. 𝑅 is a binary variable (0 if the data is missing and 1 otherwise), so we could not simulate 177 

it in the same way as the others. Instead, following Thoemmes & Rose (2014), we simulated a latent 178 

standard normal variable and discretized it by assigning all values above the first percentile the value 179 

1 and the remainder the value 0 (i.e. we assume data on 𝑌 are missing for 99% of sites). A 180 

consequence of this strategy is that each cause of 𝑅 explains less than 25% of its variance, because 181 

discretizing the latent normal variable attenuates the correlation between the two. Strictly speaking, 182 

the latent normal variable should be included in the causal diagram in Fig 1, but it does not affect its 183 

implied conditional independencies, so we omit it for simplicity.  184 

Having simulated the data, we estimated the mean of 𝑌 across all sites using the data at sites where 185 

𝑅 = 1 (i.e. the sample). We used six estimators, which are listed in Table 1. The first is the sample 186 

mean, and the remainder are superpopulation models—in this case, linear regressions—including 187 

different covariates. The first superpopulation model includes 𝐴 (heather_grass) as a covariate. The 188 

second includes 𝐴 and an additional cause of 𝑌 (annual_temp), which should increase precision 189 

(Cinelli et al., 2022). The remainder of the superpopulation models include correlates of 𝐴 (with 190 

different strengths of correlation) to reflect the fact that the available data are unlikely to be error-free.     191 

Table 1. Six analytical approaches to estimating the mean of 𝑌 (species abundance) across all sites in 192 

the simulated landscape. The adjustment set is the set of covariates included in the superpopulation 193 

model.  194 

Estimator Adjustment set  Details 

1 NA Sample mean 

2 heather_grass Superpopulation model 

3 heather_grass, annual_temp Superpopulation model 

4 correlate of heather_grass (𝜌 = 0.5) Superpopulation model 

5 correlate of heather_grass (𝜌 = 0.7) Superpopulation model 

6 correlate of heather_grass (𝜌 = 0.9) Superpopulation model 

 195 

We evaluated the superpopulation models’ performances in terms of their estimation error. The 196 

procedure involved simulating 100 datasets based the causal diagram in Fig. 1 and calculating the 197 

difference between the true, landscape-wide mean of 𝑌 and the superpopulation model estimate for 198 

each one. The 100 datasets differed slightly from one another, as there is a random component to the 199 

simulateSEM function. Averaging the estimation error across the 100 estimates of mean 𝑌 for each 200 

method gives an estimate of its estimator bias.  201 

UKBMS case study 202 

The scheme 203 

To demonstrate how causal diagrams and superpopulation models might be used to correct biases in a 204 

real dataset, we applied them to data from the UK Butterfly Monitoring Scheme (UKBMS). The 205 

UKBMS has been running since 1976 (Pollard & Yates, 1996). Data are collected by volunteers, who 206 

walk transects at a network of sites in the UK and count the butterflies that they see within an 207 

imaginary 5-metre box when weather permits (Pollard, 1977). The volunteers are free to decide where 208 

to establish transects and generally do so in good quality semi-natural habitat, where butterflies are 209 

most abundant (Brereton, Roy, et al., 2011). Recorders are asked to walk UKBMS transects at least 210 

once in each of the 26 weeks from April 1st to September 29th to cover the main flight periods of UK 211 

butterflies. On average, however, ~20 weeks are sampled due to poor weather conditions, recorder 212 

availability etc.  213 

In 2009, the Wider Countryside Butterfly Survey (WCBS) was established and incorporated in the 214 

UKBMS. The primary motivation for the WCBS was to increase coverage of habitats that were 215 

poorly represented by the UKBMS (Brereton, Cruickshanks, et al., 2011). Hence, rather than being 216 

chosen by the volunteers, WCBS sites are located within randomly selected 1 km grid squares in the 217 

UK. Importantly, however, volunteers are not willing/able to visit all WCBS squares: they prefer to 218 

visit and to re-visit sites that are accessible or where they are likely to see species that interest them. 219 



Consequently, WCBS squares are not truly random. WCBS transects also differ from traditional 220 

UKBMS transects in that volunteers are asked to walk them a minimum of twice in July−August 221 

(although some do more) at least ten days apart. 222 

Existing analytical method 223 

The current method used to analyse the UKBMS (including WCBS) data has three steps (Dennis et 224 

al., 2016). The first is to fit a GAM to estimate normalised seasonal abundance curves for each 225 

species and year (these do not vary geographically; Dennis et al., 2013). The second is to estimate 226 

annual site indices of relative abundance using the fitted GAMs. The total observed counts are scaled 227 

by the proportion of the seasonal abundance curve that was surveyed to provide an estimate of the 228 

expected total had the entire season been surveyed. Finally, a Poisson GLM with site and year effects 229 

is fitted to the annual site indices, and the estimated year effects (log10 scale) are used as annual 230 

indices of relative abundance. In the final GLM, each site/year index is weighted in proportion to the 231 

fraction of the 26-week flight curve that was sampled (rather than imputed). Consequently, the WCBS 232 

sites, which are sampled as little as twice per year, should be heavily downweighted.    233 

New analytical method 234 

We modified the current UKBMS framework by replacing the final GLM with superpopulation 235 

models that adjust for 𝐴. Steps one and two, which produce seasonally adjusted annual site indices of 236 

relative abundance, remain the same, and the superpopulation models are fitted to these indices. 237 

Taxon and dataset experts provided the information needed to construct causal diagrams and identify 238 

the variables in 𝐴 (more details below).  239 

For demonstrative purposes, we focused on two species of butterfly, whose geographic distributions 240 

and ecologies are very different: the meadow brown (Maniola jurtina) and the small pearl-bordered 241 

fritillary (Boloria selene). The causes and effects of 𝑌, i.e. relative abundance, differ between the two 242 

species. As we are only working with one dataset, collected by the UKBMS (including WCBS sites), 243 

the causes and effects of 𝑅 (site inclusion) do not differ between species.  244 

We asked two taxon and UKBMS experts to provide information on the causes and effects of 𝑅 and 𝑌 245 

via the forms in supplementary materials one and two. Both experts (redacted) are authors on this 246 

paper. To constrain their answers, we asked the experts to select causes and effects from a list of 49 247 

land cover (i.e. habitat), bioclimatic, geological and other variables on which data are available (see 248 

supplementary material three for details of the data). Of course, this strategy risks omitting important 249 

variables—a point we come back to in the Discussion. The experts provided their feedback 250 

independently.  251 

Rather than the transect-level, we asked the experts to think about causes and effects of 𝑅 and 𝑌 at the 252 

coarser resolution of 1 × 1 km, which was necessary for two reasons. First, it is the finest resolution 253 

at which data on some variables in 𝐴 are available. The second reason is more complex. Recall that 254 

the superpopulation model predictions of 𝑌 must be averaged across all sites in the landscape. It 255 

would be conceptually challenging the split the landscape into imaginary transects, which are the 256 

“true” sites, but splitting it into 1 × 1 km grid squares is simple. In the few cases where multiple 257 

UKBMS transects fell within the same grid square, we averaged the site indices across those transects 258 

in a given year to obtain a grid square-level data point.  259 

The information provided by the experts enabled us to construct causal diagrams and, using the rules 260 

of d-separation, to identify the variables in 𝐴 (according to each expert). In total, we produced four 261 

causal diagrams: one for each species and expert. For any one diagram, there may be multiple sets of 262 

variables 𝐴 that d-separate 𝑅 and 𝑌. We selected the “minimal” (i.e. smallest) set that only included 263 

variables on which data are available (listed in Table 2).  264 

Both experts indicated that some land cover (habitat) types have negative effects on 𝑅 and 𝑌, but we 265 

did not include these in the causal diagrams. Our logic is that these land cover types are only 266 

detrimental to the species in the sense that they are not the right habitat (indeed, this is how it was 267 

phrased by expert two [redacted]). The land cover data are expressed as the proportion of each 1 km 268 

grid square covered by each land cover type (Morton et al., 2022), which means that a large 269 



proportion of one necessarily means a small proportion of another (i.e. the land cover types are not 270 

independent). That is, a high proportion of favourable habitat would imply a low proportion of 271 

unfavourable habitat, and vice versa, so it is not necessary to include unfavourable land cover types in 272 

the causal diagrams.  273 

Having identified two sets of variables 𝐴 (one from each expert) for each species, the next step was to 274 

fit superpopulation models including these variables as covariates. We fitted one model per species, 275 

expert (i.e. 𝐴) and year. As the data are (normalised) counts, and for consistency with the current 276 

UKBMS method, we used Poisson GLMs with a log link function. We used each model to predict 𝑌 277 

for non-sampled sites, combined the predictions with the observations at sampled sites and calculated 278 

the mean for the relevant species and year. Each year’s mean for a given expert and species gives an 279 

annual index of abundance. To measure change over time, we used the slope from a regression of the 280 

estimated abundance indices on year.   281 

For simplicity, we treated the model covariates (i.e. 𝐴) as constant over time. This was a natural 282 

choice for elevation and calcareous bedrock, which are genuinely time-invariant (at least since 1976). 283 

Our approach might seem less appropriate for the three land cover classes that featured in at least one 284 

of the models (Table 2), but inspection of the available land cover maps shows that there has been 285 

little change in the recent past (85% of 25 × 25 m grid squares in Great Britain were the same land 286 

cover class in 2015 as in 1990; supplementary material three). Full details of the auxiliary data are 287 

provided in supplementary material three. 288 

Comparing trends from the current and new methods 289 

Some rescaling was needed to ensure comparability between the outputs of the current UKBMS 290 

analysis and the superpopulation models. The year effects from the current UKBMS model represent 291 

the average change in the focal species’ relative abundance across sites in the relevant year relative to 292 

a reference year (1976) on the log10 scale. The estimates from the superpopulation models, on the 293 

other hand, reflect the average absolute count across sites in each year on the natural log scale. To 294 

match the two, we converted the natural log estimates from the superpopulation models to the log10 295 

scale then subtracted the estimate from the reference year from each year’s index.  296 

Variance estimation 297 

For both the superpopulation models and the simpler GLM used by the UKBMS, we estimated the 298 

sampling variance in each year’s index of relative abundance by bootstrapping across sites. We 299 

created 100 bootstrap samples by resampling the site indices with replacement within each year and 300 

fitted a model to each sample. We present percentile (95%) confidence intervals for each year from 301 

the bootstrap distribution of the annual indices (year effects from the simple GLM and estimates of 302 

mean 𝑌 from the superpopulation models). Note that this procedure does not propagate uncertainty in 303 

the estimation of the site indices from the raw count data.   304 

Results 305 

Simulations 306 

Fig. 2 shows the estimation error—the difference between the true, landscape-wide mean of 𝑌 and the 307 

estimate thereof—of each analytical method listed in Table 1. The sample mean is highly biased 308 

(mean error, i.e. bias, of ~0.35 in units of standard deviations of 𝑌). Using a superpopulation in which 309 

𝐴 is the sole covariate (𝐴 comprises just one variable in this example), the estimate of mean 𝑌 across 310 

all sites is unbiased (scenario 2; mean error~0). The estimate is also unbiased if 𝐴 plus an additional 311 

cause of 𝑌 are included as covariates (scenario 3), and it has similar variance to the estimate from 312 

scenario 2. Including a correlate of 𝐴 as the covariate reduces the bias relative to the sample mean but 313 

does not eliminate it (scenarios 4-6; see Table 1). The stronger the correlation between 𝐴 and its 314 

proxy, the closer the bias to that from scenario 2, where 𝐴 itself was included as a covariate.  315 



 316 

Figure 2. Estimation error (difference between the true, landscape-wide mean of 𝑌 and the estimate 317 

thereof) under each of the six scenarios in Table 1. The dots represent the mean error across 100 318 

simulated datasets, and the error bars depict the 2.5th and 97.5th percentiles. 319 

UKBMS case study 320 

Identifying the variables in A 321 

The experts provided different perspectives on the causes and effects of 𝑅 (UKBMS site inclusion 322 

including WCBS sites) and 𝑌 (the abundances of the meadow brown and small pearl-bordered 323 

fritillary). Their feedback is provided in full in supplementary materials one and two. Fig. 3 shows the 324 

causal diagram reflecting expert two’s knowledge of the causes and effects of 𝑅 and the 𝑌 in the case 325 

of the small pearl-bordered fritillary.  326 



 327 

Figure 3. Causal diagram depicting causes and effects of sample inclusion in the UK Butterfly 328 

Monitoring Scheme (𝑅) and the abundance of the small pearl-bordered fritillary (𝑌). The diagram 329 

reflects the knowledge of a taxon and UKBMS expert (expert two). N_dep is nitrogen deposition, 330 

mean_T_wet_Q is the mean temperature of the wettest quarter of the year, elev is elevation, bl_wood 331 

is broadleaved woodland, protected is the proportion of each grid square that is some form of 332 

protected area and variables suffixed by “_quality” denote the proportion of each grid square that is 333 

both the relevant land cover type (indicated by the rest of its name) and managed appropriately for the 334 

species. The other variables are self-explanatory.  335 

A major difference between the two experts’ feedback is that expert two indicated positive effects of 336 

several land cover classes (habitats) on 𝑌 conditional on the way that they are managed. That is, the 337 

habitats support high abundances of the species, but only if they are managed appropriately. We 338 

codified these conditional effects in the causal diagrams by introducing new, unobserved variables. 339 

One is “management”, which indicates whether the habitat is managed appropriately for the species, 340 

and the others are variables that denote the proportion of each site that is both the relevant land cover 341 

class and managed appropriately (i.e. “good” quality). For example, the expert indicated that heather 342 

grassland has a positive effect on the abundance of the small pearl-bordered fritillary conditional on 343 

appropriate management. In the causal diagram, the effect of heather grassland on 𝑌 is heather 344 

grassland → quality heather grassland → 𝑌, where management also has a direct effect on quality 345 

heather grassland (Fig. 3). Note that we did not specifically ask the experts to provide information on 346 

conditional effects, which is why expert one did not.  347 



From each of the four causal diagrams—one for each species and expert—we identified the minimal 348 

adjustment set 𝐴 (the variables on which 𝑅 and 𝑌 are hopefully conditionally independent) using the 349 

rules of d-separation (Table 2). For each diagram, it is possible to d-separate 𝑅 and 𝑌 without having 350 

to adjust for any of the unobserved variables introduced to depict the conditional effects of land cover 351 

classes on 𝑌 (i.e. management or “quality” habitats). For both species, the variables in 𝐴 differ 352 

between experts, which meant that two superpopulation models had to be fitted for each one.  353 

Table 2. Minimal adjustment sets derived from the experts’ knowledge for each species. The 354 

adjustment set need not include all predictors of the species’ abundances.  355 

Expert Species Minimal adjustment set  

1 meadow brown Calcareous grassland 

1 small pearl-bordered fritillary Broadleaved woodland 

2 meadow brown Calcareous grassland and elevation 

2 small pearl-bordered fritillary Broadleaved woodland, calcareous bedrock and heather 

 356 

Current versus new model outputs 357 

We compared the superpopulation models’ outputs to those of the current UKBMS GLM in terms of 358 

the annual estimates and the long-term trend, which is the coefficient from a regression of annual 359 

index on year (Figs 4 and 5). For both species, the outputs of the superpopulation models are 360 

markedly different to those of the UKBMS method. For the meadow brown, the two superpopulation 361 

models (one for each expert) agree that there has been a decline in abundance, whereas the UKBMS 362 

method suggests that abundance has been stable over time. For the small pearl-bordered fritillary, the 363 

current UKBMS method suggests a decline in abundance over time, whereas the two superpopulation 364 

models indicate a slight increase.  365 

The estimates from one of the two superpopulation models (SM_2) for the small pearl-bordered 366 

fritillary appear to be very uncertain (Fig. 5). This uncertainty is a result of the fact that we rescaled 367 

the estimates in each year by subtracting the estimate from the reference year, 1976. In 1976, there 368 

were only eight grid squares with data on the small pearl-bordered fritillary, so the variance in this 369 

year is truly large. Subtracting these highly variable estimates from the estimates for subsequent years 370 

makes them appear similarly uncertain. The variance of the estimates on the absolute scale is far 371 

smaller (supplementary material three; Fig. S4), but we chose to present the estimates relative to 1976 372 

for consistency with the UKBMS approach.   373 

 374 

Figure 4. Time trends in the annual indices of abundance for the meadow brown produced by the 375 

current UKBMS GLM (UKBMS), the superpopulation model based on expert one’s knowledge 376 

(SM_1) and the superpopulation model based on expert two’s knowledge (SM_2). The left panel 377 

shows the time-series, and the right panel shows the estimated trends, which are the coefficients from 378 

a regression of index value on year. The uncertainty in both panels was derived by bootstrapping 379 

across sites. The vertical lines in the right-hand panel represent the median slopes. 380 



 381 

Figure 5. Time trends in the annual indices of abundance for the small pearl-bordered fritillary 382 

produced by the current UKBMS GLM (UKBMS), the superpopulation model based on expert one’s 383 

knowledge (SM_1) and the superpopulation model based on expert two’s knowledge (SM_2). The left 384 

panel shows the time-series, and the right panel shows the estimated trends, which are the coefficients 385 

from a regression of index value on year. The uncertainty in both panels was derived by bootstrapping 386 

across sites. The break in the Y axis on the left panel was introduced to show the full uncertainty in 387 

SM_2 whilst also enabling comparison of the three models. The vertical lines in the right-hand panel 388 

represent the median slopes. 389 

Discussion 390 

We have demonstrated how causal diagrams and superpopulation models might be used to estimate 391 

the landscape-wide mean of some variable of interest 𝑌 (e.g. a species’ abundance or occupancy) from 392 

geographically biased monitoring data. Our simulations show that, if the variables that explain the 393 

geographic bias (i.e. 𝐴) are measured (without error), known and included in the superpopulation 394 

model, then that model is unbiased (Fig. 2). Clearly, these ideal conditions are unlikely, a point we 395 

come back to below. By fitting models for multiple time-periods, we estimated time trends in the 396 

mean relative abundances of two species of butterfly using data from the UKBMS. The trends are 397 

different to those estimated using the UKBMS’s existing method, which does not adjust for 398 

geographic bias (Figs 4 and 5).  399 

The experts (redacted) were not confident about whether the superpopulation models more accurately 400 

captured the UK-wide trends for the two species than the existing UKBMS method. The UKBMS 401 

conducts a regional breakdown of each species’ trend in the UK (https://ukbms.org/official-statistics). 402 

For the small pearl-bordered fritillary, it reports a strong decline in England but a strong increase in 403 

Scotland. Scotland is relatively underrepresented in the UKBMS data, so a good adjustment should 404 

place more weight on the trend in this region. The superpopulation models clearly give more weight 405 

to the Scottish trend than the UKBMS method—one even suggests that the species is increasing at the 406 

UK level. Nevertheless, two experts (redacted) are sceptical that the small pearl-bordered fritillary is 407 

not declining at the UK level (based on e.g. an observed decline in its distribution). All experts felt 408 

that the superpopulation model estimates for the meadow brown are plausible (although none were 409 

highly confident). Their reasoning is that the species is probably doing better or at least as well at 410 

sampled than at non-sampled locations. 411 

From a theoretical perspective, there are some limited cases in which the UKBMS model and others 412 

like it could capture the true trend in the landscape-wide mean of a species’ abundance 𝑌 despite not 413 

adjusting for geographic biases. If, for example, the bias is time-invariant in terms of both sign and 414 

magnitude, then no adjustment is needed. This scenario is highly unlikely, however. The distribution 415 

of sample inclusion 𝑅 changes over time, because different sites are sampled in different years. So too 416 

does the distribution of 𝑌 unless the focal species’ relative abundance remains the same at each site in 417 

each time-period, which is clearly implausible. As the distributions of 𝑅 and 𝑌 change over time, it is 418 



highly unlikely that the correlation between the two, i.e. the bias, would remain constant. We also 419 

note that the existing UKBMS model could produce unbiased estimates of alternative estimands using 420 

the UKBMS data. For example, one might be interested in the trend in the mean abundance across 421 

occupied sites (i.e. where 𝑌 ≥ 1), in which case sampling all populations would permit unbiased 422 

inference. Of course, this would require knowing the locations of all populations, and range shifts 423 

would complicate matters.  424 

The major benefit of using superpopulation models rather than conventional methods (e.g. a GLM 425 

with site and year effects) is that they relax the highly untenable assumption that there is no 426 

geographic bias; instead, they work on the weaker and slightly more tenable assumption that there is 427 

no geographic bias conditional on the adjustment set 𝐴. Of course, satisfying this weaker assumption 428 

means being confident that i) experts were able to identify all relevant causes and effects of sample 429 

inclusion 𝑅 and the variable of interest 𝑌 and that ii) data on those variables are available, which are 430 

doubtful. The hope is that the models have reduced the geographic bias, i.e. the correlation between 𝑅 431 

and 𝑌, to the point where the adjusted estimates of the landscape-wide mean of 𝑌 are appreciably less 432 

biased than the naïve ones.  433 

Whether a superpopulation model estimate of the landscape-wide mean of 𝑌 is less biased than a 434 

naïve (i.e. unadjusted) one depends on several factors, some of which were captured by our 435 

simulations. Where data on all 𝐴 are available, but they were measured with error, the adjustment 436 

should reduce but not eliminate bias (Fig. 2). Matters are more complex where some variables in 𝐴 437 

are omitted from the model and/or where some variables that are not in 𝐴 are erroneously included 438 

(both of which may result from mis-specifying the causal diagram). Erroneously included/omitted 439 

variables that are more strongly related to 𝑅 and 𝑌 have greater potential to cause a bias, because they 440 

can induce a larger correlation between the two (Collins et al., 2001; Thoemmes & Rose, 2014). 441 

However, the sign of the relationships is also relevant: if one erroneously omitted/included variable 442 

induces a negative geographic bias and another induces a positive one, then the two might cancel each 443 

other out and cause no bias (Thoemmes & Rose, 2014). Our simulations do not capture the effects of 444 

mis-specifying the causal diagrams, because any choice of a select few scenarios of strengths and 445 

directions of effects and causal diagram structures would have been necessarily arbitrary, but analysts 446 

should recognise that the success of the superpopulation modelling approach is contingent on 447 

accuracy of the causal diagram.   448 

Indeed, constructing accurate causal diagrams is the major practical limitation of our approach. 449 

Analysts might have hundreds or even thousands of species in mind, and experts might not have the 450 

knowledge to construct causal diagrams for each one. Even if they did, it would be a time-consuming 451 

exercise (although less costly than full probability sampling, which would be needed to satisfy the 452 

assumptions of conventional methods). One option for reducing this burden might be to identify and 453 

adjust for a set of variables that have large causal effects on 𝑅 and 𝑌 for many species: for example, 454 

woodland in the case of woodland birds or grassland in the case of grassland butterflies. Such a 455 

strategy is likely to miss important variables in 𝐴 for some species, however, so it should only be used 456 

as a last resort. Another option might be to crowd-source information on the causes and effects of 𝑅 457 

and 𝑌 from taxon and dataset experts. This strategy could work well for well-studied taxa such as 458 

butterflies, birds and mammals, but it will be more challenging for species whose autecology is less 459 

understood. It might also yield feedback from more than two experts per species (as here), which 460 

would be desirable.  461 

Another question is how comprehensive the causal diagrams need to be. It might be sufficient to 462 

include direct causes of 𝑅 and 𝑌 and the causal links among those variables as we did here. However, 463 

there is a risk that including additional variables in the diagram, which do not do not directly affect 𝑅 464 

or 𝑌, might reveal paths between them. For example, imagine the diagram broadleaved woodland → 465 

𝑅; heather grassland → 𝑌. According to this diagram, 𝑅 and 𝑌 are independent, and there is no 466 

geographic bias. Now suppose that we construct a more comprehensive diagram that includes annual 467 

temperature as a cause of both broadleaved woodland (say, density) and heather grassland. Extending 468 

the diagram in this way reveals a path (i.e. a correlation) between 𝑌 and 𝑅 that would have been 469 

missed by including only direct causes of the two, and it would change the adjustment set 𝐴. Omitting 470 



variables whose effects on 𝑅 and 𝑌 are indirect is less problematic than omitting proximal ones, 471 

because indirect causes necessarily explain less of the variation in the two (Grace & Irvine, 2020). 472 

Nevertheless, analysts should acknowledge that a more comprehensive causal diagram is more likely 473 

to yield the true set of variables in 𝐴, and this must be balanced against the increased effort required to 474 

construct it (also noting that a more comprehensive diagram might result in a more complex 475 

superpopulation model, which could increase its variance).   476 

Having identified the variables in 𝐴, superpopulation models are just one of several methods that 477 

could be used to adjust for them (Boyd, Stewart, et al., 2023). Alternatives include inverse probability 478 

weighting (Fink et al., 2023; Johnston et al., 2020), poststratification (Van Swaay et al., 2002) and 479 

others. Each of these methods can be recast mathematically as a means to eliminating the correlation 480 

between 𝑅 and 𝑌 (Meng, 2022), but, crucially, they are only guaranteed to achieve this goal where the 481 

variables in 𝐴 have been identified correctly (Bailey, 2022). 482 

Alternative methods exist that do not require complete knowledge of or data on the variables in 𝐴, but 483 

their assumptions are challenging if not impossible to evaluate. It is becoming common to model 484 

geographic bias using spatial random fields, for example, which assign a value of sampling intensity 485 

to every location in the landscape based on spatial autocorrelation in the sampling locations (e.g. 486 

Simmonds et al., 2020). Use of this approach essentially substitutes the assumption that 𝑅 and 𝑌 are 487 

independent given 𝐴 for the assumption that they are independent given the spatial field and other 488 

covariates in the model (Diggle et al., 2010). Whether this assumption holds depends on whether the 489 

true variables in 𝐴 exhibit a consistent pattern of spatial autocorrelation across the landscape, which is 490 

not possible to verify without first identifying those variables.  491 

It might seem like using causal diagrams and superpopulation models to estimate time trends in 492 

species’ abundances requires stronger assumptions than traditional approaches (e.g. the GLM used by 493 

the UKBMS). Importantly, however, these non-parametric assumptions are codified explicitly in the 494 

form of causal diagrams (although parametric assumptions such as linear effects of covariates are 495 

not), whereas the assumptions of simpler approaches are often overlooked. When the goal is to draw 496 

landscape-scale inferences, using a model that does not adjust for geographic bias means assuming 497 

that it does not exist. Not only is this assumption untenable (we know that the UKBMS’ and other 498 

biodiversity data are geographically biased), but it has the potential to introduce substantial estimation 499 

error if violated. As they make different assumptions, superpopulation models can be fitted in addition 500 

to conventional models as part of a sensitivity analysis (as in this paper). They can also be used as the 501 

primary method of analysis where there is clear risk of bias (Boyd et al., 2022). 502 
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