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1 Abstract1

Chance pervades life. In turn, life histories are described by probabilities (e.g., survival, breeding)2

and averages across individuals (e.g., mean growth rate, age at maturity). In this study, we explored3

patterns of luck in lifetime outcomes by analyzing structured population models for a wide array4

of plant and animal species. We calculated four response variables: variance and skewness in both5

lifespan and lifetime reproductive output (LRO), and partitioned them into contributions from6

different forms of luck. We examined relationships among response variables and a variety of life7

history traits. We found that variance in lifespan and variance in LRO were positively correlated8

across taxa, but that variance and skewness were negatively correlated for both lifespan and LRO.9

The most important life history trait was longevity, which shaped variance and skew in LRO10

through its effects on variance in lifespan. We found that luck in survival, growth, and fecundity all11

contributed to variance in LRO, but skew in LRO was overwhelmingly due to survival luck. Rapidly12

growing populations have larger variances in LRO and lifespan than shrinking populations. Our13

results indicate that luck-induced genetic drift may be most severe in recovering populations of14

species with long mature lifespan and high iteroparity.15
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2 Introduction16

Luck shapes the outcomes of our lives in many ways. Think of all the events that had to occur17

exactly as they did for you to be reading this paper right now. In biology, some sources of ran-18

domness or unpredictability will persist no matter how many covariates we observe (Dietze, 2017).19

For example, whether a particular seed (among many near-identical seeds produced by one plant)20

lands on a rock or on the immediately adjacent soil is not due to any intrinsic property of that21

seed. But whether the seed germinates or perishes is determined by the chance event of landing in22

suitable or unsuitable habitat. The life history of an individual, i.e., the schedule of their growth,23

reproduction, and death, involves a large sequence of chance events.24

Within natural populations, individuals often vary substantially in their success, as measured25

by their lifespan or lifetime reproductive output. Many taxa, such as fish and trees, experience high26

mortality in early life and low mortality at larger sizes (Houde, 1989; Pauly, 1980; Van Valen, 1975).27

This mortality schedule causes high variance and skew in lifespan: most individuals die young, while28

some lucky individuals live a long time. High reproductive skew, where a small number of adults29

contribute the vast majority of reproductive output, is also common (Eusemann and Liesebach,30

2021; Gerzabek et al., 2017; Goodwin et al., 2016; Le Boeuf et al., 2019; Ross et al., 2023). An31

important question in ecology is whether variation in success among individuals is due to their32

intrinsic properties or chance events.33

Individuals differ in ways that impact survival, growth, and fertility, and thus lead to variation in34

lifespan or lifetime reproductive output. For example, populations are mixtures of individuals with35

various sizes, ages, phenotypes, and microhabitats. Size is particularly important in determining36

demographic rates because of its impacts on metabolism (Maino et al., 2014; West et al., 1997),37

fecundity (Allainé et al., 1987; Hixon et al., 2014; Weiner et al., 2009), predation risk (Juanes and38

Conover, 1994), and competition (De Roos et al., 2003). Fixed phenotypic traits can also have large39

impacts on demographic rates and lifetime success. In a population composed of both migratory40

and resident brown trout, migratory individuals produced the majority of offspring, despite being41

a minority of the adult population (Goodwin et al., 2016). Early-flowering forbs tend to produce42

more fruits and/or seeds (Mungúıa-Rosas et al., 2011), while canopy position strongly influenced43

seedling production in a population of similarly-sized oaks (Eusemann and Liesebach, 2021).44

The study of ‘luck’, also referred to as ’individual stochasticity,’ has focused on understanding45

the drivers of variation in success among individuals in the same population. These studies are46

generally based on structured population models (i.e., matrix population models (Caswell, 2001)47

and integral projection models (Ellner et al., 2016)). In structured population models, individuals48

having the same state, such as size or age, are subject to the same probabilities of survival, growth,49

and reproduction. ‘Luck’ or ‘individual stochasticity’ arises because such individuals nonetheless50
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experience different outcomes: some live while others die, some have more offspring and some fewer,51

based on their state-dependent probabilities. We refer to lifespan and lifetime reproductive output52

as lifetime outcomes because they are the net result of many events over an individual’s life.53

Across populations, variation in demographic rates is directly linked to variation in life history54

traits. For example, high versus low mortality entails short versus long expected lifespan. Life55

history traits can generally be separated into traits relating to the pace of life (lifespan, age of56

maturity, fast vs. slow growth), and those that relating to reproductive investment (degree of57

iteroparity, clutch size) (Healy et al., 2019; Salguero-Gómez et al., 2016). Because demographic58

rates impact both life history traits and luck, we would expect the role of luck in a population to59

be strongly related to the population’s life history traits. For example, individuals with a short60

lifespan will tend to have fewer reproductive events than individuals with a long lifespan. With all61

else held equal, a population with a shorter expected lifespan would show less variance in lifetime62

reproductive output. However, life history traits do not vary independently from one another, but63

are often constrained by trade-offs: when individuals invest in early reproduction or large clutch64

sizes, they tend to reach a smaller terminal size and have a shorter lifespan (Stearns, 1989). The65

non-independence of life history traits makes it difficult to predict which life history traits will most66

strongly drive variance in lifespan or lifetime reproductive output.67

There is now a substantial literature focused on decomposing the variance across a population68

in individual lifetime outcomes into contributions from different sources. For example, a number69

of studies have examined models that include both individual age/size and a static phenotypic70

trait (e.g., birth state, breeding strategy), and have found that the within-group variance (due to71

“luck” or “individual stochasticity”) is often much larger than the between-group variance (due to72

“traits” or “individual heterogeneity”) (Jenouvrier et al., 2022; Snyder and Ellner, 2018; Snyder73

et al., 2021; van Daalen et al., 2022). Age-partitioning of luck has shown that the conditions in early74

life, such as the birth state and early life survival and growth, are very important to determining an75

individual’s lifetime outcomes (Snyder et al., 2021). Further work partitioning variance in lifetime76

reproductive output into contributions from various forms of demographic and environmental luck77

found that luck in survival, growth, or environmental variation dominated, depending on the life78

history traits of the population (Snyder and Ellner, 2022). Exciting recent mathematical progress79

enables the calculation of the full distribution of lifespan or lifetime reproductive output, suggesting80

that lifetime outcomes may frequently be bimodal (Tuljapurkar et al., 2020).81

These previous studies have focused in depth on a few well-studied populations. Here, we82

complement those studies by taking a broad comparative approach to investigate patterns of luck83

across diverse plant and animal taxa. A comparative approach at this scale required us to focus on84

summary measures that describe the effects of luck in each population, and the important differences85
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among the populations, rather than a detailed examination of the full distributions of lifetime86

outcomes in particular populations (Tuljapurkar et al., 2020). Comparing across populations also87

required us to re-scale reproductive output so that we could compare apples to elephants. We do88

this by weighting offspring by their probability of surviving to a mature age, stage or size.89

To describe the role of luck in populations, we focused on two summary measures of the distribu-90

tion: variance and skewness, for two important lifetime outcomes: lifespan and lifetime reproductive91

output (LRO). To describe differences among populations, we used life history traits. We ask the92

following questions: (1) How do luck in lifespan and luck in LRO relate to each other? (2) Does93

high variance in a lifetime outcome predict high skewness in the same outcome— in other words,94

are variance and skewness equally useful as measures of inequality in lifespan and LRO? (3) How95

do life history traits relate to variance and skewness of lifetime outcomes? (4) How do different96

types of luck (survival, growth, fecundity) contribute to overall variance and skewness of lifetime97

outcomes?98

We investigated these questions using a large set of structured population models from the99

COMADRE, COMPADRE, and Padrino databases (Levin et al., 2022; Salguero-Gómez et al., 2016;100

Salguero-Gómez et al., 2015). We calculated total variance and total skewness in both lifespan and101

lifetime reproductive output for each model, giving us four “response variables” of interest. We102

looked for relationships among the response variables, as well as relationships between each response103

variable and various covariates. The covariates included life history traits and model character-104

istics. We also decomposed the total variance and total skewness in lifespan and LRO into the105

contributions from luck in birth state, survival trajectory, growth trajectory, and fecundity. These106

decompositions were also tested for correlations with life history traits and model characteristics.107

3 Selecting population models108

To explore patterns of luck in lifespan and LRO across populations and taxa, we selected a109

large set of structured population models from the COMADRE (Salguero-Gómez et al., 2016)110

and COMPADRE (Salguero-Gómez et al., 2015) databases of matrix population models, and the111

Padrino database (Levin et al., 2022) of integral projection models. Our requirements were sim-112

ilar for matrix and integral models, but because matrix models predominate, we will explain our113

screening of COMADRE and COMPADRE and then mention a few items specific to Padrino.114

To calculate our luck measures, survival and reproductive transitions must be quantified and115

separable in the model. For each model, we extracted the F and U matrices: the F matrix contains116

all of the reproductive transition rates, and U contains all of the survival and growth transition117

rates. The overall projection matrix for a population, A, is the sum of U and F.118

We filtered for models that met basic quality control requirements such as no missing values and119
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no spontaneous production of individuals (i.e., a column sum >1 in U). We required A matrices be120

ergodic, irreducible, and primitive. We excluded models that included clonal reproduction, two-sex121

models, and those that did not exhibit any reproduction. We included studies with any projection122

interval, and adjusted the time units in all calculated measures (e.g. lifespan, variance in lifespan,123

generation time, etc.) to years.124

We filtered for models that were built from data in “Unmanipulated” conditions, and only125

models built from an individual population or pooled data from multiple populations (i.e., we126

exclude models that are an element-wise mean of other matrix models). We also restricted our127

dataset to models with a population growth rate (λ) between 0.5 and 1.5, because extreme λ values128

can arise in laboratory conditions or can be an indication of data quality issues.129

We corrected or removed from our study models with impossible life histories. Specifically,130

identified models with nearly 100% survival in the oldest size classes, which leads to “apparent131

immortality.” We applied a correction to the survival matrices of these models following Hernández132

et al. (2023). If the final column sum of U was greater than 0.99, we attempted to scale it down to133

match another matrix from the same study/species, assuming that the unrealistically high survival134

probability was due to insufficient sample size in the largest size class. Amongst animal matrices,135

we were able to correct all 10 matrices with “apparent immortality.” Among the 2367 plant matrices136

available at this point in the screening, there were 590 with this issue; 193 of those could not be137

corrected (and therefore were dropped) because no matrix from that study/species had a final138

column sum less than 0.99.139

Because many of the calculations require the fundamental matrix (N = (I−U)−1), we dropped140

an additional eight plant models for which (I-U) was singular after any U corrections as described141

above.142

Finally, we manually screened for errors in representing the life cycle, following the issues143

identified in Kendall et al. (2019). In pre-breeding designs, we checked that survival of offspring144

over the first time step is accounted for in fertility rates. In post-breeding designs, we checked that145

survival of adults is accounted for in fertility transitions, and also checked that the matrix does not146

cause a reproductive delay (in other words, juvenile individuals reproduce in the first time step that147

they become mature). In the few models which used birth-flow designs, we checked that fertility148

rates accounted for newborn survival until age 0.5 (because the average offspring is 0.5 time steps149

old at the time of the census).150

For integral projection models, the additional considerations were to include only deterministic,151

density-independent models for which the projection kernel K is a simple sum of a fertility kernel152

F and a survival-growth kernel P . Unrealistic survival leading to “apparent immortality” was also153

an issue with some of the integral projection models, but the required correction is different from154
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matrix population models. We took the column sum of the P kernel as the survival probability155

for the discretized size bins. Because IPM kernels are generally built outside of the range of156

observed individuals, we restricted our requirement of survival values to the range of size bins (1:k)157

corresponding to 99% of the stable age/size distribution. If there were any size bins in the 1:k range158

that had a survival probability greater than 0.99, then we rejected the model as being poorly fit159

(generally these are based on logistic regression with an asymptote at 1). If the survival probability160

was less than 0.99 for all size bins in 1:k, then we capped the probability of survival for any size161

bins larger than k to the probability of survival in size bin k.162

After screening the databases according to our selection criteria, our data set consisted of 1489163

structured population models. There were 462 models representing 80 animal species (450 matrix164

models and 12 integral projection models), and 1024 models representing 160 plant species (1017165

matrix models and 7 integral projection models).166

4 Calculations167

We implemented integral projection models numerically using a bin-to-bin integration method,168

which is equivalent to a large matrix projection model. We therefore present our calculations in169

the notation and language of matrix projection models.170

4.1 Moments of lifetime reproductive output and Lifespan171

We calculated the mean, variance, and skewness of lifetime reproductive output using the frame-172

work of Markov Chains with rewards (Caswell, 2013; van Daalen and Caswell, 2017). In this173

framework, living individuals move through a set of transient states according to a matrix of state-174

dependent transition probabilities, and accrue rewards each time step according to the state- or175

transition-dependent probability distribution of reproductive output (“reward matrix”). Death is176

an absorbing state; dead individuals no longer change state and no longer accumulate rewards. The177

lifetime reproductive output of an individual is their total accumulated reward at the time of their178

death. van Daalen and Caswell (2017, Theorem 1) give formulas for the first, second, and third179

moments of LRO conditional on starting state, in terms of the first, second, and third moments180

of the reward matrix. We assumed that per-capita offspring production over one time step (i.e.181

“annual rewards”), conditional on an individual’s state, was Poisson-distributed with the mean182

equal to the corresponding entry of the reproduction matrix (rescaled, see section 4.3 below). It is183

important to note that this assumption is applied only within individual states (e.g., ages, sizes).184

The population-level distribution of clutch sizes depends on the distribution of individual states185

within the population, and need not follow a Poisson distribution. The equations that we used to186
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calculate mean, variance, and skewness of LRO are given in Appendix Section S1.187

The mean, variance, and skewness of lifespan can be calculated as a special case where indi-188

viduals accumulate exactly one unit of reward for each time step they are alive. The moments of189

lifespan conditional on starting state are given in Caswell (2013, Eqn. 21-23). The equations that190

we used to calculate mean, variance, and skewness of lifespan are given in Appendix Section S2.191

4.2 Mixing distribution192

In the calculations described so far, the mean, variance, and skewness are conditional on the starting193

state of an individual. For example, mean lifespan is calculated as a vector with entry Li being194

the expected lifespan of an individual that starts life in state i. In an age-structured model, all195

individuals are born into the youngest age class. However, many of the models we analyzed are size-196

or stage-structured, and individuals can start in multiple states. In that case we must calculate197

the mean, variance, and skewness in lifespan by averaging over the possible starting states. This198

averaging is achieved by applying a mixing distribution for initial state and the law of total variance199

or total cumulance (see Appendix Section S1 for more details and equations).200

We selected a standard mixing distribution, the distribution of offspring types in a cohort born201

at the stable population distribution:202

πz =
Fw

‖Fw‖
, (1)203

where w is the dominant right eigenvector of the population projection matrix (A). Note that πz204

is also the probability of being born into each state, when the population is at its stable population205

distribution.1206

4.3 Offspring weight function207

To compare LRO measures across taxa, we defined an offspring weighting function that could nor-208

malize the ‘units’ of LRO. Not all offspring are worth the same amount: a seed in the seedbank209

is less likely to contribute to future population growth than is a seedling or first-year flowering210

offspring. Additionally, offspring are not worth the same across species, and cross-species com-211

parisons will be affected by the propensity for some species to produce few offspring that mostly212

survive until adulthood while others produce many offspring with high juvenile mortality. To have213

consistent ‘units’ of LRO, we only ‘count’ the offspring that survive to adulthood. Rather than214

using the total stage-specific reproductive output as the stage-specific rewards, we used the sum215

of stage-specific offspring weighted by each offspring’s probability of surviving to adulthood. For216

1The next subsection describes our method for re-scaling the F matrix for cross-model and cross-taxa comparisons.
Note that we do not re-scale the F matrix in the calculation of the mixing distribution. The mixing distribution
is based on population structure and cohort distribution, while the rescaled F matrix is used only for calculating
rewards (i.e., moments of lifetime reproductive output).
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example, adults that produce both seeds and seedlings will receive rewards with a smaller weight217

from the seeds than the seedlings. This weighting also has the advantage of compensating for the218

effect of pre- vs. post-reproductive census on LRO, i.e., whether offspring are counted after or219

before first-year mortality.220

We assumed that stage-specific offspring production was Poisson-distributed, with means given221

by the values in the fertility matrix (F). From the probability mass function of the Poisson distri-222

bution, we derived the stage-specific probability of breeding (having more than 0 offspring) as:223

pb = 1− e−fi , (2)224

where fi is the i-th column sum of F. Note that pb is a column vector with a probability of breeding225

for each starting state. We calculated the probability of surviving to reproduce at least once (i.e.,226

entering the breeding population, B), conditional on individual birth state (z0), following Ellner227

et al. (2016, p. 67), as:228

P(B|z0) = pT
bN0, (3)229

where N0 is the fundamental matrix for a modified state transition matrix where reproduction is230

an absorbing state. We generated the expected rewards matrix (R1) by multiplying each nonzero231

entry Fij by the ith entry of Eqn. (3).232

4.4 Decomposition of variance and skewness: Types of luck233

To understand how different categories of luck drive overall variation in lifetime outcomes, we234

decomposed each of our four lifetime outcome measures into contributions from different categories235

of luck, using the approach of Snyder et al. (2021). Birth state luck is variation in outcomes236

resulting from individuals by chance having different states at birth (e.g., different sizes). Survival237

trajectory luck is variation in outcomes resulting from the fact that each year, among individuals238

with the same state and therefore the same mortality risk, by chance some will live and some will239

die. Growth trajectory luck is variation in outcomes due to the fact that individuals with the same240

state at any time t will by chance have different states at time t + 1. Fecundity luck (which only241

affects LRO measures) is variation in LRO due to chance differences in actual annual offspring242

production among individuals who have the same sequence of state transitions from birth to death.243

Elsewhere we have derived methods to calculate sequentially the expected contribution of each244

type of luck at each age of life to the lifetime reproductive variance and skewness (Snyder and Ellner,245

2023; Snyder et al., 2021). The idea behind the approach is that learning the actual outcome of246

one more event in an individual’s life (rather than knowing just the range of possible outcomes and247

their probabilities) changes the distribution of the outcome measure conditional on everything that248
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has happened so far in the individual’s life. For example, knowing that an individual survived from249

age 4 to age 5 in an age-structured model changes the conditional mean of LRO: from the mean250

conditional on survival, growth, and reproduction up to age 4, to the mean conditional on all of251

those things plus survival to age 5. The amount of change by the inclusion of an additional stage252

transition measures the importance of survival luck at age 4 for that outcome measure. Snyder253

et al. (2021, pp. E112 - E117) derived explicit formulas for all such age-specific contributions to254

LRO and lifespan variance, for any density-independent matrix or integral projection model, and255

have extended those calculations to skewness (Snyder and Ellner, 2023). Here we only consider the256

total contribution of each type of luck, calculated by summing each type over all ages. To ensure257

that the sum over all ages includes all possible life histories, we set the maximum age in the sum258

to 300 years for animals, and 5000 years for plants.259

4.5 Model structure and life history traits260

We investigated how life history traits and model structure covariates impact luck by exploring261

relationships of our four luck measures with six life history traits and three model characteristics.262

For model characteristics, we looked at (1) population growth rate (λ, the leading eigenvalue of the263

projection matrix or kernel); (2) the number of stages in the model (for matrix population models264

only), and (3) taxonomic class (animals) or organismal growth form (plants).265

We selected life history traits that can be calculated directly from the population projection266

matrix (or kernel). We calculated three traits related to the pace of life: longevity, expected age267

at first reproduction, and generation time. We also calculated three traits related to reproductive268

strategy: precocity, iteroparity, and average clutch size.269

Longevity We define longevity as the expected total lifespan of adults (individuals that reproduce270

at least once) rather than the expected lifespan of all individuals, in order to avoid sensitivity to271

early life processes. When early life mortality is very high, expected lifespan will be quite low even272

if a typical adult lives a long time. For example, in bluefin tuna, adults are known to reach ages of273

∼ 40 years, but early life mortality is over 99% and most individuals die very young. For brevity,274

we will refer to the expected lifespan of individuals who reproduce at least once as “longevity” from275

here on.276

We computed longevity from an expanded Markov chain with two absorbing states: dead with277
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lifetime reproductive output equal to zero (Ω1) or greater than zero (Ω2):278

P =


Tτ×τ 0τ×τ 0τ×1 0τ×1

Rτ×τ Uτ×τ 0τ×1 0τ×1

M1×τ 01×τ 1 0

01×τ M1×τ 0 1

 , (4)279

where T contains the transition probabilities for surviving and not reproducing, R contains the280

transition probabilities for surviving and reproducing, and U contains total survival probabilities,281

as usual. The mortality vector M contains the state-dependent probability of death, which is not282

affected by past reproductive output.283

Longevity is calculated as the expected time to absorption conditional on absorbtion into Ω2.284

Using standard Markov chain methods we calculated the transition matrix (4) conditional on ab-285

sorbtion into Ω2 and the mean time to absorbtion for that matrix (see e.g., Snyder and Ellner286

(2016)). The full set of equations is provided in Appendix Section S3.287

Age of maturity We calculated the age of maturity as the expected age at which an individual288

will first reproduce (Cochran and Ellner, 1992). Specifically, we calculated the expected lifespan289

in a modified Markov Chain where individuals are ‘absorbed’ when they first reproduce (Caswell,290

2001, Section 5.3.3).291

Generation time We selected Ta as the measure of generation time, the time between successive292

birth events in the ancestral genealogy of an individual (Bienvenu and Legendre, 2015). This293

measure is equivalent to Ā as presented in Cochran and Ellner (1992), which is the mean age of294

parents of a cohort of offspring produced at the stable stage distribution (Bienvenu and Legendre,295

2015). In stationary populations (λ = 1), Ta will also be equivalent to the mean age at lifetime296

birth events across a cohort of newborns at the stable stage distribution with offspring weighted by297

reproductive value (µ1(v); Ellner 2018). When survival is very high in the oldest/largest classes and298

the population is growing quickly, we expect Ta to be much less than µ1(v). Although individuals299

continue reproducing until very old ages (driving µ1(v) up), the typical offspring being produced300

‘now’ has a young parent (driving Ta down) because a rapidly growing population will have a stable301

stage distribution skewed towards young individuals. Therefore, we selected Ta because it more302

closely represents what we mean when we say ‘generation time.’ It is calculated as:303

Ta =
λvTw

vTFw
, . (5)304
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where w and v are the left and right eigenvectors corresponding to λ. These eigenvectors also305

represent the stable stage distribution (w) and reproductive value (v).306

We found that, for some models, Ta gives unreasonably high values (thousands of years in some307

herbaceous perennials, hundreds of years in some marine invertebrates) even if the model seems308

otherwise reasonable. Inspecting these models, it seems that the extremely high values of Ta are309

due to reproductive value (v) that peaks at the oldest/largest individuals, which in turn seems to310

be more likely to occur if retrogression is common.311

Precocity We defined precocity as one minus the ratio of mean age at first reproduction to mean312

lifespan for reproductive individuals. A precocity score close to one indicates early-life maturity,313

while a precocity score close to 0 indicates late-life maturity.314

Iteroparity We calculated iteroparity from Demetrius’ evolutionary entropy (Demetrius, 1977;315

Demetrius et al., 2009), using the Rage package (Jones et al., 2022). Iteroparity scores <1 indicate316

individuals are approximately semelparous, while high values indicate that individuals experience317

many reproductive events in their lifetime.318

Average clutch size We defined average clutch size as the per capita offspring production by319

adults at the stable stage distribution:320

Fclutch =
Fw∑
aw

, (6)321

where the denominator is the sum of the portion of the stable stage distribution that is reproduc-322

tively active (a indicates the adult stages).323

5 Results and Interpretation324

5.1 Relationships among the response variables325

We primarily used Kendall’s nonparametric correlation coefficient τ to quantify and statistically326

test for relationships among variables, because of the highly non-normal distribution of variables.327

Variance Lifespan variance and LRO variance were positively correlated (Figure 1A,B) for both328

animals (τ = 0.460, p < 0.001) and plants (τ = 0.224, p < 0.001). This matched our expectations,329

because the number of reproductive events should increase with lifespan, and the variance of any330

measure will generally increase with the mean. Greater variance in lifespan should therefore lead to331

greater variance in the number of reproductive events which, in turn, should generally increase the332

variance in LRO. Although the slope of the relationship varied slightly among the well-represented333
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Figure 1: (Previous page.) Relationships among response variables are strong and consistent
across animals and plants. (A) Kendall’s τ estimates for pairwise relationships among the response
variables: variance in lifespan, variance in LRO, skewness of lifespan, and skewness of LRO. Entries
along the diagonal (correlation of a variable with itself) and the repeated pairwise relationships
in the lower triangular region are blocked out in white. Within each square, the estimate of τ is
shown for animals on the left and plants on the right. All pairwise τ estimates were statistically
significant (p < 0.05). The additional panels show (B) the relationship between lifespan variance
and LRO variance colored according to λ; (C) the relationship between lifespan skewness and LRO
skewness; and (D) the relationship between variance and skewness of LRO colored according to
lifespan variance. In panels B-D, each point represents one population model (i.e., a particular
parameterization of a matrix population model or integral projection model). In panels B-D, both
axes are log-scaled. Note that log-transformed variance is equivalent to twice the log-transformed
standard deviation [log(var(x)) = 2 ∗ log(sd(x))].

taxonomic classes in animals and among growth forms in plants, the relationship was positive for334

all groups (Figure S1).335

We were surprised to see that population growth rate (λ) structured the relationship between336

variance in lifespan and variance in LRO (Figure 1B). Shrinking populations (λ < 1) exhibited337

lower variance in both lifespan and LRO than growing populations (λ > 1). We investigated338

a few possible mechanisms that might explain this relationship, but none were supported (see339

the Discussion). We also observed that some of the microstructure, particularly for animals, was340

related to matrix size (Figure S2). Matrix size may be more meaningful in animal models, which341

were frequently age-structured, while nearly all plant models were size-structured.342

Skewness Lifespan skewness and LRO skewness were also positively correlated (animals: τ =343

0.39, p < 0.001; plants: τ = 0.29, p < 0.001). We expected this relationship because when lifespan344

is highly skewed, relatively few individuals survive long enough to reproduce. LRO skewness tended345

to be greater than lifespan skewness (most points above the 1:1 line, Figure 1C). The slope of the346

relationship was positive and similar across most taxonomic groups and growth forms, except for347

a very flat slope for mammals (Figure S3). Unlike variance, the skewness of lifespan and LRO did348

not show structuring with λ (Figure S4). Likewise, there was no obvious structuring with matrix349

dimension (Figure S5).350

Most populations exhibited lifespan skewness ≥ 2 (Figure 1C). If survival rate is independent351

of age in a continuous-time model, lifespan would be exponentially distributed, having skewness352

of 2. In discrete time with constant survival probability, lifespan is geometrically distributed, and353

skewness varies between 2.31 and 2 for mean lifespans of 1.5 and above. Elevated juvenile mortality,354

so that many individuals die young but those that reach adulthood have roughly constant annual355

survival, produces skewness greater than 2.356
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Variance and Skewness Variance and skewness were negatively related for both lifespan and357

LRO (Figures 1A,D and S6). In populations with greater lifespan variance, the skewness of both358

lifespan and LRO was decreased. Likewise, in a population with greater variance in LRO, there was359

lower skewness of lifespan and LRO. The skew-variance relationship for LRO was bounded by a line360

with a log-log slope of −1/2 (Figure 1D), which is the relationship for Poisson distribution (skewness361

= 1/
√

variance). Under our assumptions, a population where all individuals reproduce exactly362

once (e.g., biennials) would lie on this line. There are (at least) two mechanisms that would move363

populations to the right of the boundary line. First, a zero-inflated Poisson distribution exhibits364

higher skewness for a given variance. Second, the sum of a geometrically-distributed number of365

Poisson distributions (i.e., repeated reproduction over a geometrically-distributed lifespan) exhibits366

higher skewness for a given value of variance. High variance in lifespan could be caused by both of367

these phenomena: zero-inflation due to individuals that die before reproducing, and geometrically-368

distributed numbers of reproductive events in long-lived adults. This suggests that LRO would369

become less Poisson-distributed with increased variance in lifespan, and this is what we saw (Figure370

1D).371

5.2 Relationships between response variables and life history traits372

Life history traits Many of the life history traits we examined were positively correlated in373

pairwise comparisons: longevity, age of maturity, generation time, and iteroparity (Figure 2).374

Precocity showed weak positive relationships with longevity, iteroparity, and average clutch size.375

Lifespan sets the possible scope for many of the traits that we examined. For example, if longevity is376

short, then generation time must also be short. Likewise, high iteroparity requires a long lifespan,2377

and precocity was measured relative to the expected lifespan of reproductive individuals.378

Larger average clutch size was associated with earlier maturity, shorter mature lifespan, shorter379

generation times, and less iteroparity. This is consistent with a life history trade-off between380

reproductive investment and adult survival.381

Variance In both plants and animals, high lifespan variance was strongly associated with greater382

longevity (Figure 2). The life history traits that were positively correlated with longevity were also383

positively related to variance in lifespan (Figures 2, S7, and S8). Conversely, populations with high384

average clutch size tended to have low variance in lifespan.385

Variance in LRO exhibited positive relationships for precocity, iteroparity, and clutch size (Fig-386

ures 2 and S9). Precocity and iteroparity likely influence variance in LRO through their effects on387

2This is not necessarily the case. A discrete-time model cannot give high iteroparity if individuals do not live for
a large number of time steps. If the model time step were shorter, then a population could have a high iteroparity
score and an expected lifespan much shorter than one year. However, most models in this study have a time step of
one year or 5 years (in the case of long-lived trees and palms).
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the mean and variance in the number of reproductive events that individuals experience (i.e., the388

argument that we made above to explain why variance in lifespan and variance in LRO should be389

positively correlated). Higher average clutch size increased variance in LRO because we represented390

reproduction as a Poisson process (the Poisson distribution has variance equal to its mean).391

Although variance in lifespan and variance in LRO were positively correlated, they did not392

always show the same relationships with life history processes. We expected variance in LRO to393

increase with greater longevity, but this was observed only in animals (no significant relationship394

was observed in plants). In fact, other traits that were positively related to longevity– late age of395

maturity and long generation time– were related to decreased variance in LRO for plants (Figures396

2 and S10).397

It is possible that the positive relationship between variance in LRO and average clutch size398

is enough to account for this surprising negative relationship of variance in LRO with generation399

time and age of maturity in plants. If average clutch size were the dominant driver of variance400

in LRO, then a negative relationship between variance in LRO and generation time could be the401

result of the negative relationship between average clutch size and generation time. As we argued402

above, the negative relationship between clutch size and generation time may be a consequence of403

life history trade-offs.404

Skewness Skewness of lifespan generally exhibited weak relationships with the life history traits405

we considered (Figures 2 and S11-S14). Surprisingly, these relationships tended to be in the opposite406

directions for plants and animals: a larger clutch size was associated with greater skewness in407

lifespan in animals, but lower skewness in lifespan in plants. This difference may be related to408

a difference in the shape of survival curves between plants and animals. The animal models are409

dominated by mammals and birds which generally have much lower clutch sizes and higher early-life410

survival than plants. In fact, when we separated out fish, which tend to have survival schedules411

and clutch sizes more similar to plants than to birds, we found that fish have correlations in the412

opposite direction from the other animal populations, and in agreement with plants (Figure S15).413

Because there was a strong negative relationship between variance and skewness in LRO, skew-414

ness and variance of LRO often related to life history traits in opposite ways. In animals, the415

five life history traits that showed significant positive relationships with LRO variance all show416

significant negative relationships with LRO skewness. In plants, all of the relationships flip sign417

as expected except for iteroparity, which shows a weak positive relationship with variance in LRO418

and a stronger positive relationship with skewness in LRO.419
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Figure 3: Variance in LRO is primarily driven by survival trajectory luck and fecundity luck, in
both plants and animals. Decomposition of variance in LRO into proportional contributions from
survival, growth, and fecundity luck. We do not show birth state here because it contributes less
than 5% of the variance in LRO in all of the animal models, and in nearly all (95%) of the plant
models.
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5.3 Contributions of multiple types of luck to variance and skewness420

Variance Variance in lifespan overwhelmingly tended to come from uncertainty in the survival421

trajectory in animals, with more contributions from the growth trajectory in plants (Figure S16).422

In an age-structured model, the “growth trajectory” is simply the deterministic process of becoming423

a year older with each time step, so there is no growth trajectory luck. Animal models are much424

more frequently age-structured while plant models are more usually size-structured, which accounts425

for the difference in the role of growth trajectory in determining variance in lifespan. Uncertainty426

in the birth state played a very small role, accounting for less than 3% of the variance in all animal427

models, and less than 5% of the variance in 95% of the plant models.428

Variance in LRO was determined primarily by survival trajectory luck and fecundity luck (Figure429

3). In animal models, which are mostly age-classified, survival trajectory luck tended to be more430

important than fecundity luck. In plant models, fecundity luck tended to be far more important431

than survival trajectory luck. The large role for fecundity luck is in part a consequence of the432

offspring weighting that we used. When we rescaled age-specific reproductive output (the F matrix)433

by an offspring’s probability of surviving to reproduce at least once, the luck of survival or death434

during the pre-reproductive period was shifted from survival trajectory luck to to fecundity luck. For435

more mathematical details on how variance partitioning is impacted by rescaling F, see Appendix436

Section S4.437

The dominant component of variance in LRO showed a sharp shift between shrinking and438

growing populations in both animals (Figure 4A) and plants (Figure 5A). In shrinking populations439

(λ < 1), fecundity luck is the largest contributor to total variance in LRO. In growing populations440

(λ > 1), survival luck contributes the same amount or more than fecundity luck to total variance441

in LRO. This means that, in shrinking populations, individuals with particularly high LRO would442

tend to be those who have above-average clutch sizes. In growing populations, individuals with443

particularly high LRO would tend to be those that survive longer than average.444

Skewness skewness in lifespan and LRO showed a markedly different pattern. The contribu-445

tions from survival trajectory luck to skewness in lifespan are centered on 100%, and both growth446

trajectory luck and birth state luck are centered on 0 (Figure S17). For LRO, contributions from447

survival trajectory luck tended to account for more than 100% of the skewness while contributions448

from growth trajectory luck and fecundity luck were negative, decreasing the overall skewness of449

LRO (Figure 6).450
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Figure 6: Skewness in LRO is overwhelmingly due to survival trajectory luck. Decomposition of
skewness in LRO into contributions from survival, growth, and fecundity luck. We do not show
birth state here because it contributes less than 1% of the variance in LRO in all of the animal
models, and in nearly all (99.6%) of the plant models.
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5.4 Life history traits and components of variance in LRO451

Finally, we explored how life history traits influenced the proportional contributions to variance in452

LRO. We examined exploratory scatter plots (not shown), and discuss here only the life history453

traits that influenced the components of variance in LRO.454

In animals, the proportion of variance in LRO due to fecundity luck vs. survival luck depended455

on reproductive strategy traits (Figure 4). As precocity, iteroparity, and mean clutch size increased,456

survival trajectory luck became more important in determining total variance in LRO. In highly457

precocious animals, nearly all individuals will survive to reproduce at least once, so the variance458

in LRO is generated by differences in individuals’ survival trajectories. In populations with very459

low iteroparity, the typical individual reproduces only once, so fecundity luck dominates. And460

when average clutch size is large, a typical reproductive individual will have at least one offspring461

every year, so the survival trajectory is the main determinant of becoming a ‘lucky’ reproducer who462

contributes many offspring to the population.463

In plants, variance in LRO showed important contributions from three kinds of luck: survival,464

growth, and fecundity. The proportion of variance in LRO contributed by growth luck did not465

change dramatically with different life history traits. Fecundity luck showed an increasing impor-466

tance as generation time increased, but a decreasing importance as longevity increased. Survival467

luck tended to dominate the variance in LRO in populations with a long lifespan, while fecundity468

luck tended to dominate in populations with long generation time. Similar to the pattern in an-469

imals, the contribution of survival trajectory luck to the variance in LRO increased with greater470

precocity. Populations that are highly precocious may have high longevity (they start reproducing471

long before they die), and so differences in the survival trajectory separate individuals with high472

LRO from those with low LRO. Populations with extremely long generation time may be declin-473

ing populations that are dominated by old individuals with high survival; in these populations,474

variation in fecundity primarily generates the variation in LRO.475

6 Discussion476

The study of “luck” in individual life histories in recent decades has been motivated in part by a477

desire to understand the drivers of reproductive skew, a frequently observed phenomenon wherein a478

small number of individuals produce most of the offspring. These exceptional or “lucky” individuals479

therefore contribute disproportionately to population maintenance and growth. Past studies (e.g.,480

Jenouvrier et al., 2022; Snyder and Ellner, 2016, 2018; van Daalen et al., 2022) have focused in481

detail on a limited number of well-parameterized populations to explore the drivers of variance and482

quantify the contributions from individual phenotypic traits (“individual heterogeneity”) and luck483
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(“individual stochasticity”). Here, we focused on models where individuals vary only in their age,484

size, or stage but without additional phenotypic variation, to explore the natural history of luck485

across many plant and animal models. We explored the relationships among different measures of486

luck: variance and skewness in both lifespan and lifetime reproductive output (LRO). Furthermore,487

we asked: in what settings (e.g., taxa, life history strategies, population growth vs. decline) does488

luck (of various kinds) play a large role in determining an individual’s lifespan or LRO?489

Our first result, that there is a positive relationship between variance in lifespan and variance in490

LRO, contradicts the results of another study, also using models from the COM(P)ADRE databases.491

Varas Enŕıquez et al. (2022) found no relationship between variance in LRO and standard deviation492

of longevity. When we calculated variance in lifespan and LRO using raw offspring counts, rather493

than offspring weighted by probability of survival to reproduce, we also found no correlation between494

these measures (not shown). However, as outlined in the Methods, we used offspring weighting to495

standardize the units of reproductive output. Much of the cross-species variation in LRO variance496

using raw offspring counts results from the difference between producing many offspring with high497

juvenile mortality, and producing few offspring with low juvenile mortality. Our standardization498

removes or at least ameliorates this source of between-species variation, making it possible to detect499

the expected correlation between variance in lifespan and variance in LRO.500

We found that growing populations (λ > 1) had higher variances in lifespan and LRO than501

shrinking populations, and their variance in LRO was dominated by survival luck instead of fecun-502

dity luck. We hypothesized that the unexpected correlations between λ and variance in lifetime503

success might be the result of λ and lifetime success variance both having positive correlations504

with some third variable. We explored several candidates for what that third variable might be:505

stable population (st)age structure, mean lifespan, and the relative total elasticities of λ or net506

reproductive rate (R0) to survival versus fecundity. However, in our collection of empirical models507

none of these candidates proved to have nontrivial (or any) positive correlations with both λ and508

lifetime success variance.509

Possibly the most important results of this paper are the observed negative relationships be-510

tween variance and skewness. Skewness in lifespan or LRO both tended to decrease with increasing511

variance in lifespan or LRO (Fig. 1A,D and Fig. S6). This confounds the often-repeated justifica-512

tion of the study of drivers of variance as a way to understand drivers of high reproductive skew. We513

found instead that populations with very high variance tend to be those with many opportunities514

to reproduce (precocious, highly iteroparous, and large average clutch sizes, Figure S9), and the515

resulting LRO has a wide distribution, but low skew. The distinct drivers of variance and skewness516

are further revealed by our decomposition analysis of variance and skewness. We found that vari-517

ance in lifespan and LRO were determined jointly by survival, growth, and fecundity luck (Figure518
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3 and S16), but that skewness in both lifespan and LRO were overwhelmingly due to survival luck,519

with the other components decreasing skewness.520

Although variance in LRO does not predict reproductive skew, it still creates inequality among521

individuals in their contribution to future generations, and consequently high LRO variance in-522

creases genetic drift. In particular, Hill (1972) showed that the effective population size is inversely523

proportional to the variance of LRO, all else being equal, even with overlapping generations. Skew-524

ness and other properties of the LRO distribution also have evolutionary impacts. For example,525

LRO variance alone is not sufficient to predict the fixation probability of a weakly beneficial allele526

(Tuljapurkar and Zuo, 2022).527

Loss of genome-wide genetic variation, due to luck-based drift or other factors, can be a signif-528

icant risk factor in small populations of conservation concern (Kardos et al., 2021). Plant species529

classified as vulnerable, endangered, or critically endangered (IUCN) are more likely to have neg-530

ative population growth rates, and their life history strategies were characterised by relatively531

fast growth, short mature life expectancy, low iteroparity, and low reproductive output (Salguero-532

Gómez, 2017). Based on our results, luck is unlikely to further work against these endangered taxa.533

Instead, we expect the greatest variance in LRO in rapidly growing populations, and in populations534

with a long mature life expectancy, high clutch size, and high iteroparity. Therefore, we would ex-535

pect especially high and worrisome genetic drift in populations recovering from disturbances. This536

has important implications for population resilience (Capdevila et al., 2022) and the preservation537

of intraspecific biodiversity.538

On the whole, our results show that between-species variation in longevity drives most of the539

patterns relating luck to life history strategy. We found a positive relationship between longevity540

and variance in lifespan, in line with evidence that taxa with slow life histories exhibit greater541

variation in lifespan (Van de Walle et al., 2023). This is in contrast to work on aging in humans542

and primates (Colchero et al., 2016) and angiosperm plants (Baudisch et al., 2013) that found543

higher longevity to be associated with greater senescence and lower variance in lifespan. Many of544

the other life history traits we examined were positively related to longevity, so transitive logic545

explains many of the observed relationships between life history traits and the response variables.546

Clutch size is not positively related to longevity, but may be connected to longevity through a life547

history trade-off (Van de Walle et al., 2023). High parental investment per offspring in mammals548

(i.e. small clutch size, late age of weaning) was associated with greater early-life survivorship and549

a shift in the pattern of survivorship and longevity (Lynch et al., 2010). From the perspective of550

adults, individuals that invest heavily in reproduction tend to reach smaller terminal sizes and have551

shorter lifespans, so we expect a negative correlation between longevity and clutch size (Stearns,552

1989), as we observed (Fig. 2): overall, large clutch size is a hallmark of a “fast” life history.553
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We found that the patterns among our response variables were strong and consistent across both554

plants and animals (Figure 1), but that plants and animals showed differing relationships between555

life history traits and luck (Figure 2). Plants and animals have broadly similar patterns of variance556

and skewness of lifetime reproductive output, but the axes of life history strategies (when variance557

and skewness are included) differ between plants and animals (Varas Enŕıquez et al., 2022). The558

disparity in how life history traits relate to measures of luck could be due to both real differences559

in life history of plants and animals (e.g., retrogression and dormancy in plants) and differences in560

modeling approaches (i.e., animals tend to be modeled with ages or developmental stages, while561

plants are overwhelming modeled with size classes).562

Geographic, taxonomic, and life history biases in ecological research significantly limit our ability563

to answer ecological questions and monitor biodiversity. Species occurrence data in biodiversity564

databases covers only 6.74% of the globe, with observations concentrated in the Global North565

(Hughes et al., 2021). Taxonomically, public interest rather than research effort correlated with566

biodiversity coverage, with major underrepresentation of all classes of invertebrate animals, as567

well as fungi, lichens, ferns, mosses, and algae (Troudet et al., 2017). Similarly, observations in568

our dataset were concentrated in the Global North and in species of management interest for569

harvesting or conservation. Demographic studies in animals that met our screening criteria came570

primarily from vertebrates (93.5%), particularly mammals (59.5%), birds (18%), and bony fish571

(11.5%), whereas about 90% of named animal species are invertebrates, with insects making up572

about 75%. In plants, we excluded all models with clonal reproduction, despite the importance and573

commonness of clonal reproduction in plants. In order to census clonal plants, researchers must574

choose thresholds (e.g., distance from the parent plant) for determining where one individual ends575

and another begins. These thresholds introduce variation that would confound our cross-model576

comparisons of luck measures. Future work should focus on standardizing demographic methods577

for analyzing populations that exhibit clonal reproduction and expanding the number of models578

available for invertebrate taxa.579

In conclusion, we found that our four measures of luck — the response variables (1) variance580

in lifespan, (2) variance in LRO, (3) skewness of lifespan, and (4) skewness of LRO — showed581

remarkable range across the available demographic models for plants and animals. We found that582

populations with high variance in lifespan tend to have high variance in LRO as well, because an583

individual’s lifespan controls their opportunities for reproduction in these discrete time models. We584

found that high variance in a given lifetime outcome does not predict high skewness, and therefore585

we conclude that variance by itself is not a complete measure of inequality in LRO and longevity.586

Longevity (mean lifespan of individuals that reproduce at least once) emerged as an important life587

history trait, and survival luck played a strong role in determining whether an individual achieved588
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particularly high reproductive output, as well as whether they lived particularly long. We found589

that survival luck dominates variance in LRO in growing populations, while fecundity luck is more590

important in shrinking populations. Taken together, our results suggest that genetic drift due to591

variance in LRO could prove detrimental to recovering populations of long-lived iteroparous species.592
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Allainé, D., D. Pontier, J. M. Gaillard, J. D. Lebreton, J. Trouvilliez, and J. Clobert. 1987. The599

relationship between fecundity and adult body weight in homeotherms. Oecologia 73:478–480.600
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mann, A. Henning, G. Hoppe, G. Römer, J. Runge, T. Ruoff, J. Wille, S. Zeh, R. Davison,717

D. Vieregg, A. Baudisch, R. Altwegg, F. Colchero, M. Dong, H. Kroon, J. Lebreton, C. J. E.718

Metcalf, M. M. Neel, I. M. Parker, T. Takada, T. Valverde, L. A. Vélez-Espino, G. M. Wardle,719
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Section S1 Mean, variance, and skewness of lifetime reproductive

output

For calculating mean, variance, and skewness in lifetime reproductive output (LRO), we used the

framework of Markov Chains with rewards following van Daalen and Caswell (2017). We assumed

that annual offspring production has a Poisson distribution, so we reproduce the equations for that

case here.

In this framework, the life cycle is represented by a Markov Chain with death as the unique

absorbing state, and all living states are transient. The population projection matrix (A = U +

F) describes only the τ transient states. With death included as the absorbing state, the state

transition matrix is

P =

 Uτ×τ 0τ×1

M1×τ 1

 , (S1)

where M is a row of mortality probabilities, generated by taking the difference between 1 and the

column sums of U. We also need to define Z, an operator matrix that cleaves off the absorbing

state:

Z =
(

Iτ×τ 0τ×1

)
, (S2)

and the τ×τ submatrix of reward/moment corresponding to transitions among the transient states:

R̃k = ZRkZ
T (S3)

The matrix R1 giving the first moment of the rewards for each state transition, is given by:

R1 = 1τ+1(fT|01×1), (S4)

where f is the stage-specific total fertility rewards. Prior to this calculatin we re-scaled F, weighting

offspring by their probability of surviving to reproduce (this is described fully in the main text,

section 4.3); then f is given by the column sums of the re-scaled fertility matrix.

For Poisson-distributed annual rewards, the matrices giving the second and third moments of

reward are:

R2 = R1 + (R1 ◦R1) (S5)

R3 = R1 + 3(R1 ◦R1) + (R1 ◦R1 ◦R1) (S6)

where ◦ denotes the Hadamard (element-by-element) product of equal-size matrices or vectors.
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Notation We now need to introduce notation for moments of a distribution. We use µk(X) for

the k-th central moment of the random variable X, and µ′k(X) for the k-th raw (i.e., non-central)

moment of X. We use µ̃3 to denote skewness. We use bold symbols (µ) to indicate the vector of

the given moment conditional on possible starting states. We use ρ to denote LRO considered as a

random variable. In this section, all equations for moments refer to moments of ρ, but we use the

notation just described for moments in general.

The moments of lifetime accumulated reproductive output, conditional on starting state z0, are:

µ′1 = NTZ(P ◦R1)T1τ+1 (S7)

µ′2 = NT
[
Z(P ◦R2)T1τ+1 + 2

(
U ◦ R̃1

)T
µ′1

]
(S8)

µ′3 = NT
[
Z(P ◦R3)T1τ+1 + 3

(
U ◦ R̃2

)T
µ′1 + 3

(
U ◦ R̃1

)T
µ′2

]
. (S9)

These can be used to generate the central moments, as vectors conditional on starting state (NB:

variance is the second central moment):

µ2 =µ′2 − µ′1 ◦ µ′1 (S10)

µ3 =µ′3 − 3(µ′2 ◦ µ′1) + 2(µ′1 ◦ µ′1 ◦ µ′1) (S11)

Section S1.1 Variance in LRO

The variance in LRO, conditional on the starting state, is the second central moment (Eqn. S10).

The variance in LRO, taken across the mixing distribution, is given by:

Var(ρ) = E (Var(ρ|z0)) + Var (E(ρ|z0))

= µT
2 πz +

(
(µ′1)2

)T
πz −

(
µ′1πz

)2
(S12)

Section S1.2 Skewness of LRO

Skewness, conditional on starting state, is given by:

µ̃3 = µ3 ◦ µ(−3/2)
2 (S13)

In order to calculate the total skewness, for a cohort described by a mixing distribution over initial

state, we first need to calculate the total third central moment. Because the third cumulant of a

random variable equals its third central moment, we can use the law of total cumulance (Brillinger,

2



1969) for the third cumulant:

µ3(ρ) = E(µ3(ρ|z0)) + µ3 (E(ρ|z0)) + 3Cov (E(ρ|z0),Var(ρ|z0)) . (S14)

where the expectations and covariance are all with respect to the distribution of z0.

The first term, the expected value of the third central moment of LRO, is:

E(µ3(ρ|z0)) = µT
3 πz. (S15)

The second term is the third central moment (with respect to πz) of E(ρ|z0) For any random

variable X, µ3(X) = E
[
(X − X̄)3

]
, and E [E(X|z0)] = E(X). Therefore

µ3 (E(ρ|z0)) = E
[
(E(ρ|z0)− E(ρ))3

]
=

[(
µ′1 −

(
(µ′1)Tπz

))3
]T

πz (S16)

The third term, the covariance of the expected value and the variance of LRO, is given by:

Cov
(
E(X|Y ),Var(X|Y )

)
= E

(
E(X|Y )×Var(X|Y )

)
− E

(
E(X|Y )

)
× E

(
Var(X|Y )

)
= (µ′1 ◦ µ2)Tπz −

(
(µ′1)Tπz

)
(µT

2 πz) (S17)

Section S2 Mean, variance, and skewness of lifespan

The mean, variance, and skewness of lifespan can be calculated using a Markov Chain with rewards,

where individuals receive exactly 1 reward for each time step they survive. This can be achieved

following the “fixed rewards” case of van Daalen and Caswell (2017, Eqn. 8 and 9). However,

the equations for mean, variance, and skewness in lifespan can also be written in simpler equation

forms. In what follows, we present these simpler equations, following Caswell (2013) and Ellner

et al. (2016).

Section S2.1 Mean Lifespan

The vector of expected future lifespan given current state z0 of an individual is

E(L|z0) = eTN, (S18)

where eT is a column vector of 1’s with the same length as the number of classes in A. The

fundamental matrix N contains the expected number of time steps that an individual will spend

3



in each age, stage, or size class during their lifespan, given their current state. N is calculated as:

N = (I−U)−1 , (S19)

where U is the matrix containing all of the non-reproductive transitions of A (i.e., survival, growth,

and retrogression) and I is an identity matrix with the same dimensions as U.

The overall expected lifespan, for a cohort having a mixing distribution πz for possible initial

states zi, is

E(L) =
∑
i

(E(L|z0 = zi)P(z0 = zi)) = E(L|z0)Tπz = eTNπz (S20)

Section S2.2 Variance in Lifespan

The variance in lifespan, given the starting state of an individual is calculated as:

Var(L|z0) = eT
(
2N2 −N

)
− eTN ◦ eTN (S21)

The total variance, for a cohort described by the mixing distribution, is given by the law of

total variance:

Var(L) = E(Var(L|z0)) + Var(E(L|z0)). (S22)

The first term, the variance due to uncertainty in the life-course for individuals in the same starting

state, is calculated as:

E(Var(L|z0)) =
∑
i

Var(L|z0 = zi)P(z0 = zi) (S23)

= Var(L|z0)Tπz (S24)

The second term, the variance due to uncertainty in the starting state of individuals, is calculated

as:

Var(E(L|z0)) = E(E(L|z0)2)− [E(L|z0)]2 (S25)

=
∑
i

(E(L|z0 = zi))
2 P(z0 = zi)−

(∑
i

(E(L|z0 = zi)P(z0 = zi))

)2

(S26)

=
[
(E(L|z0))2

]T
πz −

(
E(L|z0)Tπz

)2
(S27)
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Section S2.3 Skewness in Lifespan

Equations for the first 3 raw moments of longevity conditional on starting state were presented in

Caswell (2013):

µ′1(L|z0) =(µ′1)T = eTN (S28)

µ′2(L|z0) =(µ′2)T = eTN(2N− I) (S29)

µ′3(L|z0) =(µ′3)T = eTN(6N2 − 6N + I) (S30)

The second and third central moments are as in Equations S10–S11, and skewness is given by

Equation S13.

Section S3 Longevity, the expected lifespan of individuals who

reproduce at least once

As explained in the main text, longevity was calculated as the mean time to absorbtion for a

modified Markov chain, eqn. (4), conditional on absorbtion into Ω2, individuals who reproduced

before they died.

The first step is to calculate the transition probabilities conditional on absorbtion. This is a

standard Markov Chain technique (Caswell, 2001, ch. 5); our notation follows Snyder and Ellner

(2016).

The expected number of time steps spent in each transient state, given the starting state, is the

fundamental matrix (N = (I−Q)−1) of the transient state transition matrix:

Q =

 Tτ×τ 0τ×τ

Rτ×τ Uτ×τ

 . (S31)

The probability of being absorbed into Ω2, individuals who reproduced before they died, is

qL = aL ∗ (I−Q)−1, (S32)

where aL is the one-step-ahead probability of being absorbed into Ω2, given by (01×τ ,M1×τ — zero

for individuals in the first half of the extended state space (those who have not yet reproduced),

and the probability of death for those in the second half.

We then calculated the transition probabilities for the transient states of P conditional on

absorption into Ω2 as:

QΩ2(z′, z) = Q(z′, z)
qL(z′)

qL(z)
. (S33)
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The expected lifespan of individuals who reproduced, conditional on starting state is then:

E(LΩ2|z0) = eT(I−QΩ2)−1. (S34)

The mixing distribution must be changed here to reflect the different probabilities of absorption

into Ω2 for the different starting states (Note that no individuals can start in the part of the

extended state space that is individuals who have already reproduced once):

πΩ(z) =
π(z)qL(z)

〈πz, qL(z)〉
, (S35)

and then the expected lifespan of individuals who reproduced, taken over the mixing distribution

is:

E(LΩ2) = E(LΩ2|z0)TπΩ. (S36)

Section S4 Offspring scaling and the importance of fecundity luck

A simple example illustrates how scaling offspring by their probability of surviving to reproduce will

tend to increase the proportion of total luck (i.e., total variance in LRO) that is due to fecundity

luck. This effect of scaling explains why this paper finds many examples where fecundity luck is

a substantial component of LRO variance, while previous work (Snyder et al., 2021) found that

fecundity luck is relatively unimportant in general.

The example is as follows: suppose that individuals live N ≥ 1 years where N is random and

varies independently across individuals, and at age a they have Ba offspring where Ba is Poisson

with mean f . In terms of our luck partition, this is a model with survival luck and fecundity luck,

but no growth trajectory luck because all individuals are always the same size and have the same

fecundity in each year of life.

By definition, fecundity luck is

EN

[
N∑
a=1

Var(Ba)

]
= EN

[
N∑
a=1

f

]
= E(N)f. (S37)

But the law of total variance, the variance of LRO R is

Var(R) = EN Var(R|N) + VarN E(R|N) = EN Nf + VarN (fN) = f E(N) + f2 Var(N). (S38)

The proportion of LRO variance due to fecundity luck is therefore

pfec =
E(N)

E(N) + f Var(N)
. (S39)
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Going from raw offspring counts, to offspring multiplied by their probability of survival to reproduce,

decreases the value of f and therefore increases pfec. In the limit of f → 0, pfec → 1. However,

that limit cannot ever be reached because it would give λ = 0.

If we drop the assumption that B is Poisson and therefore has equal mean and variance, we get

the more general expression

pfec =
E(N)Var(B)

E(N)Var(B) + Var(N)E(B)2
. (S40)

The numerator is fecundity luck: what the variance in LRO would be, if everyone had exactly the

expected lifespan. The denominator is fecundity luck again, plus survival luck: what the variance

in LRO would be, if everyone had exactly the expected fecundity in every year that they lived.

A biological interpretation of this result is that when offspring are scaled by their probability

of surviving to reproduce, the luck of surviving to reproduce or not is moved from survivalluck to

fecundity luck. That is, whether an offspring survives to reproduce or dies first (in a model without

offspring scaaling) is represented as a change in the number of offspring in a model with offspring

scaling.
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Section S5 Supplemental Figures and Tables
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Figure S1: Relationships between luck in lifespan and luck in lifetime reproductive output for
different animal taxa (at the “Class” level) and different plant growth forms. All data are plotted,
but the three most common animal classes and the four most common plant growth forms are
highlighted in color. For these groups, we also show the linear model for the log-transformed data.
Note that the axes are log-scaled.
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Figure S7: Relationships between lifespan luck and slow life history traits for animals and plants:
(first row) expected lifespan of individuals that reproduce at least once, (second row) mean age at
first reproduction, and (third row) generation time (Ta). Note that the axes are log-scaled.
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Figure S8: Relationships between lifespan luck and reproductive strategy traits for animals and
plants: (first row) precocity, (second row) iteroparity, and (third row) mean clutch size (Ta). Note
that the axes are log-scaled.
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Figure S9: Relationships between LRO luck and reproductive strategy traits for animals and plants:
(first row) precocity, (second row) iteroparity, and (third row) mean clutch size (Ta). Note that
the axes are log-scaled.

15



−2 −1 0 1 2

−
6

−
4

−
2

0
2

4

log10[Longevity]

lo
g1

0[
V

ar
. L

R
O

]

−2 −1 0 1

−
6

−
4

−
2

0
2

4

log10[Age at first reproduction]

lo
g1

0[
V

ar
. L

R
O

]

−2 −1 0 1 2 3

−
6

−
4

−
2

0
2

4

log10[Generation time]

lo
g1

0[
V

ar
. L

R
O

]

Animals

0.5 1.0 1.5 2.0 2.5 3.0

−
10

−
5

0
5

log10[Longevity]
lo

g1
0[

V
ar

. L
R

O
]

0.0 0.5 1.0 1.5 2.0 2.5

−
10

−
5

0
5

log10[Age at first reproduction]

lo
g1

0[
V

ar
. L

R
O

]

0 1 2 3 4

−
10

−
5

0
5

log10[Generation time]

lo
g1

0[
V

ar
. L

R
O

]

Plants

Figure S10: Relationships between LRO luck and slow life history traits for animals and plants:
(first row) expected lifespan of individuals that reproduce at least once, (second row) mean age at
first reproduction, and (third row) generation time (Ta). Note that the axes are log-scaled.
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Figure S11: Relationships between lifespan skewness and slow life history traits for animals and
plants: (first row) expected lifespan of individuals that reproduce at least once, (second row) mean
age at first reproduction, (third row) generation time (Ta). Note that the axes are log-scaled.
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Figure S12: Relationships between lifespan skewness and reproductive strategy traits for animals
and plants: (first row) precocity, (second row) iteroparity, (third row) mean clutch size. Note that
the axes are log-scaled.
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Figure S13: Relationships between LRO skewness and slow life history traits for animals and plants:
(first row) expected lifespan of individuals that reproduce at least once, (second row) mean age at
first reproduction, (third row) generation time (Ta). Note that the axes are log-scaled.
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Figure S14: Relationships between LRO skewness and reproductive strategy traits for animals and
plants: (first row) precocity, (second row) iteroparity, (third row) mean clutch size. Note that the
axes are log-scaled.
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Figure S17: Decomposition of skewness in lifespan into contributions from skewness in survival,
growth, and birth state. To aid with visualization in this figure, we excluded 1 model with a ratio
of survival trajectory skewness to lifespan skewness greater than 1.5, 20 plant models with a ratio
of survival trajectory skewness to lifespan skewness greater than 2, and 8 plant models with a ratio
of survival trajectory skewness to lifespan skewness less than 0. Overall, this figure excludes less
than 3% of the plant models.
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