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ABSTRACT
Numerous conceptual frameworks exist for best practices in research data and analysis
(e.g. Open Science and FAIR principles). In practice, there is a need for further progress to
improve transparency, reproducibility, and confidence in ecology. Here, we propose a
practical and operational framework for researchers and experts in ecology to achieve
best practices for building analytical procedures from individual research projects to
production-level analytical pipelines. We introduce the concept of atomisation to identify
analytical steps which support generalisation by allowing us to go beyond single analyses.
The term atomisation is employed to convey the idea of single analytical steps as “atoms”
composing an analytical procedure. When generalised, “atoms” can be used in more than
a single case analysis. These guidelines were established during the development of the
Galaxy-Ecology initiative, a web platform dedicated to data analysis in ecology. Galaxy-
Ecology allows us to demonstrate a way to reach higher levels of reproducibility in
ecological sciences by increasing the accessibility and reusability of analytical workflows
once atomised and generalised.
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Graphical abstract – Levels of attainable best practices through the atomisation
– generalisation framework

Keywords: Biodiversity; Reproducible analyses; Galaxy; Best practices; Atomisation;
Generalisation; Workflows; Ecoinformatics; Conda; Container; Common Workflow Language; RO-
CRATE
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Introduction

Ecology’s Reproducibility Crisis

Research in ecology is increasingly shaped by the availability of novel analytical solutions
and statistical tools. Given the ever-growing amount of data available, much attention is often
given to the thought process behind statistical analyses to handle different data distributions,
pseudo-replication, and sampling biases for instance (NERC 2010, 2012; Hampton et al., 2017;
Emery et al., 2021). Despite the high-quality standards required by the scientific community
from data access to analysis, the level of complexity of ecological systems makes results
difficult to reproduce. The ongoing “reproducibility crisis” has also led researchers to pay
closer attention to the quality of analyses to increase confidence in their studies and
conclusions (Ioannidis, 2022; Fanelli, 2018). Reproducibility (i.e. different teams and
experimental setups obtaining similar results; Plesser, 2018) is one of the main criteria for
evaluating robust science and reliable conclusions. The term “reproducibility” is a relative
concept and has known various definitions depending on field and context. Reproducibility of
analyses (“computational reproducibility”) is defined by Cohen-Boulakia et al. (2017) as the
ability of distinct analyses to reach to the same conclusion.

In the current context of the global biodiversity crisis, the scientific community needs to
use all available data and provide as robust as possible evidence regarding the state and
dynamic of ecological systems, from genetic to ecosystem. At the same time, using analytical
tools to provide robust evidence can be complex and may require advanced skills that are not
widely available across the scientific community (Hampton et al., 2017). Therefore,
operational solutions and methodological guidelines can allow analytical workflows to be
more accessible without degrading the scientific quality of analyses, and thus, promote
efficient and broad deployment of best practices.

Is the ecology community failing to meet best practices?

The first step towards reproducibility is knowing current best practices and
recommendations. Among them, the FAIR principles (Wilkinson et al., 2016), for which the
availability of the data and the code used for each published result is an essential criterion,
may be key for appropriate management through the data life cycle (Michener, 2015). The
FAIR principles (see also CARE principles by Carroll et al., 2020) are considered as a founding
framework to share data along four important elements: "Findable" for humans and
machines; "Accessible" with a detailed access procedure; "Interoperable" for interaction with
other data or applications; "Reusable" in an identical or different context. In addition to these
principles, propositions have been delimited within several thematic communities in ecology
to evaluate and enhance best practices application, notably the Species Distribution
Modelling communities (Araújo et al., 2019; Zurell et al., 2020).

Although data accessibility has been substantially improved in ecology during the past
decade, sharing analytical scripts and codes remain largely marginal (Archmiller et al., 2020;
Culina et al., 2020; Minocher et al., 2021; Ivimey-Cook et al., 2023). However, even if sharing
code is necessary to achieve good computational reproducibility, it is insufficient. Therefore,
the utilisation of computational workflows has been suggested as a solution for improving
computational reproducibility (Cohen-Boulakia et al., 2017; Grüning et al., 2018) through
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software such as Snakemake (Köster & Rahmann, 2012), Nextflow (Di Tommaso et al., 2017),
or Galaxy (The Galaxy Community, 2022). A workflow is generally defined as a sequence of
distinct computational tasks for a particular objective (Goble et al., 2020). As such, a workflow
represents the backbone of a single specific analysis. Throughout the analytical procedure, a
typical workflow starts with raw data, which can be extracted from several databases or data
files and processed through a series of analytical steps. The products resulting from these
analytical steps (i.e. the outputs of the computational workflow) can be data files, graphic
representations and any associatedmetrics.

When properly designed, a certain level of reproducibility can be easily achieved since
workflow languages naturally capture the following four key elements (Cohen-Boulakia et al.,
2017):

 the specificities of the workflow, the analysis steps and associated tools;
 the workflow entries, datasets and parameters;
 the environment and context of the use of the workflow;
 the results obtained and the outputs of the workflow.
In the original publication of Wilkinson et al. (2016), the focus of FAIR principles was

mainly on observational data. However, the principles can be applied to software and
computational workflows (Lamprecht et al., 2019; Goble et al., 2020). For instance, a code
shared as supplementary material of a non-open access publication could be considered as
"Interoperable" but is not easily "Findable", "Accessible", or "Reusable". In contrast, a large
block of code consisting of several hundred lines, from data pre-processing to final results and
graphics as pictured in the Graphical abstract ❶, may require efforts to understand and
adapt to other kinds of data ("non-reusable"), mainly if annotations or comments are limited.
Similarly, an analytical procedure shared without indicating the versions of hardware,
software, and packages has a low chance of producing identical outputs, making it less
reproducible. These issues may harm the scientific community by preventing fully transparent
communication among users about knowledge production and practice comparison. They
can also be detrimental to individual authors, when they need to update or run new analyses.

Impact on Ecology Research

The efficiency of the scientific process is greatly affected by the lack of computational
reproducibility and FAIRness of analytical procedures. The adoption of FAIR practices was
estimated to save 10.2 billion € per year in Europe (Munafò et al., 2017; European commission,
2018; Gomes et al., 2022). Moreover, consistent application of reproducibility and FAIR
principles will improve trust in research studies and scientific reports (Powers & Hampton,
2019; Lortie, 2021; Jenkins et al., 2023).

The widespread use of computational languages to process large-scale data and analyse
complex systems has been a major advance in studying the ecosphere at any spatio-temporal
scale (Michener & Jones, 2012; Farley et al., 2018). However, the ever-growing technical and
programming skills required to take advantage of such computational solutions by the
scientific community raise new challenges (Jetz et al., 2019; Leroy, 2022; Boyd et al., 2023).
The use of increasingly complex analytical solutions, paired with different approaches or
programming languages, creates barriers to uptake and challenges for peer-review. Indeed, many
ecologists have acquired their programming skills through self-study or through courses that
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combine instruction in statistics and ecological principles with an introduction to
programming. This learning process does not inherently compromise the quality of the
analyses and results; however, it may lead to inappropriate coding habits. As a response to
this situation, adequate training was identified by life science researchers (Community Survey
Report, 2013; Williams & Teal, 2017; Larcombe et al., 2017), as it would help involve more
people in the understanding of current analytical solutions and benefit to scientific
cooperation (Touchon & McCoy, 2016; Gownaris et al., 2022). Research is typically structured
through a highly competitive organisation, with a potentially detrimental effect on scientific
knowledge (Fang & Casadevall, 2015). Instead, fostering collaboration and collective
intelligence by promoting transparent sharing of analytical procedures, would offer more
persistent and robust ways to achieve actionable science (Ellemers, 2021). Such efforts would
be of paramount importance in environmental sciences and the conservation of biodiversity
by providing governance and guiding actions with increasingly robust evidence (Keenan et al.,
2012).

Are there simple and ready-to-use solutions?

In this note, we aim to promote the reuse of existing concepts and solutions as pillars
toward better practices for ecological analyses by providing a streamlined framework. We
believe the atomisation-generalisation framework presented in the second part of this note
represents an operational and actionable path for researchers and experts to attain levels of
best practices (e.g. reproducibility, FAIR, open science, R compendium; Casajus N., 2023) with
no more investment than they are able or willing to provide (Field et al., 2014). Atomisation is
used to refer to the identification of distinct analytical steps each constituting an analytical
procedure. It is a non-standard term introduced in this note to convey the idea of analytical
“atoms”. As for atom particles that etymologically correspond to “indivisible” but are
composed of subatomic particles, an analytical atom represents a single analytical step
composed of several functions. Generalisation involves the alteration of an analytical step to
enlarge its applicability in diverse contexts and for diverse purposes. Therefore, generalisation
cannot be efficiently achieved without prior atomisation.

Atomisation and Generalisation are central organising principles in the design of the
Galaxy-Ecology (Galaxy-E) initiative (see section III). Galaxy-E is a demonstration platform for
applying best practices such as the FAIR principles and computational reproducibility for
analytical procedures in ecology. Hence, this technical note is partly Galaxy-oriented, not to
present the platform as a prescriptive solution but to give an operational example of the best
practices it helps to achieve.

Guidelines for best practices

Atomisation: what is it and why?

Atomisation refers to dividing an analytical procedure into several specific steps (“atoms”;
Graphical abstract ❷) generating a suite of elementary analytical steps as pictured in the
Graphical abstract ❸. For instance, in a maximally-atomised workflow, each small step
would be conducted by its own bespoke function. Breaking down the analytical process into
atoms functioning as building blocks allows for better understanding, modularity, and
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visibility of the analytical flow. It permits making it more accessible to a broader audience or
facilitating the peer-review process. Indeed, an extended one-block code that imports raw
data, makes pre-processing steps (e.g. filter, formatting), conducts analyses (e.g. distribution
study, modelling), and performs final representations of results (e.g. maps, plots) can be
challenging to understand and reuse by others or even the same person after some time.

McIntire et al. (2022) described the PERFICT approach (Prediction, Evaluation, Reusability,
Free access, Interoperability, Continuous workflows, and routine Tests) to set a new
foundation for models in predictive ecology. This can be applied more generally to the
analytical procedure in ecology and biodiversity. In their article, McIntire and collaborators
make an analogy between code development and Lego® construction, similar to our definition
of atomisation. Functions are a workflow’s most fundamental analytical steps and can be
seen as modular pieces, alike single pieces of Lego®. Modules can be created from a single or
series of successive functions comparably as in Lego® structures made of several pieces (e.g.
meant to build cars, houses, or road). These modules (or atoms, tools) can be used as
standalone or combined to make simple to complex analytical workflows (e.g. data
formatting or curation, running statistical models, or generating graphical elements for
visualisation). Doing so, the atomisation approach may facilitate sharing or teaching
analytical practices since beginners can easily understand the general organisation of the
analytical procedure by simply reading the list of steps in the analysis with a limited degree of
complexity. Decoupling programming skills from analytical skills can make data processing
more accessible to a wider audience. Indeed, once each elementary step is clearly identified
and delimited along the atomisation process, it is easier to grasp the whole analytical
procedure and focus on the review of each step at a time or (re)use it. New workflows can
further be generated by recombining existing, validated or peer-reviewed elementary steps in
innovative ways. This process can save time, increase confidence, and avoid potential
programmingmistakes, allowing greater focus on understanding the analytical workflow.

Generalisation: what is it and why?

Generalisation refers to the modification of an analytical procedure to make it applicable
to many settings, by removing specificities related to a particular data file or data format. This
means trying to avoid hard-coding anything that is specific to the structure of the original
dataset (e.g. number of years). Generalisation aims to optimise the reusability at different
times (e.g. regular result update), enlarge the application of a given analysis to different input
data files while keeping the initial analytical procedure fully reproducible as pictured in the
Graphical abstract ❹. Generalising an analytical step requires identifying key elements and
invariant parameters from those that must be adaptable to allow for the analysis to be
applied to specific characteristics of various datasets. These parameters must be
implemented to be easily modified if needed. Generalisation can be tricky because the higher
the flexibility of an analytical step, the greater the risk of errors in its use. This is why
generalisation should be complemented by clear statement and an implementation of red
flags and warnings to prevent such events. As with atomisation, generalisation is primarily a
conceptual way to build analytical procedures. It requires minor change of practices to reach
certain degree of generalisation, avoiding additional effort later for reusability, reproducibility,
and share.
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Practical steps towards atomised and generalised coding

Breaking down codes into elementary steps to achieve atomisation is not an intuitive task
at first as it may target a single function or a more intricate set of several functions. There
could be different degrees of atomisation, depending on the grain required to decompose the
analytical process (fig. 1; tab. 1). The application of general guidelines and best practices
implies finding a balance between the most appropriate degree of atomisation and
generalisation. This depends on the type of analytical procedure or the targeted audience (e.g.
with different interests and programming skills). Attention to this balance is critical to ensure
that the analytical procedures could be reused. For instance, a workflow in which each
function would be considered as a unique elementary step would optimise the flexibility but
may likely add unnecessary complexity. At the other extreme, considering a whole analytical
workflow as an elementary step may make it ready-to-use and simplify its application, but
would be too coarse and therefore limit flexibility by violating the principle of atomisation.

Figure 1 - Illustration of the atomisation of an existing code. The first level of
atomisation is delimitating the large sections of an analytical procedure that
exist in almost all procedures. This first level is conveyed using same colours to
the second level of atomisation where more detailed and specific analytical
steps are illustrated in each section. The process of atomisation can continue
through a multitude of levels, ultimately leading to the maximally atomised
procedure, which is comprised of a single function.
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Table 1 - Example of atomisation levels

Level 1 - big shape Level 2 Level 3
Data exploration Sampling plan Complete

Balanced
Missing values Proportion

Distribution
Data granularity Geographic resolution

Temporal resolution
Measure resolution

Data distribution Geographic coverage
Temporal coverage
Measures ranges
Summaries

… …
Pre-processing Formatting Change file format

Change general format
Corrections Remove special characters

Remove low trust observations
Correct measures

Filtering Remove unwanted observations
Anonymisation Anonymise names

Anonymise localities
Anonymise species

… …
Analysis Variable exploration PCA

Collinearity
Correlation

Unimodal tests Linear Models
χ²
Student

Statistical models Generalised Linear Models
Generalised Additive Models
Random Forest

Models Evaluation Evaluation metrics (e.g. AIC, Jaccard)
Validationmethods

Projections Geographical projections
Temporal projections

… …
Representation Plot Raw variables

Modelled results
Map Observations

Projections
… …

A few changes in code-writing habits can enhance the reusability of the analytical
procedure by generating easy-to-understand analytical procedure without investing much
time. It is best to develop each elementary step directly in separate code files and to give
details of the order in which elementary steps are used for each analytical workflow. To
ensure reproducibility and traceability of the results, each computation of the analytical
workflow should be associated with the details of the parameters settings and datasets used.
From a practical point of view, a couple of recommendations could be made for coding
elementary steps to facilitate generalisation and ease the reuse. Once each elementary step is
defined, we recommend all dependencies (e.g. software version, packages, libraries and their
versions) to be set at the same place, at the start of the code, followed by modular parameters
(e.g. input file location and name, column selection, modelling parameters, data specificities,
output saving location). When the script of the elementary step is completed, modular
parameters should be the only part of the code that may be modified in future reuse.
Dependencies and subsequent computational tasks should be left untouched to ensure the
integrity of the analysis and then, reproducibility. In the end, it is best to add an open-source
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license to any analytical procedure shared publicly (e.g. MIT, GPL). It permits to clearly state
the terms and conditions of diffusion, share and reuse.

As such, atomisation and generalisation may overcome social or psychological barriers
related to transparent sharing, either related to securing ownership (e.g. DOI) and to
embarrassment or fear during a peer-review process (Gomes et al., 2022). Indeed, as
atomisation and generalisation notably permit higher readability of codes, it would be more
straightforward for the writer or even trusted peers to verify and review the steps before
submission.

Atomisation and generalisation are related and complementary concepts that may be
applied from the earliest stages of the programming development. Indeed, atomisation into
adequate elementary steps is necessary to properly generalise an analytical procedure as it
permits to enhance the modularity of the procedure and its capacity to be tailored to different
data types.

Entering a new dimension: the Galaxy-E initiative example

Developing open and properly atomised and generalised analytical procedures can
already represent a significant step forward in terms of best practice. Galaxy is a good
illustration of atomisation and generalisation with easier management of analytical
workflows. The platform proposes many analytical tools that represent generalised and
atomised elementary steps. These tools are modular and openly licensed, which permits to
build generalised workflows as pictured in the Graphical abstract ❺.

Galaxy (The Galaxy Community, 2022) is a workflow-oriented web platform for analysing
data and sharing outputs. It allows scientists to share, develop, and use various datasets and
data processing tools (e.g. data formatting, statistical tests, graphic representations).

Galaxy enables good reproducibility for data exploration and analyses, helps compute
intricate analyses on big data files, enables collaboration, and can support the teaching
process. Galaxy-E is a Galaxy server dedicated to ecological analyses maintained by the
European Galaxy team (supported by the German Federal Ministry of Education and Research
and the German Network for Bioinformatics Infrastructure), and is available at
https://ecology.usegalaxy.eu.

Galaxy-E is mostly aimed at scientists that process biodiversity data and already
understand the general functioning of the analytical procedures they want to produce. The
rationale for a user would be to create or reuse analytical workflows with high FAIRness in a
collaborative and open source platform. It can be used for individual analyses as well as for
collaborative projects. In some cases, if the analytical procedure is already clearly defined, it
can be used by citizens or for teaching.

There are different Galaxy servers, at global, continental, and national levels (European
and French levels for example), but also according to the fields (e.g., biomedical, ecology,
climate). The Galaxy-E initiative is hosted by European (https://ecology.usegalaxy.eu) and
French (https://ecology.usegalaxy.fr) servers.

Datasets can be uploaded on a Galaxy server from a local device, an online server, or a
database. Users can then access every available tool (fig. 2, left panel) to modify, explore, and
analyse their data. All tools used, parameters, and data (inputs and outputs) of the analysis
are saved in a private “Galaxy history” (fig. 2, right panel), documenting every step of the
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analytical procedure and recording the provenance of each output. From any history, the user
can extract a workflow (fig. 3) or directly share or publish the history itself. Workflows are
reusable through WorkflowHub (https://workflowhub.eu) or Dockstore (https://dockstore.org)
and exportable in CWL and RO-CRATE standards.

Figure 2 - Galaxy-Ecology users’ interface https://ecology.usegalaxy.eu. Yellow
panel on the left: analysis tool list; blue panel in the middle: current tool
interface; red panel on the right: Galaxy analysis history
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Figure 3 - Representation of a Galaxy workflow in the editing interface of a Galaxy
server. Each box represents an analysis tool, and the lines represent the flow of
data through the tools. In relation with the atomisation-generalisation
framework, each box (tool) corresponds to an atomised and generalised step
with editable parameters, inputs and outputs.

Any analytical procedure can be adapted on the platform and Galaxy can be used through
the whole data life cycle (https://rdmkit.elixir-europe.org/galaxy_assembly). One can use off-
the-shelf tools, workflows, and tutorials to design an analytical procedure, or suggest,
develop, and share new workflows and tutorials, two aspects that do not require coding skills.

As each Galaxy tools are atomised and generalised elementary steps that can be
articulated in a workflow, the Galaxy platform benefits from the same advantages as
atomisation and generalisation and can help enhancing best practice application (tab. 2).
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Table 2 - Illustration of how the atomisation-generalisation framework and Galaxy implements and conforms to best practice.

Atomised-generalised code Galaxy
Reproducibility and
transparency

Environment, software
and package versions

Can be indicated but possibly hard to manage
Can also be set as an output of the analysis (e.g. session info)
Packages written in each coded elementary step or using a
versioning system such as Conda

Entirely packaged with Conda packagemanager and BioContainers
Possibility to store analytical procedures as containers for persistent execution

Inputs and parameters Onemust keep track of different parametrisation and input
settings at each computation

Automatically tracked and shareable with the “Galaxy history”

Peer-review Organisation of the analytical procedure reviewable by non-
code developers
Code developers might be able to detect errors as it is easier
in shorter scripts
Transparency over the development process achievable
through Git

Reviewable “Galaxy history” and re-executable workflow
Continuous peer-reviewed of tools with open-source code
Transparency over the development process through Git
The workflows can be reviewed by the Intergalactic Workflow Commission (IWC) for best
practices

Output provenance Can be tracked and reproduced in some cases Tracked with the “Galaxy history” and reproducible with workflow
FAIR principles Findable If properly shared Web-based solution

Unified system for data and software citation and attribution
Tools can bemade available on several servers
Tools can be linked to tools registries and annotated with different ontologies
Annotated workflows findable on WorkflowHub (https://workflowhub.eu) and Dockstore
(https://dockstore.org)

Accessible If properly shared Free distribution of tools via the Galaxy ToolShed andworkflows via WorkflowHub and
Dockstore under an open-source licence

Interoperable When properly generalised, different elementary steps
should be useable in interaction with each other

Use different software, computational language and library versions on a single platform
with the Conda packagemanagement system
Workflows exportable in JSON and shareable through several standards (e.g. Common
Workflow Language; Crusoe et al., 2022 and ResearchObject Crate; Soiland-Reyes et al.,
2022)

Reusable Generalised elementary steps are reusable and adaptable
with different analytical procedure, parametrisation and/or
inputs

Tools, histories and workflows are re-executable, reusable and adaptable with different
analytical procedure, parametrisation and/or inputs. Open-source code can be used
outside of a Galaxy server

Technical and
knowledge gaps

Understandability The analytical procedure is clearer when properly atomised Tools interface, workflow annotations, help sections and tutorials are a valuable help

Teaching opportunities Learning the analytical procedure design separately from
computing languages, giving structure to trainees
Reusability of elementary steps for trainees

Experimenting with intricate analyses without computer code first
Tutorials and videos fromGalaxy Training Network (https://training.galaxyproject.org)
Galaxy community

Computing capacity Need for a computation cluster if large data or demanding
algorithm

HPC (High Performance Computing) through an interface
Bulk (meta)data manipulation

Collaboration and
attribution

Analysis design and
development

Achievable through collaborative code-editing applications With anyone through a Galaxy server

Citation Easy reuse of openly shared elementary steps could lead to
higher citation rates

Each tool, workflow, and tutorial are provided with a unique identifier for proper
attribution and citation
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The Galaxy platform emphasises (i) accessibility of tools and data even without
programming experience, (ii) reproducibility through the easy creation and reuse of analysis
workflows, (iii) transparency through the open-source distribution of underlying codes; and
(iv) community support.

For scientists, from a user’s point of view, it offers extensive computing power and a
graphical interface to use analysis workflows, even without experience in software
development. Web-based access allows easy sharing of analytical workflows between
collaborators and with a broader audience. Galaxy supports tools in almost any
computational language, including R and Python, two of the most used languages in ecology,
with many packages dedicated to ecological and biodiversity-oriented analyses incorporated
(Lai et al., 2019).

Anyone can use the tools on Galaxy and/or develop new tools and workflows to make
them available to all by publishing them in the shared Galaxy ToolShed
(https://toolshed.g2.bx.psu.edu/) which ensures that the tools and dependencies can be
installed on any Galaxy servers. Any analytical procedure or workflow can be shared and
enriched in parallel by several users, facilitating teamwork.

The platform is community-driven which permits continuous peer review of the platform
and of the tools, workflows and tutorials provided. Many tutorials are available on the Galaxy
Training Network (GTN; https://training.galaxyproject.org/) which is a valuable asset to the
accessibility and reusability of tools and workflows (Batut et al., 2018; Hiltemann et al., 2023).

If enough researchers and experts start using and contributing to the platform, the number
and content of available analytical procedures could expand at the same pace as latest
analytical methodologies are integrated to research processes. If a different platform fits best
and is more widely used by ecological and biodiversity scientific communities in the end, the
work done on Galaxy will not be lost as tools are easily transposable to other interfaces (e.g.
scripts directly usable with R, Python, etc., translation of workflows to other workflow
engines).

Galaxy is ready to use and has proved its efficiency and suitability in other research fields,
including genomics and climate science (Knijn et al. 2020; Serrano-Solano et al., 2022).
Galaxy-Ecology has implemented workflows for biodiversity data exploration, eDNA
processing, general population and community metrics and models, ecoregionalisation, NDVI
(Normalised difference vegetation index) computation with Sentinel-2 data among others
(see some examples: https://workflowhub.eu/workflows/657) and tutorials for several of them
are available on the GTN platform (see https://training.galaxyproject.org/training-
material/topics/ecology).

In addition to using existing tools, users may develop and upload entirely new tools and
workflows to the Galaxy server in any computational language to make them accessible to all
other users.

Galaxy is a participative platform and several ways to participate to Galaxy exist depending
on one’s skills, available time, and needs. Anyone can participate to the Galaxy-Ecology
initiative by:

 Sharing datasets, histories and workflows;
 Giving feedback on servers, tools, and workflows;
 Sharing tools and workflows ideas (eventually with code) through Git issues;
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 Asking for tool modifications through issues;
 Modifying existing tools or proposing new tools through GitHub or GitLab;
 Writing or contributing to a GTN tutorial on a specific functionality or a workflow on

the Galaxy Training Network platform;
 Create learning pathways, a set of tutorials curated by community experts to form a

coherent set of lessons around a topic, building up knowledge
(https://training.galaxyproject.org/training-material/learning-pathways);

 Propose training events and help users in the utilisation of a workflow and tutorial.

Analyses are rarely computed only once. Any analysis with a generalisation potential is a
suitable candidate to be Galaxy-fied. A methodological framework is presented in online
supplementary material
(https://github.com/ColineRoyaux/Galaxy_Templates/blob/main/Methods/Methods%20-
%20How%20to%20Galaxy-fy%20your%20analytical%20procedure_.md) at three levels
depending on potential interests, computing language skills, and willingness to invest more or
less time in the process: (i) ‘user’ relying on existing Galaxy tools and workflows to analyse
data (lower time investment), (ii) ‘developer’ relying on existing and validated analytical
procedure to develop Galaxy tools and workflows (highest time investment), and (iii) ‘trainer’
relying on existing Galaxy tools to share workflows and create training material (variable time
investment).

Discussion and limitations

There are many best practices and recommendations existing for analytical procedures,
data management, and computational code development. The levels of application of these
best practices fall within a continuum offering a range of possibilities from the sole sharing of
processed and interpreted results with a brief description of methods to an executable paper
published within a container and emulated virtual machine (Strijkers et al., 2011; Grüning et
al., 2018). Situated somewhere in between the aforementioned extremes, the atomisation –
generalisation framework and the utilisation of the Galaxy platform might represent viable
solutions offering a satisfactory level of best practices.

Atomisation and generalisation of computer codes can represent a relatively low
investment strategy to attain certain levels of best practices such as transparency and
reusability. It also carries advantages such as easier peer review, modularity of analytical
procedures and, consequently, time savings. Indeed, applying the framework is not sufficient
to attain the highest levels of best practices. For reproducibility and transparency, the
management of the environment, software and package versions can be hard to maintain and
record. For example, on a local computer a comprehensive tracking of input, outputs and
codes requires meticulous management of folder structure in the environment. Additionally,
non-code developers will be able to partially review the analytical procedure only if the
workflow is clearly outlined in an adapted format (e.g. table, graphical representation).
Accessibility and findability of the atomised and generalised analytical procedure is
dependent of its proper sharing (e.g. persistent link, open repository).
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Galaxy can represent an easier gateway towards higher levels of best practice as sharing a
complete, detailed and (re-)executable analytical procedure is facilitated through provenance
tracking and automatic metadata enrichment. In comparison, many scientific workflow
management systems, such as Snakemake, Nextflow or the R package Targets, operate from
the command line. In ecology, numerous initiatives have tried to introduce such systems,
starting with more user-friendly solutions. For example, the KNIME and Kepler systems with
the CoESRA initiative (Collaborative Environment for Scholarly Research and Analysis) in
Australia; Taverna with the BioVeL initiative (Biodiversity Virtual e-Laboratory) in Europe; or
very recently, the BON in a Box pipeline engine. These systems are more accessible to new
users by offering a graphical interface while achieving high specificity (Berthold et al., 2007;
Hardisty et al., 2016; https://boninabox.geobon.org/). However, good computer programming
or scientific workflow management knowledge is still necessary to use these applications
appropriately.

In comparison to the atomisation-generalisation framework, Galaxy can be rightfully seen
as necessitating more time investment for scientists with programming experience as it
requires to learn to use a new platform. Additionally, more effort may be required on Galaxy
when an additional analytical step needs to be developed, but the Galaxy community can be
an efficient crutch on which hard-pressed scientists can rely. Indeed, one can ask for help on
the implementation of tools whether one knows computing languages and can share their
code or not.

This note showcases a simple proposition to achieve best practices in analytical
procedures with two plain guidelines: atomisation and generalisation. This straightforward
framework represents a different manner to think and build analytical procedures; it doesn’t
require using a new technology or learning to use a new software. In terms of attaining higher
levels of best practice, whether it is through the atomisation-generalisation framework,
Galaxy, a combination of the two or otherwise, the optimal approach is to be determined by
individuals depending on their interests, projects, and available resources. Relying on existing
solutions as much as possible is, in our perspective, an efficient way to achieve a better
understanding of best practices and their implications. Given the current environmental crisis,
science has the major political and social responsibility to maintain good levels of
transparency, reproducibility and efficiency.

https://doi.org/10.24072/pci.ecology.100694
https://boninabox.geobon.org/


Acknowledgements

Authors want to thank Sandrine Pavoine for its highly relevant and helpful advice and
reviews on both the content and the form of the article. Authors are thankful to Thimothée
Poisot (recommender), Nick Isaac (reviewer) and one anonymous reviewer for their advice
during the Peer Commnuity In review. Their help and suggestions on the structure and the
content of the manuscript really helped to get the message of the article across in a more
accessible manner.

Authors contribution statement

C. R. drafted the article text, tables, and figures.
C. R. conceptualised the atomisation – generalisation framework with J.-B. M. and Y. L.B.

while working on the development of Galaxy workflows.
J.-B. M. and Y. L.B. reviewed and helped rewrite many parts of the draft.
Y. R. and D. P. helped inspire and were invested in the early design of the article.
M. J. and P. S. tested and approved the appliance of the framework.
O. N., M. J., Y. R., M. E., B. B., A. F., H. R. and S. H. highly enhanced the quality of the

redaction in both form and content at several stages of the draft.
H. R, S. H., B. B., A. F., and B. G. are involved in the Galaxy-E initiative and provided many

advice on the redaction of the article and/or on the development of the initiative.
M. E. and G. M. are involved in Antarctic-oriented Galaxy tool and workflow development

coordination.
C. B., R. L., A. M., Y. B., A. A., T. V. and V. C. developed scripts, tools and/or Galaxy workflows

to contribute to the Galaxy-E initiative.
E. A. developed R scripts and apps used to integrate R Shiny apps as Galaxy interactive

tools and initiate "Research Data management Galaxy tools".
E. M. and C. U. developed the first trainingmaterials for Galaxy-E.
E. T. worked on the use of the first Galaxy-E analysis.
M. D., G. L. and R. J. were coordinating the prefiguration of Galaxy-E through the 65 Millions

d’Observateurs project.
Additionally, all authors reviewed and approved the article draft.

Funding

Funding were provided by the European Union through the Erasmus+ Gallantries project;
the Agence Nationale de la Recherche through the 65 Million d’Observateurs and the IA-Biodiv
projects; the French National Fund for Open Science through the OpenMetaPaper project; the
European commission through the H2020 EOSC-Pillar, GAPARS projects, and Horizon Europe
FAIRE EASE project; the GO FAIR initiative through the BiodiFAIRse Implementation Network;
the Blue Nature Alliance; and the Antarctic and Southern Ocean Coalition. Finally, funding by
the French Ministry of Higher Education and Research were provided for the “Pôle national de
données de biodiversité” e-infrastructure.

https://doi.org/10.24072/pci.ecology.100694


Conflict of interest disclosure

The authors declare that they comply with the PCI rule of having no financial conflicts of
interest in relation to the content of the article.

References

Araújo MB, Anderson RP, Barbosa AM, Beale CM, Dormann CF, Early R, Garcia RA, Guisan A,
Maiorano L, Naimi B, O’Hara RB, Zimmermann NE, Rahbek C (2019) Standards for
distribution models in biodiversity assessments. Science Advances, 5, 1–12.
https://doi.org/10.1126/sciadv.aat4858

Archmiller AA, Johnson AD, Nolan J, Edwards M, Elliott LH, Ferguson JM, Iannarilli F, Vélez J,
Vitense K, Johnson DH, Fieberg J (2020) Computational Reproducibility in The Wildlife
Society’s Flagship Journals. Journal of Wildlife Management, 84, 1012–1017.
https://doi.org/10.1002/JWMG.21855

Batut B, Hiltemann S, Bagnacani A, Baker D, Bhardwaj V, Blank C, Bretaudeau A, Brillet-
Guéguen L, Čech M, Chilton J, Clements D, Doppelt-Azeroual O, Erxleben A, Freeberg MA,
Gladman S, Hoogstrate Y, Hotz HR, Houwaart T, Jagtap P, Larivière D, Le Corguillé G, Manke
T, Mareuil F, Ramírez F, Ryan D, Sigloch FC, Soranzo N, Wolff J, Videm P, Wolfien M, Wubuli
A, Yusuf D, Taylor J, Backofen R, Nekrutenko A, Grüning B (2018) Community-Driven Data
Analysis Training for Biology. Cell Systems, 6, 752-758.
https://doi.org/10.1016/j.cels.2018.05.012

Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B
(2007) KNIME: The Konstanz Information Miner. Studies in Classification, Data Analysis, and
Knowledge Organization, 319–326. https://doi.org/10.1007/978-3-540-78246-9_38

Borgman CL (2020) Qu’est-ce que le travail scientifique des données ? Big data, little data, no
data. https://doi.org/10.4000/BOOKS.OEP.14692

Boyd RJ, August TA, Cooke R, Logie M, Mancini F, Powney GD, Roy DB, Turvey K, Isaac NJB
(2023) An operational workflow for producing periodic estimates of species occupancy at
national scales. Biological Reviews, 98, 1492–1508. https://doi.org/10.1111/brv.12961

Carroll S, Garba I, Figueroa-Rodríguez O, Holbrook J, Lovett R, Materechera S, Parsons M,
Raseroka K, Rodriguez-Lonebear D, Rowe R, Sara R, Walker J, Anderson J, Hudson M (2020)
The CARE Principles for Indigenous Data Governance. Data Science Journal, 19, 43.
https://doi.org/10.5334/dsj-2020-043

Casajus N. (2023) rcompendium: An R package to create a package or research compendium
structure. https://github.com/FRBCesab/rcompendium

Cohen-Boulakia S, Belhajjame K, Collin O, Chopard J, Froidevaux C, Gaignard A, Hinsen K,
Larmande P, Bras Y Le, Lemoine F, Mareuil F, Ménager H, Pradal C, Blanchet C (2017)
Scientific workflows for computational reproducibility in the life sciences: Status,
challenges and opportunities. Future Generation Computer Systems, 75, 284–298.
https://doi.org/10.1016/j.future.2017.01.012

Crusoe MR, Abeln S, Iosup A, Amstutz P, Chilton J, Tijanić N, Ménager H, Soiland-Reyes S,
Goble C (2022) Methods Included: Standardizing Computational Reuse and Portability with
the Common Workflow Language. Communications of the ACM, 65, 54–63.
https://doi.org/10.1145/3486897

https://doi.org/10.24072/pci.ecology.100694
https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1002/JWMG.21855
https://doi.org/10.1016/j.cels.2018.05.012
https://doi.org/10.1007/978-3-540-78246-9_38
https://doi.org/10.4000/BOOKS.OEP.14692
https://doi.org/10.1111/brv.12961
https://doi.org/10.5334/dsj-2020-043
https://github.com/FRBCesab/rcompendium
https://doi.org/10.1016/j.future.2017.01.012
https://doi.org/10.1145/3486897


Culina A, van den Berg I, Evans S, Sánchez-Tójar A (2020) Low availability of code in ecology: A
call for urgent action. PLOS Biology, 18, e3000763.
https://doi.org/10.1371/JOURNAL.PBIO.3000763

Di Cosmo R, Zacchiroli S (2017) Software Heritage: Why and How to Preserve Software Source
Code. https://hal.science/hal-01590958

Di Tommaso P, Chatzou M, Floden EW, Barja P., Palumbo E, Notredame C (2017) Nextflow
enables reproducible computational workflows. Nature Biotechnology, 35, 316–319.
https://doi.org/10.1038/nbt.3820

Ellemers N (2021) Science as collaborative knowledge generation. British Journal of Social
Psychology, 60, 1–28. https://doi.org/10.1111/BJSO.12430

EMBL Australia Bioinformatics Resource (2013) Community Survey Report https://www.embl-
abr.org.au/news/braembl-community-survey-report-2013/

Emery NC, Crispo E, Supp SR, Farrell KJ, Kerkhoff AJ, Bledsoe EK, O’Donnell KL, McCall AC,
Aiello-Lammens ME (2021) Data Science in Undergraduate Life Science Education: A Need
for Instructor Skills Training. BioScience, 71, 1274–1287.
https://doi.org/10.1093/BIOSCI/BIAB107

European Commission, Directorate-General for Research and Innovation (2018) Cost-benefit
analysis for FAIR research data : cost of not having FAIR research data. Publications Office.
https://doi.org/10.2777/02999

Fanelli D (2018) Is science really facing a reproducibility crisis, and do we need it to?
Proceedings of the National Academy of Sciences of the United States of America, 115,
2628–2631. https://doi.org/10.1073/pnas.1708272114

Fang FC, Casadevall A (2015) Competitive Science: Is Competition Ruining Science? Infection
and Immunity, 83, 1229–1233. https://doi.org/10.1128/IAI.02939-14

Farley SS, Dawson A, Goring SJ, Williams JW (2018) Situating Ecology as a Big-Data Science:
Current Advances, Challenges, and Solutions. BioScience, 68, 563–576.
https://doi.org/10.1093/BIOSCI/BIY068

Field B, Booth A, Ilott I, Gerrish K (2014) Using the Knowledge to Action Framework in practice:
a citation analysis and systematic review. Implementation Science, 9, 172.
https://doi.org/10.1186/s13012-014-0172-2

Goble C, Cohen-Boulakia S, Soiland-Reyes S, Garijo D, Gil Y, Crusoe MR, Peters K, Schober D
(2020) FAIR Computational Workflows. Data Intelligence, 2, 108–121.
https://doi.org/10.1162/dint_a_00033

Gomes DGE, Pottier P, Crystal-Ornelas R, Hudgins EJ, Foroughirad V, Sánchez-Reyes LL, Turba
R, Martinez PA, Moreau D, Bertram MG, Smout CA, Gaynor KM (2022) Why don’t we share
data and code? Perceived barriers and benefits to public archiving practices. Proceedings
of the Royal Society B, 289, 20221113 https://doi.org/10.1098/rspb.2022.1113

Gownaris NJ, Vermeir K, Bittner MI, Gunawardena L, Kaur-Ghumaan S, Lepenies R, Ntsefong
GN, Zakari IS (2022) Barriers to Full Participation in the Open Science Life Cycle among
Early Career Researchers. Data Science Journal, 21, 2. https://doi.org/10.5334/DSJ-2022-
002

Grüning B, Chilton J, Köster J, Dale R, Soranzo N, van den Beek M, Goecks J, Backofen R,
Nekrutenko A, Taylor J (2018) Practical Computational Reproducibility in the Life Sciences.
Cell Systems, 6, 631–635. https://doi.org/10.1016/j.cels.2018.03.014

https://doi.org/10.24072/pci.ecology.100694
https://doi.org/10.1371/JOURNAL.PBIO.3000763
https://hal.science/hal-01590958
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1111/BJSO.12430
https://www.embl-abr.org.au/news/braembl-community-survey-report-2013/
https://www.embl-abr.org.au/news/braembl-community-survey-report-2013/
https://doi.org/10.1093/BIOSCI/BIAB107
https://doi.org/10.2777/02999
https://doi.org/10.1073/pnas.1708272114
https://doi.org/10.1128/IAI.02939-14
https://doi.org/10.1093/BIOSCI/BIY068
https://doi.org/10.1186/s13012-014-0172-2
https://doi.org/10.1162/dint_a_00033
https://doi.org/10.1098/rspb.2022.1113
https://doi.org/10.5334/DSJ-2022-002
https://doi.org/10.5334/DSJ-2022-002
https://doi.org/10.1016/j.cels.2018.03.014


Hampton SE, Jones MB, Wasser LA, Schildhauer MP, Supp SR, Brun J, Hernandez RR, Boettiger
C, Collins SL, Gross LJ, Fernández DS, Budden A, White EP, Teal TK, Labou SG, Aukema JE
(2017) Skills and Knowledge for Data-Intensive Environmental Research. BioScience, 67,
546–557. https://doi.org/10.1093/BIOSCI/BIX025

Hardisty AR, Bacall F, Beard N, Balcázar-Vargas MP, Balech B, Barcza Z, Bourlat SJ, Giovanni R,
Jong Y, Leo F, Dobor L, Donvito G, Fellows D, Guerra AF, Ferreira N, Fetyukova Y, Fosso B,
Giddy J, Goble C, Güntsch A, Haines R, Ernst VH, Hettling H, Hidy D, Horváth F, Ittzés D,
Ittzés P, Jones A, Kottmann R, Kulawik R, Leidenberger S, Lyytikäinen-Saarenmaa P,
Mathew C, Morrison N, Nenadic A, Hidalga AN, Obst M, Oostermeijer G, Paymal E, Pesole G,
Pinto S, Poigné A, Fernandez FQ, Santamaria M, Saarenmaa H, Sipos G, Sylla KH, Tähtinen
M, Vicario S, Vos RA, Williams AR, Yilmaz P (2016) BioVeL: A virtual laboratory for data
analysis and modelling in biodiversity science and ecology. BMC Ecology, 16, 49.
https://doi.org/10.1186/S12898-016-0103-Y

Hiltemann S, Rasche H, Gladman S, Hotz HR, Larivière D, Blankenberg D, Jagtap PD, Wollmann
T, Bretaudeau A, Goué N, Griffin TJ, Royaux C, Bras Y Le, Mehta S, Syme A, Coppens F,
Droesbeke B, Soranzo N, Bacon W, Psomopoulos F, Gallardo-Alba C, Davis J, Föll MC,
Fahrner M, Doyle MA, Serrano-Solano B, Fouilloux AC, van Heusden P, Maier W, Clements D,
Heyl F, Grüning B, Batut B (2023) Galaxy Training: A powerful framework for teaching! PLOS
Computational Biology, 19, e1010752. https://doi.org/10.1371/JOURNAL.PCBI.1010752

Ioannidis JPA (2022) Correction: Why Most Published Research Findings Are False. Plos
Medicine, 39, e1004085. https://doi.org/10.1371/JOURNAL.PMED.1004085

Ivimey-Cook ER, Pick JL, Bairos-Novak K, Culina A, Gould E, Grainger M, Marshall B, Moreau D,
Paquet M, Royauté R, Sanchez-Tojar A, Silva I, Windecker S (2023) Implementing Code
Review in the Scientific Workflow: Insights from Ecology and Evolutionary Biology.
EcoEvoRxiv. https://doi.org/10.32942/X2CG64

Jenkins GB, Beckerman AP, Bellard C, Benítez-López A, Ellison AM, Foote CG, Hufton AL,
Lashley MA, Lortie CJ, Ma Z, Moore AJ, Narum SR, Nilsson J, O’Boyle B, Provete DB, Razgour
O, Rieseberg L, Riginos C, Santini L, Sibbett B, Peres-Neto PR (2023) Reproducibility in
ecology and evolution: Minimum standards for data and code. Ecology and Evolution, 13,
e9961. https://doi.org/10.1002/ECE3.9961

Jetz W, McGeoch MA, Guralnick R, Ferrier S, Beck J, Costello MJ, Fernandez M, Geller GN, Keil P,
Merow C, Meyer C, Muller-Karger FE, Pereira HM, Regan EC, Schmeller DS, Turak E (2019)
Essential biodiversity variables for mapping and monitoring species populations. Nature
Ecology and Evolution, 3, 539–551. https://doi.org/10.1038/s41559-019-0826-1

Keenan M, Cutler P, Marks J, Meylan R, Smith C, Koivisto E (2012) Orienting international
science cooperation to meet global “grand challenges.” Science and Public Policy, 39, 166–
177. https://doi.org/10.1093/SCIPOL/SCS019

Knijn A, Michelacci V, Orsini M, Morabito S (2020) Advanced Research Infrastructure for
Experimentation in genomicS (ARIES): a lustrum of Galaxy experience. bioRxiv.
https://doi.org/10.1101/2020.05.14.095901

Köster J, Rahmann S (2012) Snakemake—a scalable bioinformatics workflow engine.
Bioinformatics, 28, 2520–2522. https://doi.org/10.1093/bioinformatics/bts480

Lai J, Lortie CJ, Muenchen RA, Yang J, Ma K (2019) Evaluating the popularity of R in ecology.
Ecosphere, 10, e02567. https://doi.org/10.1002/ECS2.2567

https://doi.org/10.24072/pci.ecology.100694
https://doi.org/10.1093/BIOSCI/BIX025
https://doi.org/10.1186/S12898-016-0103-Y
https://doi.org/10.1371/JOURNAL.PCBI.1010752
https://doi.org/10.1371/JOURNAL.PMED.1004085
https://doi.org/10.32942/X2CG64
https://doi.org/10.1002/ECE3.9961
https://doi.org/10.1038/s41559-019-0826-1
https://doi.org/10.1093/SCIPOL/SCS019
https://doi.org/10.1101/2020.05.14.095901
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1002/ECS2.2567


Lamprecht A-L, Garcia L, Kuzak M, Martinez C, Arcila R, Martin Del Pico E, Dominguez Del Angel
V, van de Sandt S, Ison J, Martinez PA, McQuilton P, Valencia A, Harrow J, Psomopoulos F,
Gelpi JL, Chue Hong N, Goble C, Capella-Gutierrez S (2019) Towards FAIR principles
for research software. Data Science, 3, 37–59. https://doi.org/10.3233/ds-190026

Larcombe L, Hendricusdottir R, Attwood T, Bacall F, Beard N, Bellis L, Dunn W, Hancock J,
Nenadic A, Orengo C, Overduin B, Sansone S, Thurston M, Viant M, Winder C, Goble C,
Ponting C, Rustici G (2017) ELIXIR-UK role in bioinformatics training at the national level
and across ELIXIR. F1000Research, 6, 952. https://doi.org/10.12688/f1000research.11837.1

Leroy B (2023) Choosing presence-only species distribution models. Journal of Biogeography,
50, 247–250. https://doi.org/10.1111/jbi.14505

Lortie CJ (2021) The early bird gets the return: The benefits of publishing your data sooner.
Ecology and Evolution, 11, 10736–10740. https://doi.org/10.1002/ECE3.7853

McIntire EJB, Chubaty AM, Cumming SG, Andison D, Barros C, Boisvenue C, Haché S, Luo Y,
Micheletti T, Stewart FEC (2022) PERFICT: A Re-imagined foundation for predictive ecology.
Ecology Letters, 25, 1345–1351. https://doi.org/10.1111/ELE.13994

Michener WK (2015) Ten Simple Rules for Creating a Good Data Management Plan. PLOS
Computational Biology, 11, e1004525. https://doi.org/10.1371/JOURNAL.PCBI.1004525

Michener WK, Jones MB (2012) Ecoinformatics: Supporting ecology as a data-intensive science.
Trends in Ecology and Evolution, 27, 85–93. https://doi.org/10.1016/j.tree.2011.11.016

Minocher R, Atmaca S, Bavero C, McElreath R, Beheim B (2021) Estimating the reproducibility
of social learning research published between 1955 and 2018. Royal Society Open Science,
8, 210450. https://doi.org/10.1098/RSOS.210450

Munafò MR, Nosek BA, Bishop DVM, Button KS, Chambers CD, Percie Du Sert N, Simonsohn U,
Wagenmakers EJ, Ware JJ, Ioannidis JPA (2017) A manifesto for reproducible science.
Nature Human Behaviour, 1, 0021. https://doi.org/10.1038/s41562-016-0021

Natural Environment Research Council (2010, 2012) Most Wanted: Postgraduate Skills Needs
in the Environment Sector.

Plesser HE (2018) Reproducibility vs. Replicability: A brief history of a confused terminology.
Frontiers in Neuroinformatics, 11, 76. https://doi.org/10.3389/FNINF.2017.00076

Powers SM, Hampton SE (2019) Open science, reproducibility, and transparency in ecology.
Ecological applications, 29, e01822. https://doi.org/10.1002/eap.1822

Serrano-Solano B, Fouilloux A, Eguinoa I, Kalaš M, Grüning B, Coppens F (2022) Galaxy: A
Decade of Realising CWFR Concepts. Data Intelligence, 4, 358–371.
https://doi.org/10.1162/dint_a_00136

Soiland-Reyes S, Sefton P, Crosas M, Castro LJ, Coppens F, Fernández JM, Garijo D, Grüning B,
La Rosa M, Leo S, Ó Carragáin E, Portier M, Trisovic A, Community R-C, Groth P, Goble C
(2022) Packaging research artefacts with RO-Crate. Data Science, 5, 97–138.
https://doi.org/10.3233/DS-210053

Strijkers R, Cushing R, Vasyunin D, De Laat C, Belloum ASZ, Meijer R (2011) Toward executable
scientific publications. Procedia Computer Science, 4, 707–715.
https://doi.org/10.1016/J.PROCS.2011.04.074

The Galaxy Community (2022) The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2022 update. Nucleic acids research, 50, W345–W351.
https://doi.org/10.1093/NAR/GKAC247

https://doi.org/10.24072/pci.ecology.100694
https://doi.org/10.3233/ds-190026
https://doi.org/10.12688/f1000research.11837.1
https://doi.org/10.1111/jbi.14505
https://doi.org/10.1002/ECE3.7853
https://doi.org/10.1111/ELE.13994
https://doi.org/10.1371/JOURNAL.PCBI.1004525
https://doi.org/10.1016/j.tree.2011.11.016
https://doi.org/10.1098/RSOS.210450
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.3389/FNINF.2017.00076
https://doi.org/10.1002/eap.1822
https://doi.org/10.1162/dint_a_00136
https://doi.org/10.3233/DS-210053
https://doi.org/10.1016/J.PROCS.2011.04.074
https://doi.org/10.1093/NAR/GKAC247


Touchon JC, McCoy MW (2016) The mismatch between current statistical practice and
doctoral training in ecology. Ecosphere, 7, e01394. https://doi.org/10.1002/ECS2.1394

Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten
JW, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I,
Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C,
Grethe JS, Heringa J, t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME,
Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone SA, Schultes E,
Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, Van Der Lei J, Van Mulligen E,
Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B (2016) Comment:
The FAIR Guiding Principles for scientific data management and stewardship. Scientific
Data, 3, 1–9. https://doi.org/10.1038/sdata.2016.18

Williams JJ, Teal TK (2017) A vision for collaborative training infrastructure for bioinformatics.
Annals of the New York Academy of Sciences, 1387, 54–60.
https://doi.org/10.1111/NYAS.13207

Zurell D, Franklin J, König C, Bouchet PJ, Dormann CF, Elith J, Fandos G, Feng X, Guillera-
Arroita G, Guisan A, Lahoz-Monfort JJ, Leitão PJ, Park DS, Peterson AT, Rapacciuolo G,
Schmatz DR, Schröder B, Serra-Diaz JM, Thuiller W, Yates KL, Zimmermann NE, Merow C
(2020) A standard protocol for reporting species distribution models. Ecography, 43, 1261–
1277. https://doi.org/10.1111/ecog.04960

https://doi.org/10.24072/pci.ecology.100694
https://doi.org/10.1002/ECS2.1394
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1111/NYAS.13207
https://doi.org/10.1111/ecog.04960

