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Abstract

With the increasingly global scale and scope of aquaculture, the need to match this development with
improvements in fish welfare is a central societal and industry goal. We provide a comprehensive
assessment of the farmed Atlantic salmon (Sa/mo salar) literature with targeted examples focusing on
Atlantic salmon farmed in Tasmania, Australia. We synthesise insights from both small- and industry-
scale perspectives, highlighting other reviews that provide discussions of particular sub-areas of farmed
salmon research. We focus on recent advances and improved methods for farmed Atlantic salmon
handling and management, behaviour, health issues and breeding. We also address wildlife interactions
resulting from fish farming, as well as future research directions and system development. This review
can serve as the basis for the development of aquaculture management guidelines that place individual
fish welfare as a primary goal.

1. Introduction

There is evidence that fish are sentient and experience pain and suffering. Fish behaviour is known to
be highly flexible, with a level of behavioural and cognitive sophistication that is equivalent to other
classes of vertebrates and, in many cases, exceeds them (Bshary and Schaffer 2002, Bshary and Brown
2014, Pouca and Brown 2018, Vila Pouca and Brown 2018). For all human interactions with fish, the
ethical and respectful treatment of these animals should be kept to the highest standards, which is
especially true in the aquaculture industry. With the increasingly global scale and scope of aquaculture,
the need to match this development with improvements in fish welfare should remain at the forefront of
scientific and industrial advances (Cooper et al. 2023). This viewpoint is also reflected in growing
public pressure on the aquaculture industry to minimise compromises to the welfare of individual fish.

The growth of this consensus is visible in welfare legislation and can be seen through formal
recognition of animal sentience in the European Union, New Zealand and Australia in the Australian
Capital Territory (ACT). The Animal Welfare Legislation Amendment Bill was passed in September
2019 making the ACT the first jurisdiction to recognise animal sentience in Australia. The main objects
of this Act recognise that animals are sentient beings, have intrinsic value and that people have a duty
of care for their mental and physical welfare. The objects are to be achieved in several ways, providing
humane treatment and management of animals and preventing their abuse or neglect. Importantly, the
absence of or freedom from suffering is not the only target. Within the Five Domains model, there is a
strong focus on positive experiences and mental well-being (Mellor and Reid 1994, Colditz 2023).
Research equips humans with the knowledge of how to provide positive welfare experiences and create
opportunities for improving the mental states of a group or individual animals in particular situations.

Globally, the aquaculture industry is embracing welfare standards and there is growing recognition that
happy, healthy fish produce a higher quality product, improving efficiency through increased health and
feed conversion ratios among other benefits. In Australia, the status of fish under wider state and
territory legislation is dependent upon their inclusion in the definition of the terms ‘animal’ and
‘vertebrate’. In terms of seafood production, the Tasmanian salmon industry is Australia’s highest-
value seafood sector. Legislation does not yet mention sentience; however, fish are included in the
definition of ‘animal’ under the Tasmanian Animal Welfare Act 1993.

Here we provide a comprehensive assessment of the farmed Atlantic salmon (Salmo salar) literature
(through January 2024) with targeted examples relevant to aquaculture systems in Tasmania, Australia.
Focal areas include handling and management, behaviour, health issues, wildlife interactions, and
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breeding. Specific information is provided in each of these areas that can be used as the basis to
optimize aquaculture designs and conditions to ensure the welfare of salmon.

2. Handling and Management

2.1. Stocking Density
Density-dependence is a fundamental principle in ecology, i.e., that organism densities are a determinant
of individual- or population-level traits or responses. This has direct management implications, including
for salmonid populations (Grossman and Simon 2020, Matte et al. 2020). Herein, stocking density (also
termed ‘biodensity’) is the salmon biomass per unit volume of water (often expressed in units of kg/m®).
It is one of the most fundamental variables to account for in salmon farming as it may lead to multiple
density-dependent responses. In this context, we note juveniles typically are reared in land-based systems
(of various types and designs referred to in this review) whereas adults are reared in marine pens. Such
system-specific contexts in terms of facilities and fish life stages must be considered when seeking
generalities regarding stocking density.

Studies typically assess response variables across stocking densities, within extremes of 8 and 125 kg/m®,
with most focusing on densities in the 1040 kg/m’ range. Response variables can be considered in
general categories, such as mortality, growth-related factors and physiological effects. Since these
variables are sensitive to many external and internal variables (see subsequent sections), at least an annual
(preferably more frequent) review of stocking density is commonly suggested. Turnbull et al. (2008)
provide a general overview and conceptual frameworks for the study of stocking density and here we
highlight some more recent empirical studies since that review.

Salmon stocked in experimental tanks at a density of 30 kg/m® showed high levels of fin-biting and
damage (Jones et al. 2011). Calabrese (2017) found that densities above 75 kg/m® compromised salmon
post-smolt performance and welfare in flow-through seawater tanks. No negative effects of stocking
density were noted at densities up to 86 kg/m’ if water flow rate, water quality and food allocation were
kept within recommended standards in experimental tanks (Berg et al. 1996). Although Jones et al. (2011)
found salmon fin damage in experimental tanks was higher with high salmon densities, fish in low-
density treatment groups had lower final weights, body lengths and condition. Thorarensen and Farrell
(2011) indicate that stocking densities up to 80 kg/m® does not affect growth or survival, providing water
quality is maintained, which is the main challenge at high densities, i.e., stocking density may affect
salmon physiology (and thus growth) through indirect pathways. For example, high stocking densities of
post-smolts in experimental saltwater tanks led to lower dissolved oxygen levels, increased CO, and
ammonia, and decreased pH, which result in feedbacks affecting salmon physiology (Sundh et al. 2019).
Therefore, there is a trade-off between stocking at higher densities with careful attention and control of
water quality parameters vs. stocking at a lower density when there is high potential variability and less
control of water quality parameters. Facilities with stocking densities set too high are more prone to
unpredictable events realised through changes in water quality parameters, such as oxygen, temperature,
or sulphur, as well as being more susceptible to disease spread.

Stocking density in recirculating aquaculture systems (RAS) (Mugwanya et al. 2022b) is a particular
welfare concern because of the limited space inherent to the design of the systems. These systems are
independent of natural environmental conditions and replace natural currents or circulation with water
filtration and circulation systems. This greatly reduces water demand (up to a 99% reduction) compared
to flow-through systems (Also see Section 7.1 and Minich et al. 2020). Wang et al. (2019) show several
parameters (e.g., specific growth rate, final weight, feed conversion rate, hormone activities) are sensitive
to stocking density and suggested the maximum density is 30 kg/m® for preferred yield outcomes in RAS.
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Lower stocking densities (values not reported as kg/m®) in RAS resulted in preferred concentrations of
ammonium, nitrate and organic load, which supported a robust population of nitrifying bacteria (Dronen
etal. 2021). Liu et al. (2015) found high stocking density (30-61 kg/m®) had significant negative effects
on growth and blood serum parameters. Liu et al. (2017) suggest that various growth and physiological
factors are affected at densities >50 kg/m’ in RAS, thus providing a specific maximum density
recommendation for farming Atlantic salmon in these facilities.

There is less information for commercial marine pens. Jensen (2020) found a close link between density
and mortality in commercial marine farms, although specific densities were not reported in the study. The
RSPCA Australia Standard is 15 kg/m® in marine pens (RSPCA Australia 2020), which is at the low end
of the spectrum compared to densities in land-based facilities. The intuitive thought is that negative
density dependence should be common in all aquaculture farming stages but some studies do not find
evidence for this (Delfosse et al. 2021). A foundational study suggested that density is one component of
salmon welfare in marine pens, but other variables must be included in models to fully assess its
relevance (Turnbull et al. 2005). Caution also should be taken when extrapolating results from tanks or
mesocosms (where many density or water quality experiments are conducted) to larger-scale production
systems (Gaffney and Lavery 2022). Determining the “golden stocking density”—one that maximises
stocking density, yield, and fish welfare, in the context of numerous influencing variables—is an elusive,
although principled, goal (but see Saraiva et al. 2022). As such, assessments of salmon stocking density
for individual farming facilities are warranted.

2.2. Water Parameters
Numerous water parameters are relevant to salmon farming, including temperature, dissolved oxygen,
salinity, nitrogen-containing compounds, pH, flow velocity, sulphur, and oceanographic conditions for
marine production stages (Toni et al. 2019, Hvas et al. 2021a). Perhaps the most important takeaway from
the literature is that it is difficult to isolate a single variable driving fish mortality, growth-related factors,
and physiological effects, as these variables have complex interactions and are highly variable (e.g.,
Kristensen et al. 2012, Toni et al. 2019), and their relevance varies substantially across systems
(particularly land-based vs. open-ocean stages of rearing). As such, in this broad review, it is hard to
make generalisations, and system-specific studies are warranted when working toward optimal rearing
strategies. We divide this overview into land-based rearing and marine sea pen stages, seeking consistent
threads of recommended conditions that emerge.

Water quality is particularly critical in RAS because of the limited space and sensitive parameter variation
in the enclosed conditions. For example, long-term nitrite exposure of post-smolts maintained in RAS can
lead to nitrogen accumulation in fish, with implications for their health (Mortensen et al. 2022); long-term
sulfur exposure is also a concern (Nicolaysen et al. 2024). Perhaps the most comprehensive review of
water quality parameter recommendations for optimal salmon performance and welfare is found in
Thorarensen and Farrell (2011) and we refer to that source. They include recommendations for oxygen
saturation (80-100%), NH; (<0.012 mg/L) and water exchange (=0.2—-0.3 L/min/kg), among others. They
also recommend the use of a thermal growth coefficient to estimate growth rates (see details of the
calculation therein). Ytrestoyl et al. (2020) found that post-smolt growth rate and feed conversion rate in
RAS were higher at a lower salinity (12 ppt vs. 22 and 32 ppt) and 12 ppt resulted in the best skin
morphology and lowest erosion of the caudal fin. Higher salinities were linked to mortality, elevated
plasma cortisol levels, higher incidence of cataracts and a higher expression of stress-induced genes in the
skin. These are logical findings, as 12 ppt is close to the salt density in fish blood, thus necessitating the
least energy required for osmoregulatory processes.
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Water flow in land-based systems can impact other traits, e.g., stress and immune responses are higher in
fish skin at low flow (Sveen et al. 2016). Higher water velocities are preferred (e.g., >0.2—0.3 L/min/kg;
Thorarensen and Farrell 2011), as it increases aerobic capacity and the efficiency of energy and protein
utilization (Ytrestoyl et al. 2020). Although elevated temperatures are often used to increase growth in
smolts, this also causes them to mature earlier than may be optimal (Crouse et al. 2022, Martinez et al.
2022, Martinez et al. 2023). Temperature also affects other traits, such as wound healing (Jensen et al.
2015). As such, the choice of temperature regime will vary widely based on which traits one wants to
optimise. Much like the ‘golden stocking density’, managers should carry out facility-specific studies to
find the temperature range which provides the best balance of maximising desired traits while minimising
negative welfare outcomes (but see Lambert et al. 2024).

There is less specific information regarding optimal water quality in marine pens. Fossmark et al. (2021)
compared brackish (3 ppt) and seawater (28 ppt) in RAS, and fish from the latter when transferred to
marine pens had higher weights but also higher mortality (an intermediate salinity was not assessed).
Once in pens, effects on performance and welfare are mediated indirectly via water quality parameters.
Salinity and temperature may affect ectoparasite abundance (see Section 4.2) and thus salmon health
(Groner et al. 2016). Mortality has been found to vary seasonally in freshwater farms in Norway, which is
related to changes in water quality parameters (Gasnes et al. 2021). Shifts toward more saline and
nutrient-rich waters drove harmful algal blooms in fjord systems of Chile, resulting in mass mortality of
farmed salmon (Leon-Munoz et al. 2018). Tides, water transparency, and sea temperatures affect the
densities of two algae species in Chile, which, at high densities, affects the behaviour and ultimately
mortality rate of salmon. Meng et al. (2022) show how ocean warming will differentially affect the
suitability of farming in different regions of Tasmania (see Section 7.5). Assessing optimal water
parameters in sea pens warrants more consideration in future studies.

2.3. Lighting Regimes
Light has three components—colour, intensity and duration—all of which can influence salmon
performance and welfare in land-based systems (Gaffney and Lavery 2022). Manipulation of artificial
lighting regimes (e.g., different day lengths vs. continuous lighting) influences various reproductive and
growth factors (Moccia et al. 2020). Although results vary widely among studies, the most apparent
consensus is that continuous light (or very long light cycles) has undesirable effects on salmon rearing
(Shulgina et al. 2021b). Unwanted male post-smolt maturation is highest under continuous light regimes
as compared to different light-dark cycles—early male puberty is often not desired because it reduces
hypo-osmoregulatory abilities and constrains growth, thereby prolonging the time to reach an optimal
reproductive state (Fraser et al. 2023). In freshwater RAS, Martinez et al. (2021) found shifting to a
light:dark 12:12 cycle from a continuous light regime resulted in compensatory growth and positive
effects on smoltification. For fish reared in freshwater and brackish RAS, continuous light-reared smolts
had reduced performance (compared to 12:12-reared fish) after being transferred to the sea, with this
effect being size-dependent (Ytrestoyl et al. 2022). Consistent lighting regulates gene expression related
to muscle growth in salmon yearlings (Shulgina et al. 2021a). Continuous light conditions also alter lipid
profiles in salmon fingerlings (fry) (Nemova et al. 2020, Nemova et al. 2021). Notably, the effects of
continuous light conditions may not occur across all life history stages and may be dependent on the
period of maturation the fish are in, such that only in reproductively ‘critical periods’ will negative effects
of continuous light on reproductive parameters be apparent (Taranger et al. 1999).

However, some studies have come to different conclusions, e.g., continuous light was related to a higher
growth rate of salmon fingerlings in experimental tanks by affecting the aerobic and anaerobic capacity in
their muscles (Churova et al. 2020), and continuous light following seawater transfer has been shown to
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result in higher muscle growth (Johnston et al. 2004). Another study demonstrated that 14 °C for six
weeks with a long-day photoperiod minimises negative effects on growth and mortality for juvenile
Atlantic salmon (van Rijn et al. 2021). As we have pointed out in other places in this review, emergent
effects on salmon are tied to the site- and system-specific characteristics that preclude broad
generalizations, but the balance of information suggests light/dark cycles are preferred to continuous
light. One area for future research is the importance of sleep for salmon in various lighting regimes.

2.4. Feeding Regimes
A complete assessment of diet composition would comprise a review in itself, especially because different
diets are aimed at maximising different traits in salmon. We defer to various other studies on this issue
(Gillund and Myhr 2010, Hixson et al. 2014, Davidson et al. 2016, Emery et al. 2016, Harvey et al. 2016,
McMeans et al. 2017, Caballero-Solares et al. 2018, Neuman et al. 2018, Weihe et al. 2018, Foroutani et
al. 2020, Lovmo et al. 2021, Gaffney and Lavery 2022, Goglio et al. 2022, Kousoulaki et al. 2022,
Sundell et al. 2022).

Instead, we highlight other aspects of feeding regimes: feeding frequency, predictability of delivery
schedules, feed restriction and withdrawal and feed distribution. These regimes have many far-reaching
impacts on water quality, waste, and feed conversion ratios. It was suggested early in salmon aquaculture
research that frequency of feeding (up to 80 times a day) does not affect growth rates or size variation in
post-smolts (Thomassen and Fjaera 1996). Conversely, Sun (2016) found that doubling the frequency
from 2 to 4 meals per day (with the same total food mass) increases growth rates and final body weights.
Flood et al. (2012) demonstrated that a single meal per day following the freshwater-to-seawater transfer
of smolts results in significantly lower feed intake than that of a higher feeding frequency, consequently,
multiple daily feeds were recommended following introduction to seawater. Jones (2012) examined
predictable and unpredictable feed delivery schedules on the behaviour and welfare of Atlantic salmon
parr and fish were more aggressive under predictable feeding schedules. However, greater dorsal fin
damage in the unpredictable treatments was evidence of poorer welfare status in fish due to an organised
network where individual members attained hierarchical roles according to their aggressive behaviour.
There is no current consensus regarding feeding frequency and predictability.

Feeding restrictions are utilised in many circumstances, implemented for reasons ranging from
maintaining water quality to preparing fish for stressful procedures (such as vaccinations, size sorting,
transportation and slaughter). For example, Shi et al. (2017) used recirculating tanks to compare fish that
had free access to self-feeders to ones that received meals at dawn, midday and dusk. The results
indicated that time-restricted self-feeding resulted in fin damage to Atlantic salmon but had little effect on
growth. Periods of food restriction depend on the issue being addressed and the extent of the restriction,
as well as external factors such as temperature, water quality, disease incidence, and stocking density,
among many others. These complexities render it difficult to make generalisations about the effects on
fish condition, physiology and overall welfare. However, it has been noted that Atlantic salmon post-
smolts can persist for up to 4 weeks without food without apparent implications for their welfare (Hvas et
al. 2020b). Food restriction and withdrawal are discussed in detail by Gaffney and Laverly (2022) and we
encourage a review of that paper for further information. Some agencies have specific guidelines, e.g., the
European Food Safety Authority suggests 2—3 days is the minimum to reduce metabolic rates before
handling and transport, as well as allow for clearing of digestive tracts (Algers et al. 2009). The RSPCA
Australia Standard indicates any food restriction may not exceed 72 hours (RSPCA Australia 2020). A
consensus for such recommendations remains unclear.

Food distribution is a key consideration in marine pens, which often takes the form of feed being
distributed on the water surface by a pneumatic conveying system. This results in uneven pellet
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distribution but can be mediated by spreader airspeed and equipment angle/tilting, e.g., higher airspeeds
have been shown to result in a more even spread of feed (Oehme et al. 2012). Alternative approaches,
e.g., spreaders releasing pellets at different ballistic angles and equipment to increase throw length,
provide promise for improved feed distribution (Skoien et al. 2018). Other studies emphasise that the
hydraulic properties of feed pellets (e.g., sinking rates) need to be considered along with distribution
patterns. Drones are being used to assess distribution patterns and inform spreader settings (Skoien et al.
2016, Lien et al. 2019), and the rapid technological advances in drone technology suggest tracking the
fine-scale distribution of feed is within reach. Models have been developed on growth rates of Atlantic
salmon in aquaculture production units, including the distribution of feed pellets, behaviour and
energetics of the fish, and the abiotic conditions in the water column (Fere et al. 2016). Such models can
be used to develop hypotheses on optimal pellet type and distribution regime. Adjustments to traditional
systems may increase feed distribution efficiency and reduce wasted feed, e.g., by using echo sound to
monitor fish biomass at feeding areas (Folkedal et al. 2022).

2.5. Direct Handling
Several procedures in the production pipeline require the handling of fish, including vaccination,
transport, harvest and slaughter. Reducing stress during fish handling is a step toward a more sustainable
industry that places welfare at its forefront. Fish face high stress when smolts are transported from
freshwater systems to marine pens (Iversen et al. 2005, Nomura et al. 2009), as such, we frame most of
this section on fish handling in the context of transport. Erikson et al. (2022) and Wedemeyer (1996)
provide an overview of previous research on fish transport, including closed vs. open transport systems.
One theme that emerges is that physical loading is more stressful than transport and that crowding (the
process of reducing the available swimming area in an enclosure to facilitate removal)—even for the
relatively short transport period—is problematic. As an empirical example, Erikson et al. (2022), in
experimental tanks, simulated a 5 h open-boat transport (flow-through system) to closed transport (aerated
system with no flow-through). They found more stress in the closed system and recommended that such a
system is only viable if the transport duration is <2 hours—otherwise extensive water treatment is
required. This is consistent with the results of Gatica et al. (2010a) who evaluated stress based on
variables such as blood cortisol and osmolality. Another study, based on blood concentrations of cortisol,
glucose, lactate, sodium, chloride and osmolality, found the most stressful stage was during pumping
from resting pens to the processing plant, i.e., the last step of the process is least humane (Gatica et al.
2010b). The season in which smolts are transferred may also affect welfare (Myklatun et al. 2023). Yet,
data are mixed on the stress incurred by introducing smolt to marine pens, with some studies showing less
severe effects than others (Arnesen et al. 1998).

Other aspects of handling deserve more attention. For example, studies have explored the effects of
simple handling, e.g., simply removing smolts from seawater tanks with nets and holding them out of
water for just 15 seconds. Even in this limited handling situation, smolts showed significantly higher
plasma cortisol levels and more attached copepodids than control salmon (Delfosse et al. 2021).
Anaesthetics are a critical part of fish handling, specifically to alleviate stress, and have been well-
reviewed elsewhere (Zahl et al. 2012, Chance et al. 2018, Priborsky and Velisek 2018, Martins et al.
2019). Studies have evaluated anaesthetics in the context of transport to sea (Sandodden et al. 2001), e.g.,
AQUI-S (5.0 mg/L) reduced mortality from 11.5% in unsedated fish to 2.5% in sedated individuals
(Iversen and Eliassen 2009) and clove oil (4.0 mg/L) reduced mortality by 10% (Iversen et al. 2009).
Other approaches include providing protection from microbial stressors, such as from the microalga
Heterosigma akashiwo (Goncalves et al. 2022).
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2.6. Humane Slaughter
Euthanasia and slaughter in salmonids were thoroughly reviewed by Gaffney and Laverly (2022) and we
highlight some of their takeaway points. Gaffney and Laverly (2022) define a humane death as one that is
quick, causes minimal stress and pain, and results in a rapid loss of consciousness followed by death
without the ability to regain consciousness. Humane approaches for slaughtering salmon are both an
explicit and tacit desire in salmon farming and society as a whole.

First, stunning and slaughter techniques are diverse, and optimal approaches will vary based on species,
body size, prior holding conditions, density, personnel skill level, and various other internal
(physiological) and external (environmental) variables. Despite such variation, percussive and electrical
stunning have emerged as preferred methods, sometimes used in conjunction, i.e., electrical stunning
followed by a percussion blow. Electronarcosis causes loss of consciousness much faster than ice
immersion in rainbow trout (Bermejo-Poza et al. 2021). In general, ice immersion is considered to be an
inhumane method of stunning and slaughter (Barkerud 2021). Likewise, water saturated with CO, triggers
prolonged struggling (several minutes) suggesting unnecessary harm to fish, whereas fish are immobilised
almost instantly when exposed to an electric current (Grans et al. 2016). Studies have yet to definitively
identify the exact cause of death following percussive and electrical stunning, limiting our ability to fully
assess the positives and negatives of these methods for slaughter. Bleeding out following electrical or
percussive stunning is well-studied in mammals and birds (e.g., Aghwan et al. 2016, Saxmose et al.
2019), and this is commonly done by gill slitting in fish (Borderias and Sanchez-Alonso 2011). There are
many studies regarding slaughter methods on fillet quality (Lerfall et al. 2015, Imsland et al. 2019, Skjold
et al. 2020, Rotabakk et al. 2022), but less information is published on how variation in methods and
conditions (e.g., variables such as crowding conditions and pumping system) affect fish welfare.

Focusing specifically on the choice between percussive and electrical stunning, the information is
somewhat ambiguous. For a review of these approaches, see Lambooij et al. (2010). The authors indicate
that both approaches can be humane if carried out correctly, although they note that visual verification of
consciousness is not reliable. As such, they suggest the use of electroencephalography (EEG) to infer fish
welfare, as do general animal welfare reviews (Kumar et al. 2022). Yet, using seizures and visually-
evoked responses may not reflect the actual conscious state (e.g., Hjelmstedt et al. 2022) and using EEG
to more reliably assess consciousness is not viable at an industrial scale. Further research is needed using
EEG data to link to specific behavioural indicators that can then be used to assess the most humane
methods.

For electrical stunning, Lambooij et al. (2010) suggest combined AC and DC results in stunning to
unconsciousness within 5 seconds. Other studies have further investigated optimal currency ranges for
stunning (Grimsbo et al. 2014, Grimsbo et al. 2016). Lines et al. (2003) mention, that for the trout
industry, individual percussion and bleeding by hand is uneconomic, yet high-speed machinery to bleed
fish automatically would be complex and expensive. Thus, an industrial benefit of electrical stunning is
that it does not require individual handling of fish (Robb and Roth 2003); conversely, individual handling
during percussive stunning allows for faster stunning speed and the best chance at visual unconsciousness
verification. Although both percussive and electrical approaches are preferred methods to alternatives,
there is less information directly comparing these two and specifics of using them in combination are not
detailed.

2.7. Genetic Considerations
The rapid development of genetic methodologies has provided new insights into aquaculture strategies.
For example, transcriptome analysis has been used to characterise gene expression patterns involved in
immune responses to microbial infections, e.g., detecting pilchard orthomyxovirus, a virus of vital
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concern in Tasmania (Samsing et al. 2022). Such approaches can be used to examine physiological
responses to abiotic and biotic stressors (Alipio et al. 2022, Gervais et al. 2022), determine optimal
rearing conditions for promoting immunocompetence (Ellison et al. 2020), help reduce disease outbreaks,
(Ajasa et al. 2024) and develop more efficacious vaccines against infection (Fu et al. 2022). Genetic
techniques also have demonstrated that quantifying hormone expression can guide the determination of
optimal stocking densities, by using peptide hormones as biomarkers to analyse the physiological
response of Atlantic salmon to population densities (Alvarez et al. 2022). Intestinal health variation across
different diets (e.g., proportions of saturated vs. unsaturated fat) can be revealed by gene expression
patterns, as can physiological stress-coping mechanisms (Lovmo et al. 2020, Lazado et al. 2022b).
Advanced genetic techniques also empower genetic selection regimes (Naeve et al. 2022) and gene
editing (Blix and Myhr 2023) for optimising salmon production. Efforts are moving toward commercial
scales, such as in the selective breeding program of the Australian Salmon Enterprises of Tasmania
(SALTAS) (Verbyla et al. 2022). These approaches may facilitate rapid trait selection (e.g., personality
traits) that are better suited to aquaculture conditions.

3. Behaviour

Behaviour is a key, non-invasive, welfare indicator that is highly plastic and reflects changes in internal
and external factors affecting salmon (Barreto et al. 2022). A first-level analysis of farmed Atlantic
salmon behaviour is to point out the obvious, i.e., the behaviour of farmed fish is significantly different
from that of wild fish (Huntingford 2004, Naslund 2021). Differences from wild environments include the
confined space, lack of migratory behaviour, high-quality food always made available, protection from
predators (for the most part), and the fact that diseases can be treated. Other challenges remain, e.g., high
densities can result in more aggressive intraspecific interactions and higher incidence and spread of
parasites and disease. The direct handling of fish by humans, including transport and associated crowding
and pumping, is a stressor not faced by wild salmon. The potential for genetic interventions, including
selective breeding and gene editing, can speed evolution toward desired traits much faster than happens in
wild populations.

There are general reviews (i.e., across species and farming systems) linking fish behaviour and their
welfare (Ellis et al. 2012, Martins et al. 2012, Segner et al. 2012, Macaulay et al. 2021a, Rey et al. 2021,
Barreto et al. 2022). Changes in foraging, aggression, swimming mode, sociality, and physiologically
related behavioural traits (such as ventilation rate) have been linked with acute and chronic stressors in
production systems and are considered indicators of welfare. Martins et al. (2012) write that “welfare
indicators that are relevant for inclusion in an operational welfare assessment system should be science-
based, should measure welfare over extended periods, should be measurable on a commercial farm within
a realistic framework and should be relevant as a decision support system for the farmer.” We use this
definition to frame our discussion herein.

In this section, we provide information that can be used to work toward operational welfare indicators
(OWIs) for salmon based on observational and experimental scientific evidence (Kristiansen et al. 2020).
We organise around three topical areas—environmental drivers of behaviour, cognition and effects on
behaviour following environmental enrichment. We then discuss practical issues regarding monitoring
systems and equipment, as well as welfare modelling.

3.1. Environmental Drivers
A foundational study reviewed the effects of numerous environmental variables on Atlantic salmon
behaviour (Oppedal et al. 2011, see Table 1 in particular), and we do not repeat their findings and
references here. Briefly, the authors address influences on fish behaviour from light regimes, temperature,
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salinity, dissolved oxygen, water current velocity, and sea lice treatments (as well as combinations of
these environmental drivers), providing robust guidelines for environmental variable target levels. We
highlight more recent studies, with a focus on conditions relevant to welfare in marine pens based on
current velocity, waves, temperature, oxygen, and surface air access.

3.1.1. Currents and Wave Action
With the greatly expanding scale and scope of salmonid coastal farms (Mclntosh et al. 2022a), and with
finite sheltered areas for farms, exposed offshore sites are increasingly being considered (Gentry et al.
2017, Hvas et al. 2021a, Fore et al. 2022, Morro et al. 2022). In this context, it is critical to understand the
effects on behaviour due to currents and wave action, as well as interactions between the two (Johannesen
et al. 2020). Other environmental variables, such as temperature, can further interact with wave energy to
affect the condition of salmon (Szewczyk et al. 2024). It can be argued that conditions that force the fish
to swim at speeds dictated by the environment rather than at their preferred cruising speed will result in
poor welfare since they violate the freedom to express normal behaviour that they would express in the
wild (Johansson et al. 2014, Hvas et al. 2021a).

At high current velocities, salmon switch from a circular, polarised group structure assumed at lower
velocities (Fore et al. 2009, Johansson et al. 2014, Hvas et al. 2017b) to a formation where fish keep
orientations at fixed positions swimming against currents (Johansson et al. 2014). Yet, salmon do tend to
move to portions of pens with lower currents when velocities are too extreme (Johannesen et al. 2022).
More concerning is when currents are so strong they push the fish to the down-current side of the pen,
resulting in various unwanted physiological effects and even mortality (Hvas et al. 2021a). Hvas et al.
(2021b) found individual smolts were able to sustain continuous swimming for more than 72 h without
becoming fatigued, but fish swimming above >85% critical swimming speed (i.e., the fastest pace a fish
can maintain an aerobic swimming threshold continuously without exhaustion) reached fatigue within a
few hours. They suggest a current threshold of <2.3 body lengths/sec allows fish to maintain swimming
performance for long periods, perhaps enhancing their fitness. Solstorm et al. (2016b) observed behaviour
and fin erosion on post-smolt salmon stocked at 39 kg/m® in raceways at water current velocities of 1.5,
0.8, and 0.2 body lengths/sec, and found that moderate velocities are best from a welfare perspective. At
slower velocities, between-individual interactions could be stressful for the fish; at faster velocities, fish
collide with obstacles and exhibit fin erosion. For farms on the Norwegian coast, Jonsdottir et al. (2019)
found that only 1 of 5 exposed sites had any currents that exceeded critical swimming speeds. In sum, as a
welfare guideline (Hvas et al. 2021a), chronic current conditions at exposed sites should not exceed 60%
of the critical swimming speed.

An ocean wave is defined as a periodic surface movement constrained to the uppermost layer of the water
column (Hvas et al. 2021a). Waves interact in idiosyncratic ways with currents to influence fish
behaviour. For example, Johannesen et al. (2020) found in weak currents, fish moved further down in
pens under larger wave scenarios; stronger currents caused fish to move up in pens regardless of wave
conditions. Hydrologic conditions had more of an effect on fish behaviour during the day than at night. In
extreme scenarios (heights up to 2.9 m), waves affect the bottom of pens, eliminating the bottom as a
refuge from wave stress. In general, waves drive fish to the more sheltered side of pens, decreasing
utilised space (Johannesen et al. 2022). Research in an M.S. thesis suggested shoaling behaviour breaks
down in wave patterns with heights of 2-2.5 m (Dam 2015). Little other information is available and thus
wave effects on behaviour and welfare warrant further study as offshore aquaculture sites expand.

3.1.2. Temperature
For temperature, the transfer of smolts is one of the most stressful periods in the production process. Tang
et al. (2022) simulated transfer from a lab-rearing preferred temperature (13 °C) to a series of lower
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temperatures. Based on measurements of plasma cortisol and expression of key genes involved in
telencephalic regulation, which are linked to emergent behavioural patterns to cope with stress, they
suggested exposing post-smolts at 13 °C to temperature reductions of 6 degrees °C or greater should be
avoided in transfers to minimise fish stress. Salmon in Newfoundland, Canada, marine pens were found
to move to areas of the pen with a temperature of 14—18 °C, which translated to distributions in deeper
pens during summer (Gamperl et al. 2021). Breau et al. (2011) measured behaviour (feeding and stress
responses) and physiological variables in wild 0+ (less than one year) and 2+ (2-year-old) wild Atlantic
salmon acclimated to water temperatures between 16 and 28 °C. Their results showed that 2+ year
Atlantic salmon employ behavioural responses (e.g., movement to cool-water sites) at higher
temperatures, thereby mitigating physiological imbalances.

In experiments conducted in Macquarie Harbour, Tasmania, salmon preferred temperatures 16.5 °C to
17.5 °C, yet this could be overridden by avoidance of areas with low oxygen saturation (<35%); salmon
also avoided the warmest surface waters (>20.1 °C, Stehfest et al. 2017). Combined, these factors led to
significantly reduced space utilisation in the pens and high localised fish densities. As such, water
parameters can intensify negative density dependence (see Section 2.1) thereby affecting welfare.
Temperature also influences swimming behaviour, as swimming capacity decreases at both high (above
18 °C) and low (below 14 °C) extremes (Hvas et al. 2017a). Most behavioural and physiological traits
follow this response curve. Land-based experimental results need to be placed in the context of ocean
warming, especially in cold water areas such as Tasmania and Norway (Calado et al. 2021, Meng et al.
2022), to predict the regional areas that will be more or less suitable for aquaculture into the future.

3.1.3. Oxygen
Atlantic salmon become stressed and exhibit a reduced appetite at oxygen levels below 4-6 mg L-1
(Burke et al. 2021), and this can be mediated by temperature and currents among other factors. Metabolic
rates of salmon have been found to decrease linearly below 27% saturation (Hvas and Oppedal 2019).
Oldham et al. (2017) used tarps wrapped around marine pens to reduce oxygen saturation. Salmon swam
1.5 to 2.7 times slower than individuals in control pens, and they swam above or below the most hypoxic
layer. Yet, temperature and salinity explained more of the variance in fish distribution, suggesting oxygen
is a secondary, although non-trivial, factor affecting fish behaviour. Hypoxic conditions can accelerate the
spread of diseases, such as amoebic gill disease, with oxygen saturation at 40-60% compared to >90% of
control conditions (Oldham et al. 2020). Oxygen is considered to be of less importance in exposed open
marine pen sites because conditions are typically within ranges that do not affect swimming capacity. As
such, studies on how oxygen (and how it is mediated by temperatures) affects behaviour and welfare
should be prioritised for sheltered farms where oxygen levels are more likely to fall below acceptable
levels.

3.1.4. Surface Access
Behaviour is related to buoyancy regulation, as salmon have a physostomous swim bladder that they fill
by gulping air from the surface (Sievers et al. 2018, Macaulay et al. 2020). Glaropoulos et al. (2019)
showed that fish swam fast and had tight schools when pens were submerged for days. But when pens
were lifted to the surface allowing air access, increased jumping and rolling behaviour indicated the
salmon had previously been negatively buoyant. They suggest at least weekly surface access is a desired
schedule to promote salmon welfare. Pens can also be fitted with air domes to mimic surface access
(Warren-Myers et al. 2022).
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3.1.5. Pen Design and Maintenance
Pen size and design affect environmental variables, such as dissolved oxygen (Alver et al. 2023), thus
indirectly influencing fish behaviour and welfare. Cleaning of marine nets releases biofouling debris that
can contribute to thrombi/subacute vascular lesions in the gills, although such effects may be limited to a
small proportion of fish over short periods (Ostevik et al. 2021). Early studies suggested biofouling
communities may support microbial communities that lead to amoebic gill disease outbreaks (Tan et al.
2002), but a more recent study suggests that is not the case (Jevne et al. 2020). It appears net cleaning
may be an important management procedure that can impact welfare by improving water flow or
removing harmful organisms. Yet, the mechanical process of net cleaning itself can be stressful for fish
and more research is needed to determine the optimal frequency and methods to ensure fish welfare.

3.2. Cognition
Fish cognition has been well-reviewed elsewhere (Allen 2013, Braithwaite et al. 2013, Bshary et al. 2014,
Lucon-Xiccato and Bisazza 2017), so we focus on salmonid-specific studies. First, affective states are
defined as the state reflecting the valence, positive or negative, of emotions over time, reflecting cognitive
abilities (Mendl et al. 2010). Salmon can display behavioural reactions indicative of the affective state of
frustration in response to the omission of an expected reward (OER) (Vindas et al. 2012). Vindas et al.
(2012) conditioned fish to associate a flashing light (a conditioned stimulus, CS) with feeding
opportunities. Conditioning led to a shift from aversion to a positive response to the CS. Fish were then
subjected to an OER, in which the food was delayed for 30 min for two of three daily meals. The OER
fish (compared to controls) displayed higher levels of aggression and a more pronounced social hierarchy,
demonstrating behavioural flexibility based on affective states (Vindas et al. 2012). Vindas et al. (2014b)
extended their earlier study to show the neural plasticity of a frustrating non-reward, representing a
foothold for the study of the links among cognition, behaviour, and welfare. Bratland et al. (2010)
demonstrated habituation and associative learning in salmon exposed to what was, at first, aversive
stimuli. Rainbow trout (Oncorhynchus mykiss) are capable of discriminating between cues during
judgement bias tests, demonstrating an affective state in responding to positive rewards (Anderson et al.
2022). Behaviours also can feedback to influence neurology, e.g., swimming exercise has been linked to
increased telencephalic neurogenesis and neural plasticity in salmon (Mes et al. 2020). These are
intriguing directions with implications for feeding regimes in farmed systems and more research is needed
to provide clarity on links between behaviours and welfare.

Animal personality is another perspective, i.e., examining individual-level repeatability and significant
correlations between suites of behaviours (Sih et al. 2015, Axling et al. 2023). One such variation in traits
has been termed ‘coping styles’, i.e., a consistent set of behavioural and physiological responses to stress
at the individual level (Koolhaas et al. 1999, Berlinghieri et al. 2021). Vaz-Serrano et al. (2011) studied
behavioural traits of farmed salmon fry, comparing individuals with an early or late time to emerge.
Behavioural stress coping styles were consistent for individuals 2 and 5 months after emergence reflecting
unique individual personalities were maintained. In other words, even in relatively homogeneous and
stable conditions in a rearing environment, individual-level variation was notable. Individual variation in
stress responsiveness is reflected in the visual appearance of salmon (Kittilsen et al. 2009). Individuals
with more spots show reduced physiological and behavioural responses to stress, thus a visual indicator to
assess individual-level fish behaviour. Damsgard et al. (2019) demonstrated a link between proactive
behavioural coping to hypoxia stress and high growth rates. Also, individuals that are the fastest to arrive
at feeding areas may have an advantage in procuring the resource (Harwood et al. 2003). Vindas et al.
(2017) showed differences in forebrain neural and endocrine responses in proactive vs. reactive fish.
These studies introduce the importance of individual-level-based fish welfare studies, as ‘mean’
population traits may mask variation in behaviour and welfare among individuals in aquaculture systems
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(Schraml et al. 2021, Torgerson-White and Sanchez-Suarez 2022). Selecting for personality traits, such as
for specific coping styles, may be beneficial in shaping the behaviour of fishes to be better suited for
aquaculture conditions.

3.3. Environmental Enrichment
Environmental enrichment is a deliberate increase in environmental complexity to reduce maladaptive
and aberrant traits in fish reared in otherwise stimuli-deprived environments (Naslund and Johnsson
2016). In aquaculture, it refers to providing new environmental stimuli (such as structure) to help captive
fish meet their physiological, behavioural, and psychological needs (Arechavala-Lopez et al. 2022,
Kleiber et al. 2023, Zhang et al. 2023). For example, adding complexity in a rearing environment
promotes cognitive abilities and improves brain plasticity (Salvanes et al. 2013). Alnes et al. (2021), using
structure manipulations in tanks, show that Atlantic salmon are sensitive to structural stimuli when they
are parr, but not fry. Parr deprived of enrichment are less likely to explore mazes and often remain still,
indicating stress. Exposure to enrichment can also impact other behavioural traits including laterality and
personality (Brown & Bibost 2014) which can have welfare implications (Berlinghieri et al. 2021). For
rainbow trout, weight gain, feed conversion ratio, individual fish length and fish weight are significantly
higher in structurally complex tanks compared to unenriched controls (Crank et al. 2019). Simple air
bubbles have been used to condition trout responses to feeding, and feeding predictability following
bubbling resulted in fewer pre-feeding agonistic behaviours (Kleiber et al. 2022). Also for trout,
frustrative reward omission increases aggression in fishes inferior in the social hierarchy (Vindas et al.
2014a).

Even though aquaculture fish are not released into the wild as are fish from hatchery stocking
programmes, hatchery-based studies are informative about the cognitive and physiological benefits of
enrichment. Naslund et al. (2013) and Cogliati (2022) demonstrate that structural complexity can
influence exploration behaviour in Atlantic salmon and Chinook salmon (Oncorhynchus tshawytscha).
Naslund et al. (2013) examined pre-smolt Atlantic salmon from three different environmental treatments:
barren environment, plastic tube enrichment, and plastic shredding enrichment. Blood cortisol levels and
fin deterioration were higher in barren treatments, reflecting aggressive behaviours and higher stress
levels. Bergendahl (2016) demonstrated that salmon reared in enriched conditions had enhanced spatial
learning abilities. Mes et al. (2019) showed the presence of rocks and artificial plants affects forebrain
gene expression which translated into higher survival of fish in the wild. Reiser et al. (2021) show, in
rainbow trout, that enrichment can even mediate epigenetic patterns, including DNA-methylation,
indicating improved brain function when fish are reared in more structurally complex environments. For
more examples, enrichments in captive environments are summarised in Naslund and Johnsson (2016),
Naslund (2021), and Johnsson (2014).

Although not a common practice in either land-based facilities or marine pens, the fact that the simple
addition of structure can mediate fish behaviour provides important insights into salmonid cognitive
abilities and cognitive links to the environment. Jones et al. (2021) point out that many aspects of
enrichment are poorly detailed in studies and they highlight those that could be quantified using their
DETAILS approach: dimensions, ecological rationale, timing, amount, inputs, lighting, and social
environment. There is not one type of enrichment approach that is common across studies, so specific
recommendations are not available (but for a general overview see Arechavala-Lopez et al. 2022). That
being stated, designing tanks or pens with almost any type of structure seems to improve salmon welfare
by inducing brain activity and behavioural shifts.
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3.4. Monitoring Systems and Equipment
A review by Macaulay et al. (2021b) is the best source for details on biotelemetry tagging to study fish
behaviour (with most studies in the review focusing on salmonids). For example, Stehfest et al. (2017)
used VEMCO acoustic telemetry tags to log temperature and dissolved oxygen conditions and fish
distributions. Hassan et al. (2022) coupled telemetry tagging with a Doppler computation algorithm to
quantify swimming speeds and movement patterns. Star-Oddi milli-HRT ACT and Milli-TD data loggers
were used to monitor the welfare of salmon in aquaculture facilities in Newfoundland, including 3D
acceleration (i.e., activity/behaviour), electrocardiograms (heart rate and heart rate variability), depth, and
temperature (Gamperl et al. 2021). Kolarevic et al. (2021) and Calduch-Giner et al. (2022) employed the
miniaturised biosensor AEFishBIT, a tri-axial accelerometer with a sampling frequency of 50-100 Hz, to
track measurements of physical activities, respiratory rates, and metabolic activities. Heart rate (HR) bio-
loggers have been used to monitor fish physiology, which can be used to infer fish activity levels (Hvas et
al. 2020a).

One study showed untagged conspecifics had significantly higher weights, fork lengths and condition
factors than tagged fish, suggesting a negative effect on fish welfare (Hvas et al. 2020a). This is consistent
with reductions in growth rates following transplantation of heart rate biologgers as shown by Warren-
Myers et al. (2021). Macaulay et al. (2021b) quantified mortality of tagged fish was ~10 times higher in
sea pens than in tanks and the mortality of tagged fish was higher in longer trials (from 4% in single-day
trials to 36% after 100 days). Further, electronic tags have been shown to increase mortality via effects on
fish buoyancy (Wright et al. 2019). Higher mortality and reduced performance rates for tagged fish,
coupled with unknown sublethal effects on behaviour, must be considered when interpreting tagging
study results (Macaulay et al. 2021b), and these authors provide an extensive list of recommendations for
quantifying the effects of tags on fish welfare (see Table 3 therein). Although providing valuable and
otherwise unobtainable information (Brijs et al. 2021), tagging data should be qualified accordingly,
inferences made with appropriate caution, and fish welfare incorporated into decision-making on the pros
and cons of employing tagging studies (Virtanen et al. 2023).

3.5. Welfare Models
Models for assessing fish welfare are another tool to ensure that desired rearing conditions are met in
commercial operations. The Salmon Welfare Index Model (SWIM 1.0) provides a tool for aquaculture
facility managers to apply a standardised system using specific welfare indicators (Stien et al. 2013). It
compiles all of the available welfare proxies and environmental variables (such as those discussed in this
paper) into a single model, termed a ‘semantic’ model by the authors. It focuses on rigorous science-
backed metrics, with the qualification that they can be readily measured by managers on a farm. The input
indicators included are water temperature, salinity, oxygen saturation, water current, stocking density,
lighting, disturbance, daily mortality rate, appetite, sea lice infestation ratio, condition factor, emaciation
state, vertebral deformation, maturation stage, smoltification state, fin condition and skin condition (Stien
et al. 2013). The SWIM model does not include behaviour as a key indicator or positive welfare states,
perhaps because it is too subjective to assess across systems. SWIM 2.0 (Pettersen et al. 2014), targeted
for fish health veterinarians/inspectors, extended the original model to include metrics based on eyes,
cardiac condition, abdominal organs, gills, opercula, skeletal muscles, vaccine-related pathology, aberrant
fish, necropsy of dead fish, and active euthanasia. We could only find one example of the application of
these models published in a refereed journal. Folkedal et al. (2016) studied ten farms on the Norwegian
coast and found the evaluations were relatively quick and produced welfare index scores that largely
agreed with farmers’ rankings of their pens—the authors proffer that the SWIM model is a promising
avenue to assess salmon in sea pens. It is unclear why SWIM models have not been applied more broadly.
More recently, a Qualitative Behavioral Assessment model was proposed based on fish behaviour, e.g.,
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using descriptors reflecting relaxation, agitation, lethargy, or confidence (Jarvis et al. 2021)—it has since
found some support as a welfare indicator (Wiese et al. 2023). Digital techniques to analyse external
morphological traits have also been introduced (Lindberg et al. 2023).

4. Health Issues

4.1. Disease
Diseases of most concern vary among countries, a complete survey of which is beyond the scope of this
review. We take Tasmanian salmon farming as a case study which can be used as a guide for issues
related to the incidence, physiopathology, environmental drivers, and treatment for diseases. Amoebic gill
disease (AGD) was first described in Tasmania, in the 1980s and it is now found in most salmon-
producing regions globally. It is caused by the free-living, facultative, protozoan ectoparasite
Neoparamoeba perurans—see Oldham et al. (2016) for a detailed review of its biology. In short, V.
perurans colonises gills, leading to the expansion of the lamellar epithelium and generating surplus gill
mucus. The disease tends to spread more readily in warmer months and decreases the tolerance of salmon
to environmental stressors, resulting in increases in basal energy requirements and a reduction in hypoxia
tolerance (Bowden et al. 2022). Fish affected are characterised by lethargy, anorexia and increased
ventilation rates (Oldham et al. 2016). Extreme incidence led to mortality greater than 80% in Norway in
2006 (Steinum et al. 2008) and has been estimated to increase the cost of rearing salmon by 20% in
Tasmania (Kube et al. 2012).

Recent studies highlight factors that may affect the incidence of amoebic gill disease. Cyclic hypoxia
exposure, which may be found in diel patterns of aquaculture pens, accelerates the progression of AGD
in post-smolts (Oldham et al. 2020). Large Atlantic salmon have significantly lower gill parasite burdens
and reduced AGD-related pathologies compared to small fishes (Smith et al. 2022). Intense fish crowding
in narrow depth bands can lead to increased AGD risk (Wright et al. 2017). Marcos-Lopez and Rodger
(2020) provide the most recent review of host responses to this disease, with foci including
pathophysiology, immune responses, mucus characterisation, and oxidative stress patterns, and we defer
to their study for extensive detail. Since the biology of AGD is covered in depth by other reviews (Oldham
et al. 2016, Marcos-Lopez and Rodger 2020), we focus on recent disease treatment aspects that are
relevant to salmon welfare.

Table 3 in Oldham et al. (2016) summarises the commonly used treatment approaches, including
variations of two commercially utilised treatments, freshwater or hydrogen peroxide bathing, as well as
some oral treatments. The efficacy of the approaches varies widely, depending on the specifics of the
treatment regime and the system in which it is employed. Of the limitations identified, they point out two
points regarding future treatments: (1) the development of a vaccine will continue to be a significant
challenge in the near future and (2) there is a clear need for research on novel treatments. As for the first
point, Hudson and Nowak (2021) update the limited progress that has been made toward vaccines based
on a discussion of the design of challenge experiments and endpoints in experimental trials. They also
suggest effective vaccines for AGD do not seem imminent (but we note vaccines are more widely used
for other diseases) (Bakke et al. 2021, Avendano-Herrera et al. 2022).

As for the second point in Oldham et al. (2016), a common thread in the literature is that alternative
treatment approaches have not proved promising. Hudson et al. (2022) showed that although salmon
exposed to low temperatures had reduced attachment of N. perurans, a 15-minute, cold water bath
treatment was not more effective at reducing AGD than the common commercial 2 h bath. Taylor
(2021a) examined a sodium percarbonate (SPC) treatment in freshwater and indicated that a 30-minute
exposure is not a suitable alternative to existing freshwater treatment regimes. Lazado et al. (2022b)
treated AGD-affected fish with peracetic acid either by exposing them to 5 ppm for 30 min or 10 ppm
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for 15 min. With these protocols, there was no clear treatment effect for AGD, although it did clarify
aspects of the host-parasite interactions. Taylor et al. (2021b) caution that N. perurans are likely to
return to seawater following commercial freshwater treatments and that problem should be reduced by
longer bathwater holding times (>4 hours).

Another potential treatment direction is diet manipulations. Mullins et al. (2020) showed the
inclusion of arginine, micro-additives, and vitamins C and E improved salmon survival, with arginine
an important driver of pathogen protection. Talbot et al. (2022) showed a customised feed (the
composition of which is too lengthy to include here) could delay the onset of clinical symptoms
associated with AGD and enhance the expression of genes promoting mucosal defence. Other studies
employ genetic tools, e.g., a transcriptomic study provided molecular insights into the pathology of
AGD (Botwright et al. 2021). Also, AGD resistance in Norwegian Atlantic salmon was improved by
selective breeding (Lillehammer et al. 2019).

Additionally, infections with oomycetes of the genus Saprolegnia are among the main parasitic
diseases affecting freshwater-famed salmonids and are a major health problem (Tedesco et al. 2021,
2022). Infections by mycotic agents are generally considered a result of chronic stress and poor water
quality. Tedesco et al. (2022) found that lower water temperature and handling procedures increased
Saprolegnia prevalence in trout and Atlantic salmon farming in Italian, Spanish and Scottish farms,
with temperature and water quality being the main factors influencing prevalence in Atlantic salmon
farms.

As is true for other salmon-farming countries, multiple diseases are concerning in Tasmania. Pilchard
orthomyxovirus (POMYV) was isolated from wild pilchards in southern Australia in 1998 and is likely
transmitted from wild fish to farmed Atlantic salmon (Godwin et al. 2020, Mohr et al. 2020, Samsing et
al. 2022). In experimental trials, the development of the disease is rapid, including mortality within 5 d
of direct exposure to POMV (Godwin et al. 2020). Samsing et al. (2022) used a reverse transcriptase
real-time PCR (RT-qPCR) assay to study a Tasmanian Rickettsia-like organism (TRLO)—a facultative,
intracellular bacterium, that triggers Tasmanian salmonid rickettsiosis (Morrison et al. 2016). TRLO
has been implicated in sporadic outbreaks of disease, typically coinciding with annual peaks in water
temperature. The disease is characterised by a high morbidity rate and affected fish are commonly co-
infected with the Tasmanian Atlantic salmon reovirus (TSRV) during outbreaks; however, it is not
known whether the presence of the virus is incidental or causal in the disease (Morrison et al. 2016).
Different strains of RLO have been linked to mortalities of salmonids in other countries. For New
Zealand Chinook salmon, NZ-RLO was strongly associated with fish presenting with skin ulcers
(Brosnahan et al. 2019). However, it is not known whether NZ-RLO is the cause of skin ulcers or
whether the presence of ulcers lowers the resistance of individuals to NZ-RLO. The authors also found
that NZ-RLO was only associated with skin ulcers in the sites with the highest seawater temperatures
and that there was a higher prevalence of NZ-RLO at sites with higher water temperatures. This further
highlights the association between elevated water temperatures and increased risk of disease. Multiple
diseases affecting salmon suggest that a single disease treatment approach is unlikely to address all
pathological challenges in salmon farming.

Over recent decades, the use of anti-microbials including antibiotics has increased due to production
pressure and is currently commonly used for prevention and treatment of bacterial disease (Miranda et
al. 2018). The widespread use of antibiotics in aquaculture has resulted in significant concerns
regarding both the development of bacterial resistance and environmental impacts. For a general review
of the types of antibiotics used in salmon aquaculture, see Burridge et al. 2010. Although it may be
necessary in some cases to use antibiotics as therapeutic agents in the treatment of infections, in
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general, the need to use large quantities of antibiotics is the result of shortcomings in rearing methods
and environmental conditions that promote stress and susceptibility to diseases (Burridge et al. 2010).

One of the most comprehensive reviews of anti-microbials for disease treatment is for the Chilean
farming industry, particularly in addressing Piscirickettsia salmonis, a facultative intracellular
bacterium (Avendano-Herrera et al. 2022). A contrast with Norway provides insight into the range of
antimicrobial use across countries. Levels administered are quite high in Chile, 727,812 tons in 2016
and up to 985,958 tons in 2021—compared with just 222 kg in 2019 in Norway. Florfenicol is a broad-
spectrum, semi-synthetic antimicrobial compound, and is currently the most frequently used in Chilean
salmon farming. In Norway, 115 kg of florfenicol, 107 kg of oxolinic acid and 1 kg of oxytetracycline
were employed country-wide in 2020. In experimental tanks in Norway, after florfenicol and oxolinic
acid were applied in feed, the composition and abundance of the dominant intestinal bacterial phyla
shifted significantly (Gupta et al. 2019). The nexus of antibiotics, microbial communities, and disease
incidence and behaviour will likely shape future research directions in this area.

Disease influences on salmon welfare vary widely, necessitating region-specific approaches to disease
management. In Norway, haemorrhagic smolt syndrome (Krasnov et al. 2020, Gasnes et al. 2021),
salmon gill poxvirus (Tartor et al. 2022), pancreas disease, nephrocalcinosis (Gasnes et al. 2021,
Klykken et al. 2022a, Klykken et al. 2022b), and Moritella viscosa (Ramberg et al. 2022, Tingbo et al.
2024) are well-studied. In Chile, Piscirickettsia salmonis is of the most concern and Canadian studies
have addressed how Piscine orthoreovirus affects the cardiorespiratory capabilities of Atlantic salmon.

Finally, biosecurity management is a critical aspect of minimising the risk of the introduction and spread
of disease within a commercial population and the spread of disease between sites, other farms and
susceptible wild populations. Practices such as the separation of year classes, mandatory fallowing
periods, zoning, coordination between farmers within zones, and careful planning of site locations can be
used to ensure biosecurity management (Midtlyng et al. 2011).

4.2. Ectoparasites
The ectoparasitic salmon louse (Lepeophtheirus salmonis, Kroyer 1836) is threatening salmon farming
operations globally. However, since sea lice infections are less problematic in Tasmania than elsewhere in
the world (Torrissen et al. 2013), we only briefly address the issues here, although we caution this may
become a more important consideration in the future. Sea lice feed on mucus and blood leading to
decreased fish condition and lower disease resistance. The degree of threat is related to multiple factors.
Stocking density and temperature (Montes et al. 2022) and salinity (Sievers et al. 2019) are key, with
regional climate driving open-sea dynamics, as mediated by temperature changes (Hurford et al. 2019). It
is generally assumed higher fish densities result in higher sea lice infections (Jansen et al. 2012), but this
relationship may be more complex than seems apparent (van Walraven et al. 2021). Artificial light in
open-pen salmon aquaculture may attract sea lice and increase infestations (Nordtug et al. 2021).
Conversely, ultraviolet light has been shown to suppress the reproduction of sea lice, albeit to the
detriment of salmon health (Barrett et al. 2020a). Temperature mediates salmon-parasite relationships,
with lower ambient temperatures perhaps affecting sea lice more than salmon (Ugelvik et al. 2022). The
most obvious negative temperature effects on fish welfare are found following delousing at high
temperatures, e.g., >28 °C (Nilsson et al. 2019), suggesting such parasite control approaches need to be
re-evaluated in the context of welfare (Nilsson et al. 2023).

The issue of balancing lice removal with salmon health is at the forefront of these management
applications (Walde et al. 2021). For example, thermal delousing and hydrogen peroxide bathing,
although potentially effective in reducing sea lice incidence, has been found to harm salmon in other ways
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742 (Oliveira et al. 2021, Bui et al. 2022, Thompson et al. 2023), and thus remains debated. Temperature also
743  mediates the efficacy of hydrogen peroxide baths, namely, moving fish from warmer ambient

744  temperatures to colder baths reduces salmon mortality while retaining lice removal efficacy (Overton et
745  al. 2018). For medicinal treatments to reduce lice infestation, more research is needed on the evolving
746  resistance to drugs employed (Aaen et al. 2015). In addition to effects on fish welfare, economic

747  considerations often relate to treatment program decisions (Walde et al. 2023). For a thorough assessment
748  of treatment methods, see Aldrin et al. (2023).

749  Tens of millions of cleaner fish are used each year in salmon farming facilities, and they have been found,
750  under certain conditions, to be effective feeders on sea lice. Yet evidence remains mixed—although

751  cleaner fish consume sea lice, reduction in sea lice loads on salmon may be minimal or non-existent

752  (Barrett et al. 2020b, Gentry et al. 2021). Concerns have been repeatedly raised over cleaner fish welfare,
753  as they differ in biology and nutritional needs compared with Atlantic salmon, and their mortality in

754  salmon cages is often unacceptably high (Geitung et al. 2020, Garcia de Leaniz et al. 2022). Further

755  challenges to effective sea lice application include properly rearing cleaner fish to be successful in

756  reducing sea lice loads (e.g., acclimatising them with sea-lice-infested salmon) and maintaining desired
757  welfare standards in the process of cleaner fish rearing (Gentry et al. 2021).

758

759 4.3. Bone health and skeletal deformities

760 A review by Baeverfjord et al. (2019) outlines the key issues regarding bone health in salmonids, with
761  an emphasis on mineral nutrition. They point out that the emphasis in bone health research is on dietary
762  phosphorus (P) and the levels of that nutrient needed to minimise skeletal deformities. Table 1 is

763  especially of note in this paper, providing a comprehensive account of the studies that have described
764  skeletal deficiencies due to low P intake. They draw on other studies to show negative correlations

765  between available P (diet %) and the proportion of deformed fish (both diploid and triploid, albeit not
766  statistically significant for the former), with 1.2% dietary P resulting in the lowest level of skeletal

767  deformities. Cost-benefit analyses for individual farms are warranted, as higher P diets are more costly,
768  and they have environmental impacts via effluent released from facilities. Baeverfjord et al. (2019) also
769  review research on other essential nutrients, such as calcium, magnesium, and zinc, but studies on these
770  are less common than for P.

771  Other studies have since extended research reviewed by Baeverfjord et al. (2019). Drabikova (2022)
772 fed salmon parr with low (6.8 g/kg), medium (10.0), or high (13.0) P diets. They found vertebrae

773  compression-related deformities at the low P diet, but these recovered once the fish were transferred to
774  seawater. The frequency of other types of deformities was not significantly different for salmon with
775  different dietary P. As such, high or low dietary P in freshwater rearing ultimately had no overall effect
776  on the prevalence of deformities at harvest. This followed a previous study from their research team
777  that showed a low P diet with a continuous feeding regime can maintain growth rates such that salmon
778  have well-developed vertebral bodies (Drabikova et al. 2021). Consistent with these studies, vertebral
779  malformations were not more common in salmon subjected to 16 weeks of a 50% reduced P diet

780  (Witten et al. 2019). Fraser et al. (2019) showed a low phosphorus diet reduced bone mineralization and
781  increased the incidence of vertebral deformities, compared to medium and high phosphorus diets;

782  however, the prevalence of severely deformed fish at harvest was reduced by switching from the low to
783  higher P diet for 4 months after moving the fish to seawater. Together, these studies suggest although a
784  high P diet may improve some bone health issues to a degree, it is not solely responsible for proper
785  skeletal development in salmon parr and smolts. Other risk factors that can affect skeletal development
786  include temperature, photoperiod, vaccinations, mechanical load, exercise and genetics (Fjelldal et al.
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2012, Witten and Hall 2015, Solstorm et al. 2016a). For further information regarding skeletal
anomalies and causative factors, see recent reviews (Boglione et al. 2013a, Boglione et al. 2013b).

4.4. Heart morphology and health
A first consideration is whether heart morphology differs between wild and domesticated individuals,
yet we found only two studies address this issue for Atlantic salmon. An early study showed heart
morphology does differ, i.e., hearts of farmed fish are rounder and that the angle between the
ventricular axis and the axis of the bulbus arteriosus is more acute in wild fish. Notably, a strong
positive correlation has been established between the more acute shape in wild fish and optimum
cardiac output and function (Poppe et al. 2003). However, Perry et al. (2020), in a common garden
experiment, found no evidence for domestication-driven divergence in heart or liver morphology.
Results of the latter study run counter to many other traits that are selected for in domesticated salmon,
notably increased growth rate (Glover et al. 2017).

Frisk et al. (2020) demonstrated a link between a faster pace of growth at early rearing stages and
cardiac deformities later in life. These deformities were associated with cardiac rupture in individuals
during delousing, thus suggesting a slower pace of smolt production improves cardiac health and
reduces the risk of mortality. AGD can also affect heart morphology, e.g., fishes from sea pens that
were highly or lightly affected with AGD were compared in a study in Tasmania (Powell et al. 2002).
The authors found that high-AGD-exposed fish had higher ratios of ventricle axis length and width and
axis length and height, suggesting compromises for energy losses due to AGD.

A consistent thread of evidence indicates the importance of aerobic exercise for cardiovascular health
in farmed Atlantic salmon. Balseiro et al. (2018) employed a floating raceway system in marine pens
that provided a continuous flow of water in the semi-closed containment environment. The forced
aerobic activity resulted in better cardiac health and muscle development, consistent with the results of
other studies (Zhang et al. 2016, Robinson et al. 2017). As for temperature, one study showed no effect
of different feed levels or rearing temperatures (15 °C vs. 19 °C) on heart shape and bulbus alignment
of Tasmanian farmed salmon (Foddai et al. 2022). Muir et al. (2022) examined the cardiac plasticity of
juvenile salmon reared under control (7 °C) or elevated (11 °C) conditions using a non-invasive
Doppler echocardiograph system. Ventricular roundness and relative ventricle size did not differ,
although the proportion of compact myocardium in the ventricular wall was greater for the higher
temperature-reared fish (many other responses were measured as well). This study revealed how
assessment of cardiac health under different environmental conditions can be complex, and thus
conclusions may vary based on the specific response variables. Many such studies note that
examinations of cardiac plasticity are especially relevant for salmon farming in the context of ocean
warming (also see Calado et al. 2021).

Cardiomyopathy syndrome (CMS), caused by piscine myocarditisvirus (Su et al. 2021), is an infectious
disease in farmed Atlantic salmon and is one of the most common causes of mortality during
production (Fritsvold et al. 2021). Little is known about the disease and its potential treatment.
Kavaliauskiene et al. (2022) found L-plastin expression is elevated in cardiac tissue thus providing a
potential biomarker to target the disease. Other biomarkers for salmon CMS include proteins that are
identified with cardiac disease in humans (Costa et al. 2021). Fritsvold et al. (2022) describe an
RNAscope hybridisation method that had better diagnostic performance than traditional
immunohistochemistry approaches and thus may be a promising tool. CMS may be an increasingly
important factor affecting salmon welfare in future years.
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4.5. Cataracts
Cataracts are opacities of the eye caused by changes in the epithelial tissues surrounding the lens fibres
resulting in clouded, or loss of, vision. Incidence can be high in some salmon farming operations, e.g.,
90% of salmon were found to be affected in a commercial-scale experiment in Norway in late summer
(Hamre et al. 2022). Potential underlying causes are many (Remo et al. 2014). For example, fluctuation
in water temperature may increase growth rate, but also cataract development (Bjerkas et al. 2001). The
same study also noted cataract development initiated in the freshwater-rearing phase continues after
transfer to marine pens. One mediator of the prevalence of cataracts is prominent—histidine, an
essential amino acid. Waagbo et al. (2010) found that cataract development (one year after the transfer
of salmon smolts from freshwater to seawater) can be minimised with histidine supplementation just
before or during the early phases of that development. In a tank experiment in Norway, cataract
prevalence and severity were negatively correlated with dietary histidine concentration—to minimise
the risk of cataract development the authors suggested feeding with 14.4 g His/kg (Remo et al. 2014).
Studies since Remo et al. (2014) have not provided different recommendations for specific histidine
levels in feed. More information regarding cataracts is found in Section 6.1 based on comparisons of
diploid and triploid fish.

5. Wildlife Interactions

Marine aquaculture facilities have the potential to attract wildlife, including pinnipeds (seals), porpoises,
and seabirds, serving as a potential food source or for rest or shelter, (Bath et al. 2023). Non-target fish
and other marine species can also infiltrate marine pens and threaten biosecurity and fish welfare. A new
Tasmanian Salmon Industry Plan (Department of Natural Resources and Environment Tasmania 2022)
proposes the development of a Wildlife Interaction Standards to replace the existing Seal Management
Framework and Minimum Requirements for Wildlife Exclusion Measures.

5.1. Pinnipeds and Porpoises
In economic terms, it is estimated that pinniped predation of salmon farms causes losses of up to 12% of
gross production costs, which is greater than typical losses due to fish mortality or sea louse infestation
(Heredia-Azuaje et al. 2022), although the reported losses are lower in Australia than in other salmon-
producing countries. Most pinniped attacks occur at night which presents a particular challenge for
detection and management (Sepulveda and Oliva 2005). There is some evidence that predators induce
stress that may affect growth, disease susceptibility and survival (Heredia-Azuaje et al. 2022). As
highlighted in a recent Tasmanian study, there is also concern that seals may pose a biosecurity risk to
farmed Atlantic salmon by introducing potential fish pathogens (D'Agnese et al. 2020).

Aquaculture operations in Tasmania experience significant interactions with wild Australian fur seals
(Arctocephalus pusillus doriferus) and long-nosed fur seals (Arctocephalus forsteri), whose populations
have rebounded in recent years from near extinction (D'Agnese et al. 2020, McIntosh et al. 2022b).
Today, seal welfare is a particularly sensitive public relations issue for Tasmanian aquaculture and has
attracted worldwide media attention. In 2022, The Guardian reported on seal deaths resulting from the
use of ‘seal crackers’, i.e., underwater explosive devices intended to scare the animals away from sea pens
(Burton 2022). The 2021 book, Toxic: The Rotting Underbelly of the Tasmanian Salmon Industry,
asserted that these devices blow up seals (Flanagan 2021). A small number of these explosive deterrents
did result in seal fatalities, possibly due to injury. It is also important to consider the effects of noise
pollution on non-target species in addition to the fish themselves, especially harbour porpoises and other
acoustically sensitive marine mammals (Simonis et al. 2020). The limited available evidence shows that
salmonids may not react significantly to these explosions (Thompson et al. 2021), which may reflect that
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captive salmon can become habituated to higher levels of ambient noise (Erbe et al. 2022). Due to limited
evidence of their potential effects, further research is required on explosive deterrents.

As alternatives to underwater explosive devices, the aquaculture industry employs acoustic deterrent
devices (ADDs) and acoustic harassment devices (AHDs). ADDs produce omnidirectional pings
oscillating between 5—-160 kHz at 150 dB, whereas AHDs use pulsed frequency sweeps or tone pulses at
205 dB within the same frequency range (Stevens et al. 2021). Existing studies on ADDs characterise
them as either ineffective (or only partially effective) and the use of these devices is not permitted in
Tasmania (Wildlife Management Branch 2018). Like with seal crackers—which proved to be ineffective
in California (Thompson et al. 2021)—predators can quickly learn that these sounds pose no real danger,
and they may even come to associate ADDs with a source of food, inadvertently creating a ‘dinner-bell’
effect (Wiirsig and Gailey 2002).

In western Scotland, ADDs were routinely used because of the abundance of harbour seals. The farmed
salmon are reportedly not affected by these devices as they only respond to lower frequencies (<4 kHz)
(Aboltins et al. 2020), and aquaculture farms reported active ADDs for 88% of stocked days from 2014 to
2019 (Scottish Government 2021). A recent study of the associated welfare impacts on wild seals
(Findlay et al. 2022) identified a low risk of auditory impairment but acoustic modelling suggests the
animals are exposed to audible ADD noise (i.e., above ambient background noise levels). Similar
concerns have been expressed about the impact on other non-target species, especially cetaceans (Diaz
Loépez 2020, Stevens et al. 2021, Thompson et al. 2021). Findlay et al. (2021) identified a risk of ADD-
associated auditory impairment for harbour porpoises up to 30 km from aquaculture facilities, with the
potential for ADD noise to remain high at distances exceeding 50 km. Hiley et al. (2021) observed
significant avoidance behaviour of the species and suggested that ADDs may cause hearing damage.
Another study found that AHD sounds affected harbour porpoises but not harbour seals (Mikkelsen et al.
2017).

Scottish Atlantic salmon farms have reduced their usage of ADDs since 2020, e.g., by activating systems
only when seals are in the vicinity (Wildlife Management Branch 2018). Reiterating the apparent
ineffectiveness of such devices, Findlay et al. (2022) encouraged the adoption of alternative measures,
e.g., anti-predator nets and stiffer net materials (Thompson et al. 2021). Anti-predator nets surrounding
the main sea pen are not always effective since seals can slowly push the outer net towards the inner pen
net to get close enough to bite the latter (which also leads to fish escapes). This sometimes leads to the
entanglement of the predators, although the extent of the problem is unknown (Heredia-Azuaje et al.
2022). Seals can also access pens by climbing over net walls, using walkways, or exploiting gaps where
netting has loosened (Thompson et al. 2021). Using rigid anti-predator nets can improve farming
structures. Other effective non-acoustic deterrents include the regular removal of dead fish from sea pens,
keeping the water free of debris, and maintaining proper tension in nets and ropes. Non-lethal methods
such as these are generally preferred in the United States (Zajicek et al. 2023).

In Tasmanian finfish aquaculture, there has been an emphasis on predator-excluding infrastructure, with
other deterrents or targeted destruction viewed only as complementary control measures (Cummings et al.
2019). Consistent with this, the Australian aquaculture industry has recently invested AUD 100 million in
the development of double-netted ‘fortress pens’ (Floysand et al. 2021). These were introduced to cope
with the rough offshore conditions in the Storm Bay area and also to deter predators through design
features that include an outer anti-predator net maintained at high tension (Aquaculture 2022). Such
systems led to a significant drop in seal incursions (Breen 2019).
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A newer generation of devices, known as acoustic startle deterrents or targeted acoustic startle technology
(TAST), is intended to elicit mammalian startle responses that cannot be habituated to (Cummings et al.
2019). These devices can reduce effects on non-target wildlife based on inter-species differences in
hearing (Go6tz and Janik 2016). Trials in Scotland showed promising results (Heredia-Azuaje et al. 2022).
Although the welfare impacts on non-target species may be reduced (Thompson et al. 2021), more
systematic evaluation is warranted. Detrimental effects on non-target species might also be mitigated by
using seal tracking systems based on video monitoring, which can be used to ensure that deterrent devices
are triggered when seals are in the vicinity. One such system was shown to be effective even at night
(Anwary et al. 2022). Another approach used a conditioned aversion method: ‘electric fish’ placed among
dead fish at the bottom of pens (Thompson et al. 2021)—designed to mimic dead salmon but deliver an
electric shock upon contact. Taste aversion, using emetic-laced bait fish, is another approach (Schakner
and Blumstein 2021). Grey and harbour seals show an aversive response to camphor, suggesting olfactory
deterrents may be useful (Campagna et al. 2022).

5.2. Seabirds
Potential interactions with seabirds include predation of fish, the spread of disease and entanglement in
farm structures. But one recent analysis noted a ‘near total absence of current observational data on
seabird behaviour around fish farms in Scotland and elsewhere’ (Benjamins et al. 2020, p. 14). A report
by the US National Oceanic and Atmospheric Administration (NOAA) concluded that aquaculture farm
infrastructure poses a slight risk of entanglement for seabirds (Price and Morris Jr. 2013). In New
Zealand, recent best practice guidelines developed for the offshore aquaculture industry mention that
seabird interactions are occasionally reported for inshore farms (Gaskin et al. 2021). New Zealand
guidelines for offshore aquaculture recommend a mesh size of 6 cm to avoid seabird entanglement
(Gaskin et al. 2021). Montevecchi (2023) asserted that seabirds encroaching upon aquaculture sites are
often shot. The spread of diseases by seabirds is little studied and warrants more attention.

The majority of studies on seabird entanglement relate to bycatch in fishing gear, particularly gillnets and
demersal longlines, which are estimated to kill over one million seabirds each year (Melvin et al. 2023).
The relationship between mesh size and risk of entanglement is not particularly well-defined (Bellebaum
et al. 2013, Heswall et al. 2021). ‘Bird-scaring lines’ of various designs have proven effective in reducing
bycatch (Bull 2007), as have LED lights on gillnets (Bielli et al. 2020, Lucas and Berggren 2022). For the
latter, the impact on farmed fish requires further attention as varied behavioural responses to artificial
light sources were observed for Chinook salmon (Yochum et al. 2022). An alternative visual cue for
seabird bycatch mitigation is a ‘looming eyes buoy’, a floating device mimicking large eyespots and
looming eye movement (Rouxel et al. 2021). There appears to be only a single study of acoustic
deterrents for seabirds (Northridge et al. 2017)—given the concerns raised for mammals this seems
unlikely to be a productive research direction.

5.3. Other Non-Target Species
Chemotherapeutic agents used in salmon farming, especially for the control of sea lice, can have
detrimental impacts on non-target species in the surrounding area. These include the thiophosphate
insecticide azamethiphos, hydrogen peroxide, and the pyrethroid insecticides deltamethrin and
cypermethrin, which are typically released into the marine environment after use. There is evidence that
these substances have the potential to harm non-target species, particularly crustaceans and bivalves, at
concentrations that have been found in the vicinity of salmon farming pens (Bechmann et al. 2019, Urbina
et al. 2019, Parsons et al. 2020, Strachan and Kennedy 2021). Extensive use of these agents has also
driven drug resistance which sometimes results in treatment failure (Guragain et al. 2021). The chitin
synthesis inhibitor diflubenzuron is added to salmon feed to help control sea lice but this can
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inadvertently affect non-target crustaceans such as shrimp (Moe et al. 2019). Given this, non-
pharmacological interventions are preferable for disease management in terms of both animal welfare and
sustainability (Lieke et al. 2020). For example, nano-filtered, hyposaline water is effective against sea lice
and AGD, demonstrating the feasibility of more sustainable and welfare-friendly treatments (Mc Dermott
et al. 2021).

6. Breeding
6.1. Triploid Salmon

For reproductive systems, the predominant issues are trade-offs regarding diploid vs. triploid fish.
Triploidy is induced in Atlantic salmon, producing sterile fish to hinder early sexual maturation and to
avoid genetic interactions with wild salmon. Triploid salmon are typically induced by exposing
fertilised eggs to hydrostatic pressure, resulting in triploid eggs with two sets of chromosomes from the
female and one from the male (Benfey 2016). There is a history of triploidy in salmon aquaculture
research, and here we focus on the most recent developments (2018—present) that can guide
management. There is abundant data on the positive and negative aspects of using triploid fish but a
lack of consensus on the appropriate uses in salmon aquaculture. Choices regarding the rearing of
triploid fishes will depend on the aspects of welfare and performance that are targeted by farmers or
regulatory agencies. We first highlight studies that do not find differences in welfare or performance
between diploids and triploids and then counter with those that demonstrate non-desired traits.

In a Norwegian tank experiment (Bortoletti et al. 2022), diploid and triploid fish were raised from fry to
smolt stages. Real-time PCR and radioimmunoassays were used to assess growth, stress (e.g., cortisol
concentrations) and oxidative stress biomarkers of lipids (MDA) and proteins (AOPP). Changes in the
biomarkers were related to sampling time rather than being associated with diet or ploidy. The authors
suggest triploid individuals have similar welfare as diploids and thus triploidy could be beneficial for
the salmon farming industry. In another study, digestive tract histomorphology, proteolytic enzyme
activities, digestibility, and amino bioavailability did not differ substantially between ploidies
(Martinez-Llorens et al. 2021). For the parr and smolt stages, the biological processes enriched for
down-regulated genes were closely aligned in diploid and triploid fish, reflecting a similar liver
morphology and level of vacuolisation (Odei et al. 2020). Benhaim et al. (2020) showed triploid and
diploid fish had similar swimming activity, boldness traits and gut microbiome composition, including
higher survival for triploids when raised at 8 °C.

Evidence suggests triploid fish grow faster, as has been shown for European salmon strains (Crouse et
al. 2021). Ignaz et al. (2022) exposed triploid Atlantic salmon to incremental temperature increases that
mimicked natural ocean temperature trends. The data showed that <5% of female triploid Atlantic
salmon in experimental tanks died before temperatures reached 22 °C, suggesting a desirable high-
temperature tolerance. Bowden et al. (2018) showed that triploidy does not translate to reduced thermal
tolerance or differences in the metabolic rate of juvenile salmon in freshwater environments. Fonseka et
al. (2022) found ploidy had transient effects on plasma biochemistry but no effect on vertebral
deformities (but triploids had a higher prevalence of cataracts). The gill microbiome of triploids can be
more resistant to pathogens than diploids (Brown et al. 2021). Triploids also have been shown to
respond well to vaccination (Chalmers et al. 2020).

Yet, other studies since 2018 have found distinct differences between diploids and triploids. Prominent
among them is a study by Madaro et al. (2022) who studied fish from four Norwegian aquaculture
companies. Overall, triploid salmon exhibited reduced survival, a higher incidence of emaciated fish,
and a lower quality rating during primary processing. Contrary to the studies cited above, disease
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incidence may be higher in triploids—infectious salmon anaemia was 9.4 times more likely

in triploid fish than diploid fish at a commercial-site level (Aunsmo et al. 2022). In this study, at some
sites, anaemia outbreaks were only in pens with triploid fish suggesting, at a minimum, triploid fishes
should be kept in separate pens from diploids. Other experiments demonstrate that even when induction
of triploidy is successful, chromosome aberrations are present that may affect gene expression (Glover
et al. 2020). Triploids appear to require a lower incubation temperature than the current industry
standard of 8 °C (Clarkson et al. 2021), thus temperature control is one way to minimise otherwise
emergent deformities in triploids. Large triploid Atlantic salmon have been shown to perform better at
colder water temperatures compared to diploids (Sambraus et al. 2018).

Higher susceptibility to oxidative stress in triploid lenses is linked to the prevalence of cataracts (Olsvik
et al. 2020). Likewise, Sambraus et al. (2018) found a higher incidence of cataracts in triploids. Specific
diets may be required for the normal development of the triploid Atlantic salmon alevins (Wu et al.
2020). Peruzzi (2018) showed the incidence of vertebral abnormalities was higher in triploids in tank
experiments in Iceland. Sambraus et al.(2020) found triploid Atlantic salmon have a higher dietary P
requirement for bone mineralisation during early development. Triploids fed low P diets have increased
skeletal deficiencies, suggesting early P supplementation is crucial for development (Peruzzi et al.
2018, Smedley et al. 2018, Baeverfjord et al. 2019). In sum, triploid performance and welfare may be
improved and be similar to (or better) than that of diploids with rearing at relatively low temperatures
and high P diets.

Another consideration is hybridisation with other species and, consistent with the theme above, data are
mixed. Fraser et al. (2022) assessed the growth of smolts in Norway for diploid and triploid Atlantic
salmon x brown trout (Salmo trutta) hybrids compared to diploid and triploid salmon. Compared to
diploid salmon, triploids were significantly heavier at the end of the trial and triploid hybrids were heavier
than diploids. However, both triploid groups had a higher incidence of deformed vertebrae and more
severe cataracts. They concluded triploid hybrids have no growth advantage over triploid salmon and
suffer from similar welfare issues. This followed previous studies from this research team that found
triploids and triploid hybrids have better freshwater and early seawater growth than diploid counterparts
(Fraser et al. 2021) but with vertebral deformities higher (likely because of rapid growth). We reiterate the
conclusion offered at the opening of this section—the differing evidence on the performance and welfare
of diploids vs. triploids (and hybrids) renders singular recommendations regarding their farming
challenging. Farming decisions will be based on which welfare metrics are targeted and the performance
outcomes desired.

A final note on producing sterile adult salmon relates to germ-free individuals, i.e., blocking the ability
to reproduce by inhibiting the function of proteins that are necessary for germ cell development and/or
survival. One approach is to knock out dead-end gene dnd to produce germ-free individuals (Guralp et
al. 2020, Kleppe et al. 2022). The resulting sterile broodfish can pass the sterility trait to the next
generation. Almeida et al. (2022) identified another target, the protein Piwill, which affects the survival
of primordial germ cells. Such approaches are likely to progress rapidly concomitant with technological
advances.

6.2. Selective Breeding
The primary target in the selective breeding of aquaculture species is faster growth with an emphasis on
feed intake and utilisation (Thodesen et al. 1999, Thorland et al. 2020). Faster growth also promotes fish
welfare by shortening rearing periods and thus lessens the risk from disease agents and parasites. This
reduces the need for physical or chemical treatments, as well as reducing facility operation costs and
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freeing money to target other aspects of maintaining fish welfare. However, faster growth may also
produce risk factors, such as poor skeletal health.

Studies provide different lines of evidence to support that selective breeding can promote fish welfare and
yields. A notable example is the Australian Salmon Enterprises of Tasmania Pty Ltd (SALTAS)

selective breeding program, which was implemented in 2018 (Verbyla et al. 2022). The goal is to use
genomic selection as a means to increase genetic gain using family-level selection, maximising primary
traits (e.g., harvest weight) without undesirable effects on other traits. An optimised genotyping scheme
was used in which all individuals in each year class were genotyped. A 19% genetic gain in total weight
was established with a 54% increased rate for AGD resistance. When translated to the commercial scale
with selected males, there was a net 5.7% increase in production yield.

For salmon in European breeding programs, Janssen et al. (2017) found after 10 selected generations
there was a cumulative genetic gain of about +200% in harvest weight, a reduction in the rearing period to
2-3 years from egg to harvest, and an increase in harvest weight to ~5 kg. Naeve et al. (2022), in a
common garden experiment, used contemporary farmed Atlantic salmon (generation 11) eggs fertilised
with cryo-preserved milt from previous generations. The resulting difference in average body weight
between generation 0 and half-sibs from present-day salmon was 1.5 kg. Many genes are involved in
regulating growth, providing a broad scope of genetic targets for selective breeding (Thorland et al.
2020). Genotype imputation can provide a cost-effective method for generating robust genetic
information for large numbers of fish (Tsai et al. 2017).

Selective breeding targets other than those focused on growth include disease resistance and temperature
tolerance. Kjoglum et al. (2008) show selective breeding has the potential to increase the resistance

of Atlantic salmon to furunculosis, infectious salmon anaemia, and infectious pancreatic necrosis.
Candidate genes for resistance to AGD have been identified that could be targeted for selection (Aslam et
al. 2020, Robledo et al. 2020, Botwright et al. 2021), and enhanced AGD resistance in

Norwegian Atlantic salmon has been demonstrated via selective breeding (Lillehammer et al. 2019). Host
resistance to sea lice in farmed Atlantic salmon has a significant genetic component and thus has received
much attention (Jones et al. 2002, Kolstad et al. 2005, Gharbi et al. 2015, Tsai et al. 2016) and there
remains untapped potential in this research (Rosendal and Olesen 2022). Especially in the context of
ocean warming, thermo-tolerance is critical in selective breeding programs (Calado et al. 2021). There are
also instances of unintentional selection, e.g., the evolutionary emergence of compensatory mechanisms
to a diet low in essential long-chain polyunsaturated fatty acids in domesticated environments (Jin et al.
2020).

6.3. Emerging genetic selection approaches
Long generation times in Atlantic salmon render selective breeding a slow (generational) process but
novel genetic approaches are emerging to provide more rapid means towards desired genetic traits.
D'Agaro et al. (2021), Houston et al. (2020) and Houston and Macqueen (2019) provide reviews of how
genomics is being applied at multiple stages of the domestication process to optimise selective breeding,
emphasising biotechnological innovations such as genome editing and surrogate broodfish technologies.
Genome editing can target DNA changes to single nucleotide replacements allowing for efficient
inclusion of favourable alleles (Straume et al. 2021, Yanez et al. 2022, Raudstein et al. 2024).
CRISPR/Cas9-induced homology-directed repair is a powerful tool towards this end (Roy et al. 2022)—
albeit one with technical, regulatory and ethical considerations (Okoli et al. 2022). Applications include
genetic modifications for disease resistance, sterility, and enhanced growth, with particular optimism for
addressing sea lice infestations (Robinson et al. 2022). Another example is the causative gene underlying
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resistance to infectious pancreatic necrosis virus, as shown by combining high-throughput genomics with
targeted genome editing (Pavelin et al. 2021).

6.4. Other Spawning Issues
In salmon farming, sexual maturation and spawning can be manipulated to enable a supply of eggs and
smolt throughout the year. Reproduction is induced through hormonal stimulation and spawning can be
achieved through changing light, temperature and feeding regimes, and stripping of eggs and sperm. The
welfare of broodfish may thus be impaired directly by these procedures and also indirectly by the
associated handling (Saravia et al. 2019). However, further research on the welfare implications of
spawning practices in salmon farming is needed. Skjaerven et al. (2022) showed that alteration in
spawning time by adjusting abiotic factors influences the nutrient status of the next generation of Atlantic
salmon via nutritional and metabolic programming. Zepeda et al. (2020) investigated the effects of
treatment with gonadotropin-releasing hormone analogue (GnRHa) on Atlantic Salmon broodfish. They
found that the use of the hormone reduces the effect of endocrine disruptors, does not affect fertilization
rate and has positive effects on embryonic development and the larval stage of offspring by reducing the
number of morphological deformities.

Broodfish are typically reared for a longer period than the production fish raised for consumption. This
makes them particularly vulnerable and necessitates specific welfare requirements. The process of sexual
maturation is energetically costly and involves trade-offs with other fitness components such as growth
and survival (Mobley et al. 2021). It is common for broodfish, as with wild salmonids, to go off feed
before spawning which results in a reduced body condition. Additionally, broodfish are subjected to
frequent handling events, including tagging for identification, fin clipping for genotyping, maturation
checks and stripping, and are therefore susceptible to increased handling stress.

For some salmonid species reproductive events are terminal (i.e., semelparous species) and are therefore
humanely euthanised before stripping. Atlantic salmon (an iteroparous species) are commonly used for
multiple spawning events and are anaesthetised before stripping. Broodfish should be fed a specially
formulated diet to meet their nutritional requirements and must be encouraged back on feed after
spawning events if being used for further events. However, one could question the ethics of keeping
broodfish for repeat spawning events considering the significant risks to the welfare of this particular
group of production fish face.

Other studies are relevant to Atlantic salmon breeding that warrant mention but lack sufficient
information to develop further herein. Ultrasound technology is a quick and noninvasive method that
could reduce the number of stressful handlings and unwanted sacrifice of broodfish required for
maturation monitoring in Atlantic salmon (Naeve et al. 2018). Environmental factors in broodfish
husbandry influence the nutrient status of the next generation via nutritional and metabolic programming
(Skjaerven et al. 2022). Another study documented the great plasticity in the timing of salmon puberty—
maturation as rapid as 6 months after hatching—which could have important implications for farming
programs (Ciani et al. 2021). Subsequently, more evidence has linked early onset puberty to high-rearing
temperatures (Martinez et al. 2022, Martinez et al. 2023). Lopez et al. (2019) note that genetic drift may
mask artificial selection which indicates a different genetic basis for similar traits in different farmed
strains.
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7. Future Research Directions

7.1. Recirculating aquaculture systems and the microbiome
Modern recirculating aquaculture systems (RAS) were originally pioneered in the 1970s in Germany and
Denmark and were subsequently implemented for commercial use in several European countries (Ahmed
and Turchini 2021). The recirculated water is purified by sequential processes, including filtration and
sterilisation, and water reuse in current systems can be as high as 99% (Shitu et al. 2022). Technology and
adoption of RAS have increased, especially in the context of a climate adaptation strategy (Mortensen et
al. 2022, Mota et al. 2022). With RAS, the industry has achieved production of Atlantic salmon to full
market size in land-based facilities without the need for marine pens (Crouse et al. 2021). In other cases,
the time spent in marine pens can be reduced by producing larger post-smolts in onshore RAS before
transfer. However, knowledge of post-smolt biological and welfare requirements in close containment
systems is limited (Ytrestoyl et al. 2020). Real-time monitoring and machine learning approaches are
being developed for parameters such as water quality management, feeding control and disease detection
(Brijs et al. 2021, Chen et al. 2021). The Tasmanian aquaculture industry has adopted RAS and the largest
such system in the southern hemisphere was opened in the state in 2019 (Floysand et al. 2021).

The rise of ‘omics’ technologies has brought a growing understanding of commensal microbiomes and
their impact on human health and disease. Similar investigations have been undertaken in fish, where a
healthy microbiome, particularly in gills and skin (Lorgen-Ritchie et al. 2022), is thought to protect
against infection and disease (Dahle et al. 2023). Microbial communities in RAS are recognised as
important mediators of fish health and welfare (Rud et al. 2017, Dronen et al. 2022). This may, at least
partially, explain why gradual salinity changes before transfer to seawater reduce mortality of smolts
since it also allows for adaptations in the host microbiome (Fossmark et al. 2021, Morales-Rivera et al.
2023).

The microbiomes in recirculating water systems contain various beneficial species (e.g., nitrifying and
probiotic populations), as well as pathogenic bacteria. Bacterial biofilms are particularly problematic
since they harbour fish pathogens (Schoina et al. 2022). Sampling of tank water and fish skin are
appropriate screening measures for early warning of disease (Dronen et al. 2022). Careful management of
the bacterial communities present in RAS biofilters is essential since they influence water microbiota.
Dabhle et al. (2022) identified post-biofilter UV treatment as a promising sterilisation strategy to protect
against pathogens without compromising the tank water microbiome. Ozone has also been explored as a
disinfection strategy in post-smolt RAS, which improves water quality without any apparent detrimental
impact on animal welfare, as assessed on 14 physical and physiological welfare indicators (Lazado et al.
2021).

7.2. Offshore Aquaculture
Most marine production facilities are located close to shore but there is a growing interest in offshore
systems for industry expansion and climate change adaptation (Lopez Mengual et al. 2021, Johannesen et
al. 2022). There are reservations because of a lack of data on welfare in offshore systems, although
existing evidence is promising (Aryai et al. 2021). One survey of salmon industry stakeholders revealed
no perceived differences in fish welfare (Watson et al. 2022). A shift to offshore sites may be preferable
to reduce the risk of sea louse infestation since salmon lice occur at their highest density close to shore
(Mclntosh et al. 2022a). Nevertheless, the harsher environmental conditions experienced farther from
shore present various engineering and production challenges for aquaculture installations, as well as
raising additional welfare concerns. In this context, emerging technologies of tagging and video
monitoring systems may be especially advantageous.
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Various spatial planning approaches can be used to find the most favourable locations for offshore salmon
farms (Aryai et al. 2021). Existing siting models combine remotely sensed environmental data (e.g.,
temperature, salinity and current speed) with species-specific knowledge to identify suitable areas (Jossart
et al. 2020, Yu et al. 2022). Long-term ocean current data is desirable for choosing locations to ensure
that farmed fish will not be forced to swim above their critical swimming speed (Jonsdottir et al. 2019).
After smoltification, Atlantic salmon are strong swimmers that seem well suited to offshore aquaculture
without any impact on their welfare—if chronic currents remain within 60% of Ui (Hvas et al. 2021a).
In Norway, several offshore areas meet such conditions, with the temperature dependence of Ui being an
additional factor to consider (Mugwanya et al. 2022a). Offshore expansion of the aquaculture industry is
also hindered by a lack of regulatory and policy preparedness (Galparsoro et al. 2020, McPhail and
McDonald 2021, Watson et al. 2022).

7.3. Management with Artificial Intelligence
‘Smart aquaculture’ or ‘precision aquaculture’ can increase productivity and sustainability (Fere et al.
2018, Vo et al. 2021, Gladju et al. 2022) and they also hold promise for well-being (Lazado et al. 2022a).
One focal point is real-time monitoring driven by increased automation and the use of Al-based tools.
Biosensors can collect real-time data on individual animals, including parameters such as heart rate,
acceleration, depth and position (Brijs et al. 2021). For example, analysis of behavioural patterns and
feeding activity has been used to optimise feeding protocols, including for Atlantic salmon (Liu et al.
2014, Brijs et al. 2021, Vo et al. 2021). This information can be combined with Al-based feeding systems
(Lloyd et al. 2020, Behrend et al. 2022) to optimise resource use and improve welfare (e.g., avoid the
competitive and aggressive behaviour associated with underfeeding).

Non-invasive methods are preferable for detecting abnormal behaviour or physiological stress (Li et al.
2022). Using images or video captured by underwater cameras, machine vision algorithms have been
applied for counting, sizing and early disease detection of farmed fish (Vo et al. 2021, Ahmed et al.
2022). Accurate counting of Atlantic salmon in sea pens has been achieved using video monitoring
(Zhang et al. 2020) and acoustic monitoring of marine pens has been used to characterise feeding
behaviour (Rosten et al. 2023). Underwater drones are another strategy for fish recognition and water
quality measurement (Meng et al. 2018, Lloyd et al. 2020). Although the welfare implications of
interaction with these devices are not yet clear, an ‘animal-friendly’ robot design may be able to
sufficiently minimise avoidance responses (Kruusmaa et al. 2020). In addition, aerial drones are capable
of monitoring feeding behaviour (Ubina and Cheng 2022). This approach has enabled fish counting and
sizing from the air, offering a more economical alternative to underwater equipment (Ubina et al. 2021).

Despite concerns with sensor and tagging studies (Section 3.4), welfare studies of handling or treatment
interventions can benefit from these devices as they are capable of tracking physiological stress markers
(Brijs et al. 2021). They can also provide information on the effects of overcrowding, interactions with
other species, and environmental conditions that can vary temporally and spatially within RAS or marine
pens (Vo et al. 2021, Yadav et al. 2023). For example, intelligent variable-flow machine learning models
can optimise water quality in RAS (Chen et al. 2021). Deepwater tidal meters (Sosa and Montiel-Nelson
2022) can guide siting and welfare management for offshore aquaculture facilities by determining the
most appropriate stocking density based on long-term monitoring of local currents.

It may be possible to reduce welfare impacts and economic losses due to disease through Al-based
methods. Machine learning has been applied to provide early warning of sea louse outbreaks by
combining real-time observations with historical time series (O'Donncha and Grant 2019). A related
application of remote sensing technologies is in jellyfish detection. Already a significant source of losses
in commercial open-pen aquaculture (Boerlage et al. 2020), jellyfish blooms are increasing, including in
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Tasmania (Carr and Minshull 2020). In some cases, these occurrences can cause mass mortality events
(Clinton et al. 2021). One jellyfish early warning system uses machine learning methods for real-time
analysis in combination with video monitoring (Martin-Abadal et al. 2020).

7.4. Salmonid Nutrition
Aquatic animals have particularly high protein requirements, so alternative protein sources have been a
focus in salmonid nutrition research. It is increasingly necessary to replace the fish oil and fish meal used
in commercial salmon feed to minimise costs and increase sustainability. Both of these ingredients are
derived from small, wild-caught pelagics whose numbers are not unlimited (Jia et al. 2022). There are
poor welfare outcomes for these food fishes as well. The shift to plant-based feeds exposes farmed
salmon to components not present in their natural diet and concerns have been expressed over possible
health impacts, including stress, immune health and liver function (Krevel et al. 2010, Caballero-Solares
et al. 2020). These feeds may be contaminated with agricultural pesticides, such as the broad-spectrum
insecticide endosulfan, which has long been suspected of negative physiological effects in salmonids
(Krovel et al. 2010). A recent toxicological study in Atlantic salmon of pirimiphos-methyl, an
organophosphate pesticide, concluded that the concentrations found in some commercial salmon feed
exceed safe levels (Berntssen et al. 2021). There is also evidence of hepatotoxicity with the herbicide
glyphosate (Sefteland and Olsvik 2022), which might be found in soy products.

Soybean meal is commonly used as a protein source and fish meal replacement in commercial
aquaculture feedstocks—the Global Salmon Initiative has promoted responsible sourcing among its
members (Global Salmon Initiative 2023). However, high levels of soybean meal in the diet of Atlantic
salmon can cause reduced feed intake and weight gain, distal intestinal inflammation and compromised
overall health (Krogdahl et al. 2020, Hossain et al. 2023). As potentially superior alternatives to soy, diets
including microalgae, macroalgae, insect-based meal, or single-cell proteins (e.g., from bacteria or yeasts)
have been tested in Atlantic salmon with promising results (Nagappan et al. 2021, Yue and Shen 2022,
Zatti et al. 2023). In terms of food quality for human consumption, fish oil replacement with microalgae
can also maintain the natural omega-3 fatty acid content and growth of farmed salmon (Cottrell et al.
2020, Carr et al. 2023, Santigosa et al. 2023). Yet, in addition to economic factors and sustainability, fish
welfare needs to be prioritised when developing new feed formulations. The impact on gut microbiota has
been identified as a significant animal health issue (Napier et al. 2020), including salmon (e.g., Dhanasiri
et al. 2023).

7.5. Welfare and Climate Change
The entire aquaculture production chain is vulnerable to climate change (Ahmed and Turchini 2021,
Austin et al. 2022), and impacts on the industry have received considerable attention (Khalid 2022). As a
cold-water species, Atlantic salmon may be particularly vulnerable to sea surface temperature increases
(and other related changes) in areas where open marine pens are used for production (Mugwanya et al.
2022a). Detrimental effects on health and welfare begin above 16 °C, becoming more pronounced above
18 °C, including slower growth along with increased stress and mortality (Falconer et al. 2020, Meng et
al. 2022). Long-term environmental monitoring data, especially if shared among nearby farms, can be
used to identify trends and anticipate future consequences of climate change, including more frequent and
stronger storms (Bell et al. 2022).

Compared with other salmon-producing countries, such as Scotland and Norway, the warmer waters
around Tasmania traditionally gave the region an advantage in terms of faster growth and reduced time-
to-harvest (Meng et al. 2022). However, the state’s recent experience as a ‘hot spot’ of rapid ocean
warming now threatens its aquaculture sector. Northwest Bay and Bruny Island are forecast to become
unsuitable for Atlantic salmon aquaculture within the next decade (Meng et al. 2022). By contrast,
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Icelandic waters are expected to be amenable to these operations until at least 2050 (Bannan et al. 2022),
and suitable areas in Norway are projected to increase by mid-century (Oyinlola et al. 2022).

As suggested by the previously mentioned Tasmanian study (Meng et al. 2022), ocean warming
conditions may drive marine aquaculture operations farther offshore in the future (McPhail and
McDonald 2021). This shift is already driven by social and environmental factors following the public
backlash over increased Macquarie Harbour production and its negative ecological impacts (Lindfors
2022). Higher-than-average temperatures have caused significant production losses for Norwegian
salmon farms (Islam et al. 2022), and similar trends have been experienced in Tasmania, Iceland and
North America. Salmon may congregate in a certain area of a marine pen depending on variations in
temperature and oxygen (Falconer et al. 2022), such that stocking density may need to be adjusted to
avoid overcrowding. Increased storm surges may also elevate the risk of damage to coastal aquaculture
infrastructure (Maulu et al. 2021). As such, climate change may also lead to increased reliance on land-
based facilities, such as RAS (Ahmed and Turchini 2021). RAS may replace inland freshwater
aquaculture in areas affected by significant temperature extremes or droughts, as well as avoid the
frequent flooding that leads to escape events and water contamination (Reid et al. 2019). Sea level rise
may ultimately necessitate relocation or closure of inland freshwater aquaculture facilities due to
salinisation and could also damage the coastal ecosystems that support the feedstock for aquaculture
operations (Maulu et al. 2021).

The increasing acidity of the world’s oceans is also problematic (Henson et al. 2017). The impact of
acidification on salmon welfare is not yet well understood, and further research is needed (Falconer et al.
2022). Marine CO, removal technologies for aquaculture are currently at an early stage of development
but they hold promise for future mitigation of seawater acidification (Myers and Subban 2022). Current
predictions indicate changing temperatures cause increased spread and incidence of zoonotic diseases
(Khalid 2022, Mugwanya et al. 2022a). Finfish are predicted to be susceptible to these effects, with sea
louse infestation identified as a major concern for farmed salmon (Bannan et al. 2022). As noted above,
the gut microbiome of salmonids influences their disease susceptibility and is known to be strongly
dependent on their environment and thus climate changes (de Bruijn et al. 2017). In the warmer and more
acidic waters anticipated, bacterial pathogens, such as Vibrio spp., proliferate and are associated with
disease in Atlantic salmon (Bruno et al. 1998, Zhang and Austin 2000, Ji et al. 2020). Conversely, it is
acknowledged that the incidence of some cold-water diseases of Atlantic salmon may decrease (Maulu et
al. 2021).

Recent decades have also seen an apparent increase in marine harmful algal blooms (HABs) (Maulu et al.
2021). The toxins released during these events can cause widespread fish mortality and pose a threat to
human health through the consumption of contaminated seafood. The Chilean salmon industry has
experienced particularly large losses due to HABs (Soto et al. 2021), and these events recently were
identified as severe threats among aquaculture industry stakeholders (Soto et al. 2019). This level of
concern appears to be justified by a significant range expansion for two of the key responsible species
over the past 20 years (Trainer et al. 2020). Eutrophication is another factor driving HABs—which the
aquaculture industry may contribute to (Soto et al. 2021). Tasmania also has experienced a marked
increase in HABs over the past decade, with climate change thought to be the driver. Although they have
mostly affected shellfish aquaculture, remote monitoring of such blooms seems advisable as the industry
moves offshore. Behavioural monitoring of farmed salmon may also identify early warning signs of
HAB-related toxicity (Boerlage et al. 2020) and help to ensure that losses are minimised in future events.

Conlflicts may arise between climate impacts and animal welfare. Through case studies, Macaulay et al.
(2022) suggested that early identification and evidence-based decision-making should be adopted to
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enable optimal tradeoffs. Animal welfare should remain a high priority in future sustainability
frameworks (Stentiford et al. 2020), and various climate mitigation strategies are possible without
negatively affecting fish health and welfare. Although RAS are regarded as a sustainable innovation and
their tightly controlled environments make them appealing for climate adaptation, associated greenhouse
gas (GHG) emissions are high relative to other aquaculture systems (Ahmed and Turchini 2021, Jones et
al. 2022). The emerging technology of ‘aquaponics’ offers potential solutions, combining aquaculture
with hydroponics to use wastewater from fish tanks to grow vegetables (Taha et al. 2022). For offshore
aquaculture sites, co-location and integration with marine power sources (wind and/or wave energy) are
being explored (Weiss et al. 2020, Aryai et al. 2021).

7.6. Other Recent Advances
 Advances in biochemistry provide insights into various health and dietary issues. For example,
Phosphorus-31 NMR spectroscopy, which uses nuclear magnetic resonance (NMR) to study chemical
compounds that contain phosphorus, can be used to explore factors that affect skeletal muscle tissue
(Totland et al. 2022).

* Semi-closed containment systems (S-CCS) are approaches with cultured fish separated from the natural
environment by a physical barrier, reducing the time fish spend in open marine pens (Nilsen et al. 2020).
For example, a study using a Preline Fishfarming S-CCS resulted in higher salmon growth rate, final
weight, and survival, as well as lower sea lice infestations, suggesting such a system has advantages over
entirely open systems (Ovrebo et al. 2022).

* Flucidating the relationship between epigenetics, phenotypic variation and fitness can inform salmonid
breeding and rearing practices (Koch et al. 2022).

* Commercially available, real-time dissolved oxygen and temperature sensors can be distributed
throughout pens to track salmon distribution and behaviour based on the spatial and temporal variability
of water parameters (Burke et al. 2021).

» Automated passive acoustic monitoring has been used to monitor the condition of entire sea pens
(Rosten et al. 2023). Such use of the soundscape can depict a ‘hungry’ vs. ‘satiated’ population based on
relative sound frequencies, providing information on optimal times to feed fish, thus minimising wasted
feed and improving fish welfare.

* An EchoBERT (echo bidirectional encoder representation transformer) has been proposed for
behavioural assessments using spatiotemporal properties from echograms, e.g., pancreas disease detection
purely from abnormal behaviour patterns in the echogram data (Maloy 2020).

* Deep learning approaches are emerging to analyse fish behaviour (Alshdaifat et al. 2020, Igbal et al.
2022). A dual-stream deep learning recurrent network shows the ability to capture swimming dynamics
and provide for feeding action recognition (Maloy et al. 2019). Machine learning has been used to detect
disease (Ahmed et al. 2022) and model dissolved oxygen profiles (Palaiokostas 2021, Chatziantoniou et
al. 2022). Image-based machine-learning techniques can be used to detect wounds or lice prevalence
(Gupta et al. 2022). A review of such applications can be found in Vasquez-Quispesivana et al. (2022).

» Advanced video and vision systems are used in many ways to assess behaviour in aquaculture systems
(Saberioon et al. 2017), both in tanks (Okarma et al. 2022) and marine pen settings (e.g., Johannesen et al.
2020). Image-based machine-learning techniques can be used to detect wounds or lice prevalence (Gupta
et al. 2022).
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* We have focused on the directional relationship between the environment to salmon welfare. We
acknowledge that another focal research area is the opposite—how salmon ocean aquaculture affects
aspects of the surrounding ecosystem (Macaulay et al. 2022, Rector et al. 2022) or carbon cycles (Ziegler
et al. 2024). This is beyond the scope of this review, but we note that studies that examine the effects of
salmon aquaculture on environmental quality are diverse and impactful, e.g., studies on environmental
DNA leakage (Shea et al.) and nutrient flow facilitating adjacent mussel aquaculture programs (Camelo-
Guarin et al. 2021).

8. Conclusion

Improved fish welfare benefits individual animals and the industry as a whole. Although there are
numerous avenues to further our understanding of fish welfare, this review identifies current opportunities
for improving the welfare of farmed Atlantic salmon. Improved sustainability of farming practices,
including fish welfare, is essential for desired industry growth and future food security. As is outlined in
this document, technological progress opens many new trajectories to improve aquaculture system design
with the welfare of individual fish as a central goal. Gene editing approaches and artificial intelligence
will likely relate to many of the emerging opportunities. These will provide avenues for ensuring fish
welfare and increasing the sustainability of aquaculture as a whole.
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