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Abstract 1 

Emerging infectious diseases (EIDs) cause catastrophic declines in wildlife populations, but 2 

also generate selective pressures that may result in rapid evolutionary responses. One such EID 3 

is devil facial tumour disease (DFTD) in the Tasmanian devil. DFTD is almost always fatal, 4 

which likely causes strong selection for traits that reduce susceptibility to the disease, but 5 

population decline has also left Tasmanian devils vulnerable to inbreeding depression. We 6 

analysed 22 years of data from an ongoing study of a population of Tasmanian devils on 7 

Freycinet Peninsula, Tasmania, to (1) identify whether DFTD may be causing selection on 8 

body size, by estimating phenotypic and genetic correlations between DFTD and size traits, (2) 9 

estimate the additive genetic variance of susceptibility to DFTD, and (3) investigate whether 10 

size traits or susceptibility to DFTD were under inbreeding depression. We found a positive 11 

phenotypic relationship between head width and susceptibility to DFTD, but this was not 12 

underpinned by a genetic correlation. Conversely, we found a negative phenotypic relationship 13 

between body weight and susceptibility to DFTD, and there was evidence for a negative genetic 14 

correlation between susceptibility to DFTD and body weight. There was additive genetic 15 

variance in susceptibility to DFTD, head width and body weight, but there was no evidence for 16 

inbreeding depression in any of these traits. These results suggest Tasmanian devils have the 17 

potential to respond adaptively to DFTD, although the realised evolutionary response will 18 

critically depend on the evolution of DFTD itself.  19 

Keywords: transmissible cancer, wildlife disease, quantitative genetics, selection differential, 20 

adaptive potential, inbreeding depression 21 
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Introduction 29 

Emerging infectious diseases (EIDs) are often critical drivers of population and evolutionary 30 

dynamics in their host species (Daszak et al., 2000; Schrag & Wiener, 1995). In particular, 31 

EIDs can induce rapid evolutionary responses in traits that determine hosts’ exposure to 32 

pathogens (Herrera & Nunn, 2019), pathogen load (disease resistance/susceptibility; (Rigby et 33 

al., 2002)) and/or the costs of infection (disease tolerance; (Medzhitov et al., 2012)), especially 34 

in cases where EIDs impact fertility or cause rapid mortality (Altizer et al., 2003; Cunningham 35 

et al., 2021). However, whilst the ecological impacts of EIDs in natural populations are widely 36 

reported, including rapid population decline and species range contractions (Fisher & Garner, 37 

2020; C. Hoffmann et al., 2017; Hoyt et al., 2021), empirical evidence for evolutionary 38 

consequences of the emergence of infectious diseases in wild populations has been more 39 

limited, likely due to a lack of appropriate individual-based data. 40 

EIDs should select for traits which improve host immune defences (Hayward et al., 2014; 41 

Rarberg & Stjernman, 2003), but an adaptive evolutionary response in the susceptibility to 42 

disease is dependent on there being standing genetic variation in immune related traits (A. A. 43 

Hoffmann et al., 2017). In wild populations, genetic variation in traits can be estimated by 44 

combining individual-level phenotypic data with either a pedigree or genomic relatedness data 45 

(Wilson et al., 2010), and although these data are hard to collect in natural populations, some 46 

recent studies have used data from long-term field projects to estimate genetic variance in 47 

susceptibility to disease. These studies have reported a range of estimates of genetic variance, 48 

from a heritability of 0.12 for Mycobacterium bovis infection in European badgers (Marjamäki 49 

et al., 2021) and 0.13 for Chlamydia pecorum infection in koalas (Cristescu et al., 2022), to a 50 

relatively high heritability of 0.55 for Mycoplasma ovipneumoniae infection in bighorn sheep 51 

(Martin et al., 2021). Despite these recent studies, however, estimates of genetic variation in 52 

susceptibility to pathogens in wild populations remain rare, limiting our understanding of the 53 

potential for adaptive responses to EIDs in the wild.  54 

Selection caused by EIDs should also indirectly impact traits that are correlated with 55 

individuals’ susceptibility to the disease. Body size, for instance, is an important fitness-related 56 

trait that shapes individual variation in life-history traits (Healy et al., 2019) and is likely 57 

correlated with disease traits as a result of trade-offs caused by differential allocation of 58 

resources (Coltman et al., 2001; Gleeson et al., 2005; Silk & Hodgson, 2021; Valenzuela-59 

Sánchez et al., 2021). A response to disease-induced selection in size traits would require a 60 
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genetic correlation between size and susceptibility to disease. However, phenotypic 61 

correlations may also be driven by components of the environment that simultaneously impact 62 

both traits, which may not result in evolutionary change (Falconer & Mackay, 1996). As such, 63 

identifying whether phenotypic relationships are caused by genetic covariances is important in 64 

predicting the observed response to selection in either trait (Lande & Arnold, 1983). 65 

Whilst EIDs may induce selection for immune traits and those genetically correlated with them, 66 

population declines following the emergence of disease can also cause a rapid decline in 67 

genetic diversity concurrent with an increase in inbreeding (Hedrick & Kalinowski, 2000). 68 

Increased inbreeding causes increased genome-wide homozygosity and, where this directly 69 

impacts fitness, will result in inbreeding depression (i.e., reduced fitness caused by inbreeding) 70 

(O’Grady et al., 2006). Due to the tight association between disease traits and fitness 71 

components (i.e., survival and/or reproduction), immune traits are likely to be depressed under 72 

increased inbreeding (Spielman et al., 2004), which has been documented in a number of wild 73 

animals (e.g. Reid et al., 2003; Ross-Gillespie et al., 2007; Trinkel et al., 2011). When assessing 74 

the evolutionary impact of EIDs in declining populations, it is therefore necessary to test for 75 

inbreeding depression in immune-related traits. 76 

An EID currently imposing extreme selection in a wild animal population is the transmissible 77 

cancer, devil facial tumour disease (DFTD), in Tasmanian Devils (Sarcophilus harrisii). 78 

Tasmanian devils are the largest extant carnivorous marsupial, and are endemic to the island 79 

of Tasmania, Australia. DFTD is a transmissible cancer that originated in a single Schwann 80 

cell in the 1980s (Murchison et al., 2010; Patton et al., 2020), and has since spread across 81 

almost the entirety of the species’ range (Cunningham et al., 2021). Tumour cells are 82 

transmitted between hosts by allograft, often during aggressive interactions in the mating 83 

season or in competitive carrion feeding interactions when biting occurs (Hamede et al., 2013). 84 

With very few exceptions (Pye et al., 2016), DFTD evades an immune response, becomes 85 

malignant and causes mortality within 6 - 9 months of symptom onset (McCallum, 2008). As 86 

a result, DFTD has caused local population declines of over 80% (Cunningham et al., 2021; 87 

McCallum et al., 2007). Given the near 100% mortality associated with DFTD once infected, 88 

it is likely that the emergence of the disease has generated strong selection for traits that reduce 89 

susceptibility to the disease, and hence also on any genetically correlated traits. Accordingly, 90 

several studies have provided evidence for phenotypic and genomic changes in devil 91 

populations since the arrival of DFTD. First, allele frequencies at some immune-function genes 92 
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have changed since DFTD emerged, indicating that there might be contemporary selection on 93 

immunity (Epstein et al., 2016; Stahlke et al., 2021). Second, the rate of females breeding at 94 

one year’s old increased sharply after DFTD was first detected (Jones et al., 2008), and while 95 

reduced food competition associated with population decline may cause increased growth rates 96 

(and hence higher chances of precocial breeding), selection may have played a role in the shift 97 

to precocial breeding (Lachish et al., 2009). Further, a genome-wide association study has 98 

suggested that susceptibility to DFTD may have a genomic basis, indicating that there may be 99 

genetic variance required for the population to mount an adaptive response (Margres et al., 100 

2018). Finally, selection by DFTD appears to swamp out selection by local abiotic factors 101 

(Fraik et al., 2020), indicating the ecological importance of the disease. 102 

In this study, we applied quantitative genetic analyses to data collected from a closely-103 

monitored wild population of Tasmanian devils on Freycinet Peninsula, on the east coast of 104 

Tasmania, to estimate the potential for an evolutionary response following the emergence of 105 

DFTD. In particular, we used genomic relatedness data to estimate the extent of genetic 106 

variation and/or inbreeding depression in susceptibility to DFTD, as well as to measure the 107 

phenotypic and genetic correlations between susceptibility to DFTD and body size. In 108 

Tasmanian devils, body size may be subject to disease-induced selection as size commonly 109 

predicts social dominance, which in turn increases the frequency of the types of social 110 

interaction which result in disease transmission (Hamede et al., 2008, 2009; Hamilton et al., 111 

2020). If we assume susceptibility to DFTD directly correlates with a component of individual 112 

fitness (i.e., survival), then the phenotypic and genetic correlations of individuals’ DFTD 113 

infection status with size traits should approximate the predicted change in size traits resulting 114 

from selection induced by DFTD (Price, 1970; Robertson & Lewontin, 1968). Under these 115 

general predictions, we specifically aimed to (1) identify phenotypic and genetic correlations 116 

between susceptibility to DFTD and size, (2) estimate genetic variation in susceptibility to 117 

DFTD, and (3) test for inbreeding depression by estimating the relationship between inbreeding 118 

and susceptibility to DFTD or size traits (i.e., head width and body weight). 119 

Materials and Methods 120 

Tasmanian devil study site, trapping and phenotypic data 121 

 122 
We used data collected between January 1999 and May 2021 during an ongoing mark-recapture 123 

study of Tasmanian devils on the Freycinet Peninsula, Tasmania, Australia. DFTD first 124 
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appeared at this site in 2001, resulting in two years’ data pre-disease emergence followed by 125 

20 years of data after disease arrival, as the population descended into long-term decline. 126 

Tasmanian devils were trapped across the entire 160 km2 peninsula up to four times a year 127 

using custom-built baited traps (Lachish et al., 2007), with trapping periods timed to coincide 128 

with key stages in the breeding cycle: autumn (April/May), small pouch young; winter 129 

(July/August), large pouch young; spring (October/November), females lactating with young 130 

in dens; summer (January/February), dependent young emerging from dens. At their first 131 

capture, devils were sexed, individually tagged with an ear tattoo (from 1999 to 2004) or a 132 

microchip (after 2004) and a 3mm biopsy sample of tissue taken from the outer edge of the ear 133 

for genetic analysis (see below). At first capture and then at all subsequent recaptures their age, 134 

head width (in mm) and body weight (in kg) were recorded as described in (Lachish et al., 135 

2007). We use head width as a linear measure of body size because it is precise, as measured 136 

across the bony jugal arches of the skull covered by skin with no muscle or fat deposits. Pouch-137 

young of trapped females were sexed and measured, but ear tissue samples were generally not 138 

taken because this would result in larger biopsy scars as the individual grew to adult size. A 139 

small number of matched pouch-young and mothers were sampled between 2000 and 2003, 140 

with 2mm biopsy tissue samples taken from N = 64 pouch young of N = 27 mothers and 141 

subsequently sequenced (see below). This allowed us to use these known relatives to assess 142 

accuracy and precision of genetic relatedness estimation (see below for details). Individuals 143 

were aged using a combination of head width, molar eruption, molar tooth wear and canine 144 

over-eruption (Jones, 2023), and given a birthdate of April 1st for a given year, as per Lachish 145 

et al. (2007). This method of aging is accurate up to two years of age, but most individuals 146 

were first trapped as juveniles and were therefore of precisely known age. Disease status 147 

(presence/absence) was determined for each capture by visual inspection for tumours and/or 148 

histopathological examination of tumour biopsies (Hamede et al., 2015). The total number of 149 

capture records across the 22 years was 2156 across 972 individuals, giving an average number 150 

of captures per individual was 2.31 (min = 1, max = 11), and DFTD was confirmed in 10% of 151 

these captures with 17% of individuals caught with DFTD at least once. Average age at capture 152 

was 22 months (inter-quartile range = 16 – 31 months), and average age at capture with 153 

infection was 27 months.  154 

 155 

The analyses presented in this study used two different subsets of the full dataset collected 156 

during the long-term project. For both datasets, we only included observations from ‘adult’ 157 

individuals at least 14 months old. This was done (1) to minimize conflation of age and size 158 
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measurements, and (2) because this is the age at which female devils can be sexually mature 159 

such that biting interactions begin and they can thus be at risk of contracting DFTD (Jones et 160 

al., 2008). The first dataset was used for analyses of phenotypic relationships (see Statistical 161 

analysis section below). After removing observations of individuals younger than 14 months 162 

and those where there were missing data, this dataset consisted of 1550 recaptures of 729 163 

individuals (hereafter “phenotypic dataset”; 354 males and 375 females). The second subset 164 

only included captures of individuals for which we also had genetic data in addition to 165 

phenotypic data. Genetic data (described below) were used to estimate genetic relatedness and 166 

inbreeding coefficients needed for quantitative genetic analyses to estimate additive genetic 167 

variance (VA) and inbreeding depression, as well as genetic covariances between traits (see 168 

Statistical analysis section below for details). This latter dataset used for quantitative genetic 169 

analyses comprised of 498 observations of 243 individuals (hereafter “genetic dataset”; 121 170 

males and 122 females). 171 

 172 

DNA extraction and genotyping 173 
 174 

We extracted DNA from tissue samples and conducted genotyping as previously described 175 

elsewhere (Epstein et al., 2016; Margres et al., 2018). Briefly, single-nucleotide polymorphism 176 

(SNP) genotyping was achieved via single-digest RADcapture (i.e., "Rapture" (Ali et al., 177 

2016)) of DNA extracted from tissue. All raw reads from sequencing were first aligned to to 178 

the S. harrisii reference genome (Murchison et al., 2012). The first round of sequencing that 179 

was conducted with this population resulted in data that were of low sequencing depth. As a 180 

result, most samples were subsequently re-sequenced in another run to achieve deeper 181 

sequencing depth, thereby improving genotyping accuracy. Reads generated from these 182 

replicate runs of the same individuals were merged after aligning to the reference genome, and 183 

SNP calling was conducted using the merged “bam” files using the stacks pipeline as in 184 

(Stahlke et al., 2021). PCR duplicates were removed and SNPs were discovered and called 185 

using gstacks (Catchen et al., 2013). The function populations was then used to filter SNPs to 186 

keep one random SNP per RAD locus and per 10Kb window, exclude SNPs with a minor allele 187 

frequency (MAF) below 1%, remove individuals with more than 70% missing data, and remove 188 

SNPs that were present in less than 50% of the samples. We then further filtered genotype calls 189 

with a read depth of less than 4 in order to increase genotyping accuracy, before reapplying the 190 

filtering parameters explained above. This resulted in a total of 2105 SNPs genotyped in a total 191 
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of 584 individuals for the whole study population (which was further restricted for use in 192 

further analyses – see below).  193 

 194 

Genomic relatedness estimates 195 
 196 
Quantitative genetic analyses used to partition phenotypic variance into additive genetic and 197 

environmental effects are often achieved via a pedigree (Kruuk, 2004; Wilson et al., 2010), 198 

which can be based on field observations and/or constructed using genetic marker data. 199 

Unfortunately, irrespective of the SNP filtering parameters we used, we were unable to 200 

determine sufficient numbers of parentage assignments for a pedigree that could be used for 201 

analyses: of 651 individuals, we were only able to assign maternities to 160 and paternities to 202 

175 (N = 83 individuals with both parents assigned). We were also only able to match 40 of 64 203 

known mother-offspring (pouch young) relationships, with the remaining 24 either not 204 

assigned to a mother or mismatched. We therefore ran our quantitative genetics models using 205 

a genomic relatedness matrix (GRM) instead of a pedigree (Bérénos et al., 2014; Gervais et al., 206 

2019). It has been suggested that running these models with a GRM may in fact improve the 207 

accuracy of quantitative genetics parameters estimated via these models, especially when 208 

pedigree depth is relatively shallow (Gienapp et al., 2017).  209 

 210 

To estimate a GRM, we first filtered the set of SNP loci to improve the precision and accuracy 211 

of the GRM, following Gervais et al. (2019). SNPs were filtered for a MAF of at least 10% and 212 

missingness no greater than 50%, resulting in a set of 1811 SNPs. Prior to calculating the final 213 

GRM, we first used the filtered SNP set to identify and remove possible duplicate pairs of 214 

individuals contained in the dataset. Duplicate pairs of individuals may occur in cases where, 215 

for instance, an individual identification is lost (unreadable tattoo or failure to locate a 216 

microchip) on recapture, and they are treated as a new individual and given a new 217 

identification. Duplicate individuals were identified and removed from analyses using pairwise 218 

relatedness and confirmed via matched life-history data. To do this, we first identified pairs of 219 

sequenced samples that had extremely high estimated relatedness (threshold >0.8) and were 220 

therefore likely duplicate samples of the same individual. This threshold was selected based on 221 

the upper tail of the total distribution of relatedness estimates, assuming that there should be a 222 

non-continuous distribution of relatedness values between (truly) highly related pairs and those 223 

that are instead duplicates. For each putative duplicated pair, we then cross-referenced with 224 

their estimated birth year and sex to ensure that they were indeed duplicates. This procedure 225 
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identified 44 pairs of samples, and for each duplicated pair, the sample with the best quality 226 

genotyping data was kept. After removing duplicated individuals and re-filtering the SNP 227 

dataset according to parameters explained above, the final dataset for estimation of the GRM 228 

included 540 individuals and 1808 SNPs. Note that not all of these 540 individuals had 229 

phenotypic data for DFTD status associated with them, so therefore not all were included in 230 

the statistical analyses below. However, we retained all these individuals for the estimation of 231 

the GRM so as to improve precision of allele frequencies of the population required for 232 

estimating relatedness. 233 

 234 

We next assessed which relatedness estimate performed best at estimating known relatives in 235 

this dataset (N = 51 mother – pouch-young pairs in which both individuals had genetic data). 236 

Relatedness was estimated using six measures: Yang relatedness was estimated using GCTA 237 

(Yang et al., 2011), and Wang, Queller and Goodnight, Dyad maximum likelihood, Lynch, and 238 

Ritland estimates were all estimated using COANCESTRY (Wang, 2010). Comparing pairwise 239 

relatedness estimates for all mother-offspring pairs (detailed above), the Wang relatedness 240 

estimate performed best, with an average R value for mother-offspring pairs of 0.47. We 241 

therefore used the GRM calculated using Wang relatedness estimate in all further quantitative 242 

genetic analyses. The variance in pairwise relatedness values using this estimate was 0.007, 243 

with approximately 518 pairs of first-degree relatives (i.e., parent-offspring pairs or full 244 

siblings, r > 0.45) and 2414 pairs of second-degree relatives (e.g., half-siblings, r = 0.2 – 0.3) 245 

(out of a total of 145,530 possible pairs) (Figure S1). 246 

 247 

Inbreeding coefficients 248 
 249 

We measured variation in inbreeding using genomic inbreeding coefficients estimated in 250 

GCTA (Yang et al., 2011). We selected to use �̂�III (hereafter FGRM), which estimates the allelic 251 

correlation between gametes, as this measure has been found to be most closely correlated with 252 

runs of homozygosity on the genome (FROH), and is therefore likely a better measure of the 253 

genomic consequences of inbreeding (Yang et al., 2011). We ensured that FGRM measures were 254 

robust to SNP filtering by varying the MAF cut-off criterion (1%, 5% and 10%). FGRM estimates 255 

were all very highly correlated irrespective of which MAF cut-off we used (r > 0.99%). Our 256 

genomic measure of inbreeding, FGRM, ranged from -0.37 (indicating that the individual’s 257 

parents are not related to each other) to 0.36 (indicating that the individual’s parents are highly 258 

related to one another) (median FGRM = -0.04, variance = 0.006, Fig S2).  259 
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 260 

Statistical analyses 261 

In all models, susceptibility to DFTD was fit as a case-control binary variable (1/0 262 

case/control), where “cases” were any capture of a devil with a confirmed DFTD infection, and 263 

“controls” were captures of an uninfected individual. Note that we used a dataset containing 264 

repeated measures of all individuals, which in some cases means that an individual may first 265 

be considered a control before being diagnosed with DFTD at one or more subsequent 266 

recaptures. All models were fit in stan via the brms R package (Bürkner, 2017) using default 267 

flat priors on the fixed effects and half-Cauchy priors with 2 degrees of freedom on the random 268 

effects. All models were run for 10 000 iterations with a warm-up period of 2000 across four 269 

chains, and convergence was assessed by ensuring R-hat was below 1.01, effective sample 270 

sizes for all parameters were at least 1000 and by visually ensuring chains had mixed well. 271 

a. Selection on size via DFTD 272 

 273 

We estimated the phenotypic relationship between susceptibility to DFTD and size traits by 274 

fitting a univariate mixed effects model of the effect of size traits on the probability of having 275 

DFTD, using the phenotypic dataset. This model (Model 1; Table 1) fit DFTD occurrence on 276 

a given capture with a logit link via the Bernoulli family and included the following fixed 277 

effects: age in months to account for increased likelihood of contracting the disease as devils 278 

age; sex to account for any potential sex differences in likelihood of contracting the disease; 279 

the interaction between age and sex; year as a covariate to account for the increase in disease 280 

presence in the population through time; head width (mm) and body weight (kg) measured at 281 

the same capture. We also fit as multi-level random effects: year, to account for repeated 282 

measures on multiple years and any non-linear variation between years in disease prevalence; 283 

trap ID, which described the location of the trap at which individuals were caught (trap 284 

locations were consistent across years) and was used to account for spatial environmental 285 

heterogeneity across the study area; and individual ID to account for repeated measures of 286 

individuals.  287 

 288 

b. Additive genetic variance (VA) and inbreeding depression 289 

 290 

To test whether there was evidence for variance in additive genetic effects (VA) or inbreeding 291 

depression in any of the phenotypic traits (susceptibility to DFTD, head width, weight), we ran 292 
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a suite of univariate animal models using the genetic dataset. Animal models extend linear 293 

mixed effects models by incorporating relatedness information to partition phenotypic variance 294 

into additive genetic and other sources of variance (Kruuk, 2004; Wilson et al., 2010). We ran 295 

a single model for each trait, where DFTD occurrence was fit as a response variable with a 296 

logit link via the Bernoulli family (Model 2; Table 1), and head width and body weight were 297 

both fit as response variables as Gaussian traits (Model 3 and 4; Table 1).  298 

 299 

Animal models were fit with the following fixed effects: age in months to account for growth 300 

and increased likelihood of contracting disease with age, year to account for phenotypic change 301 

through time, FGRM to test for evidence for inbreeding depression, and the interaction between 302 

age and FGRM to test whether the effect of inbreeding changed with age (Marjamäki et al., 303 

2021). Animal models for head width and body weight further included sex, the quadratic effect 304 

of age (i.e. age2), and the interaction between sex and age, and sex and age2
. VA was estimated 305 

in animal models by fitting the genomic relatedness matrix as a covariance matrix. We 306 

estimated permanent environment effects variance (VPE) by fitting repeated measures of 307 

individuals via a random effect for individual ID. Animal models further included year as a 308 

random effect to account for non-linear variation across years (VYear), as well as trap ID (VTrap). 309 

Heritability (h2) for each trait was then estimated as the proportion of phenotypic variance 310 

(measured as the sum of all variance components) explained by VA. We present estimates of 311 

heritability for DFTD on both the latent scale and observed data-scale, which was estimated by 312 

converting latent-scale variance estimates to the data-scale using the QGGLMM package in R 313 

(de Villemereuil et al., 2016). Latent scale heritability can be interpreted as the expected 314 

heritability for a hypothetical (latent) trait reflecting overall susceptibility to DFTD, whereas 315 

observed data-scale heritability can be interpreted as the heritability of the probability of being 316 

diagnosed with DFTD in the population, which incorporates sampling variance in the observed 317 

data. 318 

 319 

Estimates of VA can be inflated by maternal effects that are unaccounted for in our models 320 

(Kruuk & Hadfield, 2007; Wilson et al., 2005). Unfortunately, in these data, maternities for 321 

most individuals were unknown because pedigree reconstruction was not possible with the 322 

available SNP dataset (see above for details). However, we explored several alternative 323 

methods to quantify maternal effects to examine whether our estimates of VA were being 324 

inflated by maternal effects (see supplement). Estimates of VA were not substantially inflated 325 

by not fitting maternal effects (estimated inflation of h2 = 1% for DFTD, 5% for weight and 326 
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3% for head width, see supplementary Text S1 and Figure S3), and thus we present results 327 

without a maternal effects term fit. 328 

 329 

Finally, to ensure that the temporal trends in either head width or body weight estimated in 330 

their respective models in this section did not arise as an artifact of using the genetic dataset, 331 

we ran models with head width and body weight as response variables using the phenotypic 332 

dataset that included the same fixed and random effects structure as the animal models (Models 333 

3 and 4; Table 1), but without FGRM or the relatedness matrix. 334 

 335 
c. Phenotypic, genetic and other covariances between traits 336 

 337 

Phenotypic relationships may be causal if they are associated with a genetic covariance, but 338 

may also arise when some component of the environment is affecting each trait in parallel (e.g. 339 

(Hajduk et al., 2018)). As such, we next ran analyses to estimate the pairwise genetic 340 

covariances between susceptibility to DFTD and each of the two size traits. To do this, we ran 341 

a suite of bivariate animal models using the genetic dataset. These models used similar fixed 342 

and random effects structures to the univariate animal models explained in section b, but were 343 

fit without year for head width and weight, and without the interaction between age and FGRM 344 

for any trait because these effects were not different from zero and so we chose to remove these 345 

terms in order to simplify the models. All were fit with two response traits at a time in order to 346 

estimate variance-covariance matrices for each random effect (i.e., VA, VPE, VYear, VTrap). 347 

Specifically, we ran three bivariate models with the following combination of response 348 

variables: (1) body weight and head width (Model 5; Table 1); (2) susceptibility to DFTD and 349 

head width (Model 6; Table 1); and (3) susceptibility to DFTD and body weight (Model 7; 350 

Table 1) (note that a single trivariate model of all three traits had convergence problems). Re-351 

fitting bivariate models with a ‘body condition index’ (i.e., body weight divided by head width) 352 

did not qualitatively change the results presented. As explained above, bivariate models 353 

including DFTD as a binary variable were fit with a logit link and therefore these models do 354 

not estimate a residual covariance between the binary and Gaussian trait (Bürkner, 2021). 355 

Therefore, we also fit bivariate models with ‘relative DFTD’ fit with Gaussian errors, where 356 

relative DFTD was calculated by dividing observed DFTD at each observation by the mean 357 

probability of having DFTD. These models have the added advantage of directly estimating 358 

the selection differential (i.e. covariance) between susceptibility to DFTD and size (see (Price, 359 

1970; Walsh & Lynch, 2018) for a detailed explanation). Although these models suggest that 360 
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there was a negative residual covariance between susceptibility to DFTD and both body weight 361 

and head width, the overall qualitative inference of other covariance parameters did not change 362 

(Table S3 and S4). We therefore present parameter estimates derived from models where 363 

DFTD was fit with a logit link. All models estimated both covariances and correlations for each 364 

random effect and we present both parameters for comparison.  365 

 366 

Finally, the phenotypic relationships estimated in section a were estimated from the phenotypic 367 

dataset which contained observations of individuals at least 14 months old for which there were 368 

complete phenotypic data (N = 1550 recaptures of N = 729 individuals). However, all 369 

quantitative genetic analyses used to estimate genetic variances and covariances were run with 370 

the genetic dataset which retained observations of individuals with genetic data (N = 498 371 

observations of N = 243 individuals). Therefore, to ensure any differences in the phenotypic 372 

and genetic (or environmental) covariances were not artifacts that arose from the use of 373 

different datasets, we re-ran the phenotypic model described in section a with the genetic data 374 

to facilitate a more direct comparison with the estimated covariances. 375 

 376 

Results 377 

 378 
Selection on size via DFTD 379 

There was no evidence for sex differences in the probability of having DFTD (Table 2). 380 

However, the probability of an individual having DFTD increased over the study period, and 381 

also with individual age (Table 2). Devils with relatively larger heads had a greater probability 382 

of having DFTD, even after correcting for age (Table 2, Figure 1). Furthermore, devils with 383 

relatively lower body weight had a higher probability of having DFTD (Table 2, Figure 1).  384 

 385 

Additive genetic variance (VA) and inbreeding depression in morphology and DFTD 386 

In our animal models using the genetic dataset, we found effects of age and age2 on both head 387 

width and body weight, indicating further growth in individuals older than 14 months old (see 388 

Table 3). There was also an effect of sex, reflecting sexual dimorphism in the species whereby 389 

adult males are larger than adult females (Table 3; average body weight: Males = 8.45 ± 2.02 390 

kg, Females = 6.80 ± 1.48 kg), and an interaction between age and sex indicating greater rates 391 
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of increase with age, even after 14 months. There was no evidence for any change over time in 392 

either head width or weight, as indicated by the 95% credible intervals for the linear effects of 393 

year overlapping zero (Table 3). Tests of temporal changes in either size trait using the larger 394 

phenotypic dataset yielded similar results, as both sets of analyses suggested that neither head 395 

width nor body weight was changing through time (see Table S2); these models also showed 396 

effectively the same sex and age effects as found in the genetic dataset. 397 

Posterior distributions for estimates of additive genetic variance VA from the animal models 398 

were different from zero for all three traits (Table 3, Figure 2). Heritability was estimated at 399 

0.14 (95% CI = 0.02 – 0.29) for head width, and 0.23 for body weight (95% CI = 0.09 – 0.38). 400 

Heritability for susceptibility to DFTD was estimated at 0.40 on the latent scale (95% CI = 0.12 401 

– 0.71) and 0.07 (95% CI = 0.02 – 0.12) on the observed data-scale (Figure 2). All three traits 402 

also showed permanent environment effects variance (VPE), but VPE was substantially lower 403 

than VA in susceptibility to DFTD (Figure 2, Table 3). Phenotypic variation associated with 404 

spatial heterogeneity (as measured using Trap ID) was relatively small but non-zero for all 405 

three traits (Table 3 and Figure 2).  406 

There was no evidence for an effect of FGRM on either head width or susceptibility to DFTD: 407 

the posterior distribution for the effect of FGRM on both traits centred close to zero (Table 3), 408 

suggesting that there was no evidence of inbreeding depression in either head width or 409 

susceptibility to DFTD. The 95% CI for the effect of FGRM on body weight also overlapped 410 

zero (-3.79 - 0.39), suggesting no statistical support for inbreeding depression in body weight. 411 

The posterior distribution did indicate that there was a 94% probability that the relationship 412 

between FGRM and body weight was negative, although there remains a 6% probability that the 413 

effect of FGRM is either positive or zero (Table 3, Figure 3). In identifying FGRM for genotyped 414 

individuals, we found that there were approximately 8 individuals in the dataset that appeared 415 

very outbred (i.e., FGRM < - 0.3). This may arise as an artifact of the dataset (e.g., excess 416 

heterozygosity caused by sequencing error), but there was nothing in the data of these 417 

individuals that suggested that this was not a biological signal and this level of outbreeding 418 

may have emerged, for example, as a result of those individuals being immigrants to the study 419 

site. Nonetheless, removing these very outbred individuals did not change our inferences about 420 

inbreeding depression in this dataset.  421 



 15 

 422 

Phenotypic, genetic and other covariances between traits 423 

Head width and body weight: The total phenotypic covariance between head width and body 424 

weight, estimated as the sum of all covariances from the bivariate model, was positive (COVP 425 

= 3.40; 95% CI = 2.45 – 4.47). The permanent environment effects covariance between head 426 

width and body weight was strongly positive (Table 4). There was no statistical support for a 427 

positive genetic covariance between head width and body weight as posterior distributions 428 

overlapped zero, although 91% of the posterior distribution was positive. The covariances for 429 

both other terms (year and trap) were not different from zero (Table 4).  430 

DFTD and head width: There was no evidence for an overall phenotypic covariance between 431 

susceptibility to DFTD and head width, estimated as the sum of all covariances in a bivariate 432 

model using the genetic dataset (COVP = 3.51; 95% CI = -8.34 – 20.97). There was no statistical 433 

support for either a genetic or a permanent environment covariance between the traits as the 434 

posterior distributions for both were wide and overlapped zero (Table 4, Figure S4). Posterior 435 

distributions for both other terms (year and trap) also overlapped zero. The results are in 436 

contrast to the positive phenotypic association between susceptibility to DFTD and head width 437 

estimated from the phenotypic dataset in section a, which may have been because the 438 

phenotypic associations between size traits and susceptibility to DFTD were estimated as 439 

relative to each other (i.e., body weight relative to head width and vice versa). However, when 440 

we re-ran the phenotypic selection model with the genetic dataset, we again found no 441 

phenotypic association between susceptibility to DFTD and head width (see Table S1), 442 

suggesting instead that the contrasting conclusions concerning the strength of statistical support 443 

for the association between DFTD and head width likely occurred from differences between 444 

the two datasets. 445 

DFTD and body weight: When fitting susceptibility to DFTD as a binary variable, we found 446 

that the total phenotypic covariance between susceptibility to DFTD and body weight, 447 

estimated as the sum of all covariances in a bivariate model, was clearly negative (COVP = -448 

2.69; 95% CI = -7.77 – -0.71). The overall negative association was also confirmed when we 449 

re-ran the phenotypic selection model with the genetic dataset, where we found a negative 450 

phenotypic association between susceptibility to DFTD and body weight (see Table S1). We 451 

found a negative genetic covariance between the two traits, estimated at -2.56 (posterior 452 

median; 95% CI: -6.11 - -0.50). However, posterior distributions for the permanent 453 
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environmental effects covariance between susceptibility to DFTD and body weight, as well as 454 

the covariances for the year and trap terms, were wide and overlapped zero (Table 4, Figure 455 

S4). Although the credible interval for the genetic covariance was different from zero, posterior 456 

distributions for covariance estimates were all quite wide and uncertain.  457 

Discussion 458 

Our analyses of a long-term dataset of Tasmanian devils revealed evidence of additive genetic 459 

variance in susceptibility to DFTD, suggesting that there is adaptive potential for Tasmanian 460 

devils to evolve resistance to DFTD. There was no statistical evidence for inbreeding 461 

depression in susceptibility to DFTD, head width, or body weight. Finally, whilst there was 462 

evidence for a positive phenotypic relationship between head width and susceptibility to 463 

DFTD, this was not associated with a genetic covariance, whereas there was evidence that the 464 

negative phenotypic relationship between weight and susceptibility to DFTD was underpinned 465 

by a negative genetic covariance.  466 

Additive genetic variance in a trait will determine the evolutionary response to selection on 467 

that trait (Golas et al., 2021; Walsh & Lynch, 2018). Our estimates of VA indicate a genetic 468 

basis to susceptibility to DFTD in Tasmanian devils, which may result in the population 469 

evolving resistance to the disease. This result aligns with those from a genome-wide association 470 

study which suggested that major effect loci explain a significant proportion of variation in the 471 

probability of having DFTD (Margres et al., 2018), and is also consistent with several previous 472 

studies indicating rapid evolutionary responses of devils as evidenced by allele frequency 473 

changes at some loci across the genome (Epstein et al., 2016; Fraik et al., 2020; Stahlke et al., 474 

2021). Together with these previous studies, our results suggest there may be some potential 475 

for the population to respond adaptively to DFTD. Strong directional selection on any fitness-476 

related trait should eventually deplete additive genetic variance as alleles at causal loci move 477 

towards fixation (Bulmer, 1971). We may therefore expect that additive genetic variance in 478 

susceptibility to DFTD should decrease over time as the population evolves resistance. 479 

Alternatively, additive genetic variance may be maintained as a result of the continued 480 

evolution of DFTD, resulting in arms-race style host-pathogen coevolution (Best et al., 2008; 481 

Boots et al., 2009; Stammnitz et al., 2023). The realised evolutionary response in this 482 

population will therefore be the product of selection acting on both devils and DFTD, as well 483 

as the ecological environment in which devils live and are exposed to the disease. Additionally, 484 

while our analyses focused on the resistance to DFTD, it is highly likely that tolerance to DFTD 485 
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is also evolving in the population (Hamede et al., 2020). In situations such as this, tolerance 486 

could be assessed from an individual’s survival following infection. However accurately 487 

measuring disease tolerance in mark-recapture studies can be inhibited by recapture 488 

probabilities, and future work could focus on incorporating data on survival post infection to 489 

investigate how disease tolerance evolves in populations facing EIDs.  490 

Inbreeding depression occurs when recessive deleterious mutations are expressed as 491 

homozygotes as a result of inbreeding and negatively impact traits associated with fitness in a 492 

population (Charlesworth & Willis, 2009; DeRose & Roff, 1999). Interestingly, despite DFTD 493 

being a reliable predictor of survival, we did not find evidence for inbreeding depression in 494 

susceptibility to DFTD. Furthermore, whilst body weight is often directly related to fitness via 495 

condition-related survival and reproduction, and has been found to be subject to inbreeding 496 

depression in many wild animals (Hajduk et al., 2018; Huisman et al., 2016; Laikre & Ryman, 497 

1991; Nielsen et al., 2012), we did not find statistical support for inbreeding depression in body 498 

weight. Inbreeding depression in Tasmanian devils would be especially concerning considering 499 

the repeated historical population bottlenecks and recent steep declines in population size 500 

(Brüniche-Olsen et al., 2013, 2014; Lachish et al., 2007; Patton et al., 2020), and so the overall 501 

lack of evidence for inbreeding depression is positive when assessing the probability of the 502 

population’s persistence. This is an interesting finding given that inbreeding depression has 503 

been found in other Tasmanian devil populations (R. M. Gooley et al., 2020), although studies 504 

of captive Tasmanian devils have also found a lack of inbreeding depression (R. Gooley et al., 505 

2017). One explanation for the overall lack of inbreeding depression could be that recessive, 506 

deleterious alleles have already been purged from the population (Grossen et al., 2020; Hedrick 507 

& Garcia-Dorado, 2016; Kirkpatrick & Jarne, 2000) either via inbreeding or during the 508 

repeated population bottlenecks experienced across the species’ range. Nonetheless, the 509 

expression of inbreeding depression may be dependent on both environmental conditions and 510 

genetic diversity within the population (Hedrick & Kalinowski, 2000), and whilst a lack of 511 

inbreeding depression provides a positive outlook for the population now, it does not protect 512 

against inbreeding depression in the future. 513 

Phenotypic and genetic covariances between DFTD and size traits can be used to predict 514 

whether either size trait will respond to selection caused by the disease (Price, 1970; Robertson 515 

& Lewontin, 1968), on the assumption that DFTD is a strong predictor of survival and hence 516 

fitness. We found that weight and susceptibility to DFTD were phenotypically and genetically 517 
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negatively correlated. It is important to note that our phenotypic analyses tested the effect of 518 

head width and body weight on DFTD concurrently and therefore our results reflect the effect 519 

of relative measures of each size trait. This means that we found that individuals with relatively 520 

greater body weight for a given head width (i.e. skeletal size) were less likely to have DFTD. 521 

The phenotypic covariance between these traits may reflect an immunocompetence - body-522 

condition relationship, whereby (relatively) heavier individuals are in better condition and 523 

consequentially have better resistance to disease (Gleeson et al., 2005). Alternatively, the 524 

directionality of causality in the phenotypic covariance may be reversed whereby individuals 525 

that have the disease subsequently lose weight (Sánchez et al., 2018). As the observed negative 526 

phenotypic covariance was mirrored by a negative genetic covariance, this suggests that the 527 

relationship is more likely an indirect measure of body-condition positively impacting immune 528 

function (Gleeson et al., 2005).  529 

We found that there was a positive phenotypic covariance between head width and 530 

susceptibility to DFTD at the phenotypic level, but we did not find evidence for this being 531 

underpinned by a genetic covariance. The underlying mechanisms causing the phenotypic 532 

relationship between susceptibility to DFTD and head width remain unclear, although one 533 

possibility is that the association may reflect an indirect association with social dominance. For 534 

instance, assuming that head width accurately predicts social dominance and males’ access to 535 

mates in the breeding season when much of the transmission-relevant injurious biting occurs, 536 

the relationship between head width and susceptibility to DFTD may reflect a greater 537 

probability of infection caused by increased rates of the interactions that cause disease 538 

transmission that occur in socially dominant individuals (Hamede et al., 2008, 2009; Hamilton 539 

et al., 2019). Interestingly, we found that this relationship was not associated with a genetic 540 

covariance. However, re-running the phenotypic model with a smaller dataset did not indicate 541 

the same phenotypic relationship between susceptibility to DFTD and head width, suggesting 542 

that it is more likely that this dataset was limited in its statistical power to detect the phenotypic 543 

relationship, and therefore presumably also any associated genetic or environmental 544 

covariances.  545 

In conclusion, EIDs are thought to dramatically alter the evolutionary dynamics of wild 546 

populations (Rogalski et al., 2017), but empirical evidence of this process is rare. We show that 547 

in an endangered marsupial facing an EID that has had a catastrophic impact on the species, 548 

there is evolutionary potential in disease traits and current and ongoing selection acting on 549 
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correlated morphological traits. Critically, we show that susceptibility to DFTD and size traits 550 

are all associated with underlying heritable genetic variance. We also show that these patterns 551 

exist in the absence of inbreeding depression. These results therefore not only provide 552 

important empirical evidence for how EIDs may shape future evolutionary dynamics of a 553 

population, but critically suggest that the species may hold the adaptive potential required to 554 

avoid extinction.        555 
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Figure 1. Plot showing the relationship between head width and DFTD (a), and weight with 581 

DFTD (b). Points show observed data, and regression lines show the predicted relationship 582 

between size traits and DFTD derived from a mixed effects model which fits DFTD as a case-583 

control response as a function of both size traits (see methods for full model structure). Solid 584 

dark line shows predictions derived from the median of the posterior and the lighter lines 585 

show 100 randomly selected draws from the posterior distribution.  586 
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Figure 2. Plot showing proportion of phenotypic variance in DFTD, head width and weight 600 

attributed to variance in additive genetic effects (VA) (reflecting narrow-sense heritability (h2)); 601 

permanent environment effects (VPE); year (VYear) and spatial location (VTrap). Variances for 602 

DFTD shown on the observed data-scale (see Table 2 for estimates on latent-scale). Posterior 603 

median of estimates shown as point, with 75% CI’s shown as heavy lines and 95% CI’s as 604 

lighter line.  605 

 606 

 607 

 608 

 609 



 22 

Figure 3. Plot showing relationship between FGRM (i.e., �̂�III) and body weight. Points show raw, 610 

observed data, and regression lines show the predicted relationship between FGRM and body 611 

weight, where the solid dark line shows predictions derived from the median of the posterior 612 

and the lighter lines show 100 randomly selected draws from the posterior distribution.  613 

 614 

 615 

 616 

 617 
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Table 1. Table outlining the structure of all linear mixed effects models outlined in statistical analyses section. All models were fit in stan via the 

brms package in R. Model refers to the model number referenced in text; Response refers to the response variable fit in the model; Fixed effects 

describes the fixed effects structure used in the model, where a colon represents an interaction term between two fixed effects; Random effects 

describes the random effects structure; Family (link function) describes the family with which the response variable was fit. Note that in bivariate 

models, the fixed effects structures varied between response variables and are shown on separate rows.  

Age: linear covariate describing age of individual in months; Sex: two-level effect “Male” or “Female”; Year: year of observation: Head width: in 

mm; Body weight: in kg; FGRM: individuals inbreeding coefficient; Age2: the quadratic of age in months: Trap: the name of the location the 

observation was taken; ID: individual microchip; a: additive genetic variance, estimated by fitting genomic relatedness matrix as a covariance 

matrix.

Model Response Fixed effects Random effects Family (link function) 

 Univariate    

1 DFTD Age + Sex + Year + Head width + Body weight Year + Trap + ID Bernoulli (logit) 

2 DFTD Age + Year + FGRM + Age:FGRM Year + Trap + ID + a  Bernoulli (logit) 

3 Head width Age + Age2 + Sex + Year + FGRM + Age:FGRM + Age:Sex + Age2:Sex Year + Trap + ID + a  Gaussian 

4 Body weight Age + Age2 + Sex + Year + FGRM + Age:FGRM + Age:Sex + Age2:Sex Year + Trap + ID + a  Gaussian 

 Bivariate    

5 
Head width ;   
Body weight 

Age + Age2 + Sex + Age:Sex + Age2:Sex + FGRM ; 

Age + Age2 + Sex + Age:Sex + Age2:Sex + FGRM 
Year + Trap + ID + a  

Gaussian   
Gaussian 

6 
Head width ;   

DFTD 
Age + FGRM + Year + Age2 + Sex + Age:Sex + Age2:Sex ; 

Age + FGRM + Year 
Year + Trap + ID + a  

Gaussian   
Bernoulli (logit) 

7 
Body weight ;   

DFTD 
Age + FGRM + Year + Age2 + Sex + Age:Sex + Age2:Sex ; 

Age + FGRM + Year 
Year + Trap + ID + a  

Gaussian   
Bernoulli (logit) 
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Table 2. Table summarising results from a mixed effects model used to estimate phenotypic 618 

relationship between size traits (body weight and head width) and DFTD occurrence. Response 619 

variable is the occurrence of DFTD at a given capture of an individual, fitted as a binary trait. 620 

TrapID fitted the location of the trap where the individual was caught. Posterior medians of 621 

linear coefficient estimate for fixed effects and variance estimates for random effects are 622 

presented with 95% credible intervals of posterior distribution in parentheses. Fixed effect 623 

estimates where the 95% CI’s do not overlap with zero are given in bold. Parameter estimates 624 

are on the logit link scale. The dataset used is the phenotypic data set with N = 729 individuals 625 

over N = 1550 captures, 22 years and 185 traps. 626 

 Parameter  

Fixed Effects  

SexM -1.30 (-4.39 - 1.14) 

Head width (mm) 0.32 (0.11 - 0.75) 

Body Weight (kg) -0.83 (-2.18 - -0.09) 

Age (months) 0.29 (0.10 - 0.83) 

Year (continuous variable) 1.16 (0.48 - 3.02) 

Random effects 
variance components 

ID 7.31 (3.08 - 19.20) 

Year 4.87 (1.89 - 12.85) 

TrapID 1.87 (0.12 - 5.84) 

 627 

628 
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Table 3. The results of animal models estimating VA and the effect of FGRM on three traits: head 629 

width, body weight and probability of having DFTD (DFTD). Posterior medians of all effects 630 

are presented with 95% credible intervals of posterior distributions in parentheses. Fixed effect 631 

estimates where the 95% credible intervals of the posterior does not overlap with zero are in 632 

bold. Variance components and proportion of phenotypic variance for susceptibility to DFTD 633 

are shown on the latent (logit link) scale (estimates on the data-scale can be found in Figure 2). 634 

Estimates where posterior distribution does not overlap with zero in bold. The dataset used has 635 

N = 243 individuals over N = 498 captures and 19 years and 128 traps. 636 

   Head width Body Weight DFTD 

Fixed Effects 

Age 1.19 (0.96 - 1.42) 0.22 (0.16 - 0.28) 0.35 (0.12 - 0.75) 

Age2 -0.01 (-0.02 - -0.01) -0.002 (-0.003 - -0.001) - 

SexM -3.57 (-7.34 - 0.24) -0.53 (-1.15 - 0.45) - 
FGRM -1.97 (-8.62 - 4.90) -1.68 (-3.79 - 0.39) -0.88 (-8.33 - 6.76) 

Year -0.17 (-0.43 - 0.09) -0.01 (-0.06 - 0.04) 1.68 (0.63 - 3.49) 

Age:SexM 0.57 (0.31 - 0.84) 0.12 (0.05 - 0.19) - 

Age2:SexM -0.01 (-0.02 - -0.01) -0.002 (-0.003 - -0.002) - 

 VA 4.74 (0.76 - 10.11) 0.36 (0.14 - 0.61) 34.83 (6.17 - 220.55) 

 VPE 11.53 (6.92 - 16.96) 0.22 (0.03 - 0.45) 5.91 (0.05 - 60.41) 
Random effects VYear 7.08 (3.66 - 14.34) 0.21 (0.09 - 0.47) 39.03 (8.23 - 244.43) 

variance 
components 

VTrap 0.25 (0.002 - 1.30) 0.15 (0.06 - 0.27) 1.89 (0.02 - 19.63) 

 VR 9.25 (7.89 - 10.93) 0.56 (0.47 - 0.66) - 

 h2 0.14 (0.02 - 0.29) 0.23 (0.09 - 0.38) 0.40 (0.12 - 0.71) 
Proportion of 

phenotypic 
variance 

ICCPE 0.34 (0.20 - 0.49) 0.15 (0.02 - 0.30) 0.07 (0.001 - 0.38) 

 ICCYear 0.21 (0.12 - 0.36) 0.14 (0.07 - 0.27) 0.44 (0.19 - 0.72) 

 ICCTrap 0.007 (0.0001 - 0.04)  0.38 (0.24 - 0.52) 0.02 (0.0002 - 0.13) 

Linear coefficient estimates shown for fixed effects. Variance estimates shown for all random 637 
effects: variance in additive genetic effects (VA); permanent environment effects (VPE); year 638 
(VYear); spatial location (VTrap) and residual (VR). Proportion of total phenotypic variance (i.e., 639 
sum of all variance components) attributed to additive genetic effects, also known as narrow-640 
sense heritability (h2); permanent environment effects (intraclass correlation, ICCPE); year 641 
(ICCYear); and spatial location (ICCTrap). 642 

 643 

 644 

 645 
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Table 3. The results of the three bivariate models used to estimate covariances between head 646 

width, body weight and DFTD. Models were fit with DFTD as a binary variable with a logit 647 

link. Posterior medians of all covariance estimates presented with 95% credible intervals of 648 

posterior distribution in subscript parentheses. Covariances with DFTD given on the latent 649 

scale. Full variance-covariance matrices from models can be found in supplementary material 650 

(Table S4). Covariance estimates where posterior distribution does not overlap with zero in 651 

bold. The dataset used has N = 243 individuals over N = 498 captures and 19 years and 128 652 

traps. 653 

 654 

 655 

Covariance estimates for additive genetic effects (COVA), permanent environment effects 656 
(COVPE), year effects (COVYear), location effects (COVTrap) and residual effects (COVRes). Total 657 
phenotypic covariance between each pair of traits (COVP) given as the sum of all covariances 658 
estimated from bivariate models.   659 

  
Head width and 

Body Weight 
DFTD and Head width 

DFTD and Body 
Weight 

COVA 0.94 (-0.02 - 2.49) -2.63 (-13.34 - 5.91) -2.56 (-6.11 - -0.50) 

COVPE 2.03 (0.87 - 3.14) 0.26 (-5.40 - 6.18) 0.05 (-0.84 - 0.93) 

COVYear -0.31 (-0.99 - 0.33) 6.78 (-2.18 - 21.16) -1.06 (-3.43 - 0.53) 

COVTrap 0.02 (-0.08 - 0.17) 0.23 (-0.42 - 1.37) 0.29 (-0.12 - 1.02) 

COVRes 0.74 (0.47 - 1.04) - - 

COVP 3.40 (2.45 - 4.47) 3.51 (-8.34 - 20.97) -2.69 (-7.77 - -0.71) 
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Supplementary materials 660 

 661 
Figure S1. Distribution of pairwise relatedness values used in all quantitative genetics models 662 

(see main text). Relatedness values estimated using Wang relatedness estimate in COANCESTRY 663 

(Wang, 2010).  664 

 665 
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 672 
Figure S2. Distribution of individual inbreeding coefficients as estimated by FGRM values. FGRM 673 

was estimated using �̂�III in GCTA (Yang et al., 2011), which approximates relatedness between 674 

an individual’s parents, averaged across all loci. More inbred individuals have higher values 675 

and more outbred individuals have negative values.  676 

 677 
 678 
 679 
 680 
 681 
 682 
 683 
 684 
 685 

 686 



 29 

Table S1. Results from phenotypic model run with the smaller subset of data as used in the 687 

quantitative genetic analyses, containing only individuals that had sufficient quality genetic 688 

data. TrapID is the location of the trap where the individual was caught. The values shown are 689 

the posterior medians of linear coefficient estimates for fixed effects and of variance estimates 690 

for random effects, with 95% credible intervals of posterior distributions in parentheses. 691 

Estimates where the 95% CI does not overlap zero are shown in bold.  692 

 693 
 694 

Parameter 

Fixed Effects 

SexM -0.45 (-6.70 - 5.82) 

Head width 0.26 (-0.49 - 1.12) 

Body weight -1.55 (-5.58 - 1.40) 

Age (months) 0.61 (0.11 - 1.94) 

Year 2.14 (0.50 - 5.88) 

Random effects variance 
components 

ID 13.16 (3.69 - 37.71) 

Year 12.88 (3.11 - 40.60) 

TrapID 3.97 (0.22 - 12.37) 

 695 
 696 
 697 

Table S2 Results of phenotypic models of head width and body weight used to investigate the 698 

temporal trends in each trait. TrapID is the location of the trap where the individual was 699 

caught. The values shown are the posterior medians of linear coefficient estimates for fixed 700 

effects and of variance estimates for random effects, with 95% credible intervals of posterior 701 

distributions in parentheses. Estimates where the 95% CI does not overlap zero are shown in 702 

bold.  703 

 704 

    Head width Body weight 

Fixed Effects 

Age  0.96 (0.86 - 1.06) 0.20 (0.18 - 0.22) 

Age2 -0.01 (-0.01 - -0.01) -0.002 (-0.002 - -0.001) 

SexM -2.21 (-4.39 - -0.04) -0.15 (-0.59 - 0.30) 

Year -0.10 (-0.25 - 0.05) 0.004 (-0.02 - 0.03) 

Age:SexM 0.64 (0.49 - 0.79) 0.12 (0.09 - 0.15) 

Age2:SexM -0.01 (-0.01 - -0.001) -0.001 (-0.002 - -0.001) 

Random effects 
variance 

components 

ID 3.82 (3.51 - 4.15) 0.82 (0.75 - 0.90) 

Year 2.22 (1.53 - 3.18) 0.45 (0.30 - 0.64) 

TrapID 1.26 (0.83 - 1.70) 0.24 (0.13 - 0.35) 
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Text S1. Estimating maternal effects without a pedigree.  705 
 706 
Estimates of VA may be inflated if the trait is affected by maternal effects that are not explicitly 707 

modelled (Kruuk & Hadfield, 2007; Wilson et al., 2005). Usually, maternal effects are 708 

estimated by fitting a vector of known maternities for all individuals in the dataset as a 709 

random effect in the model, where maternities have been either observed in the field or 710 

identified via a genetically reconstructed pedigree. This option was not possible in our 711 

analyses because in our dataset maternities for most individuals were unknown because (1) 712 

it is not possible to sample dependent young while with their mother (see main text for 713 

details), and (2) pedigree reconstruction was not possible with the available SNP dataset. 714 

Nevertheless, we attempted to examine whether estimates of VA in DFTD or size traits may 715 

be being inflated by maternal effects that we were unable to model by using the following 716 

two alternative methods.  717 

 718 

The first of these methods (Ped+) involved re-running our univariate animal models 719 

(described in main text) with estimated maternities for all individuals included as an 720 

additional random effect. We estimated maternities for all individuals using a combination of 721 

maternities from the incomplete pedigree, relatedness estimates and life history information. 722 

First, we assigned maternities to individuals if they had been successfully identified during 723 

pedigree reconstruction (via the sequoia R package (Huisman, 2017). Then, we identified 724 

further putative maternities using a combination of relatedness estimates, sex and age. 725 

Specifically, we assigned pairs of individuals that putatively may be a mother-offspring pair if 726 

they had a relatedness value of more than 0.45, and one of the individuals was a female and 727 

was at least 1 year older than the other. That female was then assigned as the possible mother 728 

of the other individual. This resulted in a total of 116 putative mothers of 243 individuals 729 

contained in the dataset. For the remaining individuals that we did not have a mother 730 

estimated, we gave them a unique “dummy” mother.  731 

 732 

The second of these methods (ME Multi R) was originally proposed by (Zaitlen et al., 2013), 733 

and has since been tested and applied in Soay Sheep (James, C et al., 2023). In this approach, 734 

maternal effects were estimated by fitting an additional matrix to our univariate animal 735 

models which was a modified version of the full GRM that aimed to group individuals that 736 
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likely had a shared maternal environment. To create this additional matrix, we truncated the 737 

full GRM at a cut-off value such that everything below that value became zero. We did this 738 

using two cut-off values of 0.5 (ME Multi R 0.5) and 0.25 (ME Multi R 0.25). A relatedness of 739 

0.5 was used because this is the expected level of relatedness for both mother-offspring pairs 740 

and full-siblings, both of which would have a common maternal environment. We then 741 

repeated this with a relatedness of 0.25 in order to also capture maternal half-siblings in this 742 

matrix.  743 

 744 

We acknowledge that the methods we present here may be imprecise in their estimation of 745 

shared maternal environments: the first method may be missing some maternities, whereas 746 

the matrices used in the second method retain other types of relatives that do not share a 747 

maternal environment. However, we believe that, in combination, these methods are likely 748 

effective in assessing the extent that estimates of VA may be being affected by maternal 749 

effects.  750 

 751 

We found that for all three traits (body weight, head width and DFTD) fitting a maternal effect 752 

using either of the methods we tested reduced estimates of both VA and VPE. However, the 753 

magnitude of difference in our estimates of VA was very dependent on both the trait and the 754 

method we used (Fig S3). Furthermore, the estimates of maternal effects variance were not 755 

consistent between the different methods used (Fig S3) and, in all cases, fitting a maternal 756 

effect reduced confidence in variance parameter estimates by generating wider posterior 757 

distributions. For DFTD, h2 was estimated around 0.01 higher (on the data-scale) in a model 758 

without a maternal effect fitted than when a maternal effect was fit (averaged between the 759 

point estimates from the three different methods). For body weight, h2 was estimated around 760 

0.05 higher in a model without a maternal effect fitted than when a maternal effect was fit 761 

(averaged between the point estimates from the three different methods). For head width, 762 

h2 was estimated around 0.03 higher in a model without a maternal effect fitted than when a 763 

maternal effect was fit (averaged between the point estimates from the three different 764 

methods). 765 

 766 

 767 
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Figure S3. Plot showing proportion of phenotypic variance in DFTD, head width and body 768 

weight attributed to variance in additive genetic effects (VA) (reflecting narrow-sense 769 

heritability (h2)); permanent environment effects (VPE); year (VYear) and spatial location (VTrap) 770 

and maternal effects (VME). Variances for DFTD shown on the observed data-scale (see Table 771 

2 for estimates on latent-scale). Posterior median of estimates shown as point, with 75% CI’s 772 

shown as heavy linen and 95% CI’s as lighter line. VME estimated using either approximated 773 

maternities (Ped +), or by fitting an additional matrix which truncated the GRM at a cut-off 774 

value (ME Multi R, see text S1 for details).  775 

 776 

 777 
 778 
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Table S3. The results of the bivariate models used to estimate covariances between head width, 779 

body weight and DFTD where models were fit with relative measures of DFTD, body weight 780 

and head width (see Methods for details) and were all fit with Gaussian errors. Posterior 781 

medians of all covariance estimates presented with 95% credible intervals of posterior 782 

distribution in subscript parentheses. Full variance-covariance matrices from models can be 783 

found in Table S4. 784 

Covariance estimates for additive genetic effects (COVA), permanent environment effects 785 
(COVPE), year effects (COVYear), location effects (COVTrap) and residual effects (COVRes). Total 786 
phenotypic covariance between each pair of traits (COVP) given as the sum of all covariances 787 
estimated from bivariate models.   788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 

 797 

 798 

 799 

 800 

 801 

 802 

 803 

  DFTD and Head width DFTD and Body Weight 

COVA -0.10 (-0.35 - 0.13) -0.27 (-0.29 - -0.05) 

COVPE 0.07 (-0.08 - 0.26) 0.06 (-0.08 - 0.20) 

COVYear 0.10 (-0.37 - 0.61) -0.29 (-0.78 - 0.06) 

COVTrap 0.02 (-0.01 - 0.07) 0.04 (-0.01 - 0.12) 

COVRes -0.13 (-0.23 - -0.04) -0.11 (-0.21 - -0.001) 

COVP -0.03 (0.55 - 0.50) -0.57 (-1.09 - -0.26) 
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Table S4. Full variance-covariance matrices estimated from the three bivariate models used 804 

to estimate genetic covariances between DFTD, head width and body weight. Results from 805 

each bivariate model shown in turn. For each 2x2 matrix, variances are shown on the diagonal 806 

(and shaded in light grey), covariances below the diagonal and correlations above the 807 

diagonal. Each estimate is the median of the posterior distribution followed by the 95% CI in 808 

parentheses.  809 

 810 

    Body Weight Head width 

Year 
Body Weight 0.24 (0.10 - 0.47) -0.24 (-0.66 - 0.23) 

Head width -0.30 (-0.99 - 0.33) 8.20 (3.86 - 15.03) 

Additive genetic 
Body Weight 0.28 (0.03 - 0.62) 0.64 (-0.29 - 0.96) 

Head width 0.94 (-0.02 - 2.48) 5.29 (0.10 - 13.35) 

Permanent 
environment 

Body Weight 0.41 (0.15 - 0.66) 0.93 (0.82 - 0.99) 

Head width 2.03 (0.87 - 3.14) 11.71 (5.47 - 17.59) 

Trap 
Body Weight 0.07 (0.009 - 0.14) 0.05 (-0.84 - 0.84) 

Head width 0.02 (-0.07 - 0.17) 0.34 (0.002 - 1.17) 

    Head width DFTD 

Year 
Head width 7.88 (3.65 - 14.45) 0.36 (-0.14 - 0.77) 

DFTD 6.78 (-2.18 - 21.16) 73.94 (6.39 - 212.14) 

Additive genetic 
Head width 5.85 (0.18 - 13.26) -0.16 (-0.77 - 0.51) 

DFTD -2.63 (-13.34 - 5.91) 78.39 (5.48 - 274.08) 

Permanent 
environment 

Head width 11.50 (5.84 - 17.71) 0.04 (-0.82 - 0.87) 

DFTD 0.26 (-5.40 - 6.18) 8.75 (0.02 - 34.69) 

Trap 
Head width 0.38 (0.002 - 1.26) 0.19 (-0.81 - 0.94) 

DFTD 0.23 (-0.42 (1.37) 3.87 (0.01 - 14.73) 

    Body Weight DFTD 

Year 
Body Weight 0.28 (0.09 - 0.45) -0.37 (-0.83 - 0.22) 

DFTD -1.06 (-3.43 - 0.53) 52.34 (5.64 - 173.06) 

Additive genetic 
Body Weight 0.38 (0.13 - 0.68) -0.61 (-0.95 - -0.19) 

DFTD -2.56 (-6.11 - -0.50) 75.40 (7.01 - 256.83) 

Permanent 
environment 

Body Weight 0.26 (0.05 - 0.48) 0.07 (-0.85 - 0.89) 

DFTD 0.05 (-0.84 - 0.93) 6.46 (0.02 - 26.36) 

Trap 
Body Weight 0.14 (0.05 - 0.25) 0.43 (-0.47 - 0.96) 

DFTD 0.29 (-0.12 - 1.02) 4.73 (0.02-17.76) 

    Relative Head width Relative DFTD 

Year 
Relative Head width 0.11 (0.05 - 0.22) 0.11 (-0.34 - 0.56) 

Relative DFTD 0.10 (-0.37 - 0.61) 8.98 (4.24 - 16.43) 

Additive genetic 
Relative Head width 0.08 (0.01 - 0.17) -0.22 (-0.78 - 0.32) 

Relative DFTD -0.09 (-0.34 - 0.13) 3.13 (1.47 - 4.96) 
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Permanent 
environment 

Relative Head width 0.14 (0.07 - 0.21) 0.27 (-0.50 - 0.89) 

Relative DFTD 0.07 (-0.08 - 0.26) 0.72 (0.01 - 2.01) 

Trap 
Relative Head width 0.01 (0.0001 - 0.02) 0.41 (-0.57 - 0.96) 

Relative DFTD 0.02 (-0.01 - 0.07) 0.33 (0.01 - 0.84) 

Residual  
Relative Head width 0.12 (0.10 - 0.14) -0.16 (-0.27 - -0.04) 

Relative DFTD -0.13 (-0.22 - -0.04) 5.28 (4.44 - 6.19) 

    Relative Body Weight Relative DFTD 

Year 
Relative Body Weight 0.07 (0.03 - 0.13) -0.38 (-0.75 - 0.10) 

Relative DFTD -0.29 (-0.78 - 0.06) 8.98 (4.29 - 16.43) 

Additive genetic 
Relative Body Weight 0.11 (0.03 - 0.19) -0.52 (-0.92 - -0.09) 

Relative DFTD -0.27 (-0.49 - -0.05) 2.95 (1.36 - 4.81) 

Permanent 
environment 

Relative Body Weight 0.07 (0.01 - 0.13) 0.29 (-0.54 - 0.92) 

Relative DFTD 0.06 (-0.08 - 0.20) 0.82 (0.01 - 2.13) 

Trap 
Relative Body Weight 0.04 (0.01 - 0.07) 0.47 (-0.32 - 0.96) 

Relative DFTD 0.04 (-0.01 - 0.12) 0.28 (0.01 - 0.76) 

Residual  
Relative Body Weight 0.15 (0.13 - 0.18) -0.12 (-0.23 - -0.002) 

Relative DFTD -0.11 (-0.21 - -0.001) 5.31 (4.47 - 6.24) 

 811 
 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 
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Figure S4. Genetic correlations (CORA), permanent environment correlation (CORPE), year 824 

correlation (CORYear) and spatial correlation (CORTrapID) between head width and body 825 

weight, DFTD and head width and DFTD and body weight estimated from (a) models fit with 826 

DFTD as a binary variable (“Original”), and (b) models fit with a relative measure of DFTD 827 

(DFTD relative to the average prevalence of DFTD in the population, see methods for 828 

details), which fit with gaussian errors (“Relative”). Covariance estimates can be found in 829 

Table S3. Posterior median of estimates shown as point, with 75% CIs shown as heavy lines 830 

and 95% CIs as lighter lines. 831 

832 
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